JP5203576B2 - Paper charcoal and method for producing the same - Google Patents

Paper charcoal and method for producing the same Download PDF

Info

Publication number
JP5203576B2
JP5203576B2 JP2006134650A JP2006134650A JP5203576B2 JP 5203576 B2 JP5203576 B2 JP 5203576B2 JP 2006134650 A JP2006134650 A JP 2006134650A JP 2006134650 A JP2006134650 A JP 2006134650A JP 5203576 B2 JP5203576 B2 JP 5203576B2
Authority
JP
Japan
Prior art keywords
charcoal
paper
tar
water
paper charcoal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006134650A
Other languages
Japanese (ja)
Other versions
JP2007302535A5 (en
JP2007302535A (en
Inventor
弘之 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture University
Original Assignee
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture University filed Critical Osaka Prefecture University
Priority to JP2006134650A priority Critical patent/JP5203576B2/en
Publication of JP2007302535A publication Critical patent/JP2007302535A/en
Publication of JP2007302535A5 publication Critical patent/JP2007302535A5/ja
Application granted granted Critical
Publication of JP5203576B2 publication Critical patent/JP5203576B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は、古紙などを炭化して得られる紙炭およびその製造方法に関する。   The present invention relates to paper charcoal obtained by carbonizing waste paper and the like and a method for producing the same.

古紙は従来から主として再生紙として利用されている。しかし、古紙のリサイクルにおいて、紙の繊維をほぐす離解や異物除去工程で、パルプ繊維が劣化し、強度が低下する。このため、紙製品への古紙混入率を増加させるのは技術的に困難である。このために、古紙の他のリサイクル方法として古紙を炭化して活性炭やペーパー炭を製造することが行われている(例えば、特許文献1、2参照)。   Waste paper has been used mainly as recycled paper. However, in the recycling of used paper, pulp fibers deteriorate and strength decreases in the disaggregation and foreign matter removal step of loosening the paper fibers. For this reason, it is technically difficult to increase the percentage of waste paper mixed in paper products. For this reason, as another recycling method of used paper, carbonization of used paper to produce activated carbon or paper charcoal is performed (for example, see Patent Documents 1 and 2).

一方、近年、有機性廃棄物の処理・再利用方法として、有機性廃棄物を水熱処理して分解・再資源化することとが試みられている。しかし、有機物を熱分解すると、粘度が高く、有害物質を含むタール分が生成することが知られている。タール分は、配管の閉塞、生成物への混入、環境へ排出されることによる汚染などの問題を生ずる。このため、水共存下におけるタール分を有効に分離・回収することが求められている。なお、本明細書中でタール分とは、有機物の熱分解で生ずる黒色ないし褐色の粘稠な油状物質の総称をいい、石炭を乾留して得られるコールタール、石油やその熱分解物の蒸留残渣を総称する石油タール、木材を乾留して得られる液体生成物の一つである木タールなどを含む。
特開2006−45002号公報 特開平11−171524号公報
On the other hand, in recent years, attempts have been made to decompose and recycle organic waste by hydrothermal treatment as a method for treating and reusing organic waste. However, it is known that when organic matter is pyrolyzed, a high viscosity and tar content containing harmful substances is generated. The tar content causes problems such as blockage of piping, contamination into products, and contamination due to discharge to the environment. For this reason, it is required to effectively separate and recover the tar content in the presence of water. In this specification, the tar content is a generic name for black or brown viscous oily substances generated by thermal decomposition of organic matter. Coal tar obtained by dry distillation of coal, distillation of petroleum and its thermal decomposition products It includes petroleum tar, which is a generic term for residues, and wooden tar, which is one of liquid products obtained by dry distillation of wood.
JP 200645002 A JP-A-11-171524

しかし、特許文献1に記載のーパー炭は、タール分の残留をなくすために、650〜800℃(923〜1073K)で炭化する。加熱温度を上昇させているため、コスト高になるという問題がある。また、特許文献1に記載のーパー炭は、ホルムアルデヒド、トルエン、アンモニア等の比較的分子量の小さい物質をガス中での吸着能をみているに過ぎない。 However, papers charcoal described in Patent Document 1, in order to eliminate the residual tar is carbonized at 650~800 ℃ (923~1073K). Since heating temperature is raised, there exists a problem that cost becomes high. Also, papers charcoal described in Patent Document 1, formaldehyde, toluene, a relatively small molecular weight substances such as ammonia merely look adsorbability in a gas.

また、特許文献2に記載の活性炭は、古紙を細片化し、熱硬化性樹脂と混合して、圧密化している。このため、圧密化する工程を行う必要がある。   In addition, the activated carbon described in Patent Document 2 is made by compacting waste paper into pieces and mixing with a thermosetting resin. For this reason, it is necessary to perform the consolidation process.

また、両文献にも、タール分を有効に分離・回収することについては、全く記載されていない。   Moreover, neither document describes at all about the effective separation and recovery of tar content.

すなわち、本発明は、上記問題に鑑みなされたものであり、その目的は、タール分を有効に分離・回収できる紙炭と、温和な条件で紙炭を製造する方法を提供することにある。   That is, the present invention has been made in view of the above problems, and an object of the present invention is to provide a paper charcoal that can effectively separate and recover a tar content and a method for producing paper charcoal under mild conditions.

本発明者らは、上記課題を解決すべく、鋭意検討した結果、古紙を水湿潤させ、成形したものを、過熱水蒸気を用いて炭化することで、従来の紙炭では得られない機能を有する紙炭が得られることを見出した。すなわち、本発明は、以下のとおりである。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have a function that cannot be obtained with conventional paper charcoal by carbonizing the used paper by water-wetting and molding it using superheated steam. We found that paper charcoal can be obtained. That is, the present invention is as follows.

本発明の紙炭は、紙類を過熱水蒸気中で炭化した紙炭であって、細孔径10〜10nmの細孔の累積細孔容積が、3000mm/g〜4000mm/gである。 Paper charcoal of the present invention is a paper charcoal carbonized paper with superheated steam, the cumulative pore volume of pores having a pore diameter of 10 to 10 3 nm is is 3000mm 3 / g~4000mm 3 / g .

上記紙炭は、タール除去剤として用いることができる。   The paper charcoal can be used as a tar remover.

このような紙炭は、紙類を水で湿潤させて成形する工程と、前記乾燥させた紙類を過熱水蒸気中で炭化する工程とを含む紙炭の製造方法により製造することができる。   Such paper charcoal can be produced by a paper charcoal production method including a step of forming paper by wetting paper with water and a step of carbonizing the dried paper in superheated steam.

本発明は、古紙を水湿潤させ、成形・乾燥したものを、過熱水蒸気を用いて炭化することで、タール分を有効に分離・回収できる紙炭を提供することができる。   INDUSTRIAL APPLICABILITY The present invention can provide paper charcoal that can effectively separate and recover the tar content by carbonizing the paper that has been wetted, shaped, and dried with superheated steam.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

[原料]
本発明の紙炭を製造する原料としては、ダンボール紙、新聞や雑誌、オフィスペーパー、カタログ、チラシなどの紙類が挙げられる。これらの紙類は、廃棄物として回収されるものである。これらの紙類のうち、好ましいのは、新聞や雑誌のように、水に湿潤しやすく、成形しやすい紙類である。
[material]
Examples of the raw material for producing the paper charcoal of the present invention include paper such as corrugated paper, newspapers and magazines, office paper, catalogs and leaflets. These papers are collected as waste. Among these papers, preferred are papers that are easily wetted by water and easy to form, such as newspapers and magazines.

[製造方法]
紙類は、そのまま用いてもよいが、成形しやすくするために、事前に適当な大きさに切断したものを用いてもよい。この紙類に水を加えて、紙類を湿潤させる。加える水の量は、紙類が成形できる程度であればよく、紙の種類、乾燥度等に応じて適宜調整する。次に、湿潤させた紙類を成形する。成形は、公知の成形手段を用いて行えばよい。その形状も、球形、方形等、使用目的に応じて適宜選択できる。次に、成形した紙類を乾燥させてもよい。乾燥条件は、含水量に応じて適宜選択する。
[Production method]
The papers may be used as they are, but in order to facilitate the forming, papers that have been cut into an appropriate size in advance may be used. Water is added to the paper to wet the paper. The amount of water to be added is sufficient as long as paper can be formed, and is appropriately adjusted according to the type of paper, the degree of dryness, and the like. Next, wet papers are formed. The molding may be performed using a known molding means. The shape can also be appropriately selected according to the purpose of use, such as a sphere or a square. Next, the formed papers may be dried. The drying conditions are appropriately selected according to the water content.

成形・乾燥させた紙類を、過熱水蒸気中で炭化させる。炭化装置は、公知の炭化装置を用いればよく、バッチ式であっても、連続式であってもよい。例えば、図1に示すような炭化装置を用いる。図1の炭化装置は、バッチ式の炭化装置の一例であり、水を収納する水タンクと、一定量の水を炭化炉に供給する定量ポンプと、水を蒸気化し、過熱水蒸気を発生する電気炉を含む炭化炉と、炭化炉内の温度を測定する温度計と、前記炭化炉に管路を介して接続され、炭化処理の進行に伴い炭化炉内に発生した余剰水蒸気を冷却し、余剰水を回収するとともに、含まれる気体成分を排出する余剰水蒸気処理手段とを含んでいる。   The formed and dried paper is carbonized in superheated steam. The carbonization apparatus may be a known carbonization apparatus, and may be a batch type or a continuous type. For example, a carbonization apparatus as shown in FIG. 1 is used. The carbonization apparatus of FIG. 1 is an example of a batch-type carbonization apparatus, a water tank that stores water, a metering pump that supplies a certain amount of water to a carbonization furnace, and an electricity that vaporizes water and generates superheated steam. A carbonization furnace including a furnace, a thermometer for measuring the temperature in the carbonization furnace, connected to the carbonization furnace via a pipe line, and cooling excess steam generated in the carbonization furnace as the carbonization process proceeds, And a surplus water vapor treatment means for discharging the contained gas component while collecting water.

炭化条件は、炭化が極端に進行しない条件を選択する。例えば、773Kで1時間程度の炭化処理をする。   As the carbonization conditions, conditions under which carbonization does not proceed extremely are selected. For example, carbonization is performed at 773K for about 1 hour.

[紙炭]
本発明の紙炭は、紙の原料のセルロース繊維が適度な間隔で折り重なった状態で、炭化している。また、本発明の紙炭では、細孔径10〜10nmの細孔の累積細孔容積が、3000mm/g〜4000mm/gである。
[Paper charcoal]
The paper charcoal of the present invention is carbonized in a state in which the cellulose fibers of the paper raw material are folded at appropriate intervals. Further, in the paper charcoal present invention, the cumulative pore volume of pores having a pore diameter of 10 to 10 3 nm is a 3000mm 3 / g~4000mm 3 / g.

このような本発明の紙炭を用いて、タールを吸着させると、2〜4kg/kg−吸着剤と、きわめて多量のタールを吸着する。また、タール・水混合系において、本発明の紙炭を用いると、水はほとんど吸着せずに、タールのみを吸着する。すなわち、本発明の紙炭は、水共存下におけるタール分を有効に分離・回収する。したがって、本発明の紙炭は、有機性廃棄物の水熱処理や海洋において流出した重油の回収等に有用である。特に、亜臨界水を用いる有機性廃棄物の水熱処理を行う場合に、本発明の紙炭を反応装置内に入れて処理を行うと、紙炭が発生するタール分を有効に除去する。この結果、配管の閉塞、生成物への混入、環境へ排出などの問題を生じない処理が行える。   When tar is adsorbed using such paper charcoal of the present invention, 2 to 4 kg / kg-adsorbent and a very large amount of tar are adsorbed. In the tar / water mixed system, when the paper charcoal of the present invention is used, water is hardly adsorbed and only tar is adsorbed. That is, the paper charcoal of the present invention effectively separates and recovers the tar content in the presence of water. Therefore, the paper charcoal of the present invention is useful for hydrothermal treatment of organic waste, recovery of heavy oil spilled in the ocean, and the like. In particular, when hydrothermal treatment of organic waste using subcritical water is performed, when the paper charcoal of the present invention is placed in a reaction apparatus and treated, tar content generated from the paper charcoal is effectively removed. As a result, processing that does not cause problems such as blockage of piping, mixing into products, and discharge to the environment can be performed.

以下、実施例により本発明を説明するが、本発明はかかる実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to this Example.

[紙炭の製造]
週刊誌、新聞紙をそれぞれ約5×10cmに切断したものに、超純水を加えて、湿潤させた。湿潤させた紙類を手で丸めて、約1cm径の球形に成形した。成形した紙類は、333Kで3日間乾燥させた。乾燥した紙類は、図1に示すバッチ型炭化装置を用いて炭化を行った。炭化は、昇温時間時間30分で423Kから目的炭化温度773Kに昇温した後、60分間この温度を維持させて行った。炭化処理後、約30分で降温させた。過熱水蒸気の流量は、1g/minであった。また、過熱水蒸気の流入は、熱分解が開始されると考えられる423Kを始点・終点として、操作した。この処理により本発明の実施例である紙炭(週刊誌)と、紙炭(新聞紙)とを得た。
[Manufacture of paper charcoal]
Weekly magazines and newspapers were cut into pieces of about 5 × 10 cm, and ultrapure water was added to moisten them. Wet papers were rolled up by hand and formed into a spherical shape with a diameter of about 1 cm. The formed papers were dried at 333K for 3 days. The dried papers were carbonized using the batch type carbonization apparatus shown in FIG. Carbonization was performed by raising the temperature from 423 K to the target carbonization temperature of 773 K in a heating time of 30 minutes and then maintaining this temperature for 60 minutes. After the carbonization treatment, the temperature was lowered in about 30 minutes. The flow rate of superheated steam was 1 g / min. The inflow of superheated steam was operated using 423K, which is considered to start thermal decomposition, as a start point and an end point. By this treatment, paper charcoal (weekly magazine) and paper charcoal (newspaper) as examples of the present invention were obtained.

[試料]
試料として、上記で得られた紙炭(週刊誌)、紙炭(新聞紙)に加え、比較例として、イソライトCG4(イソライト工業(株)製)、ヤシガラ活性炭GA4−8((株)キャタラー製)、竹炭(市販品)、ロータリーキルン式炭化装置(ジョンソンボイラー(株)製)を用いて、623K、723Kの過熱水蒸気で作成した炭化木炭(ヒノキ)(以下、「木炭623K」、「木炭723K」という)、紙炭(ジョンソンボイラー(株)製)を用いた。
[sample]
As a sample, in addition to the paper charcoal (weekly magazine) and paper charcoal (newspaper) obtained above, as comparative examples, Isolite CG4 (manufactured by Isolite Kogyo Co., Ltd.), Yashigara activated carbon GA4-8 (manufactured by Cataler Co., Ltd.) , Charcoal charcoal (hinoki) made with superheated steam of 623K and 723K using a bamboo charcoal (commercially available product) and rotary kiln type carbonizer (Johnson Boiler Co., Ltd.) (hereinafter referred to as "charcoal 623K" and "charcoal 723K") ), Paper charcoal (Johnson Boiler Co., Ltd.) was used.

[タール分]
タール分として、木タール分(大幸薬品(株)製)を用いた。なお、このタール分は、蒸留操作により373K以下の低沸点成分は除去されている。
[Tar content]
As the tar content, wood tar content (manufactured by Daiko Pharmaceutical Co., Ltd.) was used. In addition, the low boiling point component below 373K is removed from this tar content by distillation operation.

[物性値、元素分析]
(物性値)
イソライトCG4の物性値を表1に示す。
[Physical properties, elemental analysis]
(Physical property value)
Table 1 shows the physical property values of Isolite CG4.

(元素分析)
木タール分、木炭623K、木炭723K、ヤシガラ活性炭、竹炭、紙炭(ジョンソンボイラー(株)製)、紙炭(週刊誌)、紙炭(新聞紙)、週刊誌、新聞紙の元素組成を、全自動元素分析装置(PE2400 Series II CHNS/O、Perkin Elmer(株)製)を用いて、行った。分析条件は、測定方式:静的燃焼、フロンタルクロマトグラフィー、高感度熱伝導率検出器(TCD)、燃焼温度:1248K、還元温度:773K、キャリアガス:ヘリウム、サンプル重量:1.5〜2.0(mg)、分析時間:8分であった。結果を表2と表3に示す。
(Elemental analysis)
Fully automatic elemental composition of wood tar, charcoal 623K, charcoal 723K, coconut charcoal activated carbon, bamboo charcoal, paper charcoal (manufactured by Johnson Boiler), paper charcoal (weekly magazine), paper charcoal (newspaper), weekly magazine, newspaper This was performed using an elemental analyzer (PE2400 Series II CHNS / O, manufactured by Perkin Elmer Co., Ltd.). The analysis conditions are: measurement method: static combustion, frontal chromatography, high-sensitivity thermal conductivity detector (TCD), combustion temperature: 1248 K, reduction temperature: 773 K, carrier gas: helium, sample weight: 1.5-2. 0 (mg), analysis time: 8 minutes. The results are shown in Tables 2 and 3.

この表において、炭素、水素、窒素以外はOtherで表している。窒素は、全ての結果において0.5wt%以下であることから、この表に含まれていない。また、炭化物に含まれる灰分は多くないと考えられた。したがって、Otherは、酸素元素の比率であるとみなした。   In this table, other than carbon, hydrogen, and nitrogen is expressed as Other. Nitrogen is not included in this table because it is 0.5 wt% or less in all results. Moreover, it was thought that there was not much ash contained in carbide. Therefore, Other was regarded as the ratio of oxygen element.

表2から、木タール分は、Otherの比率が多いことがわかる。これは、木タール分の主な原因物質であるリグニンに含有される酸素原子が多く残留しているためであると考えられた。元素分析に用いた試料はいずれも7割以上が炭素で構成されている。試料の元素組成では顕著な差は見られなかった。ヤシガラ活性炭と紙炭(ジョンソンボイラー(株)製)は、炭素元素の比率が高く、他の試料に比べて炭化が進行していることがわかった。   From Table 2, it can be seen that the wood tar content has a higher ratio of Other. This was thought to be due to the large number of oxygen atoms remaining in the lignin, the main causative substance of wood tar. In all samples used for elemental analysis, 70% or more is composed of carbon. There was no significant difference in the elemental composition of the samples. Coconut charcoal activated carbon and paper charcoal (manufactured by Johnson Boiler Co., Ltd.) were found to have a high carbon element ratio and carbonization proceeded compared to other samples.

表3は、紙炭の炭化前後における収率、元素分析結果より計算した炭化物の元素残存率を示す表である。なお、計算は次式を用いた。
(元素残存率)[wt%]=(炭化物重量×炭化物元素比率)/(原料重量×原料元素比率)
表2から明らかなように、炭化前の週刊誌・新聞紙、炭化後の紙炭(週刊誌)、紙炭(新聞紙)の元素組成はそれぞれほぼ等しいことがわかる。これは、週刊誌・新聞紙の原料がリグニンを含むセルロースを主成分とする木材の繊維であるためと考えられた。また、表3から明らかなように、炭化条件が同じなので、週刊誌と新聞紙とでは、大きな差はなかった。
Table 3 is a table showing the element residual ratio of the carbide calculated from the yield before and after carbonization of paper charcoal, and the elemental analysis results. The following formula was used for the calculation.
(Element residual ratio) [wt%] = (Carbide weight × Carbide element ratio) / (Raw material weight × Raw material element ratio)
As is apparent from Table 2, the elemental compositions of the weekly magazine / newspaper before carbonization, the paper charcoal after carbonization (weekly magazine), and the paper charcoal (newspaper) are almost equal. This was thought to be due to the fact that the raw material of weekly magazines and newspapers is wood fibers mainly composed of cellulose containing lignin. Further, as apparent from Table 3, since the carbonization conditions are the same, there was no significant difference between the weekly magazine and the newspaper.

[マクロ構造の観察]
イソライトCG4、ヤシガラ活性炭、木炭623K、木炭723K、竹炭、紙炭(ジョンソンボイラー(株)製)、紙炭(週刊誌)、紙炭(新聞紙)、週刊誌、新聞紙のマクロ構造を、JSM−6700型電界放射走査電子顕微鏡(日本電子データム(株)、日本ハイテック(株)製)を用いて観察した。結果を図2〜10に示す。
[Observation of macro structure]
Isolite CG4, coconut husk activated carbon, charcoal 623K, charcoal 723K, bamboo charcoal, paper charcoal (manufactured by Johnson Boiler Co., Ltd.), paper charcoal (weekly magazine), paper charcoal (newspaper), weekly magazine, newspaper macro structure, JSM-6700 This was observed using a scanning field emission electron microscope (manufactured by JEOL Datum Co., Ltd., manufactured by Nippon Hitech Co., Ltd.). The results are shown in FIGS.

図2から、イソライトCG4は、表面に小さな孔が無数に開いていることがわかる。図3から、ヤシガラ活性炭は、表面にあまり大きな亀裂は見られず、小さな細孔が開いていることが確認できる。図4、図5から、木炭623Kと木炭723Kとは、ともに表面に大きな亀裂があり、細孔が存在することがわかる。また、木炭723Kのほうが、木炭623Kに比べて表面の破壊が進んでいることもわかる。図6から、竹炭は、ヤシガラ活性炭の表面構造に類似し、小さな細孔が存在していることがわかる。図7、8、9から、紙炭では、折り重なった繊維が層状の構造をとっていることがわかる。これは、図10の週刊誌、新聞紙のマクロ構造において、折り重なったセルロース繊維の間を埋めていた構成物質が炭化過程で分解・ガス化され、残った繊維の間が空洞になったためであると考えられる。なお、図7、8、9から明らかなように、紙炭(ジョンソンボイラー(株)製)の繊維間の間隔は、紙炭(週刊誌)、紙炭(新聞紙)のそれより小さい。これは、紙炭(ジョンソンボイラー(株)製)炭化前に物理的により強力に圧縮されたためであると考えられた。   From FIG. 2, it can be seen that Isolite CG4 has innumerable small holes on the surface. From FIG. 3, it can be confirmed that coconut husk activated carbon has no large cracks on the surface and small pores are open. 4 and 5, it can be seen that both the charcoal 623K and the charcoal 723K have large cracks on the surfaces and have pores. It can also be seen that the surface destruction of the charcoal 723K is more advanced than that of the charcoal 623K. FIG. 6 shows that bamboo charcoal is similar to the surface structure of coconut shell activated carbon and has small pores. 7, 8, and 9, it can be seen that in paper charcoal, the folded fibers have a layered structure. This is because, in the macro structure of the weekly magazine of FIG. 10 and newspaper, the constituent materials that were buried between the folded cellulose fibers were decomposed and gasified during the carbonization process, and the spaces between the remaining fibers became voids. Conceivable. As is clear from FIGS. 7, 8, and 9, the interval between fibers of paper charcoal (Johnson Boiler Co., Ltd.) is smaller than that of paper charcoal (weekly magazine) and paper charcoal (newspaper). This was thought to be because the paper charcoal (Johnson Boiler Co., Ltd.) was physically and strongly compressed before carbonization.

[細孔径分布]
水銀ポロシメータ(Pascal140、Pascal240、(株)アムコ製)を用いて、イソライトCG4、ヤシガラ活性炭、木炭623K、木炭723K、竹炭、紙炭(ジョンソンボイラー(株)製)、紙炭(週刊誌)、紙炭(新聞紙)の細孔径を測定した。まず、Pascal140を用いて、真空下において試料容器に水銀を注入した後、減圧状態から徐々に大気圧に戻す過程の測定(マクロ孔測定)を行った。次に、Pascal240に試料容器を付け替えて、油圧ポンプで加圧し、メソ孔領域を測定した。次式を用いて細孔半径を求めた。
細孔半径と圧力の近似式:R=7.5im/P
R:半径(nm)、P:圧力(kg/cm
細孔径の測定から求めた、各試料における累積細孔容積の比較と細孔容積分布の比較の結果を、図11、図12に示す。
[Pore size distribution]
Using a mercury porosimeter (Pascal 140, Pascal 240, manufactured by Amco Corporation), Isolite CG4, coconut shell activated carbon, charcoal 623K, charcoal 723K, bamboo charcoal, paper charcoal (manufactured by Johnson Boiler Co., Ltd.), paper charcoal (weekly magazine), paper The pore diameter of charcoal (newspaper) was measured. First, using Pascal 140, mercury was injected into the sample container under vacuum, and then the process of returning gradually from the reduced pressure state to the atmospheric pressure (macropore measurement) was performed. Next, the sample container was replaced with Pascal 240 and pressurized with a hydraulic pump, and the mesopore region was measured. The pore radius was determined using the following equation.
Approximate expression of pore radius and pressure: R = 7.5 im / P
R: radius (nm), P: pressure (kg / cm 3 )
FIG. 11 and FIG. 12 show the results of comparison of cumulative pore volume and pore volume distribution in each sample obtained from the measurement of pore diameter.

図11から、木炭623K、木炭723K、紙炭(週刊誌)、紙炭(新聞紙)では、累積細孔容積が他の試料に比べて発達していることがわかる。 From FIG. 11, it can be seen that the charcoal 623K, charcoal 723K, paper charcoal (weekly magazine), and paper charcoal (newspaper) have developed cumulative pore volumes compared to other samples.

図12から、竹炭はメソ孔が、木炭623K、木炭723K、イソライトCG4、紙炭(ジョンソンボイラー(株)製)、紙炭(週刊誌)、紙炭(新聞紙)は、細孔径100nm〜100000nm(0.1μm〜100μm)の範囲のマクロ孔が発達していることがわかる。また、ヤシガラ活性炭には、メソ孔、マクロ孔の顕著な発達は見られなかった。   From FIG. 12, bamboo charcoal has mesopores, charcoal 623K, charcoal 723K, Isolite CG4, paper charcoal (manufactured by Johnson Boiler Co., Ltd.), paper charcoal (weekly magazine), and paper charcoal (newspaper) having a pore diameter of 100 nm to 100,000 nm ( It can be seen that macropores in the range of 0.1 μm to 100 μm have developed. Further, no significant development of mesopores and macropores was found in coconut shell activated carbon.

紙炭(ジョンソンボイラー(株)製)、紙炭(週刊誌)、紙炭(新聞紙)は、同じ範囲のマクロ孔が発達しているが、紙炭(ジョンソンボイラー(株)製)の累積細孔容積は、紙炭(週刊誌)、紙炭(新聞紙)のそれより小さかった。   Paper charcoal (manufactured by Johnson Boiler Co., Ltd.), paper charcoal (weekly magazine), and paper charcoal (newspaper) have developed macro pores in the same range, but paper charcoal (manufactured by Johnson Boiler Co., Ltd.) The pore volume was smaller than that of paper charcoal (weekly magazine) and paper charcoal (newspaper).

[タール吸着評価]
15mm径×105mmの試験管に、十分な量の木タール分を注入し、秤量した試料(イソライトCG4、ヤシガラ活性炭、木炭623K、木炭723K、竹炭、紙炭(ジョンソンボイラー(株)製)、紙炭(週刊誌)、紙炭(新聞紙))を投入した。所定の時間(1分〜120分)経過後、試料を取り出し、表面に付着した木タール分を除去し、秤量したサンプル瓶に入れて質量を測定した。
また、吸水能力を調べるために、超純水を用いて同様の実験を行った。
結果を図13〜図19に示す。
[Tar adsorption evaluation]
Samples (Isolite CG4, coconut husk activated carbon, charcoal 623K, charcoal 723K, bamboo charcoal, paper charcoal (manufactured by Johnson Boiler Co., Ltd.)), paper, infused with a sufficient amount of wood tar into a 15 mm diameter x 105 mm test tube Charcoal (weekly magazine) and paper charcoal (newspaper)). After elapse of a predetermined time (1 to 120 minutes), the sample was taken out, the wood tar content adhering to the surface was removed, and the sample was placed in a weighed sample bottle and the mass was measured.
Moreover, in order to investigate water absorption capability, the same experiment was conducted using ultrapure water.
The results are shown in FIGS.

図13は、各試料によるタール吸着量の経時変化を示す図である。図13から、紙炭(週刊誌)が最も高い性能を示した。紙炭(週刊誌)のタール吸着量は、イソライトCG4の5倍程度であった。また、紙炭(新聞紙)のタール吸着量も他の試料に比べ優れていることがわかった。木炭623K、木炭723K、竹炭、紙炭(ジョンソンボイラー(株)製)、紙炭(週刊誌)、紙炭(新聞紙)を比較する。紙炭では、それぞれが有する細孔径の範囲はほぼ同一であるが、累積細孔容積の大きい本発明の紙炭(週刊誌)、紙炭(新聞紙)のほうがタール吸着量が多い。また、木材の繊維を主成分とする本発明の紙炭(週刊誌)、紙炭(新聞紙)のほうが、累積細孔容積のより大きい木炭より多くのタール分を吸着するのは、本発明の紙炭では繊維が折り重なって網目構造を形成していることによると考えられる。次に、累積細孔容積が同程度で、細孔径の範囲が異なる竹炭と紙炭(ジョンソンボイラー(株)製)とを比較すると、タール分の吸着には、径の大きさが100nm以上の細孔が影響すると思われる。   FIG. 13 is a diagram showing the change over time in the amount of tar adsorbed by each sample. From FIG. 13, paper charcoal (weekly magazine) showed the highest performance. Tar adsorption of paper charcoal (weekly magazine) was about 5 times that of Isolite CG4. It was also found that the tar adsorption amount of paper charcoal (newspaper) was superior to other samples. Charcoal 623K, charcoal 723K, bamboo charcoal, paper charcoal (manufactured by Johnson Boiler Co., Ltd.), paper charcoal (weekly magazine), and paper charcoal (newspaper) are compared. In the case of paper charcoal, the range of pore diameters of each is almost the same, but the paper charcoal (weekly magazine) and paper charcoal (newspaper) of the present invention having a large cumulative pore volume have a larger amount of tar adsorption. In addition, the paper charcoal (weekly magazine) and paper charcoal (newspaper) of the present invention mainly composed of wood fibers adsorb more tar content than charcoal having a larger cumulative pore volume. In paper charcoal, it is thought that the fibers are folded to form a network structure. Next, when bamboo charcoal and paper charcoal (produced by Johnson Boiler Co., Ltd.) having the same cumulative pore volume and different pore diameter ranges are compared, the adsorption of tar has a diameter of 100 nm or more. Pore seems to be affected.

図14〜図19は、イソライトCG4、木炭623K、木炭723K、紙炭(ジョンソンボイラー(株)製)、紙炭(週刊誌)、紙炭(新聞紙)のタール分と水の吸着量を比較したグラフである。図14から、タール分の吸着はそれほど早くないが、水を瞬時に吸収することがわかる。図15、16から、木炭は、木炭と同質量の水を吸収することがわかる。図17〜19から、紙炭は、タール分を吸着するが、水はほとんど吸収しないことがわかる。   FIGS. 14 to 19 compare the amount of adsorbed water and the tar content of Isolite CG4, charcoal 623K, charcoal 723K, paper charcoal (Johnson Boiler Co., Ltd.), paper charcoal (weekly magazine), and paper charcoal (newspaper). It is a graph. FIG. 14 shows that the adsorption of tar is not so fast, but absorbs water instantaneously. 15 and 16 that charcoal absorbs the same amount of water as charcoal. 17-19, paper charcoal adsorb | sucks a tar part, but it turns out that water hardly absorbs.

[水共存下におけるタール吸着評価]
10×10−6のコニカルビーカに超純水50g、水2.0g、木タール分2.0gを入れ、マグネチックスターラで均一に攪拌した後、各試料(イソライトCG4、ヤシガラ活性炭、木炭623K、木炭723K、竹炭、紙炭(ジョンソンボイラー(株)製)、紙炭(週刊誌)、紙炭(新聞紙))2.0gをそれぞれ投入し、攪拌する。所定時間(3分〜30分)経過後、試料を取り出し、秤量したサンプル瓶に入れ、3日間333Kで乾燥した後、質量を測定した。実験前後での質量の差から木タール分の吸着量を算出し、経時変化を測定した。また、乾燥前の試料の質量を測定し、乾燥前後での質量の差を吸収された超純水の質量とした。吸着実験は、298Kで行った。
[Evaluation of tar adsorption in the presence of water]
A 10 × 10 −6 m 3 conical beaker was charged with 50 g of ultrapure water, 2.0 g of water, and 2.0 g of wood tar, and stirred uniformly with a magnetic stirrer, and then each sample (Isolite CG4, coconut shell activated carbon, charcoal) 623K, charcoal 723K, bamboo charcoal, paper charcoal (manufactured by Johnson Boiler Co., Ltd.), paper charcoal (weekly magazine), and paper charcoal (newspaper) 2.0 g are charged and stirred. After elapse of a predetermined time (3 to 30 minutes), the sample was taken out, put into a weighed sample bottle, dried at 333 K for 3 days, and then mass was measured. The adsorption amount of wood tar was calculated from the difference in mass before and after the experiment, and the change with time was measured. Moreover, the mass of the sample before drying was measured, and the difference in mass before and after drying was taken as the mass of absorbed ultrapure water. The adsorption experiment was performed at 298K.

図20に、本発明の紙炭(週刊誌)を用いた液相の経時変化の様子を示した。図20から明らかなように、30分経過時には、油状の木タール分はほぼ吸収されて水相中には存在していないことがわかる FIG. 20 shows the change over time of the liquid phase using the paper charcoal (weekly magazine) of the present invention. As can be seen from FIG. 20, when 30 minutes have elapsed, the oily wood tar is almost absorbed and is not present in the aqueous phase .

図22〜25は、イソライトCG4、木炭623K、木炭723K、紙炭(ジョンソンボイラー(株))のタール分吸着量と水の吸収量を比較するグラフである。図22から、イソライトCG4は、図14の水の吸収量とほぼ同程度の水が吸収されているが、木タール分は全く吸着されていないことがわかる。これは、吸収された水により、木タール分の吸着が妨げられているためであると考えられる。図23〜25から、木炭623K、木炭723K、紙炭(ジョンソンボイラー(株))は、木タール分の吸着量が増加するにつれて水の吸収量が低下していることがわかる。これは、吸着された木タール分によって水が押し出されたものと考えられる。また、紙炭(ジョンソンボイラー(株))は、タール吸着試験と比較して水が多く吸収されている。これは、吸着された水によって疎水性を示していた表面が被覆され、疎水性を失ったためと考えられた。   22 to 25 are graphs comparing the amount of adsorbed tar and the amount of water absorbed by Isolite CG4, charcoal 623K, charcoal 723K, and paper charcoal (Johnson Boiler Co., Ltd.). From FIG. 22, it can be seen that Isolite CG4 has absorbed almost the same amount of water as that of FIG. 14, but the wood tar content is not adsorbed at all. This is thought to be because the adsorption of the wood tar is hindered by the absorbed water. 23 to 25, it is understood that the amount of water absorbed by the charcoal 623K, the charcoal 723K, and the paper charcoal (Johnson Boiler Co., Ltd.) decreases as the amount of adsorption of the wood tar increases. This is considered that water was pushed out by the adsorbed wood tar. Paper charcoal (Johnson Boiler Co., Ltd.) absorbs more water than the tar adsorption test. This was thought to be because the surface that had been hydrophobic was covered with the adsorbed water and lost its hydrophobicity.

[木タール分の分析]
吸着前の木タール成分とタール吸着実験で各試料に吸着された木タール分をガスクロマトグラフ質量分析器(GCMS−QP5050、島津製作所(株)製)により分析・比較した。分析用のカラムは、長さ30m、内径0.25mmのDB−WAX(J&W SCIENTIFIC)を用いた。分析条件を下表に示す。
[Analysis of wood tar content]
The wood tar component before adsorption and the wood tar content adsorbed on each sample in the tar adsorption experiment were analyzed and compared with a gas chromatograph mass spectrometer (GCMS-QP5050, manufactured by Shimadzu Corporation). DB-WAX (J & W SCIENTIFIC) having a length of 30 m and an inner diameter of 0.25 mm was used as an analysis column. The analysis conditions are shown in the table below.

図26に、木タール分のGC−MS分析結果を、表5にピークの顕著な物質の名称と化学式を示す。
FIG. 26 shows the results of GC-MS analysis of the wood tar, and Table 5 shows the names and chemical formulas of substances with significant peaks.

図26、表5から、木タール分には、種々の分子量の大きい有機化合物が含まれていることがわかる。また、各試料で吸着した木タール分をアセトンで抽出し、木タール分と同様に分析したところ、木タール分と同様のピークが得られた。このことから、各試料は、特定成分ではなく、木タール分自体を吸着することがわかった。   26 and Table 5, it can be seen that the wood tar contains various organic compounds having a large molecular weight. Moreover, when the wood tar content adsorbed by each sample was extracted with acetone and analyzed in the same manner as the wood tar content, the same peak as the wood tar content was obtained. From this, it was found that each sample adsorbs not the specific component but the wood tar itself.

[紙炭残留タール分]
本発明の紙炭(週刊誌)、紙炭(新聞紙)をアセトンで抽出して、紙炭製造時の紙炭にタール分が残存しているかどうかを確認した。タール分は、アセトンには全く回収されなかったため本発明の紙炭(週刊誌)、紙炭(新聞紙)は、タール分が残留していないことがわかった。



[Paper charcoal residual tar content]
Paper charcoal (weekly magazine) and paper charcoal (newspaper) of the present invention were extracted with acetone to check whether tar content remained in the paper charcoal during paper charcoal production. Since the tar content was not recovered at all in acetone, it was found that no tar content remained in the paper charcoal (weekly magazine) and paper charcoal (newspaper) of the present invention.



図1は、本発明の紙炭を製造する炭化装置の一例を示す図である。FIG. 1 is a diagram showing an example of a carbonizing apparatus for producing paper charcoal according to the present invention. 図2は、イソライトCG4表面の走査電子顕微鏡写真である。FIG. 2 is a scanning electron micrograph of the surface of Isolite CG4. 図3は、ヤシガラ活性炭表面の走査電子顕微鏡写真である。FIG. 3 is a scanning electron micrograph of the surface of coconut shell activated carbon. 図4は、木炭623K表面の走査電子顕微鏡写真である。FIG. 4 is a scanning electron micrograph of the surface of charcoal 623K. 図5は、木炭723K表面の走査電子顕微鏡写真である。FIG. 5 is a scanning electron micrograph of the surface of charcoal 723K. 図6は、竹炭表面の走査電子顕微鏡写真である。FIG. 6 is a scanning electron micrograph of the bamboo charcoal surface. 図7は、紙炭(ジョンソンボイラー(株)製)表面の走査電子顕微鏡写真である。FIG. 7 is a scanning electron micrograph of the surface of paper charcoal (manufactured by Johnson Boiler Co., Ltd.). 図8は、紙炭(週刊誌)表面の走査電子顕微鏡写真である。FIG. 8 is a scanning electron micrograph of the surface of paper charcoal (weekly magazine). 図9は、紙炭(新聞紙)表面の走査電子顕微鏡写真である。FIG. 9 is a scanning electron micrograph of the surface of paper charcoal (newspaper). 図10は、週刊誌・新聞紙表面の走査電子顕微鏡写真である。FIG. 10 is a scanning electron micrograph of the surface of a weekly magazine / newspaper. 図11は、各試料における累積細孔容積を比較した図である。FIG. 11 is a diagram comparing the cumulative pore volume in each sample. 図12は、各試料における細孔容積分布を比較した図である。FIG. 12 is a diagram comparing the pore volume distribution in each sample. 図13は、各試料によるタール吸着量の経時変化を示す図である。FIG. 13 is a diagram showing the change over time in the amount of tar adsorbed by each sample. 図14は、イソライトCG4のタール分と水の吸着量を比較したグラフである。FIG. 14 is a graph comparing the tar content of Isolite CG4 and the amount of water adsorbed. 図15は、木炭623Kのタール分と水の吸着量を比較したグラフである。FIG. 15 is a graph comparing the tar content of charcoal 623K and the amount of water adsorbed. 図16は、木炭723Kのタール分と水の吸着量を比較したグラフである。FIG. 16 is a graph comparing the tar content of charcoal 723K and the amount of water adsorbed. 図17は、紙炭(ジョンソンボイラー(株)製)のタール分と水の吸着量を比較したグラフである。FIG. 17 is a graph comparing the tar content of paper charcoal (manufactured by Johnson Boiler Co., Ltd.) and the amount of water adsorbed. 図18は、紙炭(週刊誌)のタール分と水の吸着量を比較したグラフである。FIG. 18 is a graph comparing the tar content of paper charcoal (weekly magazine) and the amount of water adsorbed. 図19は、紙炭(新聞紙)のタール分と水の吸着量を比較したグラフである。FIG. 19 is a graph comparing the tar content of paper charcoal (newspaper) and the amount of water adsorbed. 図20は、本発明の紙炭(週刊誌)を用いた液相の経時変化の様子を示したグラフである。FIG. 20 is a graph showing the change over time of the liquid phase using the paper charcoal (weekly magazine) of the present invention. 図21は、イソライトCG4のタール分吸着量と水の吸収量を比較するグラフであるFIG. 21 is a graph comparing the amount of adsorption of tar and the amount of water absorbed by Isolite CG4 . 図22は、木炭623Kのタール分吸着量と水の吸収量を比較するグラフであるFIG. 22 is a graph comparing the amount of tar adsorbed by charcoal 623K and the amount of water absorbed . 図23は、木炭723Kのタール分吸着量と水の吸収量を比較するグラフであるFIG. 23 is a graph comparing the amount of tar adsorbed by charcoal 723K and the amount of water absorbed . 図24は、紙炭(ジョンソンボイラー(株))のタール分吸着量と水の吸収量を比較するグラフであるFIG. 24 is a graph comparing the amount of adsorbed tar and the amount of water absorbed by paper charcoal (Johnson Boiler Co., Ltd.) . 図25は、木タール分のGC−MS分析結果を示す図であるFIG. 25 is a diagram showing a GC-MS analysis result of wood tar .

Claims (3)

紙類を過熱水蒸気中で炭化した紙炭であって、細孔径104mの細孔容積分布が300〜400mm3/gである細孔を有し、細孔径103m以下の細孔容積分布が200mm3/g以上である細孔を有さない紙炭。 A paper charcoal carbonized paper with superheated steam, the pore volume distribution of pore size 10 4 n m has a pore is 300 to 400 mm 3 / g, pore size 10 3 n m or less under Paper charcoal having no pores having a pore volume distribution of 200 mm 3 / g or more. タール除去剤として用いる、請求項1記載の紙炭。   The paper charcoal according to claim 1, which is used as a tar removing agent. 紙類を水で湿潤させて、圧縮せずに成形する工程と、
前記乾燥させた紙類を過熱水蒸気中で炭化する工程と
を含む細孔径104mの細孔容積分布が300〜400mm3/gである細孔を有し、細孔径103m以下の細孔容積分布が200mm3/g以上である細孔を有さない紙炭の製造方法。
Moistening paper with water and forming without compression;
Including a step of carbonizing the dried paper in superheated steam, having a pore volume distribution with a pore size of 10 4 nm of 300 to 400 mm 3 / g, and having a pore size of 10 3 nm or less The manufacturing method of the paper charcoal which does not have a pore whose lower pore volume distribution is 200 mm < 3 > / g or more.
JP2006134650A 2006-05-15 2006-05-15 Paper charcoal and method for producing the same Expired - Fee Related JP5203576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006134650A JP5203576B2 (en) 2006-05-15 2006-05-15 Paper charcoal and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006134650A JP5203576B2 (en) 2006-05-15 2006-05-15 Paper charcoal and method for producing the same

Publications (3)

Publication Number Publication Date
JP2007302535A JP2007302535A (en) 2007-11-22
JP2007302535A5 JP2007302535A5 (en) 2009-07-02
JP5203576B2 true JP5203576B2 (en) 2013-06-05

Family

ID=38836800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006134650A Expired - Fee Related JP5203576B2 (en) 2006-05-15 2006-05-15 Paper charcoal and method for producing the same

Country Status (1)

Country Link
JP (1) JP5203576B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5465610B2 (en) * 2010-06-08 2014-04-09 本田技研工業株式会社 Carbon production method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106338U (en) * 1990-02-16 1991-11-01
JPH07149507A (en) * 1993-11-30 1995-06-13 Shoshichi Azuma New charcoal
JPH08120279A (en) * 1994-10-25 1996-05-14 Mitsubishi Heavy Ind Ltd Production of porous carbonization product
JPH08319283A (en) * 1995-05-25 1996-12-03 Central Glass Co Ltd Purification of 2-(furfurylthio)acetic acid derivative
JP2001192670A (en) * 1999-10-29 2001-07-17 Ryoichi Okamoto Method of manufacturing carbonized material and pyrolizer for organic waste
JP2002053385A (en) * 2000-08-07 2002-02-19 Touwa Machi Plant for producing liquid manure containing pyroligneous acid liquid and device for preparing liquid manure

Also Published As

Publication number Publication date
JP2007302535A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
Ahmad et al. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures
Kaya et al. Investigation of effectiveness of pine cone biochar activated with KOH for methyl orange adsorption and CO 2 capture
Anisuzzaman et al. Modification of commercial activated carbon for the removal of 2, 4-dichlorophenol from simulated wastewater
Franco et al. Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species
Rugayah et al. Preparation and characterisation of activated carbon from palm kernel shell by physical activation with steam
Saleh et al. Effectiveness of Sunflower Seed Husk Biochar for Removing Copper Ions from Wastewater: a Comparative Study.
Trubetskaya et al. Removal of phenol and chlorine from wastewater using steam activated biomass soot and tire carbon black
Yang et al. One-pot synthesis of porous carbon foam derived from corn straw: atrazine adsorption equilibrium and kinetics
De Jesus et al. Evaluation of waste biomasses and their biochars for removal of polycyclic aromatic hydrocarbons
Mopoung et al. Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe (III) adsorption from aqueous solution
Georgin et al. Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen
Demiral et al. Production of activated carbon from olive bagasse by physical activation
Sohaimi et al. Synthesis, characterization and application of textile sludge biochars for oil removal
Duman et al. Production of activated carbon from pine cone and evaluation of its physical, chemical, and adsorption properties
El Nemr et al. Microporous-activated carbons of type I adsorption isotherm derived from sugarcane bagasse impregnated with zinc chloride
Couto et al. Use of sawdust Eucalyptus sp. in the preparation of activated carbons
Salimi et al. Production of activated biochar from Luffa cylindrica and its application for adsorption of 4-Nitrophenol
Olowoyo et al. Preparation and characterization of activated carbon made from palm-kernel shell, coconut shell, groundnut shell and obeche wood (investigation of apparent density, total ash content, moisture content, particle size distribution parameters)
Hamadneh et al. Removal of phenolic compounds from aqueous solution using MgCl2-impregnated activated carbons derived from olive husk: the effect of chemical structures
Zhang et al. Biobased hierarchically porous carbon featuring micron-sized honeycomb architecture for CO2 capture and water remediation
Torres-Pérez et al. One Step carbonization/activation process for carbonaceous material preparation from pecan shells for tartrazine removal and regeneration after saturation
JP2019155215A (en) Activated carbon for wastewater treatment
Ahammad et al. Preparation of Alpinia galanga stem based activated carbon via single-step microwave irradiation for cationic dye removal
Manocha et al. Activated carbon from biomass
JP5203576B2 (en) Paper charcoal and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees