JP5204341B2 - Gas reforming method, gas reforming sheet, gas reforming piping - Google Patents

Gas reforming method, gas reforming sheet, gas reforming piping Download PDF

Info

Publication number
JP5204341B2
JP5204341B2 JP2012197042A JP2012197042A JP5204341B2 JP 5204341 B2 JP5204341 B2 JP 5204341B2 JP 2012197042 A JP2012197042 A JP 2012197042A JP 2012197042 A JP2012197042 A JP 2012197042A JP 5204341 B2 JP5204341 B2 JP 5204341B2
Authority
JP
Japan
Prior art keywords
gas
oxidation
gas reforming
reduction treatment
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012197042A
Other languages
Japanese (ja)
Other versions
JP2013034992A (en
Inventor
伸也 佐藤
Original Assignee
有限会社サトーテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社サトーテクノ filed Critical 有限会社サトーテクノ
Priority to JP2012197042A priority Critical patent/JP5204341B2/en
Publication of JP2013034992A publication Critical patent/JP2013034992A/en
Application granted granted Critical
Publication of JP5204341B2 publication Critical patent/JP5204341B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Description

本発明は、セラミックを用いた気体の改質に関するものである。   The present invention relates to gas modification using ceramics.

従来、車等の内燃機関の燃焼効率をあげるため、セラミックを用いて燃料や空気の改質を行うことがなされている。セラミックから発せられる遠赤外線により燃料等が改質され、その結果、燃費が向上したり、排気ガスのNOXが低減したりするなどの効果が得られる。例えば、セラミックシートを内燃機関の吸気配管の周囲に巻き付けて、吸気配管内の空気の改質を行う手法も提案されている。   Conventionally, in order to increase the combustion efficiency of an internal combustion engine such as a car, reforming of fuel and air has been performed using ceramics. Fuel and the like are reformed by far infrared rays emitted from ceramic, and as a result, effects such as improvement in fuel efficiency and reduction in NOx of exhaust gas can be obtained. For example, a method has been proposed in which a ceramic sheet is wound around an intake pipe of an internal combustion engine to reform the air in the intake pipe.

しかしながら、従来の手法では、気体の改質に関して必ずしも良い効果が得られないという問題があった。また、セラミックにも様々な種類が存在し、液体燃料等については各種のセラミックを利用して燃料を改質する試みが為されているが、一方で、空気等の気体の改質に適したセラミックについては、未だ具体的に明らかにされていないという問題があった。   However, the conventional method has a problem that a good effect is not necessarily obtained with respect to gas reforming. In addition, there are various types of ceramics. For liquid fuels, attempts have been made to reform the fuels using various ceramics. On the other hand, they are suitable for reforming gases such as air. Regarding ceramic, there has been a problem that it has not been clarified yet.

本発明は上記問題点に鑑みてなされたものであり、空気の改質に適した手法等を提供することを目的としている。   The present invention has been made in view of the above problems, and an object thereof is to provide a technique suitable for air reforming.

上記目的は、下記の手段によって達成される。   The above object is achieved by the following means.

(1)気体の流路中に、セラミック粒子をバインダーで塗布して得た改質面を配置し、前記改質面近傍に気体を通過させて、該気体の改質を行う気体改質方法であって、前記セラミック粒子が、ルチル系酸化チタン粒子と、ルチル系酸化チタン粒子との酸化還元処理により電解質を生成する程度の高いイオン化傾向を有する金属粒子と、の混合物を酸化還元処理し、該酸化還元処理により生成した電解質を溶媒で電気分解し、陰極に析出された物質を焼成して得たものであることを特徴とする気体改質方法。   (1) A gas reforming method in which a modified surface obtained by applying ceramic particles with a binder is disposed in a gas flow path, and the gas is reformed by allowing gas to pass through the modified surface. The ceramic particles are oxidized and reduced with a mixture of rutile titanium oxide particles and metal particles having a high ionization tendency to generate an electrolyte by oxidation and reduction treatment with the rutile titanium oxide particles, A gas reforming method obtained by electrolyzing an electrolyte generated by the oxidation-reduction treatment with a solvent and firing a substance deposited on a cathode.

(2)気体が流れる搬送管の内壁にセラミック粒子を塗布することで、前記搬送管を通過する前記気体の改質を行う気体改質方法であって、前記セラミック粒子が、ルチル系酸化チタン粒子と、ルチル系酸化チタン粒子との酸化還元処理により電解質を生成する程度の高いイオン化傾向を有する金属粒子と、の混合物を酸化還元処理し、該酸化還元処理により生成した電解質を溶媒で電気分解し、陰極に析出された物質を焼成して得たものであることを特徴とする気体改質方法。   (2) A gas reforming method for reforming the gas passing through the transport pipe by applying ceramic particles to the inner wall of the transport pipe through which the gas flows, wherein the ceramic particles are rutile titanium oxide particles. And a metal particle having a high ionization tendency to generate an electrolyte by oxidation-reduction treatment with rutile titanium oxide particles, and the electrolyte formed by the oxidation-reduction treatment is electrolyzed with a solvent. A gas reforming method characterized by being obtained by firing a substance deposited on a cathode.

(3)前記気体が空気であることを特徴とする上記(1)又は(2)記載の気体改質方法。   (3) The gas reforming method as described in (1) or (2) above, wherein the gas is air.

(4)シート部材と、前記シート部材の表面に固定されるセラミック粒子と、を備え、気体の流路中に配置されて前記気体の改質を行う気体改質シートであって、前記セラミック粒子が、ルチル系酸化チタン粒子と、ルチル系酸化チタン粒子との酸化還元処理により電解質を生成する程度の高いイオン化傾向を有する金属粒子と、の混合物を酸化還元処理し、該酸化還元処理により生成した電解質を溶媒で電気分解し、陰極に析出された物質を焼成して得たものであることを特徴とする気体改質シート。   (4) A gas-modified sheet comprising a sheet member and ceramic particles fixed to the surface of the sheet member, the gas-modified sheet disposed in a gas flow path to modify the gas, wherein the ceramic particles Is produced by oxidation-reduction treatment of a mixture of rutile titanium oxide particles and metal particles having a high ionization tendency to generate an electrolyte by oxidation-reduction treatment of rutile titanium oxide particles, and the oxidation-reduction treatment. A gas-modified sheet obtained by electrolyzing an electrolyte with a solvent and firing a substance deposited on a cathode.

(5)気体を搬送する搬送管と、前記搬送管の内壁に固定されるセラミック粒子と、を備え、前記気体の改質を行う気体改質配管であって、前記セラミック粒子が、ルチル系酸化チタン粒子と、ルチル系酸化チタン粒子との酸化還元処理により電解質を生成する程度の高いイオン化傾向を有する金属粒子と、の混合物を還元処理し、該酸化還元処理により生成した電解質を溶媒で電気分解し、陰極に析出された物質を焼成して得たものであることを特徴とする気体改質配管。   (5) A gas reforming pipe comprising a transport pipe for transporting a gas and ceramic particles fixed to an inner wall of the transport pipe, wherein the ceramic particles are rutile-based oxidized. A mixture of titanium particles and metal particles having a high ionization tendency to generate an electrolyte by oxidation-reduction treatment of rutile titanium oxide particles is reduced, and the electrolyte generated by the oxidation-reduction treatment is electrolyzed with a solvent. And a gas reforming pipe obtained by firing the material deposited on the cathode.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

上記手段では、セラミック粒子が気体の近傍に配置されるので改質効率を高めることが可能になる。また、搬送管内に気体を流す場合等において、その流れを邪魔することなく、改質することが可能になる。   In the above means, the ceramic particles are arranged in the vicinity of the gas, so that the reforming efficiency can be increased. Further, when a gas is allowed to flow through the transport pipe, it is possible to modify the gas without disturbing the flow.

特に、気体に作用させるセラミック粒子に、電気分解で陰極に析出された素材を利用することで、セラミック自体のマイナスイオン効果を高めることが可能になる。マイナスイオンは部材を貫通することができないが、本発明のように気体中に直接配置することで、マイナスイオンの効果を気体の改質に利用できることになる。   In particular, the negative ion effect of the ceramic itself can be enhanced by using a material deposited on the cathode by electrolysis as the ceramic particles that act on the gas. Negative ions cannot penetrate the member, but by arranging them directly in the gas as in the present invention, the effect of the negative ions can be used for gas reforming.

なお、このセラミック粒子は、ルチル系酸化チタン粉粒体を主材とし、この主材にそれと略同量のイオン化傾向が大きな金属の粉粒体を混合して形成した電解質を適宜溶媒中で電気分解し、その陰極に析出付着した物質に所要の添加物、触媒を加えて焼成して得ることが望ましい。このセラミックスの製造方法として、ルチル系酸化チタンとマグネシウムを略均等の重量比で混ぜ、これを炉内で酸化還元処理して電解質に形成し、この電解質を適宜溶媒中で電気分解し、その陰極に析出して付着した物質を取出しそれに微量の触媒と添加物を混ぜてセラミックスに焼成し、この焼成物を微粒子状に粉砕することが好ましい。特に、触媒としての混合剤は重量比約0.1%のパラジウムであり、添加物は重量比5%の水酸化ナトリウムを用いるのが好ましく、また、焼成温度は1280℃〜1380℃、焼成物の粉砕した平均粒径は平均2〜10μm程度とすることが好ましい。   The ceramic particles are mainly composed of rutile titanium oxide particles, and an electrolyte formed by mixing the main material with metal particles having a large ionization tendency in the same amount as that in an appropriate solvent. It is desirable to obtain the material by decomposing and depositing and adhering to the cathode, and adding the necessary additives and catalyst, followed by firing. As a method for producing this ceramic, rutile titanium oxide and magnesium are mixed in a substantially equal weight ratio, and this is oxidized and reduced in a furnace to form an electrolyte, and this electrolyte is electrolyzed in a solvent as appropriate, and its cathode It is preferable to take out the substance deposited and deposited on the ceramic, mix a trace amount of catalyst and additives, and fire it into ceramics, and pulverize the fired product into fine particles. In particular, the mixture as a catalyst is palladium having a weight ratio of about 0.1%, the additive is preferably sodium hydroxide having a weight ratio of 5%, and the firing temperature is 1280 to 1380 ° C. The average particle size of pulverized is preferably about 2 to 10 μm.

