JP5202138B2 - Ultrasonic diagnostic equipment - Google Patents

Ultrasonic diagnostic equipment Download PDF

Info

Publication number
JP5202138B2
JP5202138B2 JP2008174114A JP2008174114A JP5202138B2 JP 5202138 B2 JP5202138 B2 JP 5202138B2 JP 2008174114 A JP2008174114 A JP 2008174114A JP 2008174114 A JP2008174114 A JP 2008174114A JP 5202138 B2 JP5202138 B2 JP 5202138B2
Authority
JP
Japan
Prior art keywords
signal
transmission
reception
transmission signal
ultrasonic diagnostic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008174114A
Other languages
Japanese (ja)
Other versions
JP2010011992A (en
Inventor
政光 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Aloka Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Aloka Medical Ltd filed Critical Hitachi Aloka Medical Ltd
Priority to JP2008174114A priority Critical patent/JP5202138B2/en
Publication of JP2010011992A publication Critical patent/JP2010011992A/en
Application granted granted Critical
Publication of JP5202138B2 publication Critical patent/JP5202138B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超音波診断装置に関し、特に、連続波を利用する超音波診断装置に関する。   The present invention relates to an ultrasonic diagnostic apparatus, and more particularly to an ultrasonic diagnostic apparatus using a continuous wave.

超音波診断装置の連続波を利用した技術として、連続波ドプラが知られている。連続波ドプラでは、例えば、数MHzの正弦波である送信波が生体内へ連続的に放射され、生体内からの反射波が連続的に受波される。反射波には、生体内における運動体(例えば血流など)によるドプラシフト情報が含まれる。そこで、そのドプラシフト情報を抽出して周波数解析することにより、運動体の速度情報を反映させたドプラ波形などを形成することができる。   A continuous wave Doppler is known as a technique using a continuous wave of an ultrasonic diagnostic apparatus. In continuous wave Doppler, for example, a transmission wave that is a sine wave of several MHz is continuously emitted into the living body, and a reflected wave from the living body is continuously received. The reflected wave includes Doppler shift information by a moving body (for example, blood flow) in the living body. Therefore, by extracting the Doppler shift information and performing frequency analysis, a Doppler waveform reflecting the velocity information of the moving body can be formed.

連続波を利用した超音波診断装置においては、送信系から受信系への信号等の漏洩が無視できない。例えば、音響的あるいは電気的な影響により送信系から受信系へ信号等が漏洩すると、受信信号に比較的大きな不要信号成分が含まれてしまい、微弱なドプラ信号を抽出するうえで好ましくない。   In an ultrasonic diagnostic apparatus using a continuous wave, leakage of a signal from the transmission system to the reception system cannot be ignored. For example, if a signal or the like leaks from the transmission system to the reception system due to acoustic or electrical influences, a relatively large unnecessary signal component is included in the reception signal, which is not preferable in extracting a weak Doppler signal.

そのため、受信信号に含まれる不要信号成分を低減することが望ましい。但し、その低減のために送受信系の回路規模や設計コストなどが増大することは好ましくない。   Therefore, it is desirable to reduce unnecessary signal components included in the received signal. However, it is not preferable that the circuit scale and design cost of the transmission / reception system increase due to the reduction.

ちなみに、特許文献1には、連続波ドプラモードにおいて、ディレイラインを用いることなく小さな回路規模で受信信号の整相加算を行う旨の技術が記載されている。   Incidentally, Patent Document 1 describes a technique for performing phasing addition of received signals with a small circuit scale without using a delay line in continuous wave Doppler mode.

特開2007−14456号公報JP 2007-14456 A

本発明は、上述した背景技術に鑑みて成されたものであり、その目的は、連続波を利用する超音波診断装置において比較的簡易な構成により不要信号成分を低減させる技術を提供することにある。   The present invention has been made in view of the above-described background art, and an object thereof is to provide a technique for reducing unnecessary signal components with a relatively simple configuration in an ultrasonic diagnostic apparatus using a continuous wave. is there.

上記目的を達成するために、本発明の好適な態様である超音波診断装置は、連続波の送信信号を出力する送信信号処理部と、送信信号に対応した超音波を生体に送波して生体からの反射波を受波することにより受信信号を得る送受波部と、送信信号に対して位相調整処理と振幅調整処理を施して得られる補正信号を受信信号に加えることにより、受信信号に含まれる不要信号成分を低減させた補正受信信号を得る補正処理部と、実質的に送信信号に等しい波形の参照信号を用いて補正受信信号に対して復調処理を施すことにより復調信号を得る受信信号処理部と、復調信号から生体内情報を抽出する生体内情報抽出部と、を有することを特徴とする。   In order to achieve the above object, an ultrasonic diagnostic apparatus according to a preferred aspect of the present invention includes a transmission signal processing unit that outputs a continuous wave transmission signal, and an ultrasonic wave corresponding to the transmission signal transmitted to a living body. A transmission / reception unit that obtains a reception signal by receiving a reflected wave from a living body, and a correction signal obtained by subjecting the transmission signal to phase adjustment processing and amplitude adjustment processing are added to the reception signal. A correction processing unit that obtains a corrected received signal in which unnecessary signal components included are reduced, and reception that obtains a demodulated signal by performing demodulation processing on the corrected received signal using a reference signal having a waveform substantially equal to the transmitted signal A signal processing unit and an in-vivo information extraction unit that extracts in-vivo information from the demodulated signal are provided.

望ましい態様において、前記送受波部は、送信信号に対応した超音波を生体に送波する送信用振動子と、生体からの反射波を受波することにより受信信号を得る受信用振動子と、を備え、前記補正処理部は、送信用振動子から受信用振動子への超音波の音響的な漏洩成分が低減されるように送信信号の振幅を調整し且つ送信信号の位相を反転させて前記補正信号を生成する、ことを特徴とする。   In a desirable aspect, the transmission / reception unit includes a transmission vibrator for transmitting an ultrasonic wave corresponding to a transmission signal to a living body, a receiving vibrator for obtaining a reception signal by receiving a reflected wave from the living body, The correction processing unit adjusts the amplitude of the transmission signal and inverts the phase of the transmission signal so that the acoustic leakage component of the ultrasonic wave from the transmission transducer to the reception transducer is reduced. The correction signal is generated.

望ましい態様において、前記補正処理部は、送信信号から受信信号への電気的な漏洩成分が低減されるように送信信号の振幅を調整し且つ送信信号の位相を反転させて前記補正信号を生成する、ことを特徴とする。   In a preferred aspect, the correction processing unit adjusts the amplitude of the transmission signal so as to reduce an electrical leakage component from the transmission signal to the reception signal, and inverts the phase of the transmission signal to generate the correction signal. It is characterized by that.

望ましい態様において、前記補正処理部は、生体の体表からの反射波成分が低減されるように送信信号の振幅を調整し且つ送信信号の位相を反転させて前記補正信号を生成することを特徴とする。   In a preferred aspect, the correction processing unit generates the correction signal by adjusting the amplitude of the transmission signal so as to reduce the reflected wave component from the body surface of the living body and inverting the phase of the transmission signal. And

本発明により、連続波を利用する超音波診断装置において比較的簡易な構成により不要信号成分を低減させることが可能になる。   According to the present invention, it is possible to reduce unnecessary signal components with a relatively simple configuration in an ultrasonic diagnostic apparatus using a continuous wave.

以下、本発明の好適な実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described.

図1には、本発明に係る超音波診断装置の好適な実施形態が示されており、図1はその全体構成を示す機能ブロック図である。送信用振動子10は生体内へ送信波を連続的に送波し、また、受信用振動子12は生体内からの反射波を連続的に受波する。このように、送信および受信がそれぞれ異なる振動子で行われて、いわゆる連続波ドプラ法による送受信が実行される。   FIG. 1 shows a preferred embodiment of an ultrasonic diagnostic apparatus according to the present invention, and FIG. 1 is a functional block diagram showing the overall configuration thereof. The transmitting vibrator 10 continuously transmits a transmission wave into the living body, and the receiving vibrator 12 continuously receives a reflected wave from the living body. In this way, transmission and reception are performed by different vibrators, and transmission / reception is performed by a so-called continuous wave Doppler method.

