JP5203829B2 - Synthetic aperture sonar - Google Patents

Synthetic aperture sonar Download PDF

Info

Publication number
JP5203829B2
JP5203829B2 JP2008187217A JP2008187217A JP5203829B2 JP 5203829 B2 JP5203829 B2 JP 5203829B2 JP 2008187217 A JP2008187217 A JP 2008187217A JP 2008187217 A JP2008187217 A JP 2008187217A JP 5203829 B2 JP5203829 B2 JP 5203829B2
Authority
JP
Japan
Prior art keywords
processing unit
propagation distance
receiver
synthetic aperture
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008187217A
Other languages
Japanese (ja)
Other versions
JP2010025739A (en
Inventor
明久 深見
健太郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008187217A priority Critical patent/JP5203829B2/en
Publication of JP2010025739A publication Critical patent/JP2010025739A/en
Application granted granted Critical
Publication of JP5203829B2 publication Critical patent/JP5203829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

本発明は、1台の送波器と移動方向に配列した複数台の受波器とを含む合成開口ソーナーに係り、特に航走体の動揺を補正する合成開口ソーナーに関する。   The present invention relates to a synthetic aperture sonar including a single transmitter and a plurality of receivers arranged in a moving direction, and more particularly to a synthetic aperture sonar that corrects fluctuation of a traveling body.

合成開口ソーナーは、合成開口レーダで開発された技術を応用したソーナーである。レーダの分解能を向上させるためには受波器の開口長を大きくする必要がある。すなわち、合成開口レーダは、航空機や人工衛星等に搭載し、軌道上を移動しながら、送信したレーダ波を受波器で連続的に受信することにより、小さい開口長の受波器の受信信号を合成する。この結果、等価的に開口長を大きくして分解能を向上させている。合成開口ソーナーは、同様の原理により、水上または水中の航走体に搭載し、ソーナーの分解能を向上させる。   Synthetic aperture sonar is a sonar that applies the technology developed in synthetic aperture radar. In order to improve the resolution of the radar, it is necessary to increase the aperture length of the receiver. In other words, a synthetic aperture radar is mounted on an aircraft, an artificial satellite, or the like, and continuously receives received radar waves while moving in orbit. Is synthesized. As a result, the resolution is improved by increasing the aperture length equivalently. The synthetic aperture sonar is mounted on a water or underwater vehicle based on the same principle to improve the resolution of the sonar.

合成開口処理は、非特許文献1および非特許文献2に示すように高速フーリエ変換と複素乗算を用いたCS(Chirp Scaling)アルゴリズム等が知られている。特に非特許文献2は、時間軸信号に動揺補正関数を乗算することにより動揺補正を行う方法を示している。   As shown in Non-Patent Document 1 and Non-Patent Document 2, synthetic aperture processing is known as a CS (Chirp Scaling) algorithm using fast Fourier transform and complex multiplication. In particular, Non-Patent Document 2 shows a method of performing shake correction by multiplying a time axis signal by a shake correction function.

合成開口ソーナーにおいては、レーダ波の空中伝播速度の300,000km/sと比較して音響波の水中伝搬速度の1,500m/sが非常に遅いため、送信開始からエコー波が返ってきて次の送信を開始するまでのパルス繰返し周期を長く取る必要がある。一方で、これでは航走体のサンプル間の移動距離が極端に短くなり、合成開口長が取れない。さらに、航走体速度が遅すぎるため一定速度に保てない不都合を生じる。   In the synthetic aperture sonar, the acoustic wave underwater propagation speed of 1,500 m / s is very slow compared to the radar wave air propagation speed of 300,000 km / s. It is necessary to take a long pulse repetition period until the start of transmission. On the other hand, in this case, the moving distance between the samples of the traveling body becomes extremely short, and the synthetic aperture length cannot be obtained. Furthermore, since the speed of the traveling body is too slow, there arises a disadvantage that the speed cannot be kept constant.

すなわち、このパルス繰返し周期の逆数がパルス繰返し周波数PRFで、航走体速度νと受波開口幅Dとの間で次の(式1)を満たす必要がある。   That is, the reciprocal of this pulse repetition period is the pulse repetition frequency PRF, and it is necessary to satisfy the following (Equation 1) between the vehicle speed ν and the receiving aperture width D.

Figure 0005203829
この問題は、1回の送信に対して1台の受波器で受信する単一受波器の場合、非特許文献3に示すように1回の送信に対して移動方向に配列した複数台の受波器で同時に受信するDPCA(Displaced Phase-Center Antenna)方式により解決することができる。
Figure 0005203829
In the case of a single receiver that receives a single transmission with respect to a single transmission, the problem is that, as shown in Non-Patent Document 3, a plurality of units arranged in the moving direction with respect to a single transmission. This can be solved by the DPCA (Displaced Phase-Center Antenna) method in which the receiver is simultaneously received.

DPCAとは、送波器から目標までと目標から受波器までの伝搬距離の和が、送波器と受波器の中間に位置する仮想的な送受波器から目標までの往復伝搬距離にほぼ等しいとの原理に基づく。この仮想的な送受波器をDPCAと呼び、DPCAから信号が送受波されるとみなして、合成開口処理を行う方式である。   DPCA is the sum of the propagation distance from the transmitter to the target and from the target to the receiver is the round-trip propagation distance from the virtual transmitter to the target located between the transmitter and receiver. Based on the principle of being almost equal. This virtual transducer is called DPCA, and is a method of performing synthetic aperture processing on the assumption that a signal is transmitted / received from DPCA.

単一受波器で受信する場合、移動方向のアジマスサンプリング周波数(以降アジマスサンプリング周波数fasと称す)はパルス繰り返し周波数PRFとなる。DPCA方式の場合は、複数受波器の間隔をアジマスサンプリング間隔に合わせて配列することにより、アジマスサンプリング周波数fasをパルス繰り返し周波数PRFよりも高くできる。このとき、受波器数Eとの間で(式2)の関係がある。   When receiving with a single receiver, the azimuth sampling frequency in the moving direction (hereinafter referred to as azimuth sampling frequency fas) is the pulse repetition frequency PRF. In the case of the DPCA method, the azimuth sampling frequency fas can be made higher than the pulse repetition frequency PRF by arranging the intervals of the plurality of receivers in accordance with the azimuth sampling interval. At this time, there is a relationship of (Equation 2) with the number E of receivers.

Figure 0005203829
ここで、dは受波開口長ではなく受波器間隔である。パルス繰り返し周波数PRFは、(式2)に基づき航走体速度νの実測値により時々刻々補正される。以降DPCA方式の合成開口ソーナーをDPCA合成開口ソーナーと称することにする。
Figure 0005203829
Here, d is not the receiving aperture length but the receiver interval. The pulse repetition frequency PRF is corrected from time to time based on the measured value of the vehicle speed ν based on (Equation 2). Hereinafter, the DPCA type synthetic aperture sonar is referred to as a DPCA synthetic aperture sonar.