本発明によれば、気体を改質することで、様々な効率を改善できるという優れた効果を奏し得る。   According to the present invention, it is possible to achieve an excellent effect that various efficiencies can be improved by modifying a gas.

本発明の実施形態に係る気体改質ネットの製造工程を示す流れ図The flowchart which shows the manufacturing process of the gas reforming net which concerns on embodiment of this invention. 同気体改質ネットの素線断面の状態を拡大して示す断面図Sectional drawing which expands and shows the state of the wire cross section of the gas reforming net 同気体改質ネットをエアインテークに利用した場合を示す組立図Assembly drawing showing the case where the same gas reforming net is used for air intake 同気体改質ネットをボイラー装置に利用した場合を示す正面図Front view showing the case where the gas reforming net is used in a boiler device 同気体改質ネットをファンヒータに利用した場合を示す正面図及び背面図Front and rear views showing the case where the gas reforming net is used for a fan heater 本発明の実施形態に係る気体改質シートの製造工程を示す流れ図The flowchart which shows the manufacturing process of the gas modification sheet | seat which concerns on embodiment of this invention. 本発明の実施形態に係る気体改質配管の製造工程を示す流れ図The flowchart which shows the manufacturing process of the gas reforming piping which concerns on embodiment of this invention. 同気体改質配管をガスコンロに利用した場合の斜視 Perspective view when the gas reforming pipe is used as a gas stove 実験によりボイラー装置の燃焼効率の改善効果を示す表図Table showing the effect of improving the combustion efficiency of boiler equipment through experiments 実験によりファンヒータのHC濃度の改善効果を示す表図Table showing the improvement effect of fan heater HC concentration by experiment 実験によりファンヒータの臭気改善効果を示す表図Table showing the effect of fan heater odor improvement by experiment

まず、本発明で利用されるセラミックスの製造方法の一例について説明する。まず、ルチル系酸化チタン粉粒体を主材とし、この主材にそれと略同量のイオン化傾向が大きな金属の粉粒体を混合する。具体的には、平均粒径が150μm程度のルチル系酸化チタン500gと、このチタンと同じ性状且つ均等の重量比となるマグネシウム500gとを混合して石英製のるつぼ(炉)に入れ、酸化還元処理を行う。この酸化還元処理においては、酸化チタン、マグネシウムとも約500℃〜540℃で平均粒径3μm程度の微粉体に粉砕される。そこで、粉砕された酸化チタンとマグネシウムの混合微粉末をるつぼから取出す。取出した微粉末は電解質となる。   First, an example of a method for producing ceramics used in the present invention will be described. First, a rutile-based titanium oxide granular material is used as a main material, and a metal granular material having a large ionization tendency of approximately the same amount is mixed with the main material. Specifically, 500 g of rutile titanium oxide having an average particle size of about 150 μm and 500 g of magnesium having the same properties and the same weight ratio as this titanium are mixed and placed in a quartz crucible (furnace), and then redox. Process. In this oxidation-reduction treatment, both titanium oxide and magnesium are pulverized to a fine powder having an average particle size of about 3 μm at about 500 ° C. to 540 ° C. Therefore, the mixed fine powder of titanium oxide and magnesium is taken out from the crucible. The extracted fine powder becomes an electrolyte.

生成された電解質を適宜溶媒中で電気分解する。溶媒としては例えば水をいる。この電気分解を経て陰極に析出付着した物質を取り出し、所要の添加物,触媒を加えて焼成し、この焼成物を微粒子状に粉砕する。   The produced electrolyte is electrolyzed in a suitable solvent. For example, water is used as the solvent. A substance deposited and deposited on the cathode through this electrolysis is taken out, added with necessary additives and catalyst, and fired, and the fired product is pulverized into fine particles.