RF波発振器20は、例えば、一定周波数の正弦波であるRF波を出力する。本実施形態においては、このRF波が連続波の送信信号となる。   For example, the RF wave oscillator 20 outputs an RF wave that is a sine wave having a constant frequency. In the present embodiment, this RF wave becomes a continuous wave transmission signal.

なお、RF波に対して、周期的な信号に基づいて変調処理を施して連続波の送信信号を形成してもよい。例えば、図示しない変調信号発生器から供給される周期的な信号に基づいて、RF波発振器20から供給されるRF波に対して変調処理を施すことにより、連続波の送信信号が形成されてもよい。変調処理としては、周波数変調(FM)や位相変調(PM)などのアナログ変調処理と、周波数シフトキーイング(FSK)や位相シフトキーイング(PSK)などのデジタル変調処理が好適である。   Note that the RF wave may be modulated based on a periodic signal to form a continuous wave transmission signal. For example, even if a continuous wave transmission signal is formed by performing modulation processing on an RF wave supplied from the RF wave oscillator 20 based on a periodic signal supplied from a modulation signal generator (not shown). Good. As the modulation processing, analog modulation processing such as frequency modulation (FM) and phase modulation (PM) and digital modulation processing such as frequency shift keying (FSK) and phase shift keying (PSK) are suitable.

電力増幅器14は、連続波の送信信号を電力増幅して送信用振動子10に供給する。こうして、連続波の送信信号に対応する送信波が送信用振動子10から送波され、生体内からの反射波が連続的に受信用振動子12によって受波される。   The power amplifier 14 amplifies the power of the continuous wave transmission signal and supplies it to the transmission vibrator 10. In this way, the transmission wave corresponding to the continuous wave transmission signal is transmitted from the transmission vibrator 10, and the reflected wave from the living body is continuously received by the reception vibrator 12.

補正信号生成部22は、RF波発振器20から出力される連続波の送信信号に対して位相調整処理と振幅調整処理を施して補正信号Vcを生成する。連続波を利用した超音波診断装置においては、送信系から受信系への信号等の漏洩が無視できない。例えば音響的あるいは電気的な影響により送信系から受信系へ信号等が漏洩すると、受信信号に比較的大きな不要信号成分が含まれてしまい、微弱なドプラ信号を抽出するうえで好ましくない。   The correction signal generation unit 22 performs a phase adjustment process and an amplitude adjustment process on the continuous wave transmission signal output from the RF wave oscillator 20 to generate the correction signal Vc. In an ultrasonic diagnostic apparatus using a continuous wave, leakage of a signal from the transmission system to the reception system cannot be ignored. For example, if a signal or the like leaks from the transmission system to the reception system due to acoustic or electrical influences, a relatively large unnecessary signal component is included in the reception signal, which is not preferable for extracting a weak Doppler signal.

補正信号生成部22は、送信系から受信系への信号等の漏洩に伴う不要信号成分を低減させるための補正信号Vcを生成する。そして、受信用振動子12において得られた受信信号に対して、加算部24により補正信号Vcが加えられ、受信信号に含まれる不要信号成分が低減される。そのため、補正信号生成部22は、受信信号に含まれる不要信号成分をキャンセルできるように、位相調整と振幅調整を行って補正信号Vcを生成する。   The correction signal generation unit 22 generates a correction signal Vc for reducing an unnecessary signal component accompanying leakage of a signal or the like from the transmission system to the reception system. Then, the correction signal Vc is added to the reception signal obtained in the reception transducer 12 by the adding unit 24, and unnecessary signal components included in the reception signal are reduced. Therefore, the correction signal generation unit 22 performs the phase adjustment and the amplitude adjustment so as to cancel the unnecessary signal component included in the reception signal, and generates the correction signal Vc.

補正信号生成部22は、送信用振動子10から受信用振動子12への超音波の音響的な漏洩成分と、送受信回路内における送信信号から受信信号への電気的な漏洩成分と、生体の体表からの反射波成分と、が低減されるように送信信号の振幅を調整する。例えば、上記の音響的な漏洩成分と電気的な漏洩成分と体表からの反射波成分の3つの成分の合計からなる不要信号成分と比較して振幅の大きさが等しくなるように送信信号の振幅の大きさを調整する。もちろん、これら3つの成分のうちの1つの成分または2つの成分の合計を不要信号成分として、その不要信号成分と比較して振幅の大きさが等しくなるように送信信号の振幅の大きさを調整してもよい。   The correction signal generation unit 22 includes an acoustic leakage component of ultrasonic waves from the transmission transducer 10 to the reception transducer 12, an electrical leakage component from the transmission signal to the reception signal in the transmission / reception circuit, The amplitude of the transmission signal is adjusted so that the reflected wave component from the body surface is reduced. For example, the amplitude of the transmission signal is set to be equal to that of the unnecessary signal component consisting of the sum of the three components of the acoustic leakage component, the electrical leakage component, and the reflected wave component from the body surface. Adjust the amplitude. Of course, one of these three components or the sum of the two components is used as an unnecessary signal component, and the amplitude of the transmission signal is adjusted so that the amplitude is equal to that of the unnecessary signal component. May be.

送信用振動子10から受信用振動子12への超音波の音響的な漏洩成分と、送受信回路内における送信信号から受信信号への電気的な漏洩成分については、本超音波診断装置の装置構成に応じて決定される量であるため、例えば、設計上の理論的な予想や実験結果などに基づいてこれらの漏洩成分と同じ大きさの送信信号の振幅を決定してもよい。生体の体表からの反射波成分については、例えば標準的なファントムなどを利用した実験結果などに基づいて、その反射波成分と同じ大きさの送信信号の振幅を決定してもよい。   Regarding the acoustic leakage component of the ultrasonic wave from the transmission transducer 10 to the reception transducer 12 and the electrical leakage component from the transmission signal to the reception signal in the transmission / reception circuit, the configuration of this ultrasonic diagnostic apparatus Therefore, the amplitude of the transmission signal having the same magnitude as these leakage components may be determined on the basis of, for example, theoretical design predictions and experimental results. For the reflected wave component from the body surface of the living body, the amplitude of the transmission signal having the same magnitude as the reflected wave component may be determined based on, for example, an experimental result using a standard phantom or the like.

さらに、補正信号生成部22は、上述のように振幅が調整された送信信号の位相を反転させて補正信号Vcを生成する。つまり、送信信号の位相を180°だけずらして補正信号Vcを生成する。そして、受信用振動子12において得られた受信信号に対して、加算部24により補正信号Vcが加えられることにより、受信信号に含まれる不要信号成分と補正信号Vcとが相殺され、不要信号成分が低減される。望ましくは完全に不要信号成分が除去される。   Furthermore, the correction signal generation unit 22 generates the correction signal Vc by inverting the phase of the transmission signal whose amplitude is adjusted as described above. That is, the correction signal Vc is generated by shifting the phase of the transmission signal by 180 °. Then, the correction signal Vc is added by the adder 24 to the reception signal obtained in the reception transducer 12, so that the unnecessary signal component and the correction signal Vc included in the reception signal are canceled out, and the unnecessary signal component. Is reduced. Desirably, unnecessary signal components are completely removed.

なお、RF波発振器20から供給されるRF波に対して変調処理を施して連続波の送信信号が形成されている場合、補正信号生成部22は、変調処理された連続波の送信信号に対して位相調整処理と振幅調整処理を施して補正信号Vcを生成する。   When a modulation process is performed on the RF wave supplied from the RF wave oscillator 20 to form a continuous wave transmission signal, the correction signal generation unit 22 applies the modulation process to the continuous wave transmission signal. The correction signal Vc is generated by performing the phase adjustment process and the amplitude adjustment process.

前置増幅器16は、加算部24において不要信号成分が低減された受信信号に対して低雑音増幅等の受信処理を施し、受信RF信号を形成して受信ミキサ30へ出力する。受信ミキサ30は受信RF信号に対して直交検波を施して複素ベースバンド信号を生成する回路であり、2つのミキサ32,34で構成される。各ミキサは受信RF信号を所定の参照信号と混合する回路である。   The preamplifier 16 performs reception processing such as low noise amplification on the reception signal whose unnecessary signal component has been reduced in the adder 24, forms a reception RF signal, and outputs the reception RF signal to the reception mixer 30. The reception mixer 30 is a circuit that performs quadrature detection on the received RF signal to generate a complex baseband signal, and is composed of two mixers 32 and 34. Each mixer is a circuit that mixes the received RF signal with a predetermined reference signal.

受信ミキサ30の各ミキサに供給される参照信号は、送信信号に基づいて生成される。つまり、RF波発振器20から供給されるRF波がミキサ32に供給され、RF波発振器20から供給されるRF波がπ/2シフト回路26を介してミキサ34に供給される。π/2シフト回路26は、RF波の位相をπ/2だけ遅延させる回路である。   The reference signal supplied to each mixer of the reception mixer 30 is generated based on the transmission signal. That is, the RF wave supplied from the RF wave oscillator 20 is supplied to the mixer 32, and the RF wave supplied from the RF wave oscillator 20 is supplied to the mixer 34 via the π / 2 shift circuit 26. The π / 2 shift circuit 26 is a circuit that delays the phase of the RF wave by π / 2.

こうして、ミキサ32から同相信号成分(I信号成分)が出力され、ミキサ34から直交信号成分(Q信号成分)が出力される。そして、受信ミキサ30の後段に設けられるLPF(ローパスフィルタ)36,38によって、同相信号成分および直交信号成分の各々の高周波数成分がカットされて検波後の必要な帯域のみの復調信号が抽出される。   In this way, the in-phase signal component (I signal component) is output from the mixer 32, and the quadrature signal component (Q signal component) is output from the mixer 34. The high-frequency components of the in-phase signal component and the quadrature signal component are cut by LPFs (low-pass filters) 36 and 38 provided at the subsequent stage of the receiving mixer 30 and the demodulated signal only in the necessary band after detection is extracted. Is done.

なお、RF波発振器20から供給されるRF波に対して変調処理を施して連続波の送信信号が形成されている場合、受信ミキサ30の各ミキサに供給される参照信号は、変調処理された送信信号に基づいて生成される。この場合には、変調処理された連続波の送信信号に対して、生体内の目標位置の深さに応じた遅延量だけ遅延処理を施して参照信号が形成される。これにより、受信ミキサ30の各ミキサで実行される受信RF信号と参照信号との混合処理の結果として、目標位置からの受信信号成分を多く含んだ信号を得ることが可能になる。   When a continuous wave transmission signal is formed by performing modulation processing on the RF wave supplied from the RF wave oscillator 20, the reference signal supplied to each mixer of the reception mixer 30 is modulated. It is generated based on the transmission signal. In this case, a reference signal is formed by subjecting the modulated continuous wave transmission signal to delay processing corresponding to the depth of the target position in the living body. As a result, as a result of the mixing process of the reception RF signal and the reference signal executed by each mixer of the reception mixer 30, it is possible to obtain a signal including a large amount of reception signal components from the target position.

FFT回路(高速フーリエ変換回路)40,42は、復調信号(同相信号成分および直交信号成分)の各々に対してFFT演算を実行する。その結果、FFT回路40,42において復調信号が周波数スペクトラムに変換される。なお、FFT回路40,42から出力される周波数スペクトラムは、回路の設定条件などにより周波数分解能δfの周波数スペクトラムデータとして出力される。   FFT circuits (fast Fourier transform circuits) 40 and 42 perform an FFT operation on each demodulated signal (in-phase signal component and quadrature signal component). As a result, the demodulated signal is converted into a frequency spectrum in the FFT circuits 40 and 42. The frequency spectrum output from the FFT circuits 40 and 42 is output as frequency spectrum data with a frequency resolution δf depending on circuit setting conditions and the like.

ドプラ情報解析部44は、周波数スペクトラムに変換された復調信号からドプラ情報を抽出する。ドプラ情報解析部44は、例えば、生体内における血流などの移動体の速度を算出する。なお、RF波に対して変調処理を施して連続波の送信信号が形成されている場合には、目標位置からのドプラ情報が選択的に抽出される。この場合、ドプラ情報解析部44は、生体内の各深さ(各位置)ごとにドプラ情報を抽出して、例えば、超音波ビーム(音線)上の各深さごとに生体内組織の速度を算出する。なお、超音波ビームを走査させて二次元的あるいは三次元的に生体内組織の各位置の速度を算出してもよい。   The Doppler information analysis unit 44 extracts Doppler information from the demodulated signal converted into a frequency spectrum. For example, the Doppler information analysis unit 44 calculates the speed of a moving body such as a blood flow in a living body. Note that in the case where a continuous wave transmission signal is formed by performing modulation processing on the RF wave, Doppler information from the target position is selectively extracted. In this case, the Doppler information analysis unit 44 extracts Doppler information for each depth (each position) in the living body, for example, the velocity of the tissue in the living body for each depth on the ultrasonic beam (sound ray). Is calculated. Note that the speed of each position of the in-vivo tissue may be calculated two-dimensionally or three-dimensionally by scanning an ultrasonic beam.

表示処理部46は、ドプラ情報解析部44において得られたドプラ情報に基づいて、例えばドプラ波形や、速度の情報を含むグラフなどを形成し、形成したドプラ波形やグラフなどを表示部48にリアルタイムで表示させる。なお、図1に示す超音波診断装置内の各部は、システム制御部50によって制御される。   The display processing unit 46 forms, for example, a Doppler waveform or a graph including speed information based on the Doppler information obtained by the Doppler information analysis unit 44, and the formed Doppler waveform or graph is displayed on the display unit 48 in real time. To display. Each unit in the ultrasonic diagnostic apparatus shown in FIG. 1 is controlled by the system control unit 50.

本実施形態により、受信信号に含まれる不要信号成分が低減され、比較的小さい振幅の受信信号が適切に抽出される。そのため、比較的大きな不要信号成分が含まれた状態の受信信号を処理する場合に比べて、本実施形態においてはダイナミックレンジが小さい回路を利用することができ、例えば回路規模や設計コストなどの増大を極力抑えることが可能になる。   According to the present embodiment, unnecessary signal components included in the reception signal are reduced, and a reception signal having a relatively small amplitude is appropriately extracted. For this reason, a circuit with a small dynamic range can be used in the present embodiment, compared with a case where a received signal containing a relatively large unnecessary signal component is processed. For example, an increase in circuit scale, design cost, etc. Can be suppressed as much as possible.

以上、本発明の好適な実施形態を説明したが、上述した実施形態は、あらゆる点で単なる例示にすぎず、本発明の範囲を限定するものではない。本発明は、その本質を逸脱しない範囲で各種の変形形態を包含する。   As mentioned above, although preferred embodiment of this invention was described, embodiment mentioned above is only a mere illustration in all the points, and does not limit the scope of the present invention. The present invention includes various modifications without departing from the essence thereof.

本発明に係る超音波診断装置の全体構成を示す機能ブロック図である。1 is a functional block diagram showing an overall configuration of an ultrasonic diagnostic apparatus according to the present invention.

符号の説明Explanation of symbols

20 RF波発振器、22 補正信号生成部、24 加算部、40,42 FFT回路、44 ドプラ情報解析部。   20 RF wave oscillator, 22 correction signal generator, 24 adder, 40, 42 FFT circuit, 44 Doppler information analyzer.

Claims (5)

連続波の送信信号を出力する送信信号処理部と、
送信信号に対応した超音波を生体に送波して生体からの反射波を受波することにより受信信号を得る送受波部と、
送信信号に対して位相調整処理と振幅調整処理を施して得られる補正信号を受信信号に加えることにより、受信信号に含まれる不要信号成分を低減させた補正受信信号を得る補正処理部と、
実質的に送信信号に等しい波形の参照信号を用いて補正受信信号に対して復調処理を施すことにより復調信号を得る受信信号処理部と、
復調信号から生体内情報を抽出する生体内情報抽出部と、
を有し、
前記補正処理部は、生体の体表からの反射波成分が低減されるように送信信号の振幅を調整し且つ送信信号の位相を反転させて前記補正信号を生成する、
ことを特徴とする超音波診断装置。
A transmission signal processing unit for outputting a continuous wave transmission signal;
A transmission / reception unit for obtaining a reception signal by transmitting an ultrasonic wave corresponding to the transmission signal to the living body and receiving a reflected wave from the living body;
A correction processing unit that obtains a corrected reception signal in which unnecessary signal components included in the reception signal are reduced by adding a correction signal obtained by performing phase adjustment processing and amplitude adjustment processing to the transmission signal to the reception signal;
A received signal processing unit that obtains a demodulated signal by performing demodulation processing on the corrected received signal using a reference signal having a waveform substantially equal to the transmitted signal;
An in-vivo information extracting unit for extracting in-vivo information from the demodulated signal;
I have a,
The correction processing unit adjusts the amplitude of the transmission signal so as to reduce the reflected wave component from the body surface of the living body and inverts the phase of the transmission signal to generate the correction signal.
An ultrasonic diagnostic apparatus.
請求項1に記載の超音波診断装置において、
前記補正処理部は、ファントムを利用した実験結果に基づいて決定される前記反射波成分と同じ大きさになるように送信信号の振幅を調整する、
ことを特徴とする超音波診断装置。
The ultrasonic diagnostic apparatus according to claim 1,
The correction processing unit adjusts the amplitude of the transmission signal so as to be the same size as the reflected wave component determined based on an experimental result using a phantom.
An ultrasonic diagnostic apparatus.
請求項1または2に記載の超音波診断装置において、
前記送受波部は、送信信号に対応した超音波を生体に送波する送信用振動子と、生体からの反射波を受波することにより受信信号を得る受信用振動子と、を備え、
前記補正処理部は、送信用振動子から受信用振動子への超音波の音響的な漏洩成分が低減されるように送信信号の振幅を調整し且つ送信信号の位相を反転させて前記補正信号を生成する、
ことを特徴とする超音波診断装置。
The ultrasonic diagnostic apparatus according to claim 1 or 2 ,
The transmission / reception unit includes a transmission vibrator for transmitting an ultrasonic wave corresponding to a transmission signal to a living body, and a reception vibrator for obtaining a reception signal by receiving a reflected wave from the living body,
The correction processing unit adjusts the amplitude of the transmission signal and inverts the phase of the transmission signal so as to reduce the acoustic leakage component of the ultrasonic wave from the transmission transducer to the reception transducer, thereby correcting the correction signal. Generate
An ultrasonic diagnostic apparatus.
請求項1から3のいずれか1項に記載の超音波診断装置において、
前記補正処理部は、送信信号から受信信号への電気的な漏洩成分が低減されるように送信信号の振幅を調整し且つ送信信号の位相を反転させて前記補正信号を生成する、
ことを特徴とする超音波診断装置。
The ultrasonic diagnostic apparatus according to any one of claims 1 to 3 ,
The correction processing unit adjusts the amplitude of the transmission signal so as to reduce an electrical leakage component from the transmission signal to the reception signal and inverts the phase of the transmission signal to generate the correction signal.
An ultrasonic diagnostic apparatus.
請求項1から4のいずれか1項に記載の超音波診断装置において、In the ultrasonic diagnostic apparatus according to any one of claims 1 to 4,
前記送信信号処理部は、周期的な信号に基づいて変調処理された連続波の送信信号を出力し、The transmission signal processing unit outputs a continuous wave transmission signal modulated based on a periodic signal,
前記受信信号処理部は、変調処理された連続波の送信信号に対して、生体内の目標位置の深さに応じた遅延量だけ遅延処理を施して得られる参照信号を用いて、補正受信信号に対して復調処理を施すことにより、目標位置からの復調信号を得る、The reception signal processing unit uses a reference signal obtained by performing a delay process on the modulated continuous wave transmission signal by a delay amount corresponding to the depth of the target position in the living body, and a corrected reception signal. A demodulated signal from the target position is obtained by performing demodulation processing on
ことを特徴とする超音波診断装置。An ultrasonic diagnostic apparatus.
JP2008174114A 2008-07-03 2008-07-03 Ultrasonic diagnostic equipment Expired - Fee Related JP5202138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008174114A JP5202138B2 (en) 2008-07-03 2008-07-03 Ultrasonic diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008174114A JP5202138B2 (en) 2008-07-03 2008-07-03 Ultrasonic diagnostic equipment

Publications (2)

Publication Number Publication Date
JP2010011992A JP2010011992A (en) 2010-01-21
JP5202138B2 true JP5202138B2 (en) 2013-06-05

Family

ID=41698737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008174114A Expired - Fee Related JP5202138B2 (en) 2008-07-03 2008-07-03 Ultrasonic diagnostic equipment

Country Status (1)

Country Link
JP (1) JP5202138B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155797A (en) * 1996-10-02 1998-06-16 Matsushita Electric Ind Co Ltd Ultrasonic continuous wave doppler rheometer
US6039692A (en) * 1998-06-19 2000-03-21 Vingmed Sound A/S Method and apparatus for processing ultrasound signals
JP2001276071A (en) * 2000-03-30 2001-10-09 Matsushita Electric Ind Co Ltd Ultrasonic doppler hemodromometer
JP2002143159A (en) * 2000-11-09 2002-05-21 Fukuda Denshi Co Ltd Ultrasonic diagnostic device

Also Published As

Publication number Publication date
JP2010011992A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
US8323200B2 (en) Ultrasound diagnostic apparatus
JP5654198B2 (en) Ultrasonic diagnostic equipment
JP5459963B2 (en) Ultrasonic diagnostic equipment
JPWO2007111013A1 (en) Ultrasonic imaging device
JP4688466B2 (en) Ultrasonic diagnostic equipment
JP5202138B2 (en) Ultrasonic diagnostic equipment
JP2004222824A (en) Ultrasonic diagnostic apparatus
JP2010110503A (en) Ultrasonic diagnosing device
JP5260897B2 (en) Ultrasonic diagnostic equipment
JP2011240006A (en) Ultrasonograph
JP5308748B2 (en) Ultrasonic diagnostic equipment
JP2010012160A (en) Ultrasonic diagnostic apparatus
JP2009261749A (en) Ultrasonic diagnostic apparatus
JP2011036599A (en) Ultrasonograph
JP2011234846A (en) Ultrasonograph
JP2009297444A (en) Ultrasonic diagnostic apparatus
JP5325503B2 (en) Ultrasonic diagnostic equipment
JP2010194109A (en) Ultrasonic diagnostic apparatus
JP2010269004A (en) Ultrasonograph
JP2000237187A (en) Ultrasonic diagnostic device
Lee et al. Adaptive quadrature demodulation for ultrasound tissue harmonic imaging
JP5297082B2 (en) Ultrasonic diagnostic equipment
JP2011036448A (en) Ultrasonograph
JP2010178793A (en) Ultrasonic diagnosing system
JP2011036506A (en) Ultrasonograph

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees