JP5205833B2 - Method for producing plastic grout material using regenerated fine powder - Google Patents

Method for producing plastic grout material using regenerated fine powder Download PDF

Info

Publication number
JP5205833B2
JP5205833B2 JP2007166146A JP2007166146A JP5205833B2 JP 5205833 B2 JP5205833 B2 JP 5205833B2 JP 2007166146 A JP2007166146 A JP 2007166146A JP 2007166146 A JP2007166146 A JP 2007166146A JP 5205833 B2 JP5205833 B2 JP 5205833B2
Authority
JP
Japan
Prior art keywords
fine powder
plastic grout
grout material
regenerated fine
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007166146A
Other languages
Japanese (ja)
Other versions
JP2009001466A (en
Inventor
茂 青木
律彦 三浦
桂史郎 入矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2007166146A priority Critical patent/JP5205833B2/en
Publication of JP2009001466A publication Critical patent/JP2009001466A/en
Application granted granted Critical
Publication of JP5205833B2 publication Critical patent/JP5205833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

本発明は、主として裏込め材として利用する可塑性グラウト材を製造する方法に関する。   The present invention relates to a method for producing a plastic grout material mainly used as a backfill material.

山岳トンネル工法でトンネルを掘削する際、覆工コンクリートの背面に生じた空洞をそのまま放置すると、覆工コンクリートに作用する地山からの圧力が偏る原因となり、地山の崩落を招くおそれもある。   When excavating a tunnel by the mountain tunnel construction method, if the cavity formed on the back of the lining concrete is left as it is, the pressure from the natural ground acting on the lining concrete may be biased and the natural mountain may collapse.

そのため、覆工コンクリートの背面に生じた空洞に裏込め材を充填することにより、地山崩落といった事態を未然に防止しなければならない。   For this reason, it is necessary to prevent a situation such as a collapse of a natural ground by filling a backfill material into a cavity generated on the back surface of the lining concrete.

かかる裏込め材としては、地山への散逸がなく湧水下でも分離せずに確実な充填が可能であることが要求されるが、本出願人は、スペースパック(登録商標)の名称であらたな可塑性グラウト材を開発した。   As such a back-filling material, it is required that it can be reliably filled without being dissipated into the natural ground and separated even under spring water, but the present applicant has the name of space pack (registered trademark). A new plastic grout material was developed.

かかる可塑性グラウト材は、モルタルに特殊増粘材スラリーを混合したものであって、1液性ゆえ、品質確保が容易で長距離ポンプ圧送が可能であるのみならず、高い水中不分離性とチキソトロピー性(チクソトロピー性ともいう)とを有しているため、覆工コンクリートの背面に限定注入する裏込め材としてきわめて有用である。   Such a plastic grout material is a mixture of a special thickener slurry in mortar, and since it is one-component, not only is it easy to ensure quality and can be pumped over a long distance, but it also has high water inseparability and thixotropy. Therefore, it is extremely useful as a back-filling material that is limitedly injected into the back surface of the lining concrete.

特開2002−96317号公報JP 2002-96317 A 特開2002−147179号公報JP 2002-147179 A

しかしながら、トンネルに使用される可塑性グラウト材の量は膨大であり、そのコストダウンを図ることが急務とされている。   However, the amount of plastic grout material used for tunnels is enormous, and it is urgent to reduce the cost.

一方、環境負荷の低減あるいは資源リサイクルという社会的要請の下、構造物を解体して発生したコンクリートガラから骨材を再生する技術が進展しており、今では、道路路盤材、埋戻し材、地盤改良材といったさまざまな用途で再生骨材が使用されるようになってきたが、再生骨材を製造する際に大量に発生する微粉末(以下、再生微粉)については、その活用が未だ手探りの段階であるという問題を生じていた。   On the other hand, under the social demand of reducing environmental impact or recycling resources, technology to recycle aggregates from concrete debris generated by dismantling structures has progressed, and now road roadbed materials, backfill materials, Recycled aggregates have come to be used in various applications such as ground improvement materials, but the utilization of the fine powder (hereinafter referred to as regenerated fine powder) generated in large quantities when producing recycled aggregates is still being explored. The problem of being at the stage of was raised.

本発明は、上述した事情を考慮してなされたもので、再生微粉を可塑性グラウト材の材料として使用可能な再生微粉を用いた可塑性グラウト材の製造方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a method for producing a plastic grout material using regenerated fine powder, which can be used as a material for the plastic grout material.

上記目的を達成するため、本発明に係る再生微粉を用いた可塑性グラウト材の製造方法は請求項1に記載したように、水、細骨材及びセメント等の水硬性材料を含む混練物に水及び無機系増粘材を含む増粘材スラリーを混合して可塑性グラウト材を製造する方法において、前記混練物と前記増粘材スラリーとを混合する工程に先立って、前記混練物に再生微粉が含まれるように該混練物を作製する可塑性グラウト材の製造方法であって、前記水硬性材料の一部を前記再生微粉に置換するとともに、前記再生微粉の含水比を3〜10%としたものである。 In order to achieve the above object, according to the method for producing a plastic grout material using the regenerated fine powder according to the present invention, as described in claim 1, water is added to a kneaded product containing hydraulic materials such as water, fine aggregate and cement. And a thickening material slurry containing an inorganic thickening material to produce a plastic grout material, and prior to the step of mixing the kneaded product and the thickening material slurry, regenerated fine powder is added to the kneaded product. A method for producing a plastic grout material for producing the kneaded product so as to be contained , wherein a part of the hydraulic material is replaced with the regenerated fine powder, and the water content ratio of the regenerated fine powder is 3 to 10%. It is.

また、本発明に係る再生微粉を用いた可塑性グラウト材の製造方法は、前記無機系増粘材をベントナイトとしたものである。   Moreover, the manufacturing method of the plastic grout material using the regenerated fine powder according to the present invention uses the inorganic thickener as bentonite.

本出願人は、環境負荷の低減あるいは資源リサイクルという社会的要請に応えるべく、再生微粉を用いて可塑性グラウト材を製造することはできないかという点に着眼して研究開発を行ってきたが、可塑性グラウト材には、覆工コンクリートの背面側に生じている空洞を所定の強度(品質)で充填することが可能でかつ地山に逸散することがないよう、一定の流動性と材料分離抵抗性とを併せ持つことが必要となる。加えて、可塑性グラウト材には、地山への逸散を防止しながら背面空洞という狭隘部への確実な充填、いわば限定注入を可能ならしめるためのチキソトロピー性という性能が要求される。   The applicant has been carrying out research and development focusing on whether plastic grout materials can be produced using recycled fine powder in order to meet the social demands of reducing environmental impact or recycling resources. The grout material has a certain fluidity and material separation resistance so that the cavity created on the back side of the lining concrete can be filled with a predetermined strength (quality) and does not dissipate into the ground. It is necessary to have both sex. In addition, the plastic grout material is required to have the performance of thixotropy to enable reliable filling into the narrow part of the back cavity, that is, limited injection, while preventing escape to the natural ground.

ちなみに、一定の流動性と材料分離抵抗性とを併せ持つことが要求される土木建築材料として例えば高流動コンクリートがあるが、再生微粉が添加された高流動コンクリートは、単位水量や混和剤量が増加してフレッシュ性状や硬化後の品質が低下することが本出願人の実験によって明らかになっており、再生微粉の添加量はごく少量に限られているとともに、そもそも高流動コンクリートは、自己充填性が要求されるという点で可塑性グラウト材とは本質的に異なる。   By the way, for example, there is high-fluidity concrete as a civil engineering building material that is required to have both a certain fluidity and material separation resistance, but the high-fluidity concrete to which recycled fine powder is added increases the amount of water and admixture. As a result of experiments conducted by the present applicant, the fresh properties and the quality after curing have been clarified, and the amount of recycled fine powder is limited to a very small amount. Is essentially different from the plastic grout material in that it is required.

本出願人は、このような点を踏まえながら、さまざまな実験を積み重ねた結果、一定の流動性と材料分離抵抗性とを併せ持つとともに、高いチキソトロピー性を備えた可塑性グラウト材の開発に成功したものである。   As a result of accumulating various experiments in consideration of these points, the present applicant has succeeded in developing a plastic grout material having both a certain fluidity and a material separation resistance and a high thixotropy. It is.

すなわち、本発明に係る再生微粉を用いた可塑性グラウト材の製造方法においては、水、細骨材及びセメント等の水硬性材料を含む混練物に水及び無機系増粘材を含む増粘材スラリーを混合して可塑性グラウト材を製造するにあたり、混練物と増粘材スラリーとを混合する工程に先立って、混練物に再生微粉が含まれるように該混練物を作製する。   That is, in the method for producing a plastic grout material using the regenerated fine powder according to the present invention, a thickener slurry containing water and an inorganic thickener in a kneaded material containing a hydraulic material such as water, fine aggregate and cement. In producing a plastic grout material by mixing the kneaded material and the thickener slurry, the kneaded material is prepared so that the regenerated fine powder is contained in the kneaded material.

このようにすると、製造された可塑性グラウト材は、再生微粉によって粘性が増加し材料分離抵抗性が確保されるとともに、流動性はわずかに低下する程度にとどまることが本出願人の実験によって明らかとなった。加えて、可塑性グラウト材として重要な指標であるチキソトロピー性は、フロー増分で従前の可塑性グラウト材の場合(再生微粉の添加割合がゼロの場合)よりも20%近く高めることができることも明らかとなった。   In this way, it is clear from the experiment of the present applicant that the produced plastic grout material has increased viscosity due to the regenerated fine powder and secured material separation resistance, and the fluidity is only slightly reduced. became. In addition, it is also clear that thixotropy, which is an important index as a plastic grout material, can be increased by nearly 20% in the flow increments compared to the case of the conventional plastic grout material (when the addition ratio of recycled fine powder is zero). It was.

水硬性材料には、各種セメントのほか、フライアッシュ、膨張材、高炉スラグ微粉末、シリカフューム等の水硬性又は潜在水硬性を持つ無機質粉末が含まれる。   The hydraulic material includes inorganic powder having hydraulic or latent hydraulic properties such as fly ash, expansion material, blast furnace slag fine powder, silica fume, etc., in addition to various cements.

無機系増粘材には、主としてベントナイトが含まれるが、ベントナイトと同様にチキソトロピー性を高める作用を有する無機材料であれば、どのような材料でもかまわない。   The inorganic thickener mainly includes bentonite, but any material may be used as long as it is an inorganic material having an effect of improving thixotropic properties like bentonite.

再生微粉とは上述したように、構造物や建築物を解体したときに生じるコンクリートやモルタルを用いて再生骨材を製造する際、再生プロセスにおいて大量に発生する微粉末をいうものとする。   As described above, the regenerated fine powder refers to fine powder generated in a large amount in a regenerating process when a reclaimed aggregate is produced using concrete or mortar generated when a structure or building is dismantled.

再生微粉は、混練物の作製が終了した時点で添加されていれば足り、水、細骨材及び水硬性材料と同時に混練してもよいし、それらを混練した後で添加し、さらに攪拌混合して作製するようにしてもかまわない。   The regenerated fine powder is sufficient if it is added at the time of preparation of the kneaded product, and may be kneaded at the same time as water, fine aggregate and hydraulic material, or after kneading them, and further stirring and mixing You may make it.

再生微粉は、水硬性材料の一部を再生微粉に置換するものとする Play fines shall replace part of the hydraulic material playback fines.

このようにすると、水硬性材料の使用量を低減することが可能となり、可塑性グラウト材の製造コストを下げることができるのみならず、産業廃棄物として処理しなければならなかった大量の再生微粉を有効利用することが可能となる。 In this way, it is possible to reduce the amount of hydraulic material used and not only lower the production cost of the plastic grout material, but also a large amount of recycled fine powder that had to be treated as industrial waste. It can be used effectively.

