JP5205188B2 - Multilayer resin spraying method and multilayer resin sprayed metal structure - Google Patents

Multilayer resin spraying method and multilayer resin sprayed metal structure Download PDF

Info

Publication number
JP5205188B2
JP5205188B2 JP2008235383A JP2008235383A JP5205188B2 JP 5205188 B2 JP5205188 B2 JP 5205188B2 JP 2008235383 A JP2008235383 A JP 2008235383A JP 2008235383 A JP2008235383 A JP 2008235383A JP 5205188 B2 JP5205188 B2 JP 5205188B2
Authority
JP
Japan
Prior art keywords
resin
layer coating
resin material
layer
melting temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008235383A
Other languages
Japanese (ja)
Other versions
JP2010065310A (en
Inventor
義之 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Rope Manufacturing Co Ltd
Original Assignee
Tokyo Rope Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Rope Manufacturing Co Ltd filed Critical Tokyo Rope Manufacturing Co Ltd
Priority to JP2008235383A priority Critical patent/JP5205188B2/en
Publication of JP2010065310A publication Critical patent/JP2010065310A/en
Application granted granted Critical
Publication of JP5205188B2 publication Critical patent/JP5205188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は主として屋外設置の金属構造物の防錆処理のための多層樹脂溶射方法に関する。   The present invention mainly relates to a multilayer resin spraying method for rust prevention treatment of metal structures installed outdoors.

金属構造物や金具類において、その防錆方法としてペイント塗りや粉体樹脂焼き付けなどの塗装が一般的に行われている。このうち粉体樹脂焼付塗装法は、被塗装物を予め粉体樹脂の溶融温度以上の温度に加熱しておき、これを粉体樹脂を流動させた槽内(流動層)に浸漬して付着させ、引き上げて粉体を溶融させた後に冷却固化させる方法、或いは静電塗装機を用いて粉体を吹き付けて付着させ、溶融後、冷却固化させる方法がある。
一方、被塗装物に静電塗装機を用いて予め、粉体を電着させた後に加熱して溶融させ、その後に冷却固化させる方法もあり、これらの方法は広く一般に採用されている。
In metal structures and metal fittings, painting such as paint coating or powder resin baking is generally performed as a rust prevention method. Among these, the powder resin baking coating method is such that the object to be coated is heated in advance to a temperature equal to or higher than the melting temperature of the powder resin, and is immersed in a tank (fluidized bed) in which the powder resin is flown to adhere. And then solidifying by cooling after the powder is melted, or by spraying and adhering the powder using an electrostatic coating machine, and then cooling and solidifying after melting.
On the other hand, there is a method in which a powder is electrodeposited on an object to be coated in advance, heated and melted, and then cooled and solidified. These methods are widely used.

粉体樹脂焼付塗装においては、上記のように予め被塗装物を粉体の溶融温度以上まで加熱する必要がある。この加熱は一般に燃焼ガス或いは電熱による熱風加熱炉を用いてこの中に被塗装物を挿入し所定の時間保持して行われる。しかし、被塗装物が大きくなるにつれて、加熱炉も大型化し、また、粉体流動槽も大型化してしまう。このようなことから被塗装物が大きくなるほど設備も大きくなり、更に焼き付け樹脂の溶融温度が高い場合には加熱炉の高耐熱確保や消費熱量も大きくなって設備費や操業費用もかさみ、トータルの塗装費が非常に高いものになる。また、このような理由から、屋外に設置済みの構造物に対して現地で直接塗装することは非常に困難であるという問題があった。
特開平1−127085号公報
In powder resin baking coating, it is necessary to heat the object to be coated up to the melting temperature of the powder or more in advance as described above. In general, this heating is performed by inserting an object to be coated in a hot air heating furnace using combustion gas or electric heat and holding it for a predetermined time. However, as the object to be coated becomes larger, the heating furnace becomes larger and the powder flow tank becomes larger. For this reason, the larger the object to be coated, the larger the equipment. Furthermore, when the melting temperature of the baking resin is high, the high heat resistance and heat consumption of the heating furnace are increased, which increases the equipment and operating costs. The painting cost is very high. For this reason, there is a problem that it is very difficult to directly paint a structure already installed outdoors on site.
Japanese Unexamined Patent Publication No. 1-127085

本発明の目的は、大型の構造物に対しても大型加熱炉や流動槽を必要とせず、また屋外構造物に対しても現地で直接防錆被膜処理を施すことが可能な多層樹脂溶射方法を提供することにある。 The object of the present invention is a multilayer resin spraying method that does not require a large heating furnace or a fluidized tank even for a large structure, and can directly apply a rust-preventive coating treatment to an outdoor structure on site. Is to provide.

上記目的を達成するため本発明の多層樹脂溶射方法は、金属構造物への樹脂溶射において、対象の金属構造物に予熱を施した後、粉体樹脂材料を用いて溶射を施して第1層被膜を形成し、この被膜が溶融或いは半溶融状態にあるうちに、第1層被膜樹脂材料より溶融温度の高い樹脂材料を溶射して第2層被膜を形成し、更に必要に応じこの第2層被膜が溶融或いは半溶融状態にあるうちに第2層樹脂材料より溶融温度の高い樹脂材料を溶射して第3層被膜を形成するように下層から上層へと順次溶融温度が高い樹脂材料を溶射積み重ねていくことを特徴としている。   In order to achieve the above object, the multilayer resin spraying method of the present invention is the first layer in which the target metal structure is preheated and then sprayed using a powder resin material in the resin spraying to the metal structure. A coating is formed, and while the coating is in a molten or semi-molten state, a second layer coating is formed by spraying a resin material having a melting temperature higher than that of the first layer coating resin material. While the layer coating is in the molten or semi-molten state, the resin material having a higher melting temperature is sequentially applied from the lower layer to the upper layer so as to form a third layer coating by spraying a resin material having a higher melting temperature than the second layer resin material. It is characterized by the accumulation of thermal sprays.

詳述すると、本発明は樹脂溶射法を採用し、高い溶融温度の樹脂を持ち運び可能な機器のみによって金属表面に密着性の優れた樹脂塗膜層を容易に形成させる方法を提供せんとするものである。
樹脂溶射法は燃焼ガスやプラズマを熱源として樹脂材料を加熱により溶融もしくは半溶融状態にさせ、それを圧縮エアにより加速し、母材表面に衝突させて凝着させる方法であるが、金属溶射法に比べて樹脂が金属に溶着し難いことが大きな難点になっており、すなわち、加熱した樹脂の熱量が相対的に少なく、又溶射前に十分に予熱しておかないと金属表面に溶着しにくく良好な密着性が得にくいことがあって現在、あまり実用に供されていない。
More specifically, the present invention adopts a resin spraying method and provides a method for easily forming a resin coating layer having excellent adhesion on a metal surface only by a device capable of carrying a resin having a high melting temperature. It is.
Resin spraying is a method in which combustion gas or plasma is used as a heat source to melt or semi-molten resin material by heating, and it is accelerated by compressed air and collides with the surface of the base material to adhere. Compared to the above, it is a big difficulty that the resin is difficult to weld to the metal, that is, the amount of heat of the heated resin is relatively small, and it is difficult to weld to the metal surface unless it is sufficiently preheated before spraying. At present, it is difficult to obtain good adhesion, so that it is not practically used.

基材(被溶射物)は熱伝導のよい金属であるため、樹脂溶射は金属溶射に比べて、著しく低温で行われる結果、溶融或いは半溶融状態の樹脂を吹き付けても基材に到達した溶融樹脂の熱が即座に奪われて冷えてしまうため溶着しにくいという問題がある。
したがって、基材と樹脂を十分に密着させるには、予め基材の温度を少なくとも樹脂の溶融温度以下20〜30℃程度以上に十分加熱しておく必要がある。基材を十分に予熱しておかないと、溶射した樹脂は外見上きれいな被膜を形成することはできるが、基材との密着性が非常に弱く、僅かな外力で簡単に割れたり、剥がれたりしてしまい、所期の目的とする耐食性が得られない。この場合、基材のボリュームが大きくなるにつれ、また溶融温度が高い溶射樹脂材料になるにつれ、良好な密着性を得るために基材を必要温度に予熱するのが容易ではなく、特に冬場における気温の低い時期にはより難しいものになる。
Since the base material (sprayed material) is a metal with good thermal conductivity, resin spraying is performed at a significantly lower temperature compared to metal spraying. As a result, even if a molten or semi-molten resin is sprayed, the molten material reaches the base material. There is a problem that it is difficult to weld because the heat of the resin is immediately taken away and cooled.
Therefore, in order to sufficiently adhere the base material and the resin, it is necessary to sufficiently heat the temperature of the base material in advance to be at least about 20 to 30 ° C. or higher at least below the melting temperature of the resin. If the base material is not sufficiently preheated, the sprayed resin can form a clean coating, but the adhesion to the base material is very weak and it can be easily cracked or peeled off with a slight external force. As a result, the intended corrosion resistance cannot be obtained. In this case, it is not easy to preheat the substrate to the required temperature in order to obtain good adhesion as the volume of the substrate increases and as the thermal spray resin material has a high melting temperature, especially in winter. It becomes more difficult at low times.

樹脂溶射法において、基材表面に予め、エポキシ等のプライマー処理を施すことも提案されているがプライマー塗布作業と塗布後の乾燥時間が数時間〜数日と長いことなどから非常に手間がかかる上、その後の溶射においては基材が常温状態からスタートするため、予熱処理において表面のプライマー温度が上がり難くいこともあって、良好な被膜形成が容易に達成できない。 In the resin spraying method, it has also been proposed to apply a primer treatment such as epoxy to the surface of the substrate in advance, but it takes a lot of time because the primer application work and the drying time after application are long from several hours to several days. In addition, in the subsequent thermal spraying, since the base material starts from a normal temperature state, it is difficult to increase the primer temperature on the surface in the pre-heat treatment, and thus good film formation cannot be easily achieved.

そこで、本発明は、上記課題を解決し、溶融温度が高い樹脂材料を溶射するのにこれに応じて基材の予熱温度も高くしなければならないような場合においても、それより低い温度の予熱でも溶射による密着性の良い樹脂被膜の形成を可能にしたものである。
即ち、低温予熱後、低溶融温度の樹脂を溶射して下塗り被膜層を作り、その外層に目的とする高溶融温度の樹脂を溶射被覆して多層被膜構造とするものであり、この方法によれば、密着性に優れた高耐食性の樹脂被膜構造物にできるものである。
Therefore, the present invention solves the above-mentioned problems, and even when a resin material having a high melting temperature is sprayed, the preheating temperature of the substrate must be increased accordingly. However, it is possible to form a resin film with good adhesion by thermal spraying.
That is, after preheating at low temperature, a low melting temperature resin is sprayed to form an undercoat film layer, and a desired high melting temperature resin is sprayed onto the outer layer to form a multilayer coating structure. For example, a highly corrosion-resistant resin film structure having excellent adhesion can be obtained.