具体的には、電気分解の電極棒にCuとCを用い、電極に直流12Vを印加して電気分解を行う。酸化還元された酸化チタンとマグネシウムの混合粉末体を電解質として溶解した電解溶液には、電気分解における通電によってイオン伝動が生じるので、陽極から電解溶液に向かって正電荷が流れる。また、陽極の陽極酸化ではアノード面にアノード電流が流れ、陰極の陰極還元ではカソード面にカソード電流が流れる。従って、陽極には正電荷のイオン(陽イオン又はカチオン)が付着し、カソード(陰極)には負電荷のイオン(陰イオン又はアニオン)が付着する。従って、陰極に析出付着した酸化チタンには負電荷のイオンを帯有することになり、これを素材とする。   Specifically, Cu and C are used for the electrode rod for electrolysis, and 12V DC is applied to the electrode for electrolysis. In an electrolytic solution in which a mixed powder body of oxidized and reduced titanium oxide and magnesium is dissolved as an electrolyte, ion transmission occurs due to energization in electrolysis, so that a positive charge flows from the anode toward the electrolytic solution. Further, in the anodic oxidation of the anode, an anode current flows on the anode surface, and in the cathode reduction of the cathode, a cathode current flows on the cathode surface. Therefore, positively charged ions (cations or cations) are attached to the anode, and negatively charged ions (anions or anions) are attached to the cathode (cathode). Accordingly, the titanium oxide deposited and deposited on the cathode has negatively charged ions, which are used as a material.

この素材量に対して約0.1重量%のパラジウムを触媒として混合し、更に、苛性ソーダを全量の5重量%を添加してよく攪拌,混練する。これを焼成するために適宜形状に成型し、この成型体を約1280℃〜1380℃の加熱炉で少なくとも約6時間、長くても12時間程度焼成することにより、セラミックスの母材を得る。その後、焼成したセラミックスの母材を、加熱下で2μm〜10μm程度の平均粒径を有するセラミックス粉粒体に粉砕成形する。これにより機能性セラミックスを得る。   About 0.1% by weight of palladium is mixed as a catalyst with respect to the amount of the raw material, and 5% by weight of caustic soda is added and stirred and kneaded. In order to fire this, it is molded into a suitable shape, and this molded body is fired in a heating furnace at about 1280 ° C. to 1380 ° C. for at least about 6 hours, at most about 12 hours, thereby obtaining a ceramic base material. Thereafter, the fired ceramic base material is pulverized and formed into ceramic powder particles having an average particle diameter of about 2 μm to 10 μm under heating. Thereby, a functional ceramic is obtained.

次に、図1等を参照して、このセラミックを利用した、気体改質ネット10、気体改質シート20、及び気体改質配管30について説明する。図1に示されるように、いずれの気体改質手段においても、上記工程によって得られたセラミックをバインダーに溶かしたバインダー溶液100を利用する。このバインダーとしては、常温硬化性バインダー樹脂や、紫外線硬化性バインダー樹脂等、様々なものを利用できる。   Next, the gas reforming net 10, the gas reforming sheet 20, and the gas reforming pipe 30 using this ceramic will be described with reference to FIG. As shown in FIG. 1, in any gas reforming means, a binder solution 100 in which the ceramic obtained by the above process is dissolved in a binder is used. Various binders such as a room temperature curable binder resin and an ultraviolet curable binder resin can be used as the binder.

気体改質ネット10を得るには、まず、網目状のネット部材12を、バインダー溶液100内に投入し、ネット部材12の各素線の周囲にバインダー溶液100を塗布する。このネット部材12を取り出して、乾燥させることで気体改質ネット10を得る。この気体改質ネット10は、図2に拡大して示されるように、素線14の外表面に、バインダー102によってセラミック粒子104が固定されており、これにより、外表面自体が気体改質面14Aとして機能する。   In order to obtain the gas reforming net 10, first, the net-like net member 12 is put into the binder solution 100, and the binder solution 100 is applied around each strand of the net member 12. The net reforming net 10 is obtained by taking out the net member 12 and drying it. In the gas reforming net 10, as shown in an enlarged view in FIG. 2, ceramic particles 104 are fixed to the outer surface of the strands 14 by a binder 102, so that the outer surface itself is a gas reforming surface. 14A functions.

この気体改質ネット10は、図3に示されるように、自動車やバイク等の内燃機関において、空気を取り込むエアインテーク180に配置できる。詳細には、円筒状のエアーフィルター200の外周面に沿って気体改質ネット10を湾曲させて配置する。このようにすると、エアーフィルター200によって取り込まれる空気が、気体改質ネット10を通過するので、導入空気を改質する事ができ、燃費改善効果や、排気ガスのクリーン化を達成することが可能になる。また内燃機関から出される排気ガスの臭気も低減されるようになる。また、この気体改質ネット10は、網目状のネット部材12を素材として利用しているので、圧力損失も低減できる。なお、ここでは円筒状のエアーフィルター200に設置する場合を示したが、本発明はそれに限定されず、平面タイプのエアーフィルターにも利用できる。更に、エアーフィルター自体にバインダー溶液100をコーティングして、改質面を形成するようにしてもよい。   As shown in FIG. 3, the gas reforming net 10 can be disposed in an air intake 180 that takes in air in an internal combustion engine such as an automobile or a motorcycle. Specifically, the gas reforming net 10 is curved and disposed along the outer peripheral surface of the cylindrical air filter 200. In this way, since the air taken in by the air filter 200 passes through the gas reforming net 10, the introduced air can be reformed, and a fuel efficiency improvement effect and a cleaner exhaust gas can be achieved. become. Further, the odor of exhaust gas emitted from the internal combustion engine is also reduced. Moreover, since this gas reforming net | network 10 utilizes the net-like net | network member 12 as a raw material, pressure loss can also be reduced. In addition, although the case where it installed in the cylindrical air filter 200 was shown here, this invention is not limited to it, It can utilize also for a planar type air filter. Further, the modified surface may be formed by coating the air filter itself with the binder solution 100.

また図4に示されるように、この気体改質ネット10は、ボイラー装置300におけるオイルバーナー302に空気を送り込むための送風機304に設置することも可能である。この場合、送風機304における空気取り込み口に気体改質ネット10を設置すればよい。また、図5に示されるように、石油やガス等のファンヒータ400に設置することも可能である。この場合、背面側に搭載されているファン402の吸気口に気体改質ネット10を配置する。これらのようにすると、燃料効率が向上すると共に、温風の臭気を低減させる事ができる。   As shown in FIG. 4, the gas reforming net 10 can also be installed in a blower 304 for sending air to the oil burner 302 in the boiler device 300. In this case, the gas reforming net 10 may be installed at the air intake port of the blower 304. Further, as shown in FIG. 5, it can be installed in a fan heater 400 such as oil or gas. In this case, the gas reforming net 10 is arranged at the intake port of the fan 402 mounted on the back side. If it does in this way, while improving fuel efficiency, the odor of warm air can be reduced.

次に、図6を参照して、気体改質シート20について説明する。この気体改質シート20を製造するには、まず、シート部材22を2枚用意して、それぞれに、刷毛24を利用してバインダー溶液100を塗布する。なお、本実施形態ではシート部材22として紙を用いている。この2枚のシート部材22を、塗布面が対向するようにして重ねて両者を密着させて乾燥させる。この結果、2枚のシート部材22の間に改質面22Aが形成された気体改質シート20を得ることができる。この気体改質シート20を、気体の流路内に配置すれば、改質面22Aの近傍を気体が通過するので、気体を改質することが可能になる。なお、ここでは改質面22Aが2枚のシート部材22に挟まれている場合を示したが、外表面にも塗布して改質面22Aを形成するようにしてもよい。   Next, the gas reforming sheet 20 will be described with reference to FIG. In order to manufacture the gas modified sheet 20, first, two sheet members 22 are prepared, and the binder solution 100 is applied to each using the brush 24. In the present embodiment, paper is used as the sheet member 22. The two sheet members 22 are stacked so that the application surfaces face each other, and both are brought into close contact with each other and dried. As a result, the gas-modified sheet 20 in which the modified surface 22A is formed between the two sheet members 22 can be obtained. If the gas reforming sheet 20 is disposed in the gas flow path, the gas passes through the vicinity of the reforming surface 22A, and thus the gas can be reformed. Although the case where the modified surface 22A is sandwiched between the two sheet members 22 is shown here, the modified surface 22A may be formed by applying the modified surface 22A to the outer surface.

次に図7を参照して、気体改質配管30について説明する。まず、気体を流すために用いる搬送管32を用意し、これをバインダー溶液100中に投入する。なお、ここでは断面が円形または方形となる搬送管について示すが、その形状は問わない。また搬送管32の素材も、金属、コンクリート、ゴム、樹脂等、各種利用できる。その後、この搬送管32をバインダー溶液100から取り出して乾燥させる。この結果、搬送管32の内壁に改質面32Aが形成された気体改質配管30を得ることができる。この気体改質配管30によれば、管内の気体の流れを阻害することが無い。また、内壁から中心に向かって遠赤外線が放出されるので、気体の改質効率を更に高めることができる。   Next, the gas reforming pipe 30 will be described with reference to FIG. First, the conveyance pipe 32 used for flowing gas is prepared, and this is put into the binder solution 100. In addition, although shown about the conveyance pipe | tube with a cross section circular or square here, the shape is not ask | required. Various materials such as metal, concrete, rubber, and resin can be used for the material of the transfer pipe 32. Thereafter, the transport pipe 32 is taken out from the binder solution 100 and dried. As a result, the gas reforming pipe 30 in which the reforming surface 32A is formed on the inner wall of the transfer pipe 32 can be obtained. According to the gas reforming pipe 30, the gas flow in the pipe is not hindered. Further, since far infrared rays are emitted from the inner wall toward the center, the gas reforming efficiency can be further enhanced.

図8には、この気体改質配管30を利用したガスコンロ500が示されている。このガスコンロ500では、ガスを供給するゴム素材のガス配管として、気体改質配管30を用いている。このようにすると、改質されたガスがガスコンロ500に供給されるので、燃焼効率が高められると共に、臭気を減らすことができる。   FIG. 8 shows a gas stove 500 using the gas reforming pipe 30. In the gas stove 500, the gas reforming pipe 30 is used as a gas pipe for a rubber material for supplying gas. In this way, since the reformed gas is supplied to the gas stove 500, the combustion efficiency is improved and the odor can be reduced.

以上、本実施形態では、気体の流路中に、セラミック粒子104をバインダー102で塗布・固定することで得た改質面が配置されるので、近傍を通過する気体の改質を行うことが可能になる。また、セラミック粒子104が直接気体に接触できるので、間接的に改質する場合と比較して、改質効率を高めることが可能になる。特にこのセラミック粒子104は、電気分解で陰極に析出された素材を利用して製造されているので、多量の陰イオンを帯有している。この結果、セラミック粒子104自体のマイナスイオン効果を高めることが可能になる。マイナスイオンは金属等の搬送管を貫通できないが、本実施形態のように気体中に直接配置することで、気体に直接的に作用させることが可能になる。なお、ここではネット状の部材や配管に改質面を形成する場合に限って示したが、本発明はそれに限定されず、例えばハニカム構造部材にセラミック粒子を塗布して改質面を形成し、改質フィルタとして利用することも可能である。   As described above, in the present embodiment, since the modified surface obtained by applying and fixing the ceramic particles 104 with the binder 102 is disposed in the gas flow path, the gas passing through the vicinity can be modified. It becomes possible. In addition, since the ceramic particles 104 can directly contact the gas, it is possible to increase the reforming efficiency as compared with the case of indirectly modifying. In particular, since the ceramic particles 104 are manufactured using a material deposited on the cathode by electrolysis, the ceramic particles 104 have a large amount of anions. As a result, the negative ion effect of the ceramic particles 104 itself can be enhanced. Negative ions cannot penetrate through a carrier pipe made of metal or the like, but can be directly applied to the gas by being arranged directly in the gas as in this embodiment. Note that, here, only the case where the modified surface is formed on the net-like member or the pipe is shown, but the present invention is not limited to this. For example, the modified surface is formed by applying ceramic particles to the honeycomb structure member. It can also be used as a reforming filter.

[実施例]   [Example]

図4で示したボイラー装置300を用いて、気体改質ネット10を装着した場合と未装着の場合とで、温度上昇速度の違いを比較した。具体的にはボイラー装置300として、昭和鉄工株式会社製ボイラー(SNW−2003A 冠水容量260L 200000kcal/h)を用いて、空気取込口に450mm×450mmのサイズの気体改質ネット10を適宜設置し、75度から始まって、82度まで上昇する際に要する時間を測定した。この結果を図に示す。図からも明らかなように、気体改質ネット10を装着した場合は、未装着の場合と比較して、20%程度時間を短縮できることが明らかになった。これは、ボイラー装置300の燃焼効率が上昇していることを意味している。 Using the boiler device 300 shown in FIG. 4, the difference in temperature increase rate was compared between when the gas reforming net 10 was attached and when it was not attached. Specifically, as the boiler device 300, a boiler (SNW-2003A flooding capacity 260L 200000 kcal / h) manufactured by Showa Tetsuko Co., Ltd. is used, and the gas reforming net 10 having a size of 450 mm × 450 mm is appropriately installed at the air intake port. The time required for starting from 75 degrees and rising to 82 degrees was measured. The results are shown in Figure 9. As is apparent from the figure, it was found that when the gas reforming net 10 is attached, the time can be shortened by about 20% compared to the case where the gas reforming net 10 is not attached. This means that the combustion efficiency of the boiler device 300 is increasing.

次に、図5で示したファンヒータ400を用いて、気体改質ネット10を装着した場合と未装着の場合の送風気体のHC(炭化水素)濃度をそれぞれ2回計測した。ファンヒータ400としてOVF−G30A/型番004001475を用い、温風を「強」に設定した後に「消化」を実行し、消化時に発生する風を回収してHC濃度を測定するようにした。この結果を図10に示す。図からも明らかなように、気体改質ネット10の装着時のHC濃度が、未装着時と比較して30%〜60%程度低減されていることが明らかとなった。 Next, using the fan heater 400 shown in FIG. 5, the HC (hydrocarbon) concentration of the blown gas when the gas reforming net 10 was attached and when it was not attached was measured twice. OVF-G30A / model number 004001475 was used as the fan heater 400, and “digestion” was performed after setting the hot air to “strong”, and the wind generated during digestion was collected to measure the HC concentration. The results are shown in Figure 10. As is apparent from the figure, it has been clarified that the HC concentration when the gas reforming net 10 is attached is reduced by about 30% to 60% as compared to when the gas reforming net 10 is not attached.