以下、本発明に係る再生微粉を用いた可塑性グラウト材の製造方法の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。   Embodiments of a method for producing a plastic grout material using regenerated fine powder according to the present invention will be described below with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.

図1は、本実施形態に係る再生微粉を用いた可塑性グラウト材の製造方法を示したフローチャートである。同図でわかるように、本実施形態に係る製造方法に沿って可塑性グラウト材を製造するには、まず、水、細骨材としての砂(一部置換の場合)、水硬性材料としてのセメント、遅延剤及び再生微粉を攪拌混合して混練物(以下、水硬性混練物)を作製する(ステップ101)。   FIG. 1 is a flowchart showing a method for producing a plastic grout material using regenerated fine powder according to the present embodiment. As can be seen from the figure, in order to produce a plastic grout material in accordance with the production method according to the present embodiment, first, water, sand as fine aggregate (in the case of partial replacement), cement as hydraulic material Then, the retarder and the regenerated fine powder are stirred and mixed to prepare a kneaded product (hereinafter, hydraulic kneaded product) (step 101).

再生微粉は、例えば20〜40N/mm2程度の強度を有するコンクリートを原材料とし、密度が2.3〜2.5g/cm3、含水比が3〜10%、粉末度(比表面積)が2,200〜3,000cm2/g程度のものを使用することができる。 The recycled fine powder is made of, for example, concrete having a strength of about 20 to 40 N / mm 2 and has a density of 2.3 to 2.5 g / cm 3 , a water content ratio of 3 to 10%, and a fineness (specific surface area) of 2. , 200 to 3,000 cm 2 / g can be used.

ここで、再生微粉は、砂と合わせて、1m3当たり、250kg程度を混合することが考えられるが、置換量は全量までの範囲で任意に選択することが可能である。例えば砂50kg、再生微粉を200kgとしてもよいし、砂を全量置換して再生微粉を250kgとすることも可能である。その場合には砂が不要となり、水硬性混練物は、水、セメント、遅延剤及び再生微粉を攪拌混合して作製することになる。 Here, it is conceivable that the regenerated fine powder is mixed with sand and mixed at about 250 kg per 1 m 3 , but the replacement amount can be arbitrarily selected within the range up to the total amount. For example, the sand may be 50 kg and the regenerated fine powder may be 200 kg, or the total amount of sand may be replaced to make the regenerated fine powder 250 kg. In that case, sand becomes unnecessary, and the hydraulic kneaded material is prepared by stirring and mixing water, cement, retarder and regenerated fine powder.

セメントと置換する場合には、再生微粉をセメントと合わせて、1/m3当たり、260kg程度を混合することが考えられるが、圧縮強度を確保する関係上、再生微粉の置換割合を30重量%程度以下に設定するのが望ましい。 When substituting with cement, it is conceivable to mix the regenerated fine powder with cement and mix about 260 kg per 1 m 3. However, in order to ensure compressive strength, the replacement ratio of the regenerated fine powder is 30% by weight. It is desirable to set it below the degree.

このような再生微粉の砂との置換あるいはセメントとの置換は、いずれか一方を選択してもよいし、両方を置換するようにしてもかまわない。   For such replacement of the regenerated fine powder with sand or replacement with cement, either one may be selected, or both may be replaced.

一方、水と無機系増粘材であるベントナイトとを混練して増粘材スラリーを作製する(ステップ102)。ベントナイトと水の配合については、例えば水増粘材比(W/B)で540%程度とすることが考えられる。   On the other hand, a thickener slurry is prepared by kneading water and bentonite which is an inorganic thickener (step 102). Regarding the blending of bentonite and water, for example, the water thickener ratio (W / B) may be about 540%.

次に、水硬性混練物と増粘材スラリーとを混合し、可塑性グラウト材を製造する(ステップ103)。水硬性混練物と増粘剤スラリーとは、例えば容積比で3:7程度の割合で混合することが考えられる。   Next, the hydraulic kneaded material and the thickener slurry are mixed to produce a plastic grout material (step 103). It is conceivable that the hydraulic kneaded material and the thickener slurry are mixed, for example, at a volume ratio of about 3: 7.