図1を参照して、従来の動揺補正処理を説明する。ここで、図1は合成開口ソーナーのブロック図である。図1において、合成開口ソーナー600は、送受信処理部100、動揺補正処理部200、合成開口処理部300、表示制御処理部400、動揺検出処理部500で構成される。送受信部100は、受波器110、送波器120、受信器130、送信器140、PRF制御器150で構成される。 With reference to FIG. 1, a conventional shake correction process will be described. Here, FIG. 1 is a block diagram of a synthetic aperture sonar. In FIG. 1, the synthetic aperture sonar 600 includes a transmission / reception processing unit 100, a shake correction processing unit 200, a synthetic aperture processing unit 300, a display control processing unit 400, and a shake detection processing unit 500. The transmission / reception unit 100 includes a receiver 110, a transmitter 120, a receiver 130, a transmitter 140, and a PRF controller 150.

送信器140は、外部設定に基づき送信信号を生成し、PRF制御器150からの送信トリガー信号を周期として送信信号を出力し、送波器120に送り出す。送波器120は、送信信号を電気音響変換し、水中に送波する。PRF制御器150は、速度信号10を元に実速度νに基づき制御する(式3)のPRF値、   The transmitter 140 generates a transmission signal based on the external setting, outputs the transmission signal with the transmission trigger signal from the PRF controller 150 as a period, and sends it to the transmitter 120. The transmitter 120 performs electroacoustic conversion on the transmission signal and transmits the signal into water. The PRF controller 150 performs control based on the actual speed ν based on the speed signal 10 (Equation 3),

Figure 0005203829
を計算し、送信器140に送信トリガー信号として出力する。受波器110は、受波エコーを音響電気変換する。受信器130は、受波器110からの受信信号を、増幅、濾波、アナログ/ディジタル変換の後、ベースバンドに周波数変換する。
Figure 0005203829
Is output to the transmitter 140 as a transmission trigger signal. The receiver 110 performs acoustoelectric conversion on the received echo. The receiver 130 frequency-converts the received signal from the receiver 110 to baseband after amplification, filtering, and analog / digital conversion.

動揺補正処理部200は、動揺補正器210、補正量計算器220で構成される。補正量計算器220は、動揺検出部500からくる動揺情報を元に補正量τに基づく位相補正量Δφを(式4)により計算し、動揺補正器210に補正信号として出力する。   The shake correction processing unit 200 includes a shake corrector 210 and a correction amount calculator 220. The correction amount calculator 220 calculates a phase correction amount Δφ based on the correction amount τ based on the shake information coming from the shake detection unit 500 according to (Equation 4) and outputs it to the shake corrector 210 as a correction signal.

Figure 0005203829
動揺補正器210は、補正量計算器220からの補正量に基づき受信信号に(式5)を複素乗算して、位相回転により動揺量を補正する。
Figure 0005203829
The fluctuation corrector 210 performs complex multiplication of (Equation 5) on the received signal based on the correction amount from the correction amount calculator 220 and corrects the fluctuation amount by phase rotation.

Figure 0005203829
合成開口処理部300は、合成開口処理を行う部分である。合成開口処理部300は、レンジ方向とアジマス方向の2次元時間信号を入力し、レンジ方向とアジマス方向の2次元座標信号を表示制御処理部400に出力する。ここで、アジマス方向は航走体の航走方向、レンジ方向は水平面内でアジマス方向に垂直方向である。なお、合成開口処理部300は、CSアルゴリズム等が非特許文献1および非特許文献2に記載がある。
Figure 0005203829
The synthetic aperture processing unit 300 is a portion that performs synthetic aperture processing. The synthetic aperture processing unit 300 inputs a two-dimensional time signal in the range direction and the azimuth direction, and outputs a two-dimensional coordinate signal in the range direction and the azimuth direction to the display control processing unit 400. Here, the azimuth direction is the traveling direction of the traveling body, and the range direction is a direction perpendicular to the azimuth direction in the horizontal plane. The synthetic aperture processing unit 300 has a CS algorithm described in Non-Patent Document 1 and Non-Patent Document 2.

表示制御処理部400は、処理結果の表示のためのフォーマッティング、レベル調整、マンマシンインターフェイスである。表示制御処理部400は、当業者が知るところである。動揺検出処理部500は、例えば高精度の慣性誘導装置で、仏国IXSEA社から市販されている。また、受信信号から音響的に動揺を検出する方式が例えば非特許文献5に示されており、ともに公知である。 The display control processing unit 400 is formatting, level adjustment, and a man-machine interface for displaying processing results. The display control processing unit 400 is known to those skilled in the art. The motion detection processing unit 500 is, for example, a high-precision inertial guidance device and is commercially available from France IXSEA. Further, for example, Non-Patent Document 5 discloses a method for acoustically detecting fluctuation from a received signal, both of which are publicly known.

上述した背景技術は、以下の問題点がある。第1の問題は、動揺補正が1台の送波器と複数台の受波器からなるDPCA配列に適合していないことである。第2の問題は、受波器の移動距離は航走体の速度の外に伝搬時間により変化する。しかし、この伝搬時間による誤差を補正できないことである。第3の問題は、合成開口処理が1台の送波器と1台の受波器からなる単一配列を前提としているため、特許文献2にみられるようなDPCA配列での誤差を補正できないことである。
本発明の目的は、動揺補正と共に上述の誤差を同時に補正する合成開口ソーナーを提供するにある。
The background art described above has the following problems. The first problem is that the fluctuation correction is not compatible with the DPCA arrangement consisting of one transmitter and a plurality of receivers. The second problem is that the distance traveled by the receiver varies with the propagation time in addition to the speed of the vehicle. However, the error due to the propagation time cannot be corrected. The third problem is that the synthetic aperture processing is based on a single array consisting of one transmitter and one receiver, so that the error in the DPCA array as seen in Patent Document 2 cannot be corrected. That is.
It is an object of the present invention to provide a synthetic aperture sonar that simultaneously corrects the above-mentioned errors together with fluctuation correction.

特開平10−142333号公報Japanese Patent Laid-Open No. 10-142333 米国特許第4244036号明細書US Pat. No. 4,244,036 R. K. Raney, H. Runge, I. G. Cumming, R. Bamler, and F. H. Wong, ”Precision of SAR processing using chirp scaling”, IEEE Trans. Geosci. Remote Sensing, vol. 32, pp. 786-799, July 1994.R. K. Raney, H. Runge, I. G. Cumming, R. Bamler, and F. H. Wong, “Precision of SAR processing using chirp scaling”, IEEE Trans. Geosci. Remote Sensing, vol. 32, pp. 786-799, July 1994. A. Moreira, J. Mittermayer, and R. Scheiber “Extended chirp Scaling Algorithm for Air- and Spaceborne SAR Data Processing in Stripmap and ScanSAR Imaging Modes”, IEEE Trans. Geosci. Remote Sensing, vol. 34. pp. 1123-1136, Sept. 1996.A. Moreira, J. Mittermayer, and R. Scheiber “Extended chirp Scaling Algorithm for Air- and Spaceborne SAR Data Processing in Stripmap and ScanSAR Imaging Modes”, IEEE Trans. Geosci. Remote Sensing, vol. 34. pp. 1123-1136 , Sept. 1996. E. J. Kelly and G. N. Tsandouls, “A Displaced Phase Center Antenna Concept for Space Based Radar Applications”, IEEE Eascon, pp. 225-230, Sept. 1983.E. J. Kelly and G. N. Tsandouls, “A Displaced Phase Center Antenna Concept for Space Based Radar Applications”, IEEE Eascon, pp. 225-230, Sept. 1983. A. Bellettini, and M. A. Pinto, “Theoretical Accuracy of Synthetic Aperture Sonar Micronavigation Using a Displaced Phase- Center Antenna”, IEEE J. Oceanic Eng., vol. 27, pp. 780-789, Oct. 2002.A. Bellettini, and M. A. Pinto, “Theoretical Accuracy of Synthetic Aperture Sonar Micronavigation Using a Displaced Phase- Center Antenna”, IEEE J. Oceanic Eng., Vol. 27, pp. 780-789, Oct. 2002. R. Heremans, M. Acheroy, Y. Dupont, “Motion Compensation on Synthetic Aperture Sonar Images”, IEEE Ultrasonics Symposium, pp. 152-155, Oct. 2006R. Heremans, M. Acheroy, Y. Dupont, “Motion Compensation on Synthetic Aperture Sonar Images”, IEEE Ultrasonics Symposium, pp. 152-155, Oct. 2006