また、同様の条件の下で、気体改質ネット10を装着した場合と未装着の場合の送風気体の臭気を、簡易ニオイセンサーを用いて測定した。この結果を図11に示す。結果から明らかなように、気体改質ネット10の装着時の臭気は、未装着時と比較して低減していることが明らかとなった。 Moreover, under the same conditions, the odor of the blown gas when the gas reforming net 10 was installed and when it was not installed was measured using a simple odor sensor. The results are shown in Figure 11. As is clear from the results, it was revealed that the odor when the gas reforming net 10 was attached was reduced compared to when the gas reforming net 10 was not attached.

尚、本発明は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

本発明の気体改質方法等によれば、気体を効果的に改質することが可能となるので、燃料電池、内燃機関、ボイラー等様々な用途に利用することが可能である。   According to the gas reforming method and the like of the present invention, the gas can be effectively reformed, and therefore, it can be used for various applications such as a fuel cell, an internal combustion engine, and a boiler.

10 気体改質ネット
20 気体改質シート
30 気体改質配管
180 エアインテーク
300 ボイラー装置
400 ファンヒータ
500 ガスコン
10 gas reforming net 20 gas modifying sheet 30 gas reforming pipe 180 air intake 300 Boilers 400 fan heater 500 Gascon b

Claims (5)

気体の流路中に、セラミック粒子をバインダーで塗布して得た改質面を配置し、前記改質面近傍に気体を通過させて、該気体の改質を行う気体改質方法であって、
前記セラミック粒子が、ルチル系酸化チタン粒子と、ルチル系酸化チタン粒子との酸化還元処理により電解質を生成する程度の高いイオン化傾向を有する金属粒子と、の混合物を酸化還元処理し、該酸化還元処理により生成した電解質を溶媒で電気分解し、陰極に析出された物質を焼成して得たものであることを特徴とする気体改質方法。
A gas reforming method in which a modified surface obtained by applying ceramic particles with a binder is disposed in a gas flow path, and a gas is allowed to pass in the vicinity of the modified surface to modify the gas. ,
The ceramic particles are obtained by oxidation-reduction treatment of a mixture of rutile titanium oxide particles and metal particles having a high ionization tendency to generate an electrolyte by oxidation-reduction treatment of rutile titanium oxide particles, and the oxidation-reduction treatment A gas reforming method characterized in that it is obtained by electrolyzing the electrolyte produced by the above with a solvent and firing the substance deposited on the cathode.
気体が流れる搬送管の内壁にセラミック粒子を塗布することで、前記搬送管を通過する前記気体の改質を行う気体改質方法であって、
前記セラミック粒子が、ルチル系酸化チタン粒子と、ルチル系酸化チタン粒子との酸化還元処理により電解質を生成する程度の高いイオン化傾向を有する金属粒子と、の混合物を酸化還元処理し、該酸化還元処理により生成した電解質を溶媒で電気分解し、陰極に析出された物質を焼成して得たものであることを特徴とする気体改質方法。
A gas reforming method for reforming the gas passing through the transport pipe by applying ceramic particles to the inner wall of the transport pipe through which the gas flows,
The ceramic particles are obtained by oxidation-reduction treatment of a mixture of rutile titanium oxide particles and metal particles having a high ionization tendency to generate an electrolyte by oxidation-reduction treatment of rutile titanium oxide particles, and the oxidation-reduction treatment A gas reforming method characterized in that it is obtained by electrolyzing the electrolyte produced by the above with a solvent and firing the substance deposited on the cathode.
前記気体が空気であることを特徴とする請求項1又は2記載の気体改質方法。   The gas reforming method according to claim 1, wherein the gas is air. シート部材と、前記シート部材の表面に固定されるセラミック粒子と、を備え、気体の流路中に配置されて前記気体の改質を行う気体改質シートであって、
前記セラミック粒子が、ルチル系酸化チタン粒子と、ルチル系酸化チタン粒子との酸化還元処理により電解質を生成する程度の高いイオン化傾向を有する金属粒子と、の混合物を酸化還元処理し、該酸化還元処理により生成した電解質を溶媒で電気分解し、陰極に析出された物質を焼成して得たものであることを特徴とする気体改質シート。
A gas reforming sheet comprising a sheet member and ceramic particles fixed to the surface of the sheet member, and disposed in a gas flow path to reform the gas,
The ceramic particles are obtained by oxidation-reduction treatment of a mixture of rutile titanium oxide particles and metal particles having a high ionization tendency to generate an electrolyte by oxidation-reduction treatment of rutile titanium oxide particles, and the oxidation-reduction treatment A gas-modified sheet obtained by electrolyzing the electrolyte produced by the above with a solvent and firing the substance deposited on the cathode.
気体を搬送する搬送管と、前記搬送管の内壁に固定されるセラミック粒子と、を備え、前記気体の改質を行う気体改質配管であって、
前記セラミック粒子が、ルチル系酸化チタン粒子と、ルチル系酸化チタン粒子との酸化還元処理により電解質を生成する程度の高いイオン化傾向を有する金属粒子と、の混合物を酸化還元処理し、該酸化還元処理により生成した電解質を溶媒で電気分解し、陰極に析出された物質を焼成して得たものであることを特徴とする気体改質配管。
A gas reforming pipe comprising a transport pipe for transporting gas and ceramic particles fixed to an inner wall of the transport pipe, and reforming the gas,
The ceramic particles are obtained by oxidation-reduction treatment of a mixture of rutile titanium oxide particles and metal particles having a high ionization tendency to generate an electrolyte by oxidation-reduction treatment of rutile titanium oxide particles, and the oxidation-reduction treatment A gas reforming pipe obtained by electrolyzing the electrolyte produced by the above with a solvent and firing the substance deposited on the cathode.
JP2012197042A 2012-09-07 2012-09-07 Gas reforming method, gas reforming sheet, gas reforming piping Expired - Fee Related JP5204341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012197042A JP5204341B2 (en) 2012-09-07 2012-09-07 Gas reforming method, gas reforming sheet, gas reforming piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012197042A JP5204341B2 (en) 2012-09-07 2012-09-07 Gas reforming method, gas reforming sheet, gas reforming piping