以上説明したように、本実施形態に係る再生微粉を用いた可塑性グラウト材の製造方法によれば、水、細骨材、セメント及び再生微粉を含む水硬性混練物に水及びベントナイトを含む増粘材スラリーを混合して可塑性グラウト材を製造するようにしたので、製造された可塑性グラウト材は、後述する実験でもわかる通り、再生微粉によって粘性が増加し材料分離抵抗性が確保されるとともに、流動性はわずかに低下する程度にとどまる。   As described above, according to the method for producing a plastic grout material using the regenerated fine powder according to the present embodiment, the hydraulic kneaded material containing water, fine aggregate, cement, and regenerated fine powder is thickened containing water and bentonite. As the plastic grout material is manufactured by mixing the material slurry, the produced plastic grout material has increased viscosity due to the regenerated fine powder, ensuring material separation resistance, Sex is only slightly reduced.

加えて、可塑性グラウト材として重要な指標であるチキソトロピー性は、フロー増分で従前の可塑性グラウト材の場合(再生微粉の添加割合がゼロの場合)よりも20%近く高めることも可能となる。   In addition, thixotropy, which is an important index as a plastic grout material, can be increased by nearly 20% in the flow increment compared to the case of the conventional plastic grout material (when the addition ratio of the regenerated fine powder is zero).

また、本実施形態に係る再生微粉を用いた可塑性グラウト材の製造方法によれば、再生微粉を砂やセメントと置換するようにしたので、それらの使用量を低減することが可能となり、可塑性グラウト材の製造コストを下げることができるのみならず、産業廃棄物として処理しなければならなかった大量の再生微粉を有効利用することが可能となる。   Further, according to the method for producing a plastic grout material using the regenerated fine powder according to the present embodiment, since the regenerated fine powder is replaced with sand or cement, it is possible to reduce the amount of use of the plastic grout. Not only can the production cost of the material be reduced, but it is also possible to effectively use a large amount of recycled fine powder that had to be treated as industrial waste.

また、本実施形態に係る再生微粉を用いた可塑性グラウト材の製造方法によれば、可塑性グラウト材全体を軽量化することも可能となる。すなわち、セメントの密度が3.0〜3.2g/cm3程度、細骨材の密度が2.55〜2.65g/cm3程度であるのに対し、再生微粉の密度は2.3〜2.5g/cm3程度と軽いため、セメント置換の場合には、可塑性グラウト材全体として1〜2%程度の軽量化を図ることが可能となる。 Moreover, according to the manufacturing method of the plastic grout material using the regenerated fine powder according to this embodiment, the entire plastic grout material can be reduced in weight. That is, the density of cement is about 3.0 to 3.2 g / cm 3 and the density of fine aggregate is about 2.55 to 2.65 g / cm 3 , whereas the density of regenerated fine powder is 2.3 to 3. Since it is as light as about 2.5 g / cm 3, it is possible to reduce the weight of the plastic grout material by about 1 to 2% in the case of cement replacement.

次に、水硬性材料であるセメントや細骨材である砂を再生微粉に置換できるかどうか、強度やチキソトロピー性といった物性変化に着目して評価検討を行ったので、以下にその概要と結果を説明する。   Next, we conducted an evaluation study focusing on changes in physical properties such as strength and thixotropy, and whether or not hydraulic materials such as cement and fine aggregate sand can be replaced with recycled fine powder. explain.

まず、実証試験に用いた可塑性グラウト材のうち、再生微粉を添加しない可塑性グラウト材の配合(基準配合)を表1に示す。

Figure 0005205833
First, Table 1 shows the blending (standard blending) of plastic grout materials to which no regenerated fine powder is added among the plastic grout materials used in the verification test.
Figure 0005205833

同表でわかるように基準となる従来の可塑性グラウト材は、モルタル混練物を、水セメント比(W/C)35.4%、砂比(S/C)96%とし、ベントナイトスラリーを、水増粘材比(W/B)540%とした。なお、セメントは高炉B種セメントを用いた。   As can be seen in the table, the conventional plastic grout material used as a reference is that the mortar kneaded material has a water cement ratio (W / C) of 35.4% and a sand ratio (S / C) of 96%, and the bentonite slurry is water. The thickener ratio (W / B) was 540%. The cement used was a blast furnace class B cement.

次に、モルタル混練物とベントナイトスラリーとを容量比で275:725となるように混合することで、標準の可塑性グラウト材を得た。   Next, a standard plastic grout material was obtained by mixing the mortar kneaded material and the bentonite slurry so that the volume ratio was 275: 725.

次に、再生微粉をセメントと置換した配合を2種類、再生微粉を細骨材と置換した配合を3種類、計5つの試験配合を準備した。ここで、セメントとの置換割合は、セメントの内割で30%置換(78kg/m3)、50%置換(130kg/m3)とし、細骨材との置換割合は、細骨材の内割で30%置換(75kg/m3)、50%置換(125kg/m3)、100%置換(全量置換、250kg/m3)とした。 Next, two types of blends in which the regenerated fine powder was replaced with cement were prepared, and three types of blends in which the regenerated fine powder was replaced with fine aggregates, five test formulations were prepared. Here, the replacement ratio with cement is 30% replacement (78 kg / m 3 ) and 50% replacement (130 kg / m 3 ), and the replacement ratio with fine aggregate is within the fine aggregate. 30% substitution (75 kg / m 3 ), 50% substitution (125 kg / m 3 ), and 100% substitution (total substitution, 250 kg / m 3 ).

次に、製造された6つの可塑性グラウト材につき、練り上がり時においては、モルタルフロー、ブリージング率及び単位容積質量を計測し、硬化後には圧縮強度を計測した。   Next, the mortar flow, the breathing rate and the unit volume mass were measured at the time of kneading, and the compressive strength was measured after curing for the six produced plastic grout materials.

図2〜図5に練り上がり時の計測結果を示す。   The measurement result at the time of kneading is shown in FIGS.

まず、図2でわかるように、細骨材やセメントを再生微粉に置換した場合、流動性は若干の低下を示している。しかしながら、可塑性グラウト材の単位水量は、標準配合で700kg/m3を越えており、シリンダーフロー値の低下量も再生微粉の置換量が0の場合と比べて±25mmの範囲に収まっているため、図2に示した程度の低下は、施工上、何ら問題とはならない。 First, as can be seen in FIG. 2, when the fine aggregate or cement is replaced with recycled fine powder, the fluidity shows a slight decrease. However, the unit water amount of the plastic grout material exceeds 700 kg / m 3 in the standard composition, and the decrease amount of the cylinder flow value is within the range of ± 25 mm compared to the case where the replacement amount of the regenerated fine powder is 0. 2 does not cause any problem in construction.

一方、チキソトロピー性の指標であるフロー増分(0→15打)は図3でわかるように、再生微粉の置換量が増えるにつれて増加している。ここで、フロー増分は、静止フロー値に対する15打フロー値の増分として示した。   On the other hand, as shown in FIG. 3, the flow increment (0 → 15 strokes), which is an index of thixotropy, increases as the replacement amount of the regenerated fine powder increases. Here, the flow increment is shown as an increment of the 15 stroke flow value with respect to the static flow value.

また、図4でわかるように、細骨材置換の場合には再生微粉の置換量が増加しても、練り上がり時の密度はほとんど変わらず、セメント置換の場合にはやや低下しており、2%程度の軽量化が可能であることがわかる。   In addition, as can be seen in FIG. 4, in the case of fine aggregate replacement, even when the amount of regenerated fine powder replaced is increased, the density at the time of kneading is hardly changed, and in the case of cement replacement, it is slightly decreased. It can be seen that the weight can be reduced by about 2%.