具体的には簡単な手持ち式ガスバーナー或いは溶射機を用いて基材に低温予熱を行った後、溶融温度の低い樹脂を溶射して下塗りとしての第1層被膜を形成させ、当該被膜樹脂が溶融或いは半溶融状態のうちにその上に溶融温度が高い目的とする樹脂を溶射して外層とする多層構造の被膜を形成させるものである。
また、必要に応じて第1層より溶融温度が高い他の樹脂を第1層被膜樹脂が溶融又は半溶融状態のうちにその外層に溶射した後、それが溶融又は半溶融状態のうちに溶融温度が更に高い目的とする樹脂を溶射する。必要によっては下塗りを2層以上とし、その最外層として目的とする樹脂を溶射して多層構造の被膜を形成させてもよい。
Specifically, after performing low temperature preheating on the substrate using a simple hand-held gas burner or thermal spraying machine, a low melting temperature resin is sprayed to form a first layer coating as an undercoat, and the coating resin is In a molten or semi-molten state, a target resin having a high melting temperature is sprayed thereon to form a multilayered coating film as an outer layer.
Also, if necessary, another resin having a higher melting temperature than the first layer is sprayed on the outer layer while the first layer coating resin is melted or semi-molten, and then melted in the melt or semi-molten state. The target resin having a higher temperature is sprayed. If necessary, the undercoat may be formed of two or more layers, and the target resin may be sprayed as the outermost layer to form a multilayered film.

本発明でもっとも特徴とするところは以下の2点である。
1)基材金属の予熱温度が低くても溶射樹脂との密着性が比較的容易に得られる低溶融温度の樹脂を下塗りすること。
2)この下塗り層が溶融或いは半溶融状態にあるうちにその上に下塗り層樹脂より溶融温度の高い目的とする樹脂を溶射すること。
上記1)は樹脂溶射の必要条件である溶射材料に適した予熱温度を確保するものであり、2)は下塗り層の溶射残熱が十分ある状態において上層樹脂を溶射することにより下層との密着性を確保するものである。
このとき、下層樹脂および上層樹脂はお互いに溶融或いは半溶融樹脂同士なので相互の密着も良好なものとすることができる。更には上層樹脂の溶射により、下層樹脂がその劣化温度を越えても上層樹脂が下層樹脂を覆うので下層樹脂と空気との接触が防がれることにより、ガラス化等の劣化をも抑えるものである。
The most characteristic features of the present invention are the following two points.
1) Undercoating a resin having a low melting temperature, which can obtain adhesion with a thermal spray resin relatively easily even if the preheating temperature of the base metal is low.
2) While the undercoat layer is in a molten or semi-molten state, a desired resin having a higher melting temperature than the undercoat resin is sprayed thereon.
The above 1) secures a preheating temperature suitable for the thermal spray material, which is a necessary condition for resin spraying, and 2) adheres to the lower layer by spraying the upper resin in a state where the residual heat of the undercoat layer is sufficient. It is to secure the sex.
At this time, since the lower layer resin and the upper layer resin are mutually melted or semi-molten resins, mutual adhesion can be improved. Furthermore, due to thermal spraying of the upper layer resin, even if the lower layer resin exceeds its deterioration temperature, the upper layer resin covers the lower layer resin, so that contact between the lower layer resin and the air is prevented, thereby suppressing deterioration such as vitrification. is there.

溶融温度の低い樹脂を溶射して第1層とし、次に更にそれより溶融温度の高い第1層樹脂の上に溶射して第2層とし、更には必要に応じて、その上に第2層より溶融温度の高い樹脂を溶射して第3層とする方法をとることにより、基材と第1層目樹脂間及び1層目と2層目、更には2層目と3層目の樹脂間で密着性の良好な防錆膜の層を形成することができる。勿論、4層以上の溶射も可能である。
このようにして、直接、基材に溶射することが困難な樹脂でも下層樹脂を介して最上層に要求特性を満たす樹脂層を形成することができるものである。また、用途に応じて多層樹脂層の形成でそれぞれの樹脂の特性を生かすこともできるものである。
本発明により幅広く多くの種類の樹脂を容易に溶射することが可能になり、この溶射によって非常に耐食性の高い金属構造物が得られる。すなわち本発明は、それぞれ溶融温度の異なる樹脂溶射被膜からなる2層以上の多層樹脂被膜を有することを特徴とする多層樹脂溶射金属構造物を含んでいる。
A resin having a low melting temperature is sprayed to form a first layer, and then a second layer having a higher melting temperature is sprayed to form a second layer. Further, if necessary, a second layer is formed thereon. By spraying a resin having a melting temperature higher than the layer to form the third layer, the first layer and the second layer, and the second and third layers are formed between the base material and the first layer resin. It is possible to form a rust preventive film layer having good adhesion between the resins. Of course, spraying of four or more layers is also possible.
In this way, a resin layer that satisfies the required characteristics can be formed in the uppermost layer via the lower layer resin even with a resin that is difficult to spray directly on the substrate. Moreover, the characteristics of each resin can be utilized by forming a multilayer resin layer according to the application.
The present invention makes it possible to easily spray a wide variety of resins, and a metal structure having very high corrosion resistance can be obtained by this spraying. That is, the present invention includes a multilayer resin-sprayed metal structure characterized by having two or more multilayer resin coatings each made of a resin-sprayed coating having different melting temperatures.

