JP5202475B2 - Mold vacuum valve - Google Patents

Mold vacuum valve Download PDF

Info

Publication number
JP5202475B2
JP5202475B2 JP2009195817A JP2009195817A JP5202475B2 JP 5202475 B2 JP5202475 B2 JP 5202475B2 JP 2009195817 A JP2009195817 A JP 2009195817A JP 2009195817 A JP2009195817 A JP 2009195817A JP 5202475 B2 JP5202475 B2 JP 5202475B2
Authority
JP
Japan
Prior art keywords
fixed
electric field
movable
field relaxation
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009195817A
Other languages
Japanese (ja)
Other versions
JP2011048998A (en
Inventor
純一 佐藤
哲 塩入
修 阪口
治 多賀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009195817A priority Critical patent/JP5202475B2/en
Publication of JP2011048998A publication Critical patent/JP2011048998A/en
Application granted granted Critical
Publication of JP5202475B2 publication Critical patent/JP5202475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

本発明は、接離自在の一対の接点を有する真空バルブをエポキシ樹脂のような絶縁材料でモールドし、外周に絶縁層を形成したモールド真空バルブに関する。   The present invention relates to a molded vacuum valve in which a vacuum valve having a pair of contactable and separable contacts is molded with an insulating material such as an epoxy resin, and an insulating layer is formed on the outer periphery.

従来、エポキシ樹脂でモールドした真空バルブにおいては、真空バルブを構成する封着金具端が鋭角であり、電界強度が上昇するため、これを覆うような電界緩和シールドを設けたものが知られている(例えば、特許文献1参照。)。   Conventionally, in a vacuum valve molded with an epoxy resin, since the end of a sealing fitting constituting the vacuum valve has an acute angle and the electric field strength is increased, an electric field relaxation shield that covers this is known. (For example, refer to Patent Document 1).

この種のモールド真空バルブを図5に示すが、筒状のセラミックスからなる真空絶縁容器1の両端開口部には、固定側封着金具2と可動側封着金具3が封着されている。固定側封着金具2には、固定側通電軸4が貫通固定され、端部に固定側接点5が固着されている。固定側接点5に対向して可動側接点6が可動側封着金具3を移動自在に貫通する可動側通電軸7の端部に固着されている。   A mold vacuum valve of this type is shown in FIG. 5, and a fixed-side sealing metal fitting 2 and a movable-side sealing metal fitting 3 are sealed at both ends of a vacuum insulating container 1 made of cylindrical ceramics. A fixed-side energizing shaft 4 is fixed through the fixed-side sealing metal fitting 2, and a fixed-side contact 5 is fixed to the end. The movable contact 6 is fixed to the end of the movable energizing shaft 7 that movably penetrates the movable sealing fitting 3 so as to face the fixed contact 5.

可動側通電軸7の中間部には、伸縮自在のベローズ8の一方端が封着されている。他方端は、可動側封着金具3の開口部に封着されている。なお、接点5、6を包囲するように設けられた筒状のアークシールド9が真空絶縁容器1内面に固定されている。   One end of a telescopic bellows 8 is sealed at an intermediate portion of the movable energizing shaft 7. The other end is sealed in the opening of the movable side sealing fitting 3. A cylindrical arc shield 9 provided so as to surround the contacts 5 and 6 is fixed to the inner surface of the vacuum insulating container 1.

固定側封着金具2には、その外周端部を覆うような椀状の固定側電界緩和シールド10が固定されている。固定側電界緩和シールド10の先端部は、真空絶縁容器1端部とラップするまで伸びている。また、可動側封着金具3にも、その外周端部を覆うような椀状の可動側電界緩和シールド11が固定されている。可動側電界緩和シールド11の先端部も、真空絶縁容器1端部とラップするまで伸びている。電界緩和シールド10、11は、一般的に、加工性のよい銅材が用いられる。   A hook-shaped fixed-side electric field relaxation shield 10 is fixed to the fixed-side sealing fitting 2 so as to cover the outer peripheral end portion thereof. The distal end portion of the fixed-side electric field relaxation shield 10 extends until it wraps with the end portion of the vacuum insulating container 1. In addition, a hook-like movable-side electric field relaxation shield 11 is fixed to the movable-side sealing metal fitting 3 so as to cover the outer peripheral end portion thereof. The distal end portion of the movable side electric field relaxation shield 11 also extends until it wraps with the end portion of the vacuum insulating container 1. The electric field relaxation shields 10 and 11 are generally made of a copper material having good workability.

真空絶縁容器1と電界緩和シールド10、11の外周には、エポキシ樹脂でモールドして形成した絶縁層12が設けられている。絶縁層12の外周には、導電性塗料を塗布して形成した接地層13が設けられている。絶縁層12の固定側の軸方向は凹状の界面接続部14となっており、また、可動側は凸状の界面接続部15となっており、他の電気機器と接続される。   An insulating layer 12 formed by molding with an epoxy resin is provided on the outer periphery of the vacuum insulating container 1 and the electric field relaxation shields 10 and 11. On the outer periphery of the insulating layer 12, a ground layer 13 formed by applying a conductive paint is provided. The axial direction on the fixed side of the insulating layer 12 is a concave interface connecting portion 14, and the movable side is a convex interface connecting portion 15, which is connected to other electrical devices.

特開2005−276472号公報 (第4ページ、図1)JP 2005-276472 A (page 4, FIG. 1)

上記の従来のモールド真空バルブにおいては、次のような問題がある。固定側電界緩和シールド10および可動側電界緩和シールド11により、固定側封着金具2および可動側封着金具3の端部の電界緩和を図ることができる。電界緩和シールド10、11は、半径方向に広がった後、軸方向に略90度曲折され、先端部が真空絶縁容器1とラップするまで伸びている。即ち、電界緩和シールド10、11は、断面L字状であり、軸方向に伸びた部分が真空絶縁容器1と同軸状の配置となる。   The above-described conventional mold vacuum valve has the following problems. The fixed-side electric field relaxation shield 10 and the movable-side electric field relaxation shield 11 can reduce the electric field at the ends of the fixed-side sealing metal fitting 2 and the movable-side sealing metal fitting 3. The electric field relaxation shields 10 and 11 expand in the radial direction, then bend approximately 90 degrees in the axial direction, and extend until the tip ends overlap with the vacuum insulating container 1. That is, the electric field relaxation shields 10 and 11 have an L-shaped cross section, and the portions extending in the axial direction are arranged coaxially with the vacuum insulating container 1.

このため、真空絶縁容器1と、電界緩和シールド10、11が軸方向に伸びた部分との間の絶縁層12は、断面矩形状となり、内周と外周とが拘束されることになる。真空絶縁容器1と電界緩和シールド10、11および絶縁層12は、いずれも異なった材料からなり、熱膨張率が異なる。このため、モールド時や使用環境などによって温度変化が生じると、拘束された絶縁層12内で応力が発生し、絶縁層12が真空絶縁容器1や電界緩和シールド10、11から剥離することがある。また、絶縁層12にクラックが生じることがある。更には、電界緩和シールド10、11先端部の電界緩和が不充分であると、この部分から絶縁劣化を起こすことになる。   For this reason, the insulating layer 12 between the vacuum insulating container 1 and the portion where the electric field relaxation shields 10 and 11 extend in the axial direction has a rectangular cross section, and the inner periphery and the outer periphery are constrained. The vacuum insulating container 1, the electric field relaxation shields 10, 11 and the insulating layer 12 are all made of different materials and have different thermal expansion coefficients. For this reason, when a temperature change occurs during molding or the usage environment, stress is generated in the constrained insulating layer 12, and the insulating layer 12 may be peeled off from the vacuum insulating container 1 or the electric field relaxation shields 10 and 11. . In addition, cracks may occur in the insulating layer 12. Furthermore, if the electric field relaxation at the tips of the electric field relaxation shields 10 and 11 is insufficient, insulation deterioration occurs from this portion.

このため、電界緩和シールド10、11と絶縁層12との接着力を向上させ、剥離などを抑制するとともに、先端部の電界緩和を図り、優れた絶縁性能を発揮し得るものが望まれていた。   For this reason, what improved the adhesive force of the electric field relaxation shields 10 and 11 and the insulating layer 12, suppressed peeling, etc., aimed at the electric field relaxation of the front-end | tip part, and the thing which can exhibit the outstanding insulation performance was desired. .

本発明は上記問題を解決するためになされたもので、電界緩和シールドと絶縁層との接着力を向上させ、先端部の電界緩和を図ることができるモールド真空バルブを提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a mold vacuum valve capable of improving the adhesion between the electric field relaxation shield and the insulating layer and reducing the electric field at the tip. .

上記目的を達成するために、本発明のモールド真空バルブは、筒状の真空絶縁容器と、前記真空絶縁容器の両端開口部に封着された固定側封着金具および可動側封着金具と、前記固定側封着金具に貫通固定された固定側通電軸と、前記固定側通電軸端に固着された固定側接点と、前記固定側接点と接離する可動側接点と、前記可動側接点を固着するとともに、前記可動側封着金具を気密のもとに貫通する可動側通電軸と、前記固定側封着金具の外周端部を覆うように設けられた固定側電界緩和シールドと、前記可動側封着金具の外周端部を覆うように設けられた可動側電界緩和シールドと、前記真空絶縁容器および前記電界緩和シールドの外周に絶縁材料をモールドして形成した絶縁層とを具備し、前記電界緩和シールドは、それぞれ半径方向に広がる半径方向部と軸方向に伸びる軸方向部と先端部とで構成され、前記半径方向部および前記軸方向部よりも前記先端部の表面粗さを細かくしたことを特徴とする。   In order to achieve the above object, the mold vacuum valve of the present invention includes a cylindrical vacuum insulation container, a fixed-side sealing metal fitting and a movable-side sealing metal fitting sealed at both ends of the vacuum insulation container, A fixed-side energizing shaft that is fixed through the fixed-side sealing metal fitting, a fixed-side contact that is fixed to the fixed-side energizing shaft end, a movable-side contact that is in contact with and away from the fixed-side contact, and the movable-side contact. The movable-side energizing shaft that sticks and penetrates the movable-side sealing fitting in an airtight manner, the fixed-side electric field relaxation shield provided so as to cover the outer peripheral end of the fixed-side sealing fitting, and the movable A movable-side electric field relaxation shield provided so as to cover an outer peripheral end of the side sealing metal fitting, and an insulating layer formed by molding an insulating material on the outer periphery of the vacuum insulating container and the electric field relaxation shield, Each electric field relaxation shield is radial It is composed of an axial and distal ends extending radially portion and axially extending, than said radial portion and the axial portion, characterized in that finely the surface roughness of the tip.

本発明によれば、電界緩和シールドと絶縁層との接着力を向上させることができ、また、電界緩和シールド先端部の電界緩和を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the adhesive force of an electric field relaxation shield and an insulating layer can be improved, and the electric field relaxation of an electric field relaxation shield front-end | tip part can be aimed at.

本発明の実施例1に係るモールド真空バルブの構成を示す断面図。Sectional drawing which shows the structure of the mold vacuum valve which concerns on Example 1 of this invention. 本発明の実施例1に係る電界緩和シールドの構成を示す要部拡大断面図。The principal part expanded sectional view which shows the structure of the electric field relaxation shield which concerns on Example 1 of this invention. 本発明の実施例2に係るモールド真空バルブの構成を示す要部拡大断面図。The principal part expanded sectional view which shows the structure of the mold vacuum valve which concerns on Example 2 of this invention. 本発明の実施例3に係るモールド真空バルブの構成を示す要部拡大断面図。The principal part expanded sectional view which shows the structure of the mold vacuum valve which concerns on Example 3 of this invention. 従来方法によるモールド真空バルブの構成を示す断面図。Sectional drawing which shows the structure of the mold vacuum valve by a conventional method.

封着金具に設けられる電界緩和シールドを、半径方向部、軸方向部および先端部で構成し、先端部の表面粗さを軸方向部などよりも細かくするものである。以下、図面を参照して本発明による実施例を説明する。   The electric field relaxation shield provided on the sealing metal fitting is composed of a radial portion, an axial portion, and a tip portion, and the surface roughness of the tip portion is made finer than that of the axial portion. Embodiments according to the present invention will be described below with reference to the drawings.

先ず、本発明の実施例1に係るモールド真空バルブを図1、図2を参照して説明する。図1は、本発明の実施例1に係るモールド真空バルブの構成を示す断面図、図2は、本発明の実施例1に係る電界緩和シールドの構成を示す要部拡大断面図である。なお、図1において、従来と同様の構成部分については、同一符号を付した。   First, a mold vacuum valve according to Example 1 of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing a configuration of a mold vacuum valve according to Embodiment 1 of the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part showing a configuration of an electric field relaxation shield according to Embodiment 1 of the present invention. In FIG. 1, the same components as those in the prior art are denoted by the same reference numerals.

図1に示すように、筒状のセラミックスからなる真空絶縁容器1の両端開口部には、固定側封着金具2と可動側封着金具3が封着されている。固定側封着金具2には、固定側通電軸4が貫通固定され、端部に固定側接点5が固着されている。固定側接点5に対向して可動側接点6が可動側封着金具3を移動自在に貫通する可動側通電軸7の端部に固着されている。   As shown in FIG. 1, a fixed-side sealing metal fitting 2 and a movable-side sealing metal fitting 3 are sealed at both end openings of a vacuum insulating container 1 made of cylindrical ceramics. A fixed-side energizing shaft 4 is fixed through the fixed-side sealing metal fitting 2, and a fixed-side contact 5 is fixed to the end. The movable contact 6 is fixed to the end of the movable energizing shaft 7 that movably penetrates the movable sealing fitting 3 so as to face the fixed contact 5.

可動側通電軸7の中間部には、伸縮自在のベローズ8の一方端が封着されている。他方端は、可動側封着金具3の開口部に封着されている。これにより、真空絶縁容器1内の真空を保ちながら、可動側通電軸7を軸方向に移動させることができる。なお、接点5、6を包囲するように設けられた筒状のアークシールド9が真空絶縁容器1内面に固定されている。   One end of a telescopic bellows 8 is sealed at an intermediate portion of the movable energizing shaft 7. The other end is sealed in the opening of the movable side sealing fitting 3. Thereby, the movable energizing shaft 7 can be moved in the axial direction while maintaining the vacuum in the vacuum insulating container 1. A cylindrical arc shield 9 provided so as to surround the contacts 5 and 6 is fixed to the inner surface of the vacuum insulating container 1.

固定側封着金具2には、その外周端部を覆うような椀状の固定側電界緩和シールド20が固定されている。固定側電界緩和シールド20は、半径方向に広がった半径方向20aと、半径方向部20aに連接され軸方向に曲折した軸方向部20bと、軸方向部20bに連接された断面球状の先端部20cとで構成されている。先端部20cは、真空絶縁容器1端部とラップするまで伸びている。先端部20cの直径は、軸方向部20bの厚さよりも大きい。   A hook-shaped fixed-side electric field relaxation shield 20 is fixed to the fixed-side sealing fitting 2 so as to cover the outer peripheral end portion thereof. The fixed-side electric field relaxation shield 20 includes a radial direction 20a spreading in the radial direction, an axial direction portion 20b connected to the radial direction portion 20a and bent in the axial direction, and a tip 20c having a spherical section connected to the axial direction portion 20b. It consists of and. The tip 20c extends until it wraps with the end of the vacuum insulating container 1. The diameter of the tip portion 20c is larger than the thickness of the axial portion 20b.

可動側封着金具3にも、固定側と同様に、外周端部を覆うような椀状の可動側電界緩和シールド21が固定されている。可動側電界緩和シールド21も半径方向に広がった半径方向21aと、半径方向部21aに連接され軸方向に曲折した軸方向部21bと、軸方向部21bに連接された断面球状の先端部21cとで構成されている。先端部21cも、真空絶縁容器1端部とラップするまで伸びており、固定側の先端部20cと所定の絶縁距離を保って離間している。   Similarly to the fixed side, a hook-shaped movable-side electric field relaxation shield 21 that covers the outer peripheral end portion is also fixed to the movable-side sealing fitting 3. The movable-side electric field relaxation shield 21 also has a radial direction 21a spreading in the radial direction, an axial direction portion 21b connected to the radial direction portion 21a and bent in the axial direction, and a tip end portion 21c having a spherical section connected to the axial direction portion 21b. It consists of The distal end portion 21c also extends until it wraps with the end portion of the vacuum insulating container 1, and is spaced apart from the stationary distal end portion 20c while maintaining a predetermined insulation distance.

これらの真空絶縁容器1と電界緩和シールド20、21の外周には、エポキシ樹脂でモールドして形成した絶縁層12が設けられている。絶縁層12の外周には、導電性塗料を塗布して形成した接地層13が設けられている。絶縁層12の固定側の軸方向は凹状の界面接続部14となっており、また、可動側は凸状の界面接続部15となっており、他の電気機器と接続される。   An insulating layer 12 formed by molding with an epoxy resin is provided on the outer periphery of the vacuum insulating container 1 and the electric field relaxation shields 20 and 21. On the outer periphery of the insulating layer 12, a ground layer 13 formed by applying a conductive paint is provided. The axial direction on the fixed side of the insulating layer 12 is a concave interface connecting portion 14, and the movable side is a convex interface connecting portion 15, which is connected to other electrical devices.

ここで、電界緩和シールド20、21は、図2に示すように、半径方向部20a、21aおよび軸方向部20b、21bが、例えばサンドブラスト処理により凸凹状となっている。先端部20c、21cは、これよりも細かい粗さの鏡面仕上げ相当となっている。半径方向部20a、21aなどの表面粗さは、絶縁層12の熱膨張率を吸収する大きさとしている。   Here, as shown in FIG. 2, in the electric field relaxation shields 20 and 21, the radial direction portions 20a and 21a and the axial direction portions 20b and 21b are uneven, for example, by sandblasting. The tip portions 20c and 21c are equivalent to a mirror finish with a finer roughness than this. The surface roughness of the radial direction portions 20a, 21a, etc. is set to a size that absorbs the thermal expansion coefficient of the insulating layer 12.

例えば、電界緩和シールド20、21を銅材とすると、熱膨張率が16×10−6/℃であり、エポキシ樹脂の熱膨張率20×10−6/℃よりも小さい。このため、この差に温度変化を乗じたものがエポキシ樹脂に加わる応力となる。従って、半径方向部20a、21aなどの表面粗さは、この応力を分散させるため、熱膨張率の差と温度変化と数10mmの絶縁厚さを乗じた大きさ以上の数10μmとしている。 For example, when the electric field relaxation shields 20 and 21 are made of copper, the coefficient of thermal expansion is 16 × 10 −6 / ° C., which is smaller than the coefficient of thermal expansion of epoxy resin 20 × 10 −6 / ° C. For this reason, the product of this difference multiplied by the temperature change is the stress applied to the epoxy resin. Accordingly, the surface roughness of the radial direction portions 20a, 21a, etc. is set to several tens of μm which is equal to or larger than the size obtained by multiplying the difference in thermal expansion coefficient, temperature change, and insulation thickness of several tens of millimeters in order to disperse this stress.

なお、電界緩和シールド20、21または絶縁層12の材質を変え、電界緩和シールド20、21の熱膨張率が絶縁層12よりも大きくなっても、応力の方向が圧縮から引張りに変わるだけであり、応力分散を行うことができる。また、半径方向部20a、21aおよび軸方向部20b、21bは、アンカー効果も加わり、接着力を向上させることができる。   Even if the material of the electric field relaxation shields 20 and 21 or the insulating layer 12 is changed and the coefficient of thermal expansion of the electric field relaxation shields 20 and 21 is larger than that of the insulating layer 12, the direction of the stress only changes from compression to tension. , Stress distribution can be performed. Moreover, the radial direction parts 20a and 21a and the axial direction parts 20b and 21b can add an anchor effect, and can improve adhesive force.

先端部20c、21cは、電界強度が最も高くなる部分であり、表面粗さを数μm以下としている。個々の凸凹状の部分では、ミクロ的に見れば電界強度が上昇するものの、先端部20c、21c全体で見ると、コロナ安定化作用が働き、結果的に電界緩和を行うことができる。表面粗さは細かく、単位面積あたりに凸凹状が多いほど、コロナ安定化作用が働き易くなる。先端部20c、21cは、断面球状でこの形状自体でも電界緩和を図ることができるが、コロナ安定化作用で更なる電界緩和を図ることができる。   The tip portions 20c and 21c are portions where the electric field strength is highest, and the surface roughness is set to several μm or less. In each of the uneven portions, the electric field strength increases when viewed microscopically, but when viewed from the entire tip portions 20c and 21c, the corona stabilizing action works, and as a result, the electric field can be relaxed. The surface roughness is fine, and the more unevenness per unit area, the easier the corona stabilization effect will work. The tip portions 20c and 21c are spherical in cross section, and this shape itself can reduce the electric field, but further electric field relaxation can be achieved by the corona stabilizing action.

なお、真空絶縁容器1表面にも、少なくとも軸方向部20b、21bから先端部20c、21cまでの領域と対向する部分に、半径方向部20a、21bなどと同様の表面粗さのサンドブラスト処理を行っても接着力を向上させることができる。   The surface of the vacuum insulating container 1 is also subjected to sand blasting with a surface roughness similar to that of the radial direction portions 20a, 21b, etc., at least on the portion facing the region from the axial direction portions 20b, 21b to the tip portions 20c, 21c. However, the adhesive force can be improved.

上記実施例1のモールド真空バルブによれば、封着金具2、3に設ける電界緩和シールド20、21を半径方向に広がる半径方向部20a、21aと、軸方向に伸びる軸方向部20b、21bと、断面球状の先端部20c、21cで構成し、半径方向部20a、21aおよび軸方向部20b、21bよりも先端部20c、21cの表面粗さを細かくしているので、半径方向部20a、21aおよび軸方向部20b、21bでは応力分散が行われて接着力が増し、先端部20c、21cではコロナ安定化作用が働き電界緩和を図ることができる。   According to the mold vacuum valve of Example 1 described above, the electric field relaxation shields 20 and 21 provided on the sealing fittings 2 and 3 are radially extended from the radial portions 20a and 21a, and the axial portions 20b and 21b are extended in the axial direction. The tip portions 20c and 21c having a spherical cross section are formed, and the surface roughness of the tip portions 20c and 21c is made finer than that of the radial direction portions 20a and 21a and the axial direction portions 20b and 21b. In addition, the stress distribution is performed in the axial direction portions 20b and 21b to increase the adhesive force, and the corona stabilizing action acts on the distal end portions 20c and 21c, so that the electric field can be reduced.

次に、本発明の実施例2に係るモールド真空バルブを図3を参照して説明する。図3は、本発明の実施例2に係るモールド真空バルブの構成を示す要部拡大断面図である。なお、この実施例2が実施例1と異なる点は、電界緩和シールド軸方向部の形状である。図3において、実施例1と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。なお、固定側と可動側とは同様形状であるので、固定側を用いて説明する。   Next, a mold vacuum valve according to a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is an enlarged cross-sectional view showing a main part of the configuration of the mold vacuum valve according to the second embodiment of the present invention. The second embodiment is different from the first embodiment in the shape of the electric field relaxation shield axial direction portion. In FIG. 3, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. Since the fixed side and the movable side have the same shape, description will be made using the fixed side.

図3に示すように、固定側電界緩和シールド20の軸方向部20bの両側面には、環状の複数の溝20b1を設けている。溝20b1の幅および深さは数100μm以上であり、下地の表面粗さよりも大きい。これは、一般的に、モールド真空バルブの軸方向の絶縁厚さが半径方向よりも大きいので、軸方向の応力が大きくなるためである。これにより、特に、軸方向の応力分散を行うことができる。   As shown in FIG. 3, a plurality of annular grooves 20 b 1 are provided on both side surfaces of the axial portion 20 b of the fixed-side electric field relaxation shield 20. The width and depth of the groove 20b1 are several hundreds μm or more, which is larger than the surface roughness of the base. This is because, in general, since the axial insulation thickness of the mold vacuum valve is larger than that in the radial direction, the axial stress increases. Thereby, in particular, axial stress distribution can be performed.

上記実施例2のモールド真空バルブによれば、実施例1による効果のほかに、軸方向の応力分散を更に図ることができる。   According to the mold vacuum valve of the second embodiment, in addition to the effects of the first embodiment, the axial stress distribution can be further achieved.

次に、本発明の実施例3に係るモールド真空バルブを図4を参照して説明する。図4は、本発明の実施例3に係るモールド真空バルブの構成を示す要部拡大断面図である。なお、この実施例3が実施例2と異なる点は、電界緩和シールド先端部の形状である。図4において、実施例2と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。   Next, a mold vacuum valve according to Example 3 of the present invention will be described with reference to FIG. FIG. 4 is an enlarged cross-sectional view of a main part showing the configuration of the mold vacuum valve according to Example 3 of the present invention. The third embodiment is different from the second embodiment in the shape of the electric field relaxation shield tip. In FIG. 4, the same components as those in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に示すように、固定側電界緩和シールド20の先端部20cを断面楕円状としている。楕円状の長円側を軸方向と並行に配置し、接地層13と対向する部分の曲率半径を大きくしている。   As shown in FIG. 4, the front end portion 20c of the fixed-side electric field relaxation shield 20 has an elliptical cross section. The elliptical ellipse side is arranged in parallel with the axial direction, and the radius of curvature of the portion facing the ground layer 13 is increased.

上記実施例3のモールド真空バルブによれば、実施例2による効果のほかに、最短絶縁距離となる接地層13間の電界緩和を図ることができる。   According to the mold vacuum valve of the third embodiment, in addition to the effects of the second embodiment, it is possible to reduce the electric field between the ground layers 13 that is the shortest insulation distance.

1 真空絶縁容器
2 固定側封着金具
3 可動側封着金具
4 固定側通電軸
5 固定側接点
6 可動側接点
7 可動側通電軸
8 ベローズ
9 アークシールド
10、20 固定側電界緩和シールド
11、21 可動側電界緩和シールド
12 絶縁層
13 接地層
14、15 界面接続部
20a、21a 半径方向部
20b、21b 軸方向部
20b1 溝
20c、21c 先端部
DESCRIPTION OF SYMBOLS 1 Vacuum insulating container 2 Fixed side sealing metal fitting 3 Movable side sealing metal fitting 4 Fixed side energizing shaft 5 Fixed side contact 6 Movable side contact 7 Movable side energizing shaft 8 Bellows 9 Arc shield 10, 20 Fixed side electric field relaxation shield 11, 21 Movable-side electric field relaxation shield 12 Insulating layer 13 Ground layers 14 and 15 Interface connection portions 20a and 21a Radial direction portions 20b and 21b Axial direction portions 20b1 Grooves 20c and 21c Tip portions

Claims (4)

筒状の真空絶縁容器と、
前記真空絶縁容器の両端開口部に封着された固定側封着金具および可動側封着金具と、
前記固定側封着金具に貫通固定された固定側通電軸と、
前記固定側通電軸端に固着された固定側接点と、
前記固定側接点と接離する可動側接点と、
前記可動側接点を固着するとともに、前記可動側封着金具を気密のもとに貫通する可動側通電軸と、
前記固定側封着金具の外周端部を覆うように設けられた固定側電界緩和シールドと、
前記可動側封着金具の外周端部を覆うように設けられた可動側電界緩和シールドと、
前記真空絶縁容器および前記電界緩和シールドの外周に絶縁材料をモールドして形成した絶縁層とを具備し、
前記電界緩和シールドは、それぞれ半径方向に広がる半径方向部と軸方向に伸びる軸方向部と先端部とで構成され、前記半径方向部および前記軸方向部よりも前記先端部の表面粗さを細かくしたことを特徴とするモールド真空バルブ。
A tubular vacuum insulated container;
A fixed-side sealing metal fitting and a movable-side sealing metal fitting sealed at both ends of the vacuum insulating container; and
A fixed-side energizing shaft that is fixedly penetrated to the fixed-side sealing fitting;
A fixed-side contact fixed to the fixed-side energizing shaft end;
A movable contact that contacts and separates from the fixed contact;
A movable side energizing shaft that sticks the movable side contact and penetrates the movable side sealing fitting in an airtight manner,
A fixed-side electric field relaxation shield provided to cover an outer peripheral end of the fixed-side sealing metal fitting,
A movable-side electric field relaxation shield provided so as to cover an outer peripheral end of the movable-side sealing metal fitting,
Comprising an insulating layer formed by molding an insulating material on the outer periphery of the vacuum insulating container and the electric field relaxation shield,
Each of the electric field relaxation shields includes a radial portion extending in the radial direction, an axial direction portion extending in the axial direction, and a tip portion, and the surface roughness of the tip portion is finer than that in the radial direction portion and the axial portion. Mold vacuum valve characterized by that.
前記軸方向部に複数の環状の溝を設けたことを特徴とする請求項1に記載のモールド真空バルブ。   The mold vacuum valve according to claim 1, wherein a plurality of annular grooves are provided in the axial direction portion. 前記先端部を断面球状とし、その直径を前記軸方向部の厚さよりも大きくしたことを特徴とする請求項1または請求項2に記載のモールド真空バルブ。   3. The mold vacuum valve according to claim 1, wherein the tip portion has a spherical shape in cross section and a diameter thereof is larger than a thickness of the axial direction portion. 前記先端部を断面楕円状とし、長円側を軸方向に配置したことを特徴とする請求項1または請求項2に記載のモールド真空バルブ。   3. The mold vacuum valve according to claim 1, wherein the tip end portion has an elliptical cross section and the ellipse side is disposed in the axial direction. 4.
JP2009195817A 2009-08-26 2009-08-26 Mold vacuum valve Active JP5202475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009195817A JP5202475B2 (en) 2009-08-26 2009-08-26 Mold vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195817A JP5202475B2 (en) 2009-08-26 2009-08-26 Mold vacuum valve

Publications (2)

Publication Number Publication Date
JP2011048998A JP2011048998A (en) 2011-03-10
JP5202475B2 true JP5202475B2 (en) 2013-06-05

Family

ID=43835139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195817A Active JP5202475B2 (en) 2009-08-26 2009-08-26 Mold vacuum valve

Country Status (1)

Country Link
JP (1) JP5202475B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138754A1 (en) * 2017-01-24 2018-08-02 三菱電機株式会社 Vacuum valve

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172038U (en) * 1987-04-28 1988-11-09
JP4402993B2 (en) * 2004-03-23 2010-01-20 株式会社東芝 Resin mold vacuum switch
JP4660303B2 (en) * 2005-07-12 2011-03-30 株式会社東芝 Solid insulation switchgear
JP4762802B2 (en) * 2006-06-27 2011-08-31 株式会社日立製作所 Vacuum switchgear
JP4940018B2 (en) * 2007-05-15 2012-05-30 株式会社東芝 Solid insulation switchgear
JP5171298B2 (en) * 2008-02-12 2013-03-27 株式会社東芝 Resin mold vacuum valve
JP5292225B2 (en) * 2009-08-26 2013-09-18 株式会社東芝 Mold vacuum valve
JP2011048996A (en) * 2009-08-26 2011-03-10 Toshiba Corp Molded vacuum valve

Also Published As

Publication number Publication date
JP2011048998A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP4686600B2 (en) Switchgear and manufacturing method thereof
JP5292225B2 (en) Mold vacuum valve
JP5202475B2 (en) Mold vacuum valve
JP4886531B2 (en) Cast insulator and method of manufacturing the same
JP4660303B2 (en) Solid insulation switchgear
JP5197065B2 (en) Vacuum valve
JP5175516B2 (en) Vacuum valve
JP6250965B2 (en) Resin insulated vacuum valve
JP5134521B2 (en) Electrical equipment connection device
JP5171298B2 (en) Resin mold vacuum valve
JP5475601B2 (en) Vacuum valve
JP5026390B2 (en) Electromagnetic forming method
JP5914258B2 (en) Epoxy unit and polymer sleeve
JP4402993B2 (en) Resin mold vacuum switch
JP2011060532A (en) Molded vacuum valve
JP6130633B2 (en) Resin mold vacuum valve
JP2010177107A (en) Cable connector
JP6575341B2 (en) Insulation structure and insulation member
JP2011048996A (en) Molded vacuum valve
JP2013109915A (en) Composite insulator
JP6157771B1 (en) Electrical equipment connection device
JP6716209B2 (en) Epoxy resin insulation vacuum valve
JP4939989B2 (en) Cast insulation
JP2022128719A (en) Power cable connection device
JP5548567B2 (en) Epoxy bushing

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

R151 Written notification of patent or utility model registration

Ref document number: 5202475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3