合成開口ソーナーは、航走体に搭載され、航走中に3軸方向の回転および移動による動揺を受ける。動揺は、伝搬距離を微妙に変化させるため位相回転を生じ、合成開口処理に重大な影響を及ぼす。本発明が解決すべき課題は、外部センサが検出した動揺データにより、合成開口ソーナーの動揺補正を行うことである。   The synthetic aperture sonar is mounted on the traveling body and is subjected to fluctuations due to rotation and movement in three axial directions during traveling. The fluctuation causes a phase rotation because it slightly changes the propagation distance, and has a significant effect on the synthetic aperture processing. The problem to be solved by the present invention is to perform the shake correction of the synthetic aperture sonar based on the shake data detected by the external sensor.

DPCA方式の送受波器配列であるDPCA配列の他に、動揺補正の基準として、動揺を受けない1組の送受波器からなる理想単一配列と、当該DPCA配列と同一の送受波器配列を持つDPCA配列を組み合わせ、DPCA配列に外部センサが検出した動揺データに基づく動揺を模擬的に加えて、理想単一配列とDPCA配列の基準点からの伝搬距離の差を動揺補正量として受信信号を補正する。   In addition to the DPCA array, which is a DPCA transducer array, as a reference for oscillation correction, an ideal single array consisting of a set of transducers that are not subject to oscillation and a transducer array identical to the DPCA array By combining the DPCA array with the DPCA array and simulating the fluctuation based on the fluctuation data detected by the external sensor to the DPCA array, the difference between the propagation distance from the reference point of the ideal single array and the DPCA array is used as the fluctuation correction amount. to correct.

すなわち、
動揺補正後のDPCA配列と任意目標点との伝搬距離
=動揺補正前のDPCA配列と任意目標点との伝搬距離
−(動揺を加えた仮想DPCA配列と基準点との伝搬距離 …(補正式)
−動揺を加えない理想単一配列と基準点との伝搬距離)
として( )内の動揺補正量により補正する。
That is,
Propagation distance between DPCA array after shake correction and arbitrary target point = Propagation distance between DPCA array before shake correction and arbitrary target point-(Propagation distance between virtual DPCA array with shake and reference point) (correction formula)
-Propagation distance between ideal single array and reference point without shaking)
As shown in (), it is corrected by the fluctuation correction amount in parentheses.

上述した課題は、1台の送波器と移動方向に配列した複数台の受波器からなる送受信処理部と、動揺検出処理部と、この動揺検出処理部の出力を用いて送受信処理部からの受信信号に動揺補正を加える動揺補正処理部と、合成開口処理部と、表示制御処理部とからなり、動揺補正処理部は、基準位置情報に基づいて、1台の送波器と1台の受波器からなる理想単一配列と基準位置との間の理想伝搬距離を計算する第1の伝搬距離計算器と、基準位置情報に基づいて、1台の仮想送波器と移動方向に配列した複数台の仮想受波器からなる配列と基準位置との間の仮想伝搬距離を計算する第2の伝搬距離計算器と、仮想伝搬距離と理想伝搬距離との伝搬距離差から補正量を計算する補正量計算器と、この補正量に基づき受信信号に補正を施す動揺補正器とからなる合成開口ソーナーにより、達成できる。   The above-described problem is that a transmission / reception processing unit including a single transmitter and a plurality of receivers arranged in the moving direction, a shake detection processing unit, and a transmission / reception processing unit using the output of the shake detection processing unit. The shake correction processing unit for adding the shake correction to the received signal, the synthetic aperture processing unit, and the display control processing unit. The shake correction processing unit includes one transmitter and one unit based on the reference position information. A first propagation distance calculator for calculating an ideal propagation distance between an ideal single array of receivers and a reference position, and one virtual transmitter and a moving direction based on the reference position information. A second propagation distance calculator for calculating a virtual propagation distance between an array of a plurality of arrayed virtual receivers and a reference position, and a correction amount based on a propagation distance difference between the virtual propagation distance and the ideal propagation distance. A correction amount calculator to calculate, and a shake that corrects the received signal based on this correction amount A synthetic aperture sonar comprising a righteous be achieved.

合成開口ソーナーの動揺補正に、動揺を受けるDPCA配列と動揺を受けない理想単一配列の伝搬距離差に基づいて受信信号を補正しているため、サイドローブを増やすことなく精度の高い動揺補正ができる。   Since the received signal is corrected based on the propagation distance difference between the DPCA array that receives the fluctuation and the ideal single array that does not receive the fluctuation, the fluctuation correction of the synthetic aperture sonar can be performed with high accuracy without increasing the side lobe. it can.

以下本発明の実施の形態について、実施例を用い図面および数式を参照しながら説明する。なお、実質同一部位には同じ参照番号を振り、説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings and mathematical formulas using examples. The same reference numerals are assigned to substantially the same parts, and the description will not be repeated.

まず、図2を参照して、合成開口ソーナーの構成を説明する。ここで、図2は合成開口ソーナーのブロック図である。図2において、合成開口ソーナー700は、送受信処理部100、動揺補正処理部200A、合成開口処理部300、表示制御処理部400、動揺検出処理部500で構成される。また、送受信処理部100は、受波器110、送波器120、受信器130、送信器140、PRF制御器150で構成される。さらに、動揺補正処理部200Aは、動揺補正器210、補正量計算器220A、理想単一配列伝搬距離計算器230、仮想DPCA配列伝搬距離計算器240で構成される。 First, the configuration of the synthetic aperture sonar will be described with reference to FIG. Here, FIG. 2 is a block diagram of the synthetic aperture sonar. In FIG. 2, the synthetic aperture sonar 700 includes a transmission / reception processing unit 100, a shaking correction processing unit 200 </ b> A, a synthetic aperture processing unit 300, a display control processing unit 400, and a shaking detection processing unit 500. The transmission / reception processing unit 100 includes a receiver 110, a transmitter 120, a receiver 130, a transmitter 140, and a PRF controller 150. Furthermore, the shake correction processing unit 200A includes a shake corrector 210, a correction amount calculator 220A, an ideal single array propagation distance calculator 230, and a virtual DPCA array propagation distance calculator 240.

送信器140は、外部設定に基づき送信信号を生成し、PRF制御器150からの送信トリガー信号を周期として送信信号を出力し、送波器120に送り出す。送波器120は、送信信号を電気音響変換し、水中に送波する。PRF制御器150は、速度信号10を元に実速度νに基づき制御する(式3)のPRF値を計算し、送信器140に送信トリガー信号として出力する。受波器110は、受波エコーを音響電気変換する。受信器130は、受波器110からの受信信号を、増幅、濾波、アナログ/ディジタル変換の後、ベースバンドに周波数変換する。   The transmitter 140 generates a transmission signal based on the external setting, outputs the transmission signal with the transmission trigger signal from the PRF controller 150 as a period, and sends it to the transmitter 120. The transmitter 120 performs electroacoustic conversion on the transmission signal and transmits the signal into water. The PRF controller 150 calculates the PRF value of (Equation 3) controlled based on the actual speed ν based on the speed signal 10 and outputs it to the transmitter 140 as a transmission trigger signal. The receiver 110 performs acoustoelectric conversion on the received echo. The receiver 130 frequency-converts the received signal from the receiver 110 to baseband after amplification, filtering, and analog / digital conversion.

基準位置情報20は、合成開口処理の基準位置情報で、通常は合成開口処理の中心に基準位置があると仮定して、基準位置情報を与える。
理想単一配列伝搬距離計算器230は、基準位置情報20から理想単一配列の伝搬距離を計算する。ここで理想単一配列とは、1台の送波器と1台の受波器からなる配列とする。仮想DPCA配列伝搬距離計算器240は、基準位置情報20からDPCA配列の伝搬距離を計算する。ここでDPCA配列とは、図3または図4に示す送波器と受波器の配列である。理想単一配列距離とDPCA配列伝搬距離とは、アジマスサンプリング時間のみの関数である。
The reference position information 20 is reference position information for the synthetic aperture process, and is usually provided with reference position information on the assumption that the reference position is at the center of the synthetic aperture process.
The ideal single array propagation distance calculator 230 calculates the propagation distance of the ideal single array from the reference position information 20. Here, the ideal single array is an array composed of one transmitter and one receiver. The virtual DPCA array propagation distance calculator 240 calculates the DPCA array propagation distance from the reference position information 20. Here, the DPCA arrangement is an arrangement of the transmitter and the receiver shown in FIG. 3 or FIG. The ideal single array distance and the DPCA array propagation distance are functions of only the azimuth sampling time.

補正量計算部220Aは、理想単一配列伝搬距離計算器230と仮想DPCA配列伝搬距離計算器240との出力である伝播距離差をとり、これを補正量として位相差に変換し、動揺補正器210に送る。動揺補正器210は、受信器130からくる受信信号に補正量を複素乗算し、位相回転により動揺補正を行う。合成開口処理部300は、合成開口処理を行う部分である。合成開口処理部300は、レンジ方向とアジマス方向の2次元時間信号を入力し、レンジ方向とアジマス方向の2次元座標信号を表示制御処理部400に出力する。表示制御処理部400は、処理結果の表示のためのフォーマッティング、レベル調整、マンマシンインターフェイスである。動揺検出処理部500は、高精度の慣性誘導装置である。動揺検出処理部500の出力は、3軸の回転角であるローリング角、ピッチング角、ヨーイング角と3軸の変位量であるサージング量、スウェイング量、ヒービング量であり、実時間で時間関数として出力される。航走体の航走方向をx軸、垂直方向をz軸、y軸を右手系で定義としたとき、ローリング角はx軸回りの回転量、ピッチング角はy軸回りの回転量、ヨーイング角はz軸回りの回転量である。同様に、サージング量はx軸方向の移動量、スウェイング量はy軸方向の移動量、ヒービング量はz軸方向の移動量である。 The correction amount calculation unit 220A takes the propagation distance difference, which is an output of the ideal single array propagation distance calculator 230 and the virtual DPCA array propagation distance calculator 240, converts this into a phase difference as a correction amount, and a shake corrector Send to 210. The shake corrector 210 performs complex correction on the received signal coming from the receiver 130 by a correction amount, and performs shake correction by phase rotation. The synthetic aperture processing unit 300 is a portion that performs synthetic aperture processing. The synthetic aperture processing unit 300 inputs a two-dimensional time signal in the range direction and the azimuth direction, and outputs a two-dimensional coordinate signal in the range direction and the azimuth direction to the display control processing unit 400. The display control processing unit 400 is formatting, level adjustment, and a man-machine interface for displaying processing results. The fluctuation detection processing unit 500 is a highly accurate inertial guidance device. The output of the motion detection processing unit 500 is a rolling angle that is a rotation angle of three axes, a pitching angle, a yawing angle, a surging amount that is a displacement amount of three axes, a swaging amount, and a heaving amount, and is output as a time function in real time. Is done. When the traveling direction of the vehicle is defined as the x-axis, the vertical direction is defined as the z-axis, and the y-axis is defined as the right-handed system, the rolling angle is the amount of rotation about the x-axis, the pitching angle is the amount of rotation about the y-axis, and the yawing angle Is the amount of rotation about the z-axis. Similarly, the surging amount is the amount of movement in the x-axis direction, the swaging amount is the amount of movement in the y-axis direction, and the heaving amount is the amount of movement in the z-axis direction.

図3および図4を参照して、送波器、受波器とDPCAの配列を説明する。ここで、図3は受波器数が奇数の送波器、受波器とDPCAの配列を説明するブロック図である。図4は受波器数が偶数の送波器、受波器とDPCAの配列を説明するブロック図である。図3および図4において、送波器120の位置を○、受波器110の位置を●、DPCAの位置を◎で示す。また、送波器120と受波器110を囲む箱は、送受波器アレイ160である。図3および図4において、横軸(x軸)は航走体の航走方向、縦軸(t軸)下方向は時間である。   The arrangement of the transmitter, receiver and DPCA will be described with reference to FIGS. Here, FIG. 3 is a block diagram for explaining an arrangement of a transmitter, a receiver and a DPCA having an odd number of receivers. FIG. 4 is a block diagram for explaining the arrangement of transmitters, receivers and DPCAs having an even number of receivers. 3 and 4, the position of the transmitter 120 is indicated by ◯, the position of the receiver 110 is indicated by ●, and the position of the DPCA is indicated by ◎. A box surrounding the transmitter 120 and the receiver 110 is a transmitter / receiver array 160. 3 and 4, the horizontal axis (x-axis) is the traveling direction of the traveling body, and the vertical direction (t-axis) is the time.

図3において、送受波器アレイ160が送波器120が1台、受波器110が7台(E=7)の場合を考える。図3上部の送波器120のx軸の座標を0とする。受波器間隔をdとすると受波器120の位置は、−3d、−2d、−d、0、d、2d、3dとなる。また、DPCAの位置は、−1.5d、−d、−0.5d、0、0.5d、d、1.5dとなる。また、DPCAを連続させるために送波器120の送波タイミングは、E・d/2(3.5d)移動ごとである。   In FIG. 3, consider a case where the transducer array 160 has one transmitter 120 and seven receivers 110 (E = 7). The coordinate of the x-axis of the transmitter 120 at the top of FIG. When the receiver interval is d, the position of the receiver 120 is −3d, −2d, −d, 0, d, 2d, and 3d. Further, the positions of DPCA are -1.5d, -d, -0.5d, 0, 0.5d, d, and 1.5d. Further, in order to make DPCA continuous, the transmission timing of the transmitter 120 is every E · d / 2 (3.5d) movement.

図4において、送受波器アレイ160が送波器120が1台、受波器110が6台(E=6)の場合を考える。図4上部の送波器120のx軸の座標を0とする。受波器間隔をdとすると受波器120の位置は、−2.5d、−1.5d、−0.5d、0.5d、1.5d、2.5dとなる。また、DPCAの位置は、−1.25d、−0.75d、−0.25d、0.25d、0.75d、1.25dとなる。また、DPCAを連続させるために送波器120の送波タイミングは、E・d/2(3d)移動ごとである。   In FIG. 4, consider a case where the transducer array 160 has one transmitter 120 and six receivers 110 (E = 6). The x-axis coordinate of the transmitter 120 at the top of FIG. If the receiver interval is d, the positions of the receiver 120 are -2.5d, -1.5d, -0.5d, 0.5d, 1.5d, and 2.5d. The positions of DPCA are −1.25d, −0.75d, −0.25d, 0.25d, 0.75d, and 1.25d. Further, in order to make DPCA continuous, the transmission timing of the transmitter 120 is every E · d / 2 (3d) movement.

動揺補正は、3軸の動揺パラメータの中で合成開口ソーナーの特性に大きな影響を与えるスウェイングとヨーイングを説明する。他の動揺パラメータも、同様の原理で修正できる。すなわち動揺パラメータは、次の4つとする。
(1)スウェイング最大振幅Esway
(2)スウェイング周期Tsway
(3)ヨーイング最大角fyau
(4)ヨーイング周期Tyau
航走体の移動方向であるアジマス方向をx軸、移動方向と直交する方向であるレンジ方向をy軸、高度方向をz軸とする。まず、動揺する航走体の時刻taにおける座標は、航走体の対地速度をv、海底からの高度をhとして、(式6)(式7)(式8)で与えられる。
Oscillation correction describes swaying and yawing that have a large effect on the characteristics of the synthetic aperture sonar among the triaxial oscillation parameters. Other shaking parameters can be corrected by the same principle. That is, the following four shaking parameters are set.
(1) Swaying maximum amplitude Esway
(2) Swaging cycle Tsway
(3) Yawing maximum angle fyau
(4) Yawing cycle Tyau
The azimuth direction, which is the moving direction of the traveling body, is the x-axis, the range direction that is orthogonal to the moving direction is the y-axis, and the altitude direction is the z-axis. First, the coordinates of the swaying vehicle at time ta are given by (Equation 6), (Equation 7), and (Equation 8), where v is the ground speed of the vehicle and h is the altitude from the seabed.

Figure 0005203829
Figure 0005203829

Figure 0005203829
Figure 0005203829

Figure 0005203829
また、動揺する送波器の座標は、航走体の座標と同じであるので、(式9)(式10)(式11)で与えられる。
Figure 0005203829
Moreover, since the coordinates of the waved transmitter are the same as the coordinates of the traveling body, they are given by (Equation 9), (Equation 10), and (Equation 11).

Figure 0005203829
Figure 0005203829

Figure 0005203829
Figure 0005203829

Figure 0005203829
一方、受波器はE台で構成されており、i番目受波器の航走体中心からの相対距離をLix, Liy, Liz(但しiは0以上(E−1)以下の整数)として、エコー受信時のDPCA配列のi番目受波器の座標は、伝搬時間Δtaの間に航走体が移動している分を考慮し、(式12)(式13)(式14)で与えられる。
Figure 0005203829
On the other hand, the receiver is composed of E units, and the relative distance from the center of the traveling body of the i-th receiver is Lix, Liy, Liz (where i is an integer of 0 or more and (E-1) or less). The coordinates of the i-th receiver of the DPCA array at the time of echo reception are given by (Equation 12), (Equation 13), and (Equation 14) in consideration of the movement of the traveling body during the propagation time Δta. It is done.

Figure 0005203829
Figure 0005203829

Figure 0005203829
Figure 0005203829

Figure 0005203829
基準点の座標は、例えば合成開口処理の中心に選ぶと、航走体と基準点間の直距離R0、海底からの高度hのとき、(式15)(式16)(式17)で与えられる。
Figure 0005203829
If the coordinates of the reference point are selected, for example, as the center of the synthetic aperture processing, when the straight distance R0 between the vehicle and the reference point and the altitude h from the seabed, (Equation 15) (Equation 16) (Equation 17) It is done.

Figure 0005203829
Figure 0005203829

Figure 0005203829
Figure 0005203829

Figure 0005203829
これから、DPCA配列の送波器と基準点間の伝搬距離は、(式18)で与えられる。また基準点とDPCA配列のi番目受波器間の伝搬距離は、(式19)で与えられる。従って、基準点とDPCA配列のi番目受波器間のDPCA伝搬距離は、(式20)で与えられる。ここで、伝播時間は、(式21)で与えられる。または、伝播時間は、(式22)から、近似的に計算する。すなわち、PDCA配列伝搬距離計算器240は、(式20を計算して、補正量計算器220Aに出力する。
Figure 0005203829
From this, the propagation distance between the transmitters of the DPCA array and the reference point is given by (Equation 18). The propagation distance between the reference point and the i-th receiver in the DPCA array is given by (Equation 19). Accordingly, the DPCA propagation distance between the reference point and the i-th receiver in the DPCA array is given by (Equation 20). Here, the propagation time is given by (Equation 21). Alternatively, the propagation time is approximately calculated from (Equation 22). That is, the PDCA array propagation distance calculator 240 calculates (Expression 20 and outputs it to the correction amount calculator 220A.

Figure 0005203829
Figure 0005203829

Figure 0005203829
Figure 0005203829

Figure 0005203829
Figure 0005203829

Figure 0005203829
Figure 0005203829

Figure 0005203829
次に、基準点と理想単一配列の伝搬距離を求める。基準点と理想単一配列の伝搬距離は、理想単一配列の送受波器の座標をPsinglex(ta), Psingley(ta), Psinglez(ta)として、(式23)で与えられる。すなわち、理想単一配列伝搬距離計算器230は、(式23)を計算して、補正量計算器220Aに出力する。
Figure 0005203829
Next, the propagation distance between the reference point and the ideal single array is obtained. The propagation distance between the reference point and the ideal single array is given by (Equation 23), where the coordinates of the transducer of the ideal single array are Psinglex (ta), Psingley (ta), and Psinglez (ta). That is, the ideal single array propagation distance calculator 230 calculates (Equation 23) and outputs it to the correction amount calculator 220A.

Figure 0005203829
ここで、伝播時間による誤差も同時に補正するため、理想単一配列には伝播時間Δtaを含めない。これより動揺補正時の伝搬距離補正量は、(式24)により、与えられる。
Figure 0005203829
Here, since the error due to the propagation time is also corrected simultaneously, the propagation time Δta is not included in the ideal single array. Thus, the propagation distance correction amount at the time of fluctuation correction is given by (Equation 24).

Figure 0005203829
以上に基づき、動揺補正のための補正を、時刻taにおけるi番目受波器出力の各々について(式25)の位相回転を施すことにより行う。ここでは、距離の次元である(式24)に2π/λを乗算し、2往復なのでさらに2倍している。
Figure 0005203829
Based on the above, correction for fluctuation correction is performed by performing phase rotation of (Equation 25) for each i-th receiver output at time ta. Here, the distance dimension (Equation 24) is multiplied by 2π / λ, and since it is 2 round trips, it is further doubled.

Figure 0005203829
ここで、航走体の時刻taは、航走体のアジマスサンプリングfasの逆数を周期とする離散値(式26)に置き換える。
Figure 0005203829
Here, the time ta of the traveling body is replaced with a discrete value (formula 26) having a cycle of the reciprocal of the azimuth sampling fas of the traveling body.

Figure 0005203829
すなわち、(式24)の伝搬距離補正量は、(式27)で表わされる。さらに、(式25)の位相回転は、(式28)で与えられる。補正量計算器220Aは、(式28)を計算して、動揺補正器210に出力する。動揺補正器210は、受信器130からくる受信信号に補正量を複素乗算し、位相回転により動揺補正を行う。
Figure 0005203829
That is, the propagation distance correction amount of (Expression 24) is expressed by (Expression 27). Further, the phase rotation of (Equation 25) is given by (Equation 28). The correction amount calculator 220 </ b> A calculates (Equation 28) and outputs it to the fluctuation corrector 210. The shake corrector 210 performs complex correction on the received signal coming from the receiver 130 by a correction amount, and performs shake correction by phase rotation.

Figure 0005203829
Figure 0005203829

Figure 0005203829
(式28)は、受波器の位置を示す番号iと航走体の位置を示す番号kに依存する。
Figure 0005203829
(Equation 28) depends on the number i indicating the position of the receiver and the number k indicating the position of the traveling body.

次に、DPCA合成開口ソーナーのDPCA配列を図3および図4を参照して説明する。ここで、図3は、送波器は複数受波器の中心に位置し、受波器の位置は受波器数が奇数と偶数で異なる。   Next, the DPCA arrangement of the DPCA synthetic aperture sonar will be described with reference to FIGS. Here, in FIG. 3, the transmitter is located at the center of a plurality of receivers, and the positions of the receivers are different depending on whether the number of receivers is odd or even.

DPCA配列では、図3および図4に示すとおり受波器間隔が実受波器間隔の1/2になり、アジマスサンプリング周波数fasに基づくアジマスサンプリング間隔が、受波器間隔dの1/2に一致する必要がある。   In the DPCA array, as shown in FIGS. 3 and 4, the receiver interval is ½ of the actual receiver interval, and the azimuth sampling interval based on the azimuth sampling frequency fas is ½ of the receiver interval d. Must match.

受波器数Eが奇数の場合と偶数の場合を考慮して、一般に、送波器位置は、(式29)のとおりである。また、受波器位置は、(式30)である。   In consideration of the case where the number of receivers E is an odd number and an even number, the transmitter position is generally as shown in (Equation 29). The receiver position is (Expression 30).

Figure 0005203829
Figure 0005203829

Figure 0005203829
航走体速度がv=d・fas/2に一致する場合は、送波器と受波器の位置は(式29)(式30)の通りになる。しかし、航走体速度がこれから外れる場合は、送波器の位置は受波器間隔d=2v/fasに置き換え、受波器の位置は送波器からの相対位置から計算する。すなわち、送波器位置は、(式31)、受波器位置は、(式32)で与えられる。
Figure 0005203829
When the vehicle speed matches v = d · fas / 2, the positions of the transmitter and the receiver are as shown in (Expression 29) and (Expression 30). However, if the vehicle speed deviates from this, the position of the transmitter is replaced with the receiver interval d = 2 v / fas, and the position of the receiver is calculated from the relative position from the transmitter. That is, the transmitter position is given by (Equation 31) and the receiver position is given by (Equation 32).

Figure 0005203829
Figure 0005203829

Figure 0005203829
本実施例は、以上述べてきたとおり、理想単一配列およびDPCA配列とを組み合わせ、DPCA配列に外部動揺データに基づく動揺を加えて、理想単一配列と基準点およびDPCA配列と基準点との伝搬距離差により、受信信号に補正を施すことにより、合成開口ソーナーの動揺補正を行うものである。
Figure 0005203829
As described above, the present embodiment combines an ideal single array and a DPCA array, adds a shake based on external shake data to the DPCA array, and creates an ideal single array and a reference point, and a DPCA array and a reference point. The fluctuation of the synthetic aperture sonar is corrected by correcting the received signal based on the propagation distance difference.

図5を参照して、本実施例による動揺補正前後のビームパターンを説明する。ここで、図5はアジマス距離に対する受信レベルを説明する図である。図5において、横軸はアジマス距離(m)、縦軸は受信レベル(dB)である。また、図5(a)は航走体に動揺が無い場合、図5(b)は1/8λに相当するヨーイングとスウェイングの動揺を受けた場合、図5(c)は1/8λに相当するヨーイングとスウェイングの動揺を受け、かつ動揺補正後である。図5(b)と図5(c)との対比から、動揺補正の効果は明らかである。   With reference to FIG. 5, the beam patterns before and after the shake correction according to this embodiment will be described. Here, FIG. 5 is a diagram for explaining the reception level with respect to the azimuth distance. In FIG. 5, the horizontal axis represents the azimuth distance (m), and the vertical axis represents the reception level (dB). 5 (a) shows a case in which there is no swaying in the traveling body, FIG. 5 (b) shows a case in which yawing and swaying sway are equivalent to 1 / 8λ, and FIG. 5 (c) corresponds to 1 / 8λ. After yawing and swaying motion, and after motion compensation. From the comparison between FIG. 5B and FIG. 5C, the effect of the shake correction is clear.

上述した実施例に拠れば、合成開口ソーナーの動揺補正に、動揺を受けるDPCA配列と動揺を受けない理想単一配列の伝搬距離差に基づいて受信信号を補正しているため、合成開口処理の限界と言われている1/8λの動揺量よりも大きい動揺に対しても、サイドローブを増やすことなく精度の高い動揺補正できる。   According to the above-described embodiment, since the received signal is corrected based on the propagation distance difference between the DPCA array that receives the fluctuation and the ideal single array that does not receive the fluctuation, the fluctuation of the synthetic aperture sonar is corrected. Even for a swing larger than the 1 / 8λ swing amount, which is said to be the limit, a highly accurate swing correction can be performed without increasing the side lobe.

また、伝搬距離により、受波器位置が航走体速度できまる移動距離よりも僅かにずれる誤差は、DPCA配列位置にはこの伝搬距離を含め、理想単一配列位置にはこの伝搬距離含めないことにより補正され、動揺のない場合においても、さらに精度の高い合成開口処理ができる。   In addition, an error in which the receiver position slightly deviates from the moving distance that can be achieved by the speed of the traveling body due to the propagation distance includes this propagation distance in the DPCA array position and does not include this propagation distance in the ideal single array position. Even when there is no fluctuation, the synthetic aperture processing with higher accuracy can be performed.

さらに、DPCA配列が単一配列になるように補正するため、単一配列を前提とする合成開口処理においても、理想的な合成開口処理の状態になり、DPCA固有の誤差が補正され、動揺のない場合においても、さらに精度の高い合成開口処理ができる。   Further, since the DPCA array is corrected so as to become a single array, even in the synthetic aperture processing based on the single array, an ideal synthetic aperture processing state is obtained, the DPCA-specific error is corrected, and Even in the absence, a synthetic aperture process with higher accuracy can be performed.

図6および図7を参照して、送波器、受波器とDPCAの配列を説明する。ここで、図6は受波器が奇数の送受波アレイとDPCAの配列を説明するブロック図である。図7は受波器が偶数の送受波アレイとDPCAの配列を説明するブロック図である。図6および図7において、送波器120の位置を○、受波器110の位置を●、DPCAの位置を◎で示す。また、送波器120と受波器110を囲む箱は、送受波器アレイ160である。図6および図7において、横軸(x軸)は航走体の航走方向、縦軸(t軸)下方向は時間である。   The arrangement of the transmitter, receiver and DPCA will be described with reference to FIGS. Here, FIG. 6 is a block diagram for explaining the arrangement of an odd-numbered transmission / reception array and DPCA. FIG. 7 is a block diagram for explaining an arrangement of an even-numbered transmission / reception array and DPCA. 6 and 7, the position of the transmitter 120 is indicated by ◯, the position of the receiver 110 is indicated by ●, and the position of the DPCA is indicated by ◎. A box surrounding the transmitter 120 and the receiver 110 is a transmitter / receiver array 160. 6 and 7, the horizontal axis (x-axis) is the traveling direction of the traveling body, and the vertical direction (t-axis) is the time.

図6において、送受波器アレイ160が送波器120が1台、受波器110が7台(E=7)、DPCAのオーバラップ数(L)が3の場合を考える。図6上部の送波器120のx軸の座標を0とする。受波器間隔をdとすると受波器120の位置は、図3と同様、−3d、−2d、−d、0、d、2d、3dとなる。また、DPCAの位置も、図3と同様、−1.5d、−d、−0.5d、0、0.5d、d、1.5dとなる。一方、DPCAをオーバラップさせるために送波器120の送波タイミングは、(E−L)・d/2(2d)移動ごとである。   In FIG. 6, a case is considered where the transducer array 160 is one transmitter 120, the receiver 110 is seven (E = 7), and the DPCA overlap number (L) is three. The x-axis coordinate of the transmitter 120 at the top of FIG. Assuming that the receiver interval is d, the position of the receiver 120 is −3d, −2d, −d, 0, d, 2d, and 3d as in FIG. Further, the position of DPCA is also -1.5d, -d, -0.5d, 0, 0.5d, d, and 1.5d, as in FIG. On the other hand, in order to overlap the DPCA, the transmission timing of the transmitter 120 is every (E−L) · d / 2 (2d) movement.

図7において、送受波器アレイ160が送波器120が1台、受波器110が6台(E=6))、DPCAのオーバラップ数(L)が3の場合を考える。図7上部の送波器120のx軸の座標を0とする。受波器間隔をdとすると受波器120の位置は、図4と同様、−2.5d、−1.5d、−0.5d、0.5d、1.5d、2.5dとなる。また、DPCAの位置も、図4と同様に、−1.25d、−0.75d、−0.25d、0.25d、0.75d、1.25dとなる。一方、DPCAをオーバラップさせるために送波器120の送波タイミングは、(E−L)・d/2(1.5d)移動ごとである。   In FIG. 7, a case is considered where the transducer array 160 is one transmitter 120, the receiver 110 is six (E = 6), and the DPCA overlap number (L) is three. The coordinate of the x-axis of the transmitter 120 at the top of FIG. When the receiver interval is d, the position of the receiver 120 is −2.5d, −1.5d, −0.5d, 0.5d, 1.5d, and 2.5d, as in FIG. In addition, the position of DPCA is also −1.25d, −0.75d, −0.25d, 0.25d, 0.75d, and 1.25d, as in FIG. On the other hand, in order to overlap the DPCA, the transmission timing of the transmitter 120 is every (E−L) · d / 2 (1.5d) movement.

DPCAを用いた動揺補正は、DPCAをオーバラップさせ、同じ受波位置での情報を重畳統計処理して位置を補正する方法が特許文献2および非特許文献4に示されている。オーバラップは送波器間隔を0.5d×オーバラップ数Lだけ縮めることにより可能であり、送波器位置は(式29)(式31)の受波器数Eを、(式33)に置き換えることによりで計算できる As for fluctuation correction using DPCA, Patent Document 2 and Non-Patent Document 4 disclose a method of overlapping DPCA and correcting the position by superimposing statistical processing of information at the same reception position. The overlap can be achieved by reducing the transmitter interval by 0.5 d × the overlap number L. It can be calculated by replacing .

Figure 0005203829
すなわち、オーバラップ数Lの送波器位置は、(式34)、受波器位置は、(式35)で与えられる。
Figure 0005203829
That is, the transmitter position of the overlap number L is given by (Equation 34), and the receiver position is given by (Equation 35).

Figure 0005203829
Figure 0005203829

Figure 0005203829
オーバラップ構成においても、動揺補正が適用できることは以上の議論から自明である。また、オーバラップ部は、雑音と動揺が無ければ同じ値を取るはずであるので、逆に動揺量を計測することができる。
Figure 0005203829
It is obvious from the above discussion that the shake correction can be applied even in the overlap configuration. Further, since the overlap portion should have the same value if there is no noise and fluctuation, the amount of fluctuation can be measured conversely.

背景技術の合成開口ソーナーのブロック図である。It is a block diagram of the synthetic aperture sonar of background art. 合成開口ソーナーのブロック図である。It is a block diagram of a synthetic aperture sonar. 受波器が奇数の送受波アレイとDPCAの配列を説明するブロック図である。It is a block diagram explaining the arrangement | sequence of DPCA and an odd-numbered transmission / reception array and DPCA. 受波器が偶数の送受波アレイとDPCAの配列を説明するブロック図である。It is a block diagram explaining the arrangement | sequence of DPCA and DPCA with an even receiver. アジマス距離に対する受信レベルを説明する図である。It is a figure explaining the reception level with respect to azimuth distance. 受波器数が7個でDPCAオーバラップ数が3個となるDPCA配列例DPCA array example with 7 receivers and 3 DPCA overlaps 受波器数が6個でDPCAオーバラップ数が3個となるDPCA配列例DPCA array example with 6 receivers and 3 DPCA overlaps

符号の説明Explanation of symbols

10…速度信号、20…基準位置情報、100…送受信処理部、110…受波器、120…送波器、130…受信器、140…送信器、150…PRF制御器、160…送受波器アレイ、200…動揺補正処理部、210…動揺補正器、220…補正量計算器、230…理想単一配列伝搬距離計算器、240…仮想DPCA配列伝搬距離計算器、300…合成開口処理部、400…表示制御処理部、500…動揺検出処理部、600…合成開口ソーナー、700…合成開口ソーナー。
DESCRIPTION OF SYMBOLS 10 ... Speed signal, 20 ... Reference position information, 100 ... Transmission / reception processor, 110 ... Receiver, 120 ... Transmitter, 130 ... Receiver, 140 ... Transmitter, 150 ... PRF controller, 160 ... Transmitter / receiver Array: 200 ... Shaking correction processing unit, 210 ... Shaking correction unit, 220 ... Correction amount calculator, 230 ... Ideal single array propagation distance calculator, 240 ... Virtual DPCA array propagation distance calculator, 300 ... Synthetic aperture processing unit, 400: Display control processing unit, 500: Motion detection processing unit, 600: Synthetic aperture sonar, 700: Synthetic aperture sonar.

Claims (2)

1台の送波器と移動方向に配列した複数台の受波器からなる送受信処理部と、動揺検出処理部と、前記送受信処理部からの受信信号に動揺補正を加える動揺補正処理部と、合成開口処理部と、表示制御処理部とからなる合成開口ソーナーにおいて、
前記動揺補正処理部は、基準位置情報に基づいて、1台の送波器と1台の受波器からなる理想単一配列と基準位置との間の理想伝搬距離を計算する第1の伝搬距離計算器と、
前記基準位置情報に基づいて、1台の仮想送波器と移動方向に配列した複数台の仮想受波器からなる配列に前記動揺検出処理部が検出した動揺データに基づく動揺を加えて前記基準位置との間の仮想伝搬距離を計算する第2の伝搬距離計算器と、
前記仮想伝搬距離と前記理想伝搬距離との伝搬距離差から補正量を計算する補正量計算器と、
この補正量に基づき受信信号に補正を施す動揺補正器とからなることを特徴とする合成開口ソーナー。
A reception processing unit comprising a plurality of receivers which are arranged in the movement direction with one wave transmitter, and upset detection processing unit, and the upset correction processing unit adding upset correction to the received signal from the pre-Symbol transceiver unit In the synthetic aperture sonar composed of the synthetic aperture processing unit and the display control processing unit,
The fluctuation correction processing unit calculates the ideal propagation distance between an ideal single array composed of one transmitter and one receiver and a reference position based on the reference position information. A distance calculator;
Based on the reference position information, the reference is obtained by adding a shake based on the shake data detected by the shake detection processing unit to an array composed of one virtual transmitter and a plurality of virtual receivers arranged in the moving direction. A second propagation distance calculator for calculating a virtual propagation distance to and from the position;
A correction amount calculator that calculates a correction amount from a propagation distance difference between the virtual propagation distance and the ideal propagation distance;
A synthetic aperture sonar comprising a motion compensator for correcting a received signal based on the correction amount.
請求項1に記載の合成開口ソーナーであって、
前記第1の伝搬距離計算器は、前記理想伝搬距離について、前記理想受波器の伝搬中の移動距離を含めず計算し、
前記第2の伝搬距離計算器は、前記仮想伝搬距離について、前記仮想受波器の伝搬中の移動距離を含めて計算することを特徴とする合成開口ソーナー。
The synthetic aperture sonar of claim 1,
The first propagation distance calculator calculates the ideal propagation distance without including the travel distance during propagation of the ideal receiver,
The synthetic propagation sonar wherein the second propagation distance calculator calculates the virtual propagation distance including a moving distance during propagation of the virtual receiver.
JP2008187217A 2008-07-18 2008-07-18 Synthetic aperture sonar Active JP5203829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008187217A JP5203829B2 (en) 2008-07-18 2008-07-18 Synthetic aperture sonar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008187217A JP5203829B2 (en) 2008-07-18 2008-07-18 Synthetic aperture sonar

Publications (2)

Publication Number Publication Date
JP2010025739A JP2010025739A (en) 2010-02-04
JP5203829B2 true JP5203829B2 (en) 2013-06-05

Family

ID=41731715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008187217A Active JP5203829B2 (en) 2008-07-18 2008-07-18 Synthetic aperture sonar

Country Status (1)

Country Link
JP (1) JP5203829B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5709513B2 (en) * 2010-12-24 2015-04-30 三菱重工業株式会社 Synthetic aperture exploration device and underwater vehicle
JP6757083B2 (en) * 2019-04-05 2020-09-16 株式会社AquaFusion Echo sounder and multi-beam echo sounder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2603028B2 (en) * 1992-05-29 1997-04-23 防衛庁技術研究本部長 Moving target detection radar device
JP3154836B2 (en) * 1992-10-30 2001-04-09 株式会社東芝 Moving target detection radar device
JP3584883B2 (en) * 2001-01-17 2004-11-04 日本電気株式会社 Synthetic aperture sonar and synthetic aperture processing method
JP4281617B2 (en) * 2004-05-14 2009-06-17 株式会社日立製作所 Synthetic aperture sonar signal processor
JP5017786B2 (en) * 2005-03-23 2012-09-05 三菱電機株式会社 Radar equipment

Also Published As

Publication number Publication date
JP2010025739A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP7446262B2 (en) Systems and methods for synthetic aperture sonar
JP7183142B2 (en) Systems and methods for navigating autonomous underwater vehicles
US9891306B2 (en) Geolocating a remote emitter
CN111381217B (en) Missile-borne SAR motion compensation method based on low-precision inertial navigation system
US9500484B2 (en) System and method for water column aided navigation
JP5550092B2 (en) Underwater image omnidirectional display processing apparatus and method
US6285628B1 (en) Swept transit beam bathymetric sonar
JP2009537810A (en) Sonar imaging system with synthetic aperture
EP3191867B1 (en) Phase center alignment for fixed repetition rate synthetic aperture systems
JP5443891B2 (en) Synthetic aperture sonar
CN105277932B (en) A kind of Doppler correction method in the Wave beam forming based on down coversion
JP2533287B2 (en) Linear array lateral motion compensation method
CN103454633A (en) Interference SAR movable base line processing method based on back-projection algorithm
JP5203829B2 (en) Synthetic aperture sonar
CN102129068A (en) System and method for testing phase error estimation of synthetic aperture sonar system
JP6289672B2 (en) Synthetic aperture radar signal processing apparatus and synthetic aperture radar signal processing program
Dewey et al. Reynolds stresses and turbulent kinetic energy estimates from various ADCP beam configurations: Theory
Pan et al. Shallow-water wideband low-frequency synthetic aperture sonar for an autonomous underwater vehicle
JP2730296B2 (en) Ground mapping radar signal processing method and apparatus
Wei et al. Joint motion error estimation algorithm for multibeam synthetic aperture sonar
Sun et al. Study of multibeam synthetic aperture interferometric imaging algorithm
Hagen TerrLab-a generic simulation and post-processing tool for terrain referenced navigation
Tinh et al. A new imaging geometry model for determining phase distribution in multi-receiver synthetic aperture sonar
CN116482705B (en) Synthetic aperture laser altimeter measuring method
Ma et al. Trajectory deviations in narrowbeam SAS: Analysis and compensation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

R150 Certificate of patent or registration of utility model

Ref document number: 5203829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3