また、図5でわかるように、再生微粉の置換量が増加するにつれて、ブリージング率が低下しており、材料分離抵抗性の改善が可能であることがわかる。   Further, as can be seen from FIG. 5, as the replacement amount of the regenerated fine powder increases, the breathing rate decreases, and it can be seen that the material separation resistance can be improved.

図6に硬化後に行った圧縮強度試験の結果を示す。   FIG. 6 shows the results of a compressive strength test conducted after curing.

同図でわかるように、細骨材置換の場合には、再生微粉の置換量が増えるにつれて圧縮強度は若干増加傾向にあり、セメント置換の場合にも、78kg/m3(重量で30%以下)であれば、28日強度で1N/mm2の圧縮強度を確保することができる。 As can be seen in the figure, in the case of fine aggregate replacement, the compressive strength tends to slightly increase as the amount of regenerated fine powder replaced increases, and in the case of cement replacement, 78 kg / m 3 (30% or less by weight) ), A compressive strength of 1 N / mm 2 can be ensured with a strength of 28 days.

すなわち、本発明に係る可塑性グラウト材は、砂やセメントといった資材量を低減しながら大量の再生微粉を再利用することができるという作用効果を奏するにとどまるものではなく、従来の可塑性グラウト材(置換量が0)よりも、材料分離抵抗性が高くなるとともにチキソトロピー性が大幅に改善され、なおかつ覆工コンクリートへの荷重負担を増やすおそれもないという顕著な作用効果や、それらに加えて硬化後の強度特性も改善されるという顕著な作用効果を奏する。   That is, the plastic grout material according to the present invention is not limited to the effect of being able to reuse a large amount of regenerated fine powder while reducing the amount of materials such as sand and cement. The amount of material separation resistance is higher than 0) and the thixotropy is greatly improved, and there is no risk of increasing the load on the lining concrete. There is a remarkable effect that the strength characteristics are also improved.

特に、細骨材に置換される再生微粉の置換量を増やすにつれて、ブリージング率、チキソトロピー性及び圧縮強度はますます改善され、細骨材を再生微粉で全量置換することができるという点は、まさに注目に値すると言えよう。   In particular, as the amount of regenerated fine powder replaced with fine aggregate is increased, the breathing rate, thixotropy and compressive strength are further improved, and the fact that the fine aggregate can be completely replaced with regenerated fine powder is exactly what It's worth noting.

本実施形態に係る可塑性グラウト材の製造方法を示したフローチャート。The flowchart which showed the manufacturing method of the plastic grout material which concerns on this embodiment. 再生微粉の添加に伴う流動性の変化を示したグラフ。The graph which showed the change of the fluidity | liquidity with the addition of regenerated fine powder. 再生微粉の添加に伴うチキソトロピー性の変化を示したグラフ。The graph which showed the change of thixotropy property with the addition of reproduction | regeneration fine powder. 再生微粉の添加に伴う練り上がり密度の変化を示したグラフ。The graph which showed the change of the kneading density accompanying the addition of regenerated fine powder. 再生微粉の添加に伴うブリージング率の変化を示したグラフ。The graph which showed the change of the breathing rate accompanying addition of regenerated fine powder. 再生微粉の添加に伴う圧縮強度の変化を示したグラフ。The graph which showed the change of the compressive strength accompanying addition of regenerated fine powder.

Claims (2)

水、細骨材及びセメント等の水硬性材料を含む混練物に水及び無機系増粘材を含む増粘材スラリーを混合して可塑性グラウト材を製造する方法において、
前記混練物と前記増粘材スラリーとを混合する工程に先立って、前記混練物に再生微粉が含まれるように該混練物を作製する可塑性グラウト材の製造方法であって、前記水硬性材料の一部を前記再生微粉に置換するとともに、前記再生微粉の含水比を3〜10%としたことを特徴とする再生微粉を用いた可塑性グラウト材の製造方法。
In a method for producing a plastic grout material by mixing water and a thickener slurry containing an inorganic thickener in a kneaded material containing a hydraulic material such as fine aggregate and cement,
Prior to the step of mixing the kneaded material and the thickener slurry, a method for producing a plastic grout material for producing the kneaded material so that regenerated fine powder is contained in the kneaded material, A method for producing a plastic grout material using regenerated fine powder, wherein a part of the regenerated fine powder is replaced with a water content ratio of 3 to 10% .
前記無機系増粘材をベントナイトとした請求項1記載の再生微粉を用いた可塑性グラウト材の製造方法。 The method for producing a plastic grout material using the regenerated fine powder according to claim 1, wherein the inorganic thickener is bentonite.
JP2007166146A 2007-06-25 2007-06-25 Method for producing plastic grout material using regenerated fine powder Active JP5205833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166146A JP5205833B2 (en) 2007-06-25 2007-06-25 Method for producing plastic grout material using regenerated fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166146A JP5205833B2 (en) 2007-06-25 2007-06-25 Method for producing plastic grout material using regenerated fine powder

Publications (2)

Publication Number Publication Date
JP2009001466A JP2009001466A (en) 2009-01-08
JP5205833B2 true JP5205833B2 (en) 2013-06-05

Family

ID=40318287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166146A Active JP5205833B2 (en) 2007-06-25 2007-06-25 Method for producing plastic grout material using regenerated fine powder

Country Status (1)

Country Link
JP (1) JP5205833B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656491A (en) * 1992-08-04 1994-03-01 Sumitomo Cement Co Ltd Preparation of mortar and method for execution utilizing the same
JP2002080253A (en) * 2000-09-05 2002-03-19 Mitsubishi Materials Corp Segregation resisting type cavity packing material
JP3577276B2 (en) * 2000-11-16 2004-10-13 株式会社大林組 Method of manufacturing backfill grout
JP2004218337A (en) * 2003-01-16 2004-08-05 Shimizu Corp Soil-cement wall reclamation material
JP3936933B2 (en) * 2003-12-09 2007-06-27 電気化学工業株式会社 Grout cement composition, grout mortar composition, and grout material
JP2007131804A (en) * 2005-11-14 2007-05-31 Shimizu Corp Soil backfilling material

Also Published As

Publication number Publication date
JP2009001466A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
Dinakar Design of self-compacting concrete with fly ash
US9150455B2 (en) Utilization of heavy oil ash to produce self-consolidated concrete
CN109293289B (en) Method for preparing concrete with equal strength by recycling concrete laitance
JP2010155755A (en) High inflation lightweight grout mortar composition
JP2011136864A (en) Admixture for porous concrete and porous concrete
JP7215283B2 (en) Self-compacting concrete and method for producing self-compacting concrete
JP4999967B2 (en) Backfill recycled fluidized material and method for producing the same
JP2017114734A (en) Super quick hardening cement mortar
JP5812623B2 (en) High-strength porous concrete composition and high-strength porous concrete cured body
JP5840852B2 (en) Grout cement composition, grout mortar composition, grout cement paste, and grout mortar
JP5205833B2 (en) Method for producing plastic grout material using regenerated fine powder
JP4955938B2 (en) Void filler
JP2013086986A (en) Middle fluidity concrete
WO2001004426A1 (en) Lime-improved soil mortar and method for production thereof and fluidization treatment method using the same
KR101341103B1 (en) Composition for Ground Hardening And Ground Mortar Including the Same
JP5002896B2 (en) Gap filler and manufacturing method thereof
JP5851264B2 (en) Hydraulic composition
JP2011236080A (en) Production method for medium-fluidity concrete and medium-fluidity concrete produced by the method
JP2004002203A (en) Low-strength mortar filling using shirasu
JP3930895B1 (en) High-strength resin mortar, high-strength resin consolidated body, and structures using the same, high-strength resin solidified secondary products
KR100624364B1 (en) manufacturing method of readymix concrete
JP2006213589A5 (en)
JP2010168421A (en) Plastic grout material
JP2004238214A (en) Aerated mortar composition and work using the same
JP4953007B2 (en) Method for producing plastic grout material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5205833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150