好適には、第1層とする樹脂は溶融温度130℃以下のものを選定し、第2層の樹脂は溶融温度が第1層より高い250℃程度以下のものを選定する。第2層として溶融温度200℃以下のものを選定し、第3層は第2層樹脂の溶融温度より高く、250℃以下のものを選定し、溶射しても良い。
すなわち、金属構造物にその表面が80〜120℃程度になるように低温予熱を施した後、第1層被膜に溶融温度130℃以下の樹脂材料、第2層被膜に溶融温度250℃以下の樹脂材料を溶射積み重ねていく。(請求項2)
3層被膜とする場合には、低温予熱を施した後、第1層被膜に溶融温度130℃以下の樹脂材料、第2層被膜に溶融温度200℃以下の樹脂材料、第3層被膜に溶融温度250℃以下の樹脂材料を溶射積み重ねていく。(請求項3)
Preferably, the resin for the first layer is selected to have a melting temperature of 130 ° C. or lower, and the resin for the second layer is selected to have a melting temperature of about 250 ° C. or lower, which is higher than that of the first layer. A layer having a melting temperature of 200 ° C. or lower may be selected as the second layer, and a layer having a temperature higher than the melting temperature of the second layer resin and 250 ° C. or lower may be selected and sprayed.
That is, after the metal structure is subjected to low temperature preheating so that the surface thereof is about 80 to 120 ° C., a resin material having a melting temperature of 130 ° C. or lower is applied to the first layer coating, and a melting temperature of 250 ° C. or lower is applied to the second layer coating. Thermal spraying and stacking of resin materials. (Claim 2)
In the case of a three-layer coating, after low-temperature preheating, the first layer coating is a resin material having a melting temperature of 130 ° C. or lower, the second layer coating is a resin material having a melting temperature of 200 ° C. or lower, and the third layer coating is melted Thermal spraying and stacking of resin materials having a temperature of 250 ° C. or lower is performed. (Claim 3)

ここで、第1層被膜は金属地肌とできるだけ密着性のよい樹脂を用いることが好ましく、最外層被膜は最も要求度の高い用途、具体的には耐候性、耐薬品性、耐塩水腐食性等を考慮して用途目的に最適な樹脂を選定すればよい。
好適には、第1層被膜にEVA(エチレン酢酸共重合体)系樹脂材料、第2層被膜に飽和ポリエステル系樹脂であってイソフタル酸8〜20モル%を含み、固有粘度が0.7〜1.0のイソテレフタル酸共重合飽和ポリエステル樹脂材料を用いる。(請求項4)
3層被膜とする場合には、第1層被膜にEVA系樹脂材料、第2層被膜にエポキシ系樹脂材料、第3層被膜に飽和ポリエステル系樹脂であってイソフタル酸8〜20モル%を含み、固有粘度が0.7〜1.0のイソテレフタル酸共重合飽和ポリエステル樹脂材料を用いる。(請求項5)
Here, the first layer coating preferably uses a resin having as good an adhesion as possible to the metal background, and the outermost layer coating is used for the most demanding applications, specifically weather resistance, chemical resistance, salt water corrosion resistance, etc. In consideration of the above, it is only necessary to select an optimal resin for the purpose of use.
Preferably, the first layer coating is an EVA (ethylene acetate copolymer) -based resin material, and the second layer coating is a saturated polyester-based resin containing 8 to 20 mol% of isophthalic acid, and an intrinsic viscosity of 0.7 to 1.0 isoterephthalic acid copolymerized saturated polyester resin material is used. (Claim 4)
When the three-layer coating is used, the first layer coating is an EVA resin material, the second layer coating is an epoxy resin material, the third layer coating is a saturated polyester resin, and contains 8 to 20 mol% of isophthalic acid. An isoterephthalic acid copolymerized saturated polyester resin material having an intrinsic viscosity of 0.7 to 1.0 is used. (Claim 5)

図1は本発明の樹脂溶射方法のフローチャートを示し、図2と図3は本発明による樹脂溶射被膜構造断面を模式的に示しており、6は基材、7は第1層樹脂被膜、8は第2層樹脂被膜、9は第3層樹脂被膜である。 FIG. 1 shows a flow chart of the resin spraying method of the present invention, FIGS. 2 and 3 schematically show a cross section of the resin spray coating structure according to the present invention, 6 is a base material, 7 is a first layer resin coating, 8 Is a second layer resin film, and 9 is a third layer resin film.

本発明の樹脂溶射方法について説明すると、1は前処理工程であり、基材表面にエアーブラスト装置を用いてショットブラスト処理を行い、表面の梨地化と活性化を行って溶射材の密着性を向上させるもので、ブラスト処理の代わりに研磨紙磨きやハンドグラインダー式研磨機等を使用して処理してもよい。
2は低温予熱工程であり、対象とする金属構造物(基材)の表面が80〜120℃程度になるように加熱する。これは、ガンタイプの溶射機を用い、溶射材を噴射させないで燃焼炎のみで基材表面を軽く予熱するか、或いはバーナーを用いて基材表面を軽く予熱する。
The resin spraying method of the present invention will be described. 1 is a pretreatment step, and the surface of the base material is shot blasted using an air blasting device, and the surface of the surface is made to be satin and activated to improve the adhesion of the sprayed material. In order to improve, it may be processed using polishing paper polishing or a hand grinder type polishing machine instead of blasting.
2 is a low temperature preheating process, and it heats so that the surface of the object metal structure (base material) may become about 80-120 degreeC. This is achieved by using a gun-type thermal spraying machine to lightly preheat the surface of the substrate with only the combustion flame without spraying the sprayed material, or lightly preheat the surface of the substrate using a burner.

3は第1層樹脂溶射工程であり、第1層目の樹脂を溶射する。溶射は燃焼ガスやプラズマを熱源として樹脂材料を加熱により溶融もしくは半溶融状態にさせ、それを圧縮エアにより加速し、母材表面に衝突させて凝着させる方法であり、装置としては、ガンタイプの溶射機と、プロパンガスボンベや酸素ボンベなどの熱源と、粉体供給タンクと、エアコンプレッサーなどが用いられる。第1層目の樹脂としては溶融温度130℃以下のものが用いられ、好適な例は、EVA(エチレン酢酸共重合体)系樹脂材料である。粉体粒度は75〜300μmのごときである。
なお、溶射後、表面平滑性が不十分な場合は溶射材を絶って、燃焼炎で加熱するなどして調整してもよい。被膜の表面平滑性を確保するため、溶射後すぐに溶射機で溶射材の供給を絶って炎のみで加熱し、或いは手持ち式バーナーで熱を加えて樹脂の溶融を助け、平滑な表面になるようにしてやればよい。被膜厚さは主として溶射において塗り重ね回数で自在に調整することができる。
3 is a 1st layer resin spraying process, and sprays the resin of the 1st layer. Thermal spraying is a method that uses a combustion gas or plasma as a heat source to heat or melt a resin material into a semi-molten state, accelerate it with compressed air, collide with the surface of the base material, and adhere to it. Thermal sprayers, heat sources such as propane gas cylinders and oxygen cylinders, powder supply tanks, air compressors, and the like are used. A resin having a melting temperature of 130 ° C. or lower is used as the first layer resin, and a suitable example is an EVA (ethylene acetate copolymer) resin material. The powder particle size is about 75 to 300 μm.
If the surface smoothness is insufficient after spraying, the sprayed material may be cut off and heated with a combustion flame. In order to ensure the surface smoothness of the coating, immediately after spraying, the spraying material is cut off with the sprayer and heated only by the flame, or the heat is applied with a hand-held burner to help melt the resin, resulting in a smooth surface. Do it like this. The film thickness can be freely adjusted mainly by the number of times of coating during thermal spraying.

4は第2層目樹脂溶射工程であり、溶射材供給タンクを第1層目樹脂供給タンクから、第2層樹脂供給タンクに切替えて1層目樹脂溶射と同様に行う。
第2層の樹脂は溶融温度が第1層より高い250℃程度以下のものであり、その例としては、熱可塑性変性飽和ポリエステル樹脂TOFF:飽和ポリエステル系樹脂であってイソフタル酸8〜20モル%を含み、固有粘度が0.7〜1.0のイソテレフタル酸共重合飽和ポリエステル樹脂材料が挙げられる。
溶射後、必要に応じて燃焼炎で表面平滑性の調整をしてもよい。2層目の溶射は1層目の樹脂が溶融或いは半溶融状態にあるうちに行うのが要点である。
Reference numeral 4 denotes a second layer resin spraying step, which is performed in the same manner as the first layer resin spraying by switching the spray material supply tank from the first layer resin supply tank to the second layer resin supply tank.
The resin of the second layer has a melting temperature of about 250 ° C. or less higher than that of the first layer. Examples thereof include a thermoplastic modified saturated polyester resin TOFF: a saturated polyester resin and 8 to 20 mol% of isophthalic acid. And an isoterephthalic acid copolymerized saturated polyester resin material having an intrinsic viscosity of 0.7 to 1.0.
After spraying, the surface smoothness may be adjusted with a combustion flame as necessary. The important point is that the second layer spraying is performed while the first layer resin is in a molten or semi-molten state.

なお、3層樹脂溶射被膜を形成する場合には、溶射材供給タンクを第2層目樹脂供給タンクから、第3層樹脂供給タンクに切替えて2層目樹脂溶射と同様に第3層目の樹脂溶射工程を行う。
この場合、第2層被膜に溶融温度200℃以下の樹脂材料、第3層被膜に溶融温度250℃以下の樹脂材料を用いる。その具体例としては、第1層被膜にEVA系樹脂材料、第2層被膜にエポキシ系樹脂材料、第3層被膜に飽和ポリエステル系樹脂であってイソフタル酸8〜20モル%を含み、固有粘度が0.7〜1.0のイソテレフタル酸共重合飽和ポリエステル樹脂材料を用いることがあげられる。
5は冷却工程であり、溶射樹脂の種類に応じて、空冷又は水冷を行って樹脂の固化を行う。
In the case of forming the three-layer resin spray coating, the spray material supply tank is switched from the second layer resin supply tank to the third layer resin supply tank, and the third layer resin spray is applied in the same manner as the second layer resin spray. Resin spraying process is performed.
In this case, a resin material having a melting temperature of 200 ° C. or lower is used for the second layer coating, and a resin material having a melting temperature of 250 ° C. or lower is used for the third layer coating. Specific examples thereof include an EVA resin material for the first layer coating, an epoxy resin material for the second layer coating, a saturated polyester resin for the third layer coating, containing 8 to 20 mol% of isophthalic acid, and an intrinsic viscosity. Is 0.7-1.0 isoterephthalic acid copolymerized saturated polyester resin material.
Reference numeral 5 denotes a cooling step, which solidifies the resin by air cooling or water cooling depending on the type of thermal spray resin.

プロパンガス、酸素による燃焼ガスを熱源として、粉体樹脂を加熱液滴化させて基材にエアにより加速し、基材に吹き付けて被膜を形成する溶射機を用いて溶射を行った。
基材には亜鉛めっきを施した鉄板を用いた。基材表面には予めショットブラスト処理を施し、次にこの基材を上記の溶射機を用いて80〜100℃程度の低温予熱を施した後、融点が110〜120℃であるエチレン−酢酸ビニール共重合体である熱可塑性EVA樹脂の溶射を行って第1層の被膜を形成した。
Using a combustion gas of propane gas and oxygen as a heat source, thermal spraying was performed using a thermal spraying machine in which a powder resin was heated into droplets, accelerated onto the substrate with air, and sprayed onto the substrate to form a coating.
A galvanized iron plate was used as the substrate. The surface of the base material is preliminarily shot blasted, and then the base material is preheated at a low temperature of about 80 to 100 ° C. using the above-mentioned spraying machine, and then the ethylene-vinyl acetate having a melting point of 110 to 120 ° C. A thermoplastic EVA resin, which is a copolymer, was sprayed to form a first layer coating.

この被膜が溶融或いは半溶融状態のうちに、その上に融点が230〜240℃の熱可塑性変性飽和ポリエステル樹脂、即ち飽和ポリエステル系樹脂であってイソフタル酸8〜20モル%を含み、固有粘度が0.7〜1.0のイソテレフタル酸共重合飽和ポリエステル樹脂(粒度:180μm以下)を同様に溶射した後、水冷固化して表面平滑性のよい2層溶射被膜を形成した。ここで当該変性飽和ポリエステル樹脂は耐候性、耐食性及び耐酸性に非常に優れているものである。 While this film is in a molten or semi-molten state, it is a thermoplastic modified saturated polyester resin having a melting point of 230 to 240 ° C., that is, a saturated polyester resin and contains 8 to 20 mol% of isophthalic acid, and has an intrinsic viscosity of A 0.7-1.0 isoterephthalic acid copolymerized saturated polyester resin (particle size: 180 μm or less) was sprayed in the same manner, and then solidified with water to form a two-layer sprayed coating with good surface smoothness. Here, the modified saturated polyester resin is very excellent in weather resistance, corrosion resistance and acid resistance.

第1層の被膜厚は約420μm、第2層の被膜厚は約850μmであり、合計1270μm厚の被膜が得られた。ここで、最表面(第2層)の当該変性飽和ポリエステル樹脂は、耐候性はもとより、とりわけ耐酸性に優れた樹脂である。
直径25.4mm、質量300gの頭部球形重りを高さ80cmから落下させる落球衝撃試験(JIS K5600)を行った結果、基材と1層目樹脂被膜間及び1層目樹脂被膜と2層目樹脂被膜間でいずれも剥がれや割れの発生もなく、密着性は非常に良好であった。
The film thickness of the first layer was about 420 μm, the film thickness of the second layer was about 850 μm, and a coating film having a total thickness of 1270 μm was obtained. Here, the modified saturated polyester resin on the outermost surface (second layer) is a resin particularly excellent in acid resistance as well as weather resistance.
As a result of performing a falling ball impact test (JIS K5600) in which a head spherical weight having a diameter of 25.4 mm and a mass of 300 g is dropped from a height of 80 cm, it is found between the base material and the first resin film and between the first resin film and the second layer. There was no peeling or cracking between the resin coatings, and the adhesion was very good.

実施例1と同じく第1層目に前記EVA系樹脂を溶射し、続いて2層目に融点約180〜190℃の熱硬化性エポキシ系樹脂を溶射した後、更にこの上に前記飽和ポリエステル樹脂を溶射して第3層目とした3層構造の被膜を形成した。
第1層の被膜厚は約400μm、第2層の被膜厚は約360μm、第3層の被膜厚は約310μmであり、合計約1100μmの厚さの被膜が得られた。又、前記の落球衝撃試験においても基材と1層目皮膜間及び各皮膜間での剥がれや割れもなく、密着性も非常に良好なものが得られた。
As in Example 1, the EVA resin was sprayed on the first layer, and then a thermosetting epoxy resin having a melting point of about 180 to 190 ° C. was sprayed on the second layer, and then the saturated polyester resin was further formed thereon. Was sprayed to form a third-layer coating film as the third layer.
The film thickness of the first layer was about 400 μm, the film thickness of the second layer was about 360 μm, the film thickness of the third layer was about 310 μm, and a film with a total thickness of about 1100 μm was obtained. Also in the above-mentioned ball drop impact test, there was no peeling or cracking between the base material and the first layer film or between each film, and a very good adhesion was obtained.

土木施設の支柱に用いられる直径115mmの亜鉛めっき鋼管、及び300mm×300mmの亜鉛めっきを施したH形鋼について、その一部である幅350mm長さについて、実施例1と同様に2層溶射を行った。いずれも問題なく溶射ができ、落球衝撃試験でも問題なく良好な溶射皮膜が得られた。   For the galvanized steel pipe with a diameter of 115 mm and the 300 mm x 300 mm galvanized H-shaped steel used for the pillar of the civil engineering facility, the two-layer spraying is performed on the width 350 mm, which is a part thereof, in the same manner as in Example 1. went. In any case, thermal spraying was possible without any problem, and a good thermal spray coating was obtained without any problem in the ball drop impact test.

なお、このように実施例1および2で得られた溶射鉄板と、比較材として当該溶射に用いた亜鉛めっき鉄板の3種類について耐食性試験を行った。
試験方法:(A)塩水噴霧試験[35℃、5%塩水噴霧] (B)塩乾湿複合サイクル試験:[塩水噴霧1時間(35℃、5%塩水噴霧)→湿潤3時間(35℃、95%RH)→乾燥2時間(50℃、20%RH)→乾燥2時間(30℃、20%RH)]の繰り返し(3サイクル/日)
試験期間:(A)2,000時間 →(B)2,000時間
結果:前記2層及び3層溶射材は(A)→(B)終了後において、いずれも錆びの発生は皆無で問題なく良好であった。
これに対して比較材の亜鉛めっき鉄板は(A)の塩水噴霧試験2,000時間放置で既に部分的に鉄地からの薄い赤錆が発生し、(B)の終了時には全面に赤錆が発生した。
In addition, the corrosion resistance test was done about three types of the sprayed iron plate obtained in Example 1 and 2 in this way, and the galvanized iron plate used for the said thermal spraying as a comparison material.
Test method: (A) salt spray test [35 ° C., 5% salt spray] (B) salt dry / wet combined cycle test: [salt spray 1 hour (35 ° C., 5% salt spray) → wet 3 hours (35 ° C., 95 % RH) → drying for 2 hours (50 ° C., 20% RH) → drying for 2 hours (30 ° C., 20% RH)] (3 cycles / day)
Test period: (A) 2,000 hours → (B) 2,000 hours Results: The above-mentioned two-layer and three-layer sprayed materials are free from rusting after the completion of (A) → (B). It was good.
On the other hand, the galvanized iron plate of the comparative material had already partially thin red rust generated from the salt spray test (A) for 2,000 hours, and red rust was generated on the entire surface at the end of (B). .

本発明溶射法のフローチャートである。It is a flowchart of this invention thermal spraying method. 実施例1の溶射による2層被膜構造断面である。2 is a cross section of a two-layer coating structure formed by thermal spraying in Example 1. FIG. 実施例2の溶射による3層被膜構造断面である。3 is a cross section of a three-layer coating structure formed by thermal spraying in Example 2.

符号の説明Explanation of symbols

1 前処理工程
2 低温予熱工程
3 第1層樹脂溶射工程
4 第2層樹脂溶射工程
6 基材
7 第1層樹脂被膜
8 第2層樹脂被膜
9 第3層樹脂被膜
DESCRIPTION OF SYMBOLS 1 Pretreatment process 2 Low temperature preheating process 3 1st layer resin spraying process 4 2nd layer resin spraying process 6 Base material 7 1st layer resin film 8 2nd layer resin film 9 3rd layer resin film

Claims (7)

金属構造物への樹脂溶射において、対象の金属構造物に予熱を施した後、粉体樹脂材料を用いて溶射を施して第1層被膜を形成し、この被膜が溶融或いは半溶融状態にあるうちに、第1層被膜樹脂材料より溶融温度の高い樹脂材料を溶射して第2層被膜を形成し、更に必要に応じこの第2層被膜が溶融或いは半溶融状態にあるうちに第2層樹脂材料より溶融温度の高い樹脂材料を溶射して第3層被膜を形成するように下層から上層へと順次溶融温度が高い樹脂材料を溶射積み重ねていくことを特徴とする被膜が2層以上の樹脂からなる多層樹脂溶射方法。 In resin spraying to a metal structure, the target metal structure is preheated and then sprayed using a powder resin material to form a first layer coating, which is in a molten or semi-molten state In the meantime, a second layer coating is formed by spraying a resin material having a melting temperature higher than that of the first layer coating resin material, and if necessary, the second layer is in a molten or semi-molten state. Two or more layers of coatings are characterized in that a resin material having a higher melting temperature is sequentially sprayed from a lower layer to an upper layer so as to form a third layer coating by spraying a resin material having a higher melting temperature than the resin material. A multilayer resin spraying method comprising resin. 金属構造物にその表面が80〜120℃程度になるように低温予熱を施した後、第1層被膜に溶融温度130℃以下の樹脂材料、第2層被膜に溶融温度250℃以下の樹脂材料を溶射積み重ねていく請求項1に記載の多層樹脂溶射方法。 After low-temperature preheating is performed on the metal structure so that the surface thereof is about 80 to 120 ° C., a resin material having a melting temperature of 130 ° C. or less for the first layer coating, and a resin material having a melting temperature of 250 ° C. or less for the second layer coating The multilayer resin thermal spraying method according to claim 1, wherein the thermal spray stacking is performed. 金属構造物にその表面が80〜120℃程度になるように低温予熱を施した後、第1層被膜に溶融温度130℃以下の樹脂材料、第2層被膜に溶融温度200℃以下の樹脂材料、第3層被膜に溶融温度250℃以下の樹脂材料を溶射積み重ねていく請求項1に記載の多層樹脂溶射方法After low-temperature preheating is performed on the metal structure so that the surface thereof is about 80 to 120 ° C., a resin material having a melting temperature of 130 ° C. or lower is applied to the first layer coating, and a resin material having a melting temperature of 200 ° C. or lower is applied to the second layer coating. The multilayer resin spraying method according to claim 1, wherein a resin material having a melting temperature of 250 ° C. or less is thermally sprayed and stacked on the third layer coating. 第1層被膜にEVA(エチレン酢酸共重合体)系樹脂材料、第2層被膜に飽和ポリエステル系樹脂であってイソフタル酸8〜20モル%を含み、固有粘度が0.7〜1.0のイソテレフタル酸共重合飽和ポリエステル樹脂材料を用いた請求項2に記載の多層樹脂溶射方法。 EVA (ethylene acetate copolymer) -based resin material for the first layer coating, saturated polyester-based resin for the second layer coating, containing 8 to 20 mol% of isophthalic acid, and having an intrinsic viscosity of 0.7 to 1.0 The multilayer resin spraying method according to claim 2, wherein an isoterephthalic acid copolymerized saturated polyester resin material is used. 第1層被膜にEVA系樹脂材料、第2層被膜にエポキシ系樹脂材料、第3層被膜に飽和ポリエステル系樹脂であってイソフタル酸8〜20モル%を含み、固有粘度が0.7〜1.0のイソテレフタル酸共重合飽和ポリエステル樹脂材料を用いた請求項3に記載の多層樹脂溶射方法。 EVA-based resin material for the first layer coating, epoxy-based resin material for the second layer coating, saturated polyester-based resin for the third layer coating, containing 8-20 mol% isophthalic acid, and intrinsic viscosity of 0.7-1 The multilayer resin spraying method according to claim 3, wherein 0.0 isototerephthalic acid copolymerized saturated polyester resin material is used. 第1層被膜に溶融温度130℃以下のEVA(エチレン酢酸共重合体)系樹脂材料、第2層被膜に溶融温度が第1層被膜より高く、250℃以下の飽和ポリエステル系樹脂材料をそれぞれ溶射して積み重ねた2層以上の多層樹脂被膜を有することを特徴とする多層樹脂溶射金属構造物。Thermal spraying of EVA (ethylene acetate copolymer) resin material having a melting temperature of 130 ° C. or lower on the first layer coating, and saturated polyester resin material having a melting temperature higher than that of the first layer coating and 250 ° C. or lower on the second layer coating. A multilayer resin-sprayed metal structure having two or more layers of multilayer resin coatings stacked together. 第1層被膜に溶融温度130℃以下のEVA(エチレン酢酸共重合体)系樹脂材料、第2層被膜に溶融温度が第1層被膜よりも高く、200℃以下のエポキシ系樹脂材料、第3層被膜に溶融温度が第2層被膜よりも高く、250℃以下の飽和ポリエステル系樹脂材料をそれぞれ溶射して積み重ねた2層以上の多層樹脂被膜を有することを特徴とする多層樹脂溶射金属構造物。An EVA (ethylene acetate copolymer) resin material having a melting temperature of 130 ° C. or lower for the first layer coating, an epoxy resin material having a melting temperature higher than that of the first layer coating and 200 ° C. or lower for the second layer coating, A multilayer resin sprayed metal structure characterized in that the multilayer coating has two or more multilayer resin coatings in which the melting temperature is higher than that of the second layer coating and a saturated polyester resin material having a temperature of 250 ° C. or less is sprayed and stacked. .
JP2008235383A 2008-09-12 2008-09-12 Multilayer resin spraying method and multilayer resin sprayed metal structure Active JP5205188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008235383A JP5205188B2 (en) 2008-09-12 2008-09-12 Multilayer resin spraying method and multilayer resin sprayed metal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008235383A JP5205188B2 (en) 2008-09-12 2008-09-12 Multilayer resin spraying method and multilayer resin sprayed metal structure

Publications (2)

Publication Number Publication Date
JP2010065310A JP2010065310A (en) 2010-03-25
JP5205188B2 true JP5205188B2 (en) 2013-06-05

Family

ID=42191140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008235383A Active JP5205188B2 (en) 2008-09-12 2008-09-12 Multilayer resin spraying method and multilayer resin sprayed metal structure

Country Status (1)

Country Link
JP (1) JP5205188B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121670A (en) * 1980-02-29 1981-09-24 Nitto Electric Ind Co Ltd Melt-spraying method of epoxy resin
JPS59104935A (en) * 1982-12-07 1984-06-18 堀 秀也 Corrosion-protective method for metallic surface
JPS59115765A (en) * 1982-12-21 1984-07-04 Ohbayashigumi Ltd Method and device for preventing corrosion on inside surface of chimney, evacuation duct or the like by resin lining
JPS6041574A (en) * 1983-08-15 1985-03-05 Nippon Steel Corp Execution method of corrosion-proof processing of joint of steel construction with corrosion-proof coating
JP2756575B2 (en) * 1989-03-10 1998-05-25 吉雄 中越 Metal product having double anticorrosion coating and method for producing the same
JPH08126866A (en) * 1994-10-31 1996-05-21 Aisin Seiki Co Ltd Thermal spraying of resin on material to be coated
JP2002069604A (en) * 2000-08-25 2002-03-08 Ishikawajima Harima Heavy Ind Co Ltd Preparing method for lining film for corrosion resistance
JP2010065509A (en) * 2008-09-12 2010-03-25 Tokyo Seiko Co Ltd Outdoor installed metal post

Also Published As

Publication number Publication date
JP2010065310A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
JP4723390B2 (en) High durability spring and its coating method
US6528125B1 (en) Corrosion resistant powder coated metal tube and process for making the same
CN103374693B (en) Nano thermal barrier coating on surface of high-temperature furnace roller and preparation method thereof
CN1936065B (en) Coating for compressor
TWI341876B (en)
US8993070B2 (en) Dual powder coating method for aluminum substrates
US20140057130A1 (en) Flat Steel Product, Method for Production of a Flat Steel Product and Method for Production of a Component
CN101122019A (en) Metal thermal spraying and powder coating electrostatic spraying composite coat antiseptic technique
CN106756712A (en) A kind of abrasion-resistant metal corrosion-inhibiting coating and its electric arc spraying process
JP5205188B2 (en) Multilayer resin spraying method and multilayer resin sprayed metal structure
JP2010065509A (en) Outdoor installed metal post
CN105312215A (en) Water heater water tank inner container fluororesin coating corrosion preventing method
CN201250198Y (en) Rust-protection composite coating for preventing the surfaces of steel components from being rusted
JP4602998B2 (en) Thermal spray coating formation method
JP2005066574A (en) Reinforcing bar coated with high adhesion corrosion-prevention film, and its production method
JP2006231207A (en) Method for coating fuel inlet and fuel inlet
JP2007319770A (en) Method for coating metallic rope with resin powder
JP5976364B2 (en) Manufacturing method of metal products with shellfish adhesion suppression function
JP2006212777A (en) Pattern coated metal sheet excellent in design properties and its manufacturing method
JP3143316B2 (en) Painted metal plate with yuzu skin appearance
JP5664953B2 (en) Method for forming a multilayer coating film on cast iron pipe
US9597857B2 (en) Enhanced friction coating construction and method for forming same
AU2012200526A1 (en) Coated ferrous substrates
JP2007050369A (en) Powder coating method using zinc dust-containing powder paint and powder-coated article
WO2011030443A1 (en) Corrosion-resistant coating layer on steel material and method of forming same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

R150 Certificate of patent or registration of utility model

Ref document number: 5205188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250