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006057082A Division JP5121151B2 (en) 2006-03-03 2006-03-03 Gas reforming method, gas reforming net

Publications (2)

Publication Number Publication Date
JP2013034992A JP2013034992A (en) 2013-02-21
JP5204341B2 true JP5204341B2 (en) 2013-06-05

Family

ID=47885117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012197042A Expired - Fee Related JP5204341B2 (en) 2012-09-07 2012-09-07 Gas reforming method, gas reforming sheet, gas reforming piping

Country Status (1)

Country Link
JP (1) JP5204341B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811188B2 (en) * 1991-05-16 1996-02-07 松下電器産業株式会社 Deodorizing catalyst
JPH0615171A (en) * 1992-07-06 1994-01-25 Mitsubishi Heavy Ind Ltd Production of oxidation catalyst
JP4305001B2 (en) * 1996-09-20 2009-07-29 株式会社日立製作所 Articles with a photocatalytic film

Also Published As

Publication number Publication date
JP2013034992A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
Maeda et al. Direct Water Splitting into Hydrogen and Oxygen under Visible Light by using Modified TaON Photocatalysts with d 0 Electronic Configuration.
JP2013180245A (en) Photocatalyst for water decomposition and hydrogen production method
JP2019529847A (en) Burner using high temperature combustion catalyst
JP5121151B2 (en) Gas reforming method, gas reforming net
CN108404666A (en) A kind of marine diesel tail gas denitrification apparatus
JP5204341B2 (en) Gas reforming method, gas reforming sheet, gas reforming piping
CN105797706A (en) Cerium-lanthanum solid solution catalyst for purifying diesel vehicle exhaust particles and preparation method thereof
CN102451682B (en) Zirconia-modified wet oxidation catalyst and preparation method thereof
US20130093128A1 (en) Methods of producing anodes for solid oxide fuel cells
JP2005007298A (en) Porous metal catalyst
JP2011121808A (en) Honeycomb molded body
JP2007185605A (en) Promoter for photocatalyst and photocatalytic material
JP2007045681A (en) Method of manufacturing porous ceramic structure
CN211782731U (en) Energy-saving environment-friendly kiln
CN105371265A (en) Waste gas circulating system and color steel plate production technique adopting same
CN203139885U (en) Environment-friendly waste gas purification equipment
CN207634143U (en) Cluster engine black smoke purification system
CN204880063U (en) Novel smokeless dustless steam boiler
Li et al. Fabrication of conductive ceramic composite for electrothermal-assisted photocatalytic degradation of frozen organic pollutants and indoor climate control
JP2015047518A (en) Particulate filter with catalyst and production method thereof
CN204593836U (en) A kind of novel biomass combustor
CN205606601U (en) Cellular radiant burner of waste gas
CN213656785U (en) A tail-gas clean-up ware for plant fires burning furnace
CN216558354U (en) Roasting furnace for roasting graphite electrode
CN217380700U (en) Special tail gas purification device for non-road diesel mobile machinery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees