JP5203278B2 - Method for manufacturing positive temperature coefficient thermistor device - Google Patents

Method for manufacturing positive temperature coefficient thermistor device Download PDF

Info

Publication number
JP5203278B2
JP5203278B2 JP2009086517A JP2009086517A JP5203278B2 JP 5203278 B2 JP5203278 B2 JP 5203278B2 JP 2009086517 A JP2009086517 A JP 2009086517A JP 2009086517 A JP2009086517 A JP 2009086517A JP 5203278 B2 JP5203278 B2 JP 5203278B2
Authority
JP
Japan
Prior art keywords
temperature coefficient
positive temperature
coefficient thermistor
thermistor element
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009086517A
Other languages
Japanese (ja)
Other versions
JP2010238983A (en
Inventor
純也 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2009086517A priority Critical patent/JP5203278B2/en
Publication of JP2010238983A publication Critical patent/JP2010238983A/en
Application granted granted Critical
Publication of JP5203278B2 publication Critical patent/JP5203278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

本発明は、直方体や円柱などの所定の形状を有する正特性サーミスタの電極面を露出した状態で、耐熱樹脂によってモールド加工した正特性サーミスタ装置の製造方法に関する。
The present invention, in a state in which the exposed electrode surface of the PTC thermistor having a predetermined shape such as a rectangular parallelepiped or a cylinder, a method of manufacturing a PTC thermistor equipment was molded processed by a heat-resistant resin.

正特性サーミスタは、チタン酸バリウム系半導体磁器からなり、常温では比抵抗が低く、キュリー温度を超えると急激に比抵抗が上昇するという正の抵抗温度特性を有する。正特性サーミスタは、このような特性を活かして、従来からヒータ用、過電流保護用、温度検知用等の用途に幅広く用いられている。特に、ヒータ用の正特性サーミスタは、自己温度制御に基づく定温発熱機能によって実現される安全性能を備えているため、取扱いが容易で安全なヒータとして広く使用されている。   The positive temperature coefficient thermistor is composed of a barium titanate semiconductor ceramic, and has a positive resistance temperature characteristic in which the specific resistance is low at room temperature and the specific resistance rapidly increases when the Curie temperature is exceeded. Positive characteristic thermistors have been used widely for applications such as heaters, overcurrent protection, and temperature detection, taking advantage of these characteristics. In particular, the positive temperature coefficient thermistor for heaters is widely used as a safe heater that is easy to handle because it has safety performance realized by a constant temperature heating function based on self-temperature control.

正特性サーミスタのユニットとしては、衣類・布団乾燥機、ハンドドライヤーなどの家庭用ヒータのほかに、自動車関係の車載ヒータなどもある。正特性サーミスタ素子が、ヒータのコアとして使用される場合には、熱伝導性の良好なアルミニウム、または銅などで製作された放熱フィンおよび導電端子に正特性サーミスタ素子を接触させることが望ましい。そこで、例えば、接着剤を用いて放熱フィンと正特性サーミスタ素子とを接着することによって、両者の位置関係を固定にするとともに、導電性の接着剤を用いて両者の導通を確保する方法が一般に知られている。   Positive characteristic thermistor units include automotive heaters in addition to household heaters such as clothes / futon dryers and hand dryers. When the positive temperature coefficient thermistor element is used as the core of the heater, it is desirable to bring the positive temperature coefficient thermistor element into contact with a heat radiating fin and a conductive terminal made of aluminum or copper having good thermal conductivity. Therefore, for example, a method of fixing the positional relationship between the two by fixing the heat dissipating fin and the positive temperature coefficient thermistor element by using an adhesive and securing the conduction between the two by using a conductive adhesive is generally used. Are known.

しかしながら、上述した方法は、正特性サーミスタ素子の電極に何らかの処理を加える必要があった。さらに、正特性サーミスタ自体の形状を複雑にせざるを得ない場合もあった。また、放熱用のフィンと正特性サーミスタ素子とを、導電性の高い接着剤によって固定する場合であっても、正特性サーミスタ素子の発熱部が放熱フィンに全面で接するようにすることは困難であり、熱効率の低下が予測された。さらに、車載用にいたっては、有機成分を含む接着剤を放熱部に用いていたため、長期間の使用では異臭の発生が懸念された。   However, in the above-described method, it is necessary to add some processing to the electrode of the positive temperature coefficient thermistor element. Further, the shape of the positive temperature coefficient thermistor itself has to be complicated. In addition, even when the fin for heat dissipation and the positive temperature coefficient thermistor element are fixed with a highly conductive adhesive, it is difficult for the heat generating part of the positive temperature coefficient thermistor element to be in contact with the heat dissipation fin over the entire surface. There was a predicted decrease in thermal efficiency. Furthermore, since the adhesive containing an organic component was used for the heat radiation part for in-vehicle use, there was a concern about the generation of a strange odor during long-term use.

また、上述した問題から、固定バネによる圧接方法も提案されている。しかし、このような方法でも、接着剤などで位置の固定を行っており、上述した問題を解決する手段とはならなかった。さらに、絶縁樹脂成形体を用いた位置固定スペーサを使用することも考えられるが、スペーサを組むという工数が余分にかかるため、生産性に問題があった。   Also, due to the above-described problems, a pressure contact method using a fixed spring has been proposed. However, even with such a method, the position is fixed with an adhesive or the like, and it has not been a means for solving the above-described problems. Further, although it is conceivable to use a position fixing spacer using an insulating resin molded body, there is a problem in productivity because it takes an extra man-hour for assembling the spacer.

そこで、このような課題に対応して、正特性サーミスタ素子に、位置固定スペーサとして機能する絶縁樹脂成形体をモールド加工する方法が考案されている(例えば、特許文献1参照)。   Accordingly, in response to such a problem, a method has been devised in which an insulating resin molding functioning as a position fixing spacer is molded on the positive temperature coefficient thermistor element (see, for example, Patent Document 1).

特開平5−208423号公報Japanese Patent Laid-Open No. 5-208423

しかしながら、上述したような方法によっても、熱可塑性樹脂によりモールド加工(インサート成形)する際には、クランプ部を正特性サーミスタ素子自体に形成する必要があり、正特性サーミスタ素子の形状を樹脂に固定し易い形状にする必要があった。この場合、周辺部の熱応力に対する強度が中心部より低くなる傾向にあり、熱破壊へと繋がる危険性があった。   However, even with the method described above, when molding (insert molding) with a thermoplastic resin, it is necessary to form the clamp portion on the positive temperature coefficient thermistor element itself, and the shape of the positive temperature coefficient thermistor element is fixed to the resin. It was necessary to make the shape easy to do. In this case, the strength against thermal stress in the peripheral portion tends to be lower than that in the central portion, and there is a risk of leading to thermal destruction.

本発明は、上述の点に鑑みてなされたものであり、その目的とするところは、正特性サーミスタ素子の形状を複雑にすることなく、正特性サーミスタ素子を容易かつ安全に固定できるとともに、組立時の生産性を向上させることができる正特性サーミスタ装置の製造方法を提供することにある。
The present invention has been made in view of the above-described points, and an object of the present invention is to easily and safely fix the positive temperature coefficient thermistor element without complicating the shape of the positive temperature coefficient thermistor element and to assemble it. and to provide a positive characteristic thermistor equipment manufacturing method which can improve the productivity of time.

発明にかかる正特性サーミスタ装置の製造方法は、複数の素子面のうちの一部の素子面に電極を形成した正特性サーミスタ素子と、正特性サーミスタ素子を収容する貫通穴が設けられた枠体とを有する正特性サーミスタ装置の製造方法であって、正特性サーミスタ素子を構成する素子面のうちの電極面を除く非電極面に熱硬化性絶縁樹脂をモールド加工して付着させる第1ステップと、熱硬化性絶縁樹脂が付着した正特性サーミスタ素子を枠体に形成された貫通穴に収容する第2ステップとからなることを特徴とする。
A method of manufacturing a positive temperature coefficient thermistor device according to the present invention includes a positive temperature coefficient thermistor element in which an electrode is formed on a part of a plurality of element surfaces, and a frame provided with a through hole that accommodates the positive temperature coefficient thermistor element. A method of manufacturing a positive temperature coefficient thermistor device having a body, wherein a thermosetting insulating resin is molded and attached to a non-electrode surface excluding an electrode surface of an element surface constituting a positive temperature coefficient thermistor element And a second step of accommodating the positive temperature coefficient thermistor element to which the thermosetting insulating resin is adhered in a through hole formed in the frame.

このような方法によれば、電極面を露出させながらも、正特性サーミスタ素子の形状を複雑にすることなく、正特性サーミスタ素子を容易かつ安全に固定できるとともに、組立時の生産性を向上させることができる。   According to such a method, while the electrode surface is exposed, the positive temperature coefficient thermistor element can be fixed easily and safely without complicating the shape of the positive temperature coefficient thermistor element, and productivity during assembly can be improved. be able to.

さらに、第2ステップの後、貫通穴の内壁面と正特性サーミスタ素子の非電極面との隙間を熱硬化性絶縁樹脂とは異なる成分からなる第2の絶縁樹脂で埋める第3ステップを実行することで、正特性サーミスタ素子を枠体に確実に固定することができる。第2の絶縁樹脂としては、先に形成された熱硬化性絶縁樹脂が劣化するのを防止する観点から、熱可塑性絶縁樹脂を用いることが好ましい。 Further, after the second step, a third step is performed in which the gap between the inner wall surface of the through hole and the non-electrode surface of the positive temperature coefficient thermistor element is filled with a second insulating resin made of a component different from the thermosetting insulating resin. Thus, the positive temperature coefficient thermistor element can be securely fixed to the frame. As the second insulating resin, it is preferable to use a thermoplastic insulating resin from the viewpoint of preventing deterioration of the previously formed thermosetting insulating resin.

正特性サーミスタ素子の形状を複雑にすることなく、正特性サーミスタ素子を容易かつ安全に固定できるとともに、組立時の生産性を向上させることができる。   Without complicating the shape of the positive temperature coefficient thermistor element, the positive temperature coefficient thermistor element can be fixed easily and safely, and productivity during assembly can be improved.

直方体の形状を有する正特性サーミスタ素子2の例(a)と、円柱の形状を有する正特性サーミスタ素子2の例(b)とを示す斜視図である。It is a perspective view which shows the example (a) of the positive temperature coefficient thermistor element 2 which has a rectangular parallelepiped shape, and the example (b) of the positive temperature coefficient thermistor element 2 which has a cylindrical shape. 樹脂を塗布した正特性サーミスタ素子2を示す斜視図(a)、側面図(b)及び正面図(c)である。It is the perspective view (a) which shows the positive temperature coefficient thermistor element 2 which apply | coated resin, the side view (b), and the front view (c). 正特性サーミスタ素子2に熱硬化性樹脂を塗布する過程を示す断面図である。FIG. 6 is a cross-sectional view showing a process of applying a thermosetting resin to the positive temperature coefficient thermistor element 2. 熱硬化性樹脂を付着させたサーミスタ素子を枠体5に嵌め込む過程を示す概略図である。It is the schematic which shows the process in which the thermistor element which made the thermosetting resin adhere is fitted in the frame 5. 引張強度試験方法を示す概略図である。It is the schematic which shows the tensile strength test method. 引張強度試験の結果を示すグラフである。It is a graph which shows the result of a tensile strength test.

図1は、 直方体の形状を有する正特性サーミスタ素子2の例(a)と、円柱の形状を有する正特性サーミスタ素子2の例(b)とを示す斜視図である。この正特性サーミスタ素子2は、以下のようにして作製される。   FIG. 1 is a perspective view showing an example (a) of a positive temperature coefficient thermistor element 2 having a rectangular parallelepiped shape and an example (b) of a positive temperature coefficient thermistor element 2 having a cylindrical shape. The positive temperature coefficient thermistor element 2 is manufactured as follows.

正特性サーミスタ素子2の主成分となる炭酸バリウム、炭酸ストロンチウム、酸化鉛、酸化チタン、半導体化剤である酸化イットリウム、添加剤である炭酸マンガン、酸化ケイ素を所定量配合・混合し、仮焼、粉砕し、造粒後、平面サイズ:41mm×7.8mm、厚み:3.0mmとなるように成形、焼成した。   Barium carbonate, strontium carbonate, lead oxide, titanium oxide, yttrium oxide as a semiconducting agent, manganese carbonate as an additive, silicon oxide as a main component of the positive temperature coefficient thermistor element 2 are mixed and mixed in a predetermined amount, calcined, After pulverizing and granulating, it was molded and fired to have a planar size of 41 mm × 7.8 mm and a thickness of 3.0 mm.

次に、表面研削によって、厚み:2.0mm、平面度:50μm以下になるように加工した後、超音波洗浄を行ない、その後、得られた正特性サーミスタ素子2の研削面にスクリーン印刷によって、Zn、Zn−Ag、またはNi合金からなる第1電極を形成し、さらに第1電極上に、AgまたはPdからなる第2電極を形成した。このようにして、図1に示すような構造の正特性サーミスタ素子2を4個作製した。   Next, by surface grinding, the thickness is 2.0 mm and the flatness is 50 μm or less, and then ultrasonic cleaning is performed. Thereafter, the ground surface of the obtained positive temperature coefficient thermistor element 2 is screen-printed, A first electrode made of Zn, Zn-Ag, or Ni alloy was formed, and a second electrode made of Ag or Pd was formed on the first electrode. In this way, four positive temperature coefficient thermistor elements 2 having the structure shown in FIG. 1 were produced.

なお、図1に示すように、上面と下面との双方に電極1が形成されており、正特性サーミスタ素子2は、上面の電極1と下面の電極1とを有する。上述した第1電極と第2電極とによって、上面の電極1と下面の電極1とが構成される。   As shown in FIG. 1, the electrodes 1 are formed on both the upper surface and the lower surface, and the positive temperature coefficient thermistor element 2 includes the upper electrode 1 and the lower electrode 1. The first electrode and the second electrode described above constitute the upper electrode 1 and the lower electrode 1.

このように、正特性サーミスタ素子2の上面と下面のみが、電極面となっているので、正特性サーミスタ素子2の側面は、電極が形成されていない非電極面となる。例えば、図1(a)に示した直方体の形状を有する正特性サーミスタ素子2の場合には、各々が長方形の形状を有する4つの側面が非電極面となる。また、図1(b)に示した円柱の形状を有する正特性サーミスタ素子2の場合には、円筒状の形状を有する側面が非電極面となる。   Thus, since only the upper surface and the lower surface of the positive temperature coefficient thermistor element 2 are electrode surfaces, the side surface of the positive temperature coefficient thermistor element 2 is a non-electrode surface on which no electrode is formed. For example, in the case of the positive temperature coefficient thermistor element 2 having a rectangular parallelepiped shape shown in FIG. 1A, four side surfaces each having a rectangular shape are non-electrode surfaces. In the case of the positive temperature coefficient thermistor element 2 having the columnar shape shown in FIG. 1B, the side surface having the cylindrical shape is a non-electrode surface.

作製した4個の正特性サーミスタ素子2のうちの2個は、処理を加えずに比較試料とした。   Two of the four positive-characteristics thermistor elements 2 produced were used as comparative samples without any treatment.

これに対して、残りの2個の正特性サーミスタ素子2には、図2に示すように、正特性サーミスタ素子2の非電極面である側面にシリコン樹脂(本発明の「熱硬化性絶縁樹脂」に相当)を塗布して固着させた。   On the other hand, as shown in FIG. 2, the remaining two positive temperature coefficient thermistor elements 2 include silicon resin (the “thermosetting insulating resin of the present invention” on the side surface which is a non-electrode surface of the positive temperature coefficient thermistor element 2. ”) Was applied and fixed.

なお、図2に示した例は、図1(a)に示した直方体の形状を有する正特性サーミスタ素子2に処理を加えた場合である。この場合には、上述したように、各々が長方形の形状を有する4つの側面が非電極面である。この4つの側面の全てにシリコン樹脂を塗布して固着させた。これにより、非電極面である4つの側面を周回するように、シリコン樹脂を4つの側面の周りに沿って環状に形成することができる(図2(c)参照)。   The example shown in FIG. 2 is a case where processing is applied to the positive temperature coefficient thermistor element 2 having a rectangular parallelepiped shape shown in FIG. In this case, as described above, the four side surfaces each having a rectangular shape are non-electrode surfaces. Silicon resin was applied and fixed to all of these four side surfaces. Thereby, the silicon resin can be formed in an annular shape around the four side surfaces so as to go around the four side surfaces which are non-electrode surfaces (see FIG. 2C).

また、図1(b)に示した円柱の形状を有する正特性サーミスタ素子2の場合も同様に、その側面にシリコン樹脂を塗布して固着させることができる。この場合には、上述したように、円筒状の側面が非電極面である。この円筒状の側面の全周に亘ってシリコン樹脂を塗布して固着させる。このようにすることで、非電極面である円筒状の側面を周回するように、円環状にシリコン樹脂を円筒側面に沿って形成することができる。   Similarly, in the case of the positive temperature coefficient thermistor element 2 having the cylindrical shape shown in FIG. 1B, a silicon resin can be applied and fixed to the side surface. In this case, as described above, the cylindrical side surface is a non-electrode surface. Silicon resin is applied and fixed over the entire circumference of the cylindrical side surface. By doing in this way, the silicon resin can be formed in an annular shape along the cylindrical side surface so as to go around the cylindrical side surface which is a non-electrode surface.

この正特性サーミスタ素子2の側面へのシリコン樹脂の塗布は、図3に示すように、シリコン樹脂を選択的に塗布できる冶具4を用いて行った。図3(b)に示すように、この冶具4は、上側の冶具と下側の冶具とで構成されている。正特性サーミスタ素子2を、上側の冶具と下側の冶具とで挟むことで、正特性サーミスタ素子2の側面に対して略垂直な方向(水平方向)に延びる間隙を形成することができる(図3(a)参照)。この間隙は、正特性サーミスタ素子2の側面の垂線に沿って形成され、長尺な注入用の間隙となる。   The silicon resin was applied to the side surface of the positive temperature coefficient thermistor element 2 using a jig 4 that can selectively apply the silicon resin, as shown in FIG. As shown in FIG. 3B, the jig 4 is composed of an upper jig and a lower jig. By sandwiching the positive temperature coefficient thermistor element 2 between the upper jig and the lower jig, a gap extending in a direction (horizontal direction) substantially perpendicular to the side surface of the positive temperature coefficient thermistor element 2 can be formed (FIG. 3 (a)). This gap is formed along the vertical line on the side surface of the positive temperature coefficient thermistor element 2 and becomes a long gap for injection.

この注入用間隙にシリコン樹脂を流し込むことで、正特性サーミスタ素子2の側面の周りに形成された樹脂充填空間にシリコン樹脂を塗布する。次いで、シリコン樹脂を熱硬化させることで、正特性サーミスタ素子2の側面にシリコン樹脂を付着させることができる(第1ステップ)。   Silicon resin is applied to the resin filling space formed around the side surface of the positive temperature coefficient thermistor element 2 by pouring silicon resin into the injection gap. Next, the silicon resin can be adhered to the side surface of the positive temperature coefficient thermistor element 2 by thermosetting the silicon resin (first step).

上側の冶具と下側の冶具との間に形成される樹脂充填空間の幅によって、正特性サーミスタ素子2の側面に付着させるシリコン樹脂の太さを定めることができる。また、注入用間隙の幅によって、シリコン樹脂の単位時間当たりの注入量を調整することができる。また、樹脂充填空間の形状を適宜変更することによって、正特性サーミスタ素子2の側面に塗布するシリコン樹脂の形状も変更することができる。   The thickness of the silicon resin attached to the side surface of the positive temperature coefficient thermistor element 2 can be determined by the width of the resin filling space formed between the upper jig and the lower jig. Further, the amount of silicon resin injected per unit time can be adjusted by the width of the injection gap. Moreover, the shape of the silicon resin applied to the side surface of the positive temperature coefficient thermistor element 2 can also be changed by appropriately changing the shape of the resin filling space.

ここで、正特性サーミスタ素子2の側面に塗布する樹脂としては、1.0×10−4/℃〜2.5×10−4/℃の線膨張率を有するシリコン樹脂を用いることが好ましい。このようにすることで、図2や図3に示すように、シリコン樹脂を塗布して固着した正特性サーミスタ素子2を作製することができる。 Examples of the resin to be coated on the side surface of the positive characteristic thermistor element 2, it is preferable to use a silicone resin having a linear expansion coefficient of 1.0 × 10 -4 /℃~2.5×10 -4 / ℃ . By doing so, as shown in FIG. 2 and FIG. 3, a positive temperature coefficient thermistor element 2 to which a silicon resin is applied and fixed can be manufactured.

次に、上述した方法でシリコン樹脂を付着させた正特性サーミスタ素子2の大きさに適合した貫通穴5aが形成された枠体5を2個準備する。枠体5は、熱可塑性樹脂を成型加工して作製される。本実施例では熱可塑性樹脂として、ポリアミド樹脂を用いた。   Next, two frame bodies 5 are prepared in which through holes 5a suitable for the size of the positive temperature coefficient thermistor element 2 to which the silicon resin is adhered are formed by the method described above. The frame body 5 is produced by molding a thermoplastic resin. In this example, a polyamide resin was used as the thermoplastic resin.

次いで、正特性サーミスタ素子2を、枠体5に形成されている貫通穴5aに入れる。具体的には、正特性サーミスタ素子2の側面と貫通穴5aの内壁面とが対向するように、正特性サーミスタ素子2を貫通穴5a内に収容する(第2ステップ)。   Next, the positive temperature coefficient thermistor element 2 is put into the through hole 5 a formed in the frame body 5. Specifically, the positive temperature coefficient thermistor element 2 is accommodated in the through hole 5a so that the side surface of the positive temperature coefficient thermistor element 2 faces the inner wall surface of the through hole 5a (second step).

ここで、正特性サーミスタ素子2の側面に付着させた熱硬化性樹脂は、正特性サーミスタ素子2の側面と貫通穴5aの内壁面との間に介装された状態となり、熱硬化性樹脂によって、正特性サーミスタ素子2を貫通穴5a内で保持することができる。正特性サーミスタ素子2を枠体5に収容する際には、図4に示すように、正特性サーミスタ素子2の上面の電極面が完全に露出し、かつ、枠体5の上面と、正特性サーミスタ素子2の上面の電極面との高さ位置が一致するように、いわゆる面一になるように、サーミスタ素子2を枠体5に嵌合させる。こうして、2つの評価試料を作製した。   Here, the thermosetting resin attached to the side surface of the positive temperature coefficient thermistor element 2 is interposed between the side surface of the positive temperature coefficient thermistor element 2 and the inner wall surface of the through hole 5a. The positive temperature coefficient thermistor element 2 can be held in the through hole 5a. When the positive temperature coefficient thermistor element 2 is accommodated in the frame body 5, as shown in FIG. 4, the electrode surface on the upper surface of the positive temperature coefficient thermistor element 2 is completely exposed, and the upper surface of the frame body 5 The thermistor element 2 is fitted to the frame 5 so as to be flush with the electrode surface on the upper surface of the thermistor element 2 so as to be flush with each other. In this way, two evaluation samples were produced.

本明細書では、このように、正特性サーミスタ素子2と枠体5とを用いて、正特性サーミスタ素子2を枠体5に固定したものを、正特性サーミスタ装置と称する。   In the present specification, a device in which the positive temperature coefficient thermistor element 2 is fixed to the frame body 5 using the positive temperature coefficient thermistor element 2 and the frame body 5 is referred to as a positive characteristic thermistor device.

さらに、サーミスタ素子2を枠体5に嵌合させた後、貫通穴5aの内壁面と正特性サーミスタ素子2の側面との隙間をシリコン樹脂とは異なる成分からなる絶縁樹脂、例えばポリアミド樹脂等の熱可塑性絶縁樹脂(本発明の「第2の絶縁樹脂」に相当)で埋める(第3ステップを実行する)のが好ましい。   Further, after the thermistor element 2 is fitted to the frame 5, the gap between the inner wall surface of the through hole 5a and the side surface of the positive temperature coefficient thermistor element 2 is made of an insulating resin made of a component different from the silicon resin, such as a polyamide resin. It is preferable to fill (perform the third step) with a thermoplastic insulating resin (corresponding to the “second insulating resin” of the present invention).

正特性サーミスタ素子2の側面に付着させた熱硬化性絶縁樹脂は、貫通穴5aの内壁面と正特性サーミスタ素子2の側面との隙間に追加的に充填される熱可塑性絶縁樹脂の硬化処理(熱可塑性絶縁樹脂を加熱により軟化した後、固化)を受けることになる。このため、追加的に充填する熱可塑性絶縁樹脂は、その硬化条件が、正特性サーミスタ素子2の側面に付着させた熱硬化性絶縁樹脂が劣化しない範囲内にあるものから選択することが好ましい。   The thermosetting insulating resin adhered to the side surface of the positive temperature coefficient thermistor element 2 is cured with a thermoplastic insulating resin additionally filled in the gap between the inner wall surface of the through hole 5a and the side surface of the positive temperature coefficient thermistor element 2 ( After the thermoplastic insulating resin is softened by heating, it is subjected to solidification). For this reason, it is preferable to select the thermoplastic insulating resin to be additionally filled from those whose curing conditions are within a range in which the thermosetting insulating resin attached to the side surface of the positive temperature coefficient thermistor element 2 does not deteriorate.

ここで、シリコン樹脂と第2の絶縁樹脂の熱膨張係数を同一となるように合わせると、異なる2つの絶縁樹脂の間で、温度変動に起因して応力が発生するのを抑制することができ、温度変動にかかわらず、正特性サーミスタ素子を枠体に安定して固定することができる。   Here, when the thermal expansion coefficients of the silicon resin and the second insulating resin are matched, it is possible to suppress the occurrence of stress due to temperature fluctuation between two different insulating resins. Regardless of temperature variation, the positive temperature coefficient thermistor element can be stably fixed to the frame.

なお、正特性サーミスタ素子2の側面に付着させる熱硬化性絶縁樹脂としては、シリコン樹脂のほか、アリル樹脂、アミノ樹脂、エポキシ樹脂、アルキド樹脂、ユリア樹脂、メラミン樹脂、フェノール樹脂、不飽和ポリエステル、ポリウレタンを用いることができる。熱硬化性絶縁樹脂としては、線膨張率が、1.0×10−4/℃〜7.0×10−5/℃である樹脂を用いることが好ましい。 The thermosetting insulating resin to be attached to the side surface of the positive temperature coefficient thermistor element 2 is silicon resin, allyl resin, amino resin, epoxy resin, alkyd resin, urea resin, melamine resin, phenol resin, unsaturated polyester, Polyurethane can be used. As the thermosetting insulating resin, it is preferable to use a resin having a linear expansion coefficient of 1.0 × 10 −4 / ° C. to 7.0 × 10 −5 / ° C.

また、貫通穴5aの内壁面と正特性サーミスタ素子2の側面との隙間に追加的に充填される熱可塑性絶縁樹脂としては、ポリアミド樹脂のほか、ABS樹脂、アセタール樹脂、メタクリル樹脂、酢酸セルロース、塩素化ポリエーテル、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、フッ素樹脂、アイオノマー、液晶プラスチック、ポリアクリロニトリル、ポリアミド、ポリアミドイミド、ポリアリレート、ポリブチレン、ポリブチレンテレフタレート、ポリカーボネート、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルスルホン、ポリエチレン、ポリエチレンテレフタレート、ポリイミド、ポリ−4−メチルペンテン−1、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリプロピレン、ポリスチレン、ポリスルホン、酢酸ビニル樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、AS樹脂を用いることができる。   Further, as the thermoplastic insulating resin additionally filled in the gap between the inner wall surface of the through hole 5a and the side surface of the positive temperature coefficient thermistor element 2, in addition to polyamide resin, ABS resin, acetal resin, methacrylic resin, cellulose acetate, Chlorinated polyether, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, fluororesin, ionomer, liquid crystal plastic, polyacrylonitrile, polyamide, polyamideimide, polyarylate, polybutylene, polybutylene terephthalate, polycarbonate, polyether Etherketone, polyetherimide, polyetherketone, polyethersulfone, polyethylene, polyethylene terephthalate, polyimide, poly-4-methylpentene-1, polyphenylene ether, polyphenylenesulfur De, polypropylene, polystyrene, polysulfone, vinyl acetate resins, vinyl chloride resins, vinylidene chloride resins, and AS resin.

次に、図5に示すように、アタッチメント6によって正特性サーミスタ装置を固定し、正特性サーミスタ装置の上部からロードセルで押し込むことで、樹脂と正特性サーミスタ素子2との間の固着強度を確認する試験を行った。その結果を表1および図6に示す。   Next, as shown in FIG. 5, the positive temperature coefficient thermistor device is fixed by the attachment 6, and the fixing strength between the resin and the positive temperature coefficient thermistor element 2 is confirmed by pushing in the load cell from the top of the positive temperature coefficient thermistor device. A test was conducted. The results are shown in Table 1 and FIG.

Figure 0005203278
Figure 0005203278

上記の強度試験により、正特性サーミスタ素子の側面(非電極面)にシリコン樹脂(熱硬化性絶縁樹脂)を付着させていない正特性サーミスタ装置(比較試料)に対して、正特性サーミスタ素子の側面にシリコン樹脂を付着させた正特性サーミスタ装置(評価試料)は、有意性のある強度を持つ結果となった。   By the above strength test, the side surface of the positive temperature coefficient thermistor element is compared with the positive temperature coefficient thermistor device (comparative sample) in which silicon resin (thermosetting insulating resin) is not attached to the side surface (non-electrode surface) of the positive temperature coefficient thermistor element. The positive temperature coefficient thermistor device (evaluation sample) in which the silicon resin was adhered to the result showed a significant strength.

評価試料は、さらに負荷を加えることで、強度が弱いと思われる先端加工部(外縁部)ではなく、セラミック内部(ボディ部)からの破断が見られる結果となり、評価試料は、最も強度が強く、かつ靱性があることが分かった。   When the load is further applied, the evaluation sample has the strongest strength, as a result of fracture from the inside of the ceramic (body), not the tip processed part (outer edge), which seems to be weak. And toughness.

1 電極
2 正特性サーミスタ素子
3 シリコン樹脂(熱硬化性樹脂)
4 樹脂キャスティング用金型
5 枠体
5a 貫通穴
6 樹脂固定強度測定用アタッチメント(固定用)
7 樹脂固定強度測定用ロードセル
DESCRIPTION OF SYMBOLS 1 Electrode 2 Positive characteristic thermistor element 3 Silicone resin (thermosetting resin)
4 Mold for Resin Casting 5 Frame 5a Through Hole 6 Attachment for Measuring Resin Fixing Strength (For Fixing)
7 Load cell for measuring resin fixing strength

Claims (3)

複数の素子面のうちの一部の素子面に電極を形成した正特性サーミスタ素子と、前記正特性サーミスタ素子を収容する貫通穴が設けられた枠体とを有する正特性サーミスタ装置の製造方法であって、
前記正特性サーミスタ素子を構成する素子面のうちの電極面を除く非電極面に熱硬化性絶縁樹脂をモールド加工して付着させる第1ステップと、
前記熱硬化性絶縁樹脂が付着した前記正特性サーミスタ素子を前記枠体に形成された貫通穴に収容する第2ステップと、からなることを特徴とする正特性サーミスタ装置の製造方法。
A method for manufacturing a positive temperature coefficient thermistor device comprising a positive temperature coefficient thermistor element having an electrode formed on a part of a plurality of element surfaces, and a frame provided with a through hole for accommodating the positive temperature coefficient thermistor element. There,
A first step of molding and adhering a thermosetting insulating resin to a non-electrode surface excluding an electrode surface of an element surface constituting the positive temperature coefficient thermistor element;
And a second step of accommodating the positive temperature coefficient thermistor element to which the thermosetting insulating resin is adhered in a through hole formed in the frame, and a method of manufacturing a positive temperature coefficient thermistor device.
前記第2ステップの後、前記貫通穴の内壁面と前記正特性サーミスタ素子の非電極面との隙間を前記熱硬化性絶縁樹脂とは異なる成分からなる第2の絶縁樹脂で埋める第3ステップをさらに備える請求項記載の正特性サーミスタ装置の製造方法。 After the second step, a third step of filling a gap between the inner wall surface of the through hole and the non-electrode surface of the positive temperature coefficient thermistor element with a second insulating resin made of a component different from the thermosetting insulating resin. method for manufacturing a positive characteristic thermistor device according to claim 1, further comprising. 前記第2の絶縁樹脂が熱可塑性樹脂であることを特徴とする請求項2記載の正特性サーミスタ装置の製造方法。  3. The method of manufacturing a positive temperature coefficient thermistor device according to claim 2, wherein the second insulating resin is a thermoplastic resin.
JP2009086517A 2009-03-31 2009-03-31 Method for manufacturing positive temperature coefficient thermistor device Active JP5203278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009086517A JP5203278B2 (en) 2009-03-31 2009-03-31 Method for manufacturing positive temperature coefficient thermistor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009086517A JP5203278B2 (en) 2009-03-31 2009-03-31 Method for manufacturing positive temperature coefficient thermistor device

Publications (2)

Publication Number Publication Date
JP2010238983A JP2010238983A (en) 2010-10-21
JP5203278B2 true JP5203278B2 (en) 2013-06-05

Family

ID=43093042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009086517A Active JP5203278B2 (en) 2009-03-31 2009-03-31 Method for manufacturing positive temperature coefficient thermistor device

Country Status (1)

Country Link
JP (1) JP5203278B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130129924A (en) 2010-10-25 2013-11-29 아사히 가라스 가부시키가이샤 Organic el device, translucent substrate, and method for manufacturing organic el device
CN110911073B (en) * 2019-11-14 2021-04-23 深圳顺络电子股份有限公司 Laminated chip piezoresistor and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132101A (en) * 1987-11-18 1989-05-24 Murata Mfg Co Ltd Positive temperature coefficient thermistor device
JP2008251692A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Heat sensitive element, battery pack and electronic device equipped with the same, and manufacturing method of heat sensitive element

Also Published As

Publication number Publication date
JP2010238983A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
US10475688B2 (en) Electrostatic chuck device, and semiconductor manufacturing device
JP2011527494A (en) Heating apparatus and manufacturing method thereof
US20190137850A1 (en) Camera module with heating element
JP5203278B2 (en) Method for manufacturing positive temperature coefficient thermistor device
JP2010541263A (en) Surge arrester
JP2015097204A5 (en)
EP1677577A2 (en) Self-regulating heater assembly and method of manufacturing same
US10332680B2 (en) Composite electronic component
KR101819812B1 (en) Defroster and vehicle having the same
JP5737272B2 (en) Semiconductor device
KR101110482B1 (en) Highly insulated characteristics negative temperature coefficient thermistor
JP3122003U (en) Heating device used for electric mosquito trap
JP6865945B2 (en) heater
CN113411924A (en) Electric heating device and method for manufacturing the same
JP5587484B1 (en) Planar heater and method for manufacturing the planar heater
JP2590766Y2 (en) Planar heater
EP3073801A1 (en) Integrally formed heater
JP6465347B2 (en) Resin-sealed electronic components
JPH03155353A (en) Small d.c. motor
KR101706360B1 (en) Ptc heater device
JP7301427B2 (en) Insulated heaters and heater devices
KR101189853B1 (en) Circuit protection element of ceramic radiant heat structure
CN113170537B (en) Electric heater for storage tank
JP2559023Y2 (en) Underwater heater
JPH0778675A (en) Cartridge heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5203278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250