JP5200562B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP5200562B2
JP5200562B2 JP2008020489A JP2008020489A JP5200562B2 JP 5200562 B2 JP5200562 B2 JP 5200562B2 JP 2008020489 A JP2008020489 A JP 2008020489A JP 2008020489 A JP2008020489 A JP 2008020489A JP 5200562 B2 JP5200562 B2 JP 5200562B2
Authority
JP
Japan
Prior art keywords
temperature
electrode
atomization
refrigerator
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008020489A
Other languages
Japanese (ja)
Other versions
JP2009180447A (en
Inventor
英二郎 小柳
和幸 濱田
豊志 上迫
壽章 豆本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008020489A priority Critical patent/JP5200562B2/en
Publication of JP2009180447A publication Critical patent/JP2009180447A/en
Application granted granted Critical
Publication of JP5200562B2 publication Critical patent/JP5200562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は野菜などを収納する貯蔵室空間に霧化装置を設置した冷蔵庫に関するものである。   The present invention relates to a refrigerator in which an atomizing device is installed in a storage room space for storing vegetables and the like.

近年では、高電圧の印加によって液体を噴霧させる装置が増加し、例えば液体を静電霧化して広範囲に噴霧し、電荷を帯びた微細な液体粒子によって脱臭効果や抗菌効果を促す家電製品がある。   In recent years, the number of devices that spray liquids by applying a high voltage has increased. For example, there are home appliances that spray liquids in a wide range by spraying liquids and promote deodorization and antibacterial effects by charged fine liquid particles. .

このような静電霧化を利用した液体噴霧装置として次のようなものがある(特許文献1参照)。図6は、この発明による液体噴霧装置の概要構成を示し、液体を噴射するノズル201と、これにて噴射される液体に静電気を帯電させて霧化するために高電圧の電界を形成する帯電部202と、その帯電部202を帯電させる高電圧電源206とからなる。この例の帯電部202は、ノズル201から噴射される液体の水柱203を、帯電電極204にて誘電帯電法により静電霧化し、つまり高電圧の電界を通過させることにより粒径を小さくして、帯電した微粒子の水滴205として噴霧する。   There is the following as a liquid spraying device using such electrostatic atomization (see Patent Document 1). FIG. 6 shows a schematic configuration of a liquid spraying apparatus according to the present invention, and a nozzle 201 for ejecting a liquid and a charge for forming a high voltage electric field in order to charge and atomize the liquid ejected by the liquid. Unit 202 and a high-voltage power source 206 for charging the charging unit 202. The charging unit 202 in this example reduces the particle diameter by electrostatically atomizing the liquid water column 203 ejected from the nozzle 201 by the dielectric charging method at the charging electrode 204, that is, by passing a high-voltage electric field. Then, it is sprayed as water droplets 205 of charged fine particles.

図7はその一例で、ノズル201の一部を円筒形の帯電電極204内に突入させ、高電圧電源206によりノズル201をプラス極、帯電電極204をマイナス極として高電圧を印加し、ノズル201から噴射される液体の微粒子の水滴205をマイナスに帯電させて静電霧化する。このようにマイナスに帯電させた場合にはマイナスイオン効果も発揮できる。   FIG. 7 shows an example of this. A part of the nozzle 201 is inserted into the cylindrical charging electrode 204, and a high voltage is applied by the high voltage power source 206 using the nozzle 201 as a positive electrode and the charging electrode 204 as a negative electrode. The water droplets 205 of the liquid fine particles ejected from the liquid are charged negatively and electrostatically atomized. Thus, when negatively charged, a negative ion effect can be exhibited.

また、液体に、ビタミンC等の酸化防止剤や殺菌剤を混合し、これらを同時に静電霧化して噴霧することにより、酸化防止剤にて空気中に滞留している活性酸素を除去したり、殺菌剤にて殺菌することができる。帯電電極204の先に、接地された静電吸着部(図示せず)を設置すれば、液体の水滴205と同時に空気中の浮遊微粒子等を静電気にて吸着回収することができる。図6に示すように、ノズル201自体に高電圧を直接印加すれば、ノズル201自体を帯電部として、消臭剤をノズル201にて噴霧と同時に直接帯電させることができる。   In addition, by mixing antioxidants and bactericides such as vitamin C into the liquid, and simultaneously spraying them by electrostatic atomization, the active oxygen staying in the air can be removed by the antioxidants. It can be sterilized with a disinfectant. If a grounded electrostatic adsorption unit (not shown) is installed at the tip of the charging electrode 204, suspended fine particles or the like in the air can be adsorbed and collected by static electricity simultaneously with the liquid water droplet 205. As shown in FIG. 6, when a high voltage is directly applied to the nozzle 201 itself, the nozzle 201 itself can be used as a charging unit, and the deodorant can be directly charged by the nozzle 201 simultaneously with spraying.

以上のように、液体を高電位に帯電させ、電位差を持たせた対向電極に向けて噴霧させる静電霧化方式が一般的な霧化方式の一つである。
特開2005−270669号公報
As described above, an electrostatic atomization method in which a liquid is charged at a high potential and sprayed toward a counter electrode having a potential difference is one of common atomization methods.
JP 2005-270669 A

しかしながら、上記従来の液体噴霧装置を冷蔵庫に取り付け貯蔵室内に液体を霧化する場合、高電圧が印加される電極部は、機能上冷蔵庫庫内に露出された状態であるため、冷蔵庫の運転状態によっては電極部の過冷却や過剰結露により噴霧できない等の課題を有している。   However, when the conventional liquid spraying device is attached to the refrigerator to atomize the liquid in the storage chamber, the electrode part to which a high voltage is applied is functionally exposed in the refrigerator cabinet, so the operating state of the refrigerator Depending on the condition, there is a problem that spraying cannot be performed due to overcooling of the electrode part or excessive dew condensation.

本発明は、高電圧印加により液体を霧化することで鮮度保持力を向上させる冷蔵庫において、電極部の過冷却や過剰結露を防止し電極部を適切な温度に保ち、安定噴霧・霧化の効率向上を確保できる噴霧装置を搭載した冷蔵庫を提供することを目的とする。   The present invention is a refrigerator that improves freshness retention by atomizing a liquid by applying a high voltage, and prevents overcooling and excessive dew condensation of the electrode part, keeping the electrode part at an appropriate temperature, and stable spraying and atomization. It aims at providing the refrigerator which mounts the spraying device which can ensure an efficiency improvement.

上記従来の課題を解決するために、本発明の冷蔵庫は、断熱区画された貯蔵室と、水分を高電位差により微細化して前記貯蔵室にミストとして噴霧させる霧化装置と、霧化電極の温度を調整するための加熱手段と、前記霧化装置と加熱手段の動作を制御する制御装置とを備えた冷蔵庫において、霧化電極の温度を適切に保つ制御を行うものである。   In order to solve the above-described conventional problems, a refrigerator according to the present invention includes a heat-insulated compartment, an atomization device that atomizes moisture by a high potential difference and sprays the water as a mist, and the temperature of the atomization electrode. In the refrigerator provided with the heating means for adjusting the temperature and the control device for controlling the operation of the atomizing device and the heating means, the temperature of the atomizing electrode is controlled appropriately.

これによって、霧化電極部の過冷却や過剰結露を防止し電極部を適切な温度に保ち、安定噴霧、霧化の効率を向上させることができる。   Thereby, it is possible to prevent overcooling and excessive dew condensation of the atomizing electrode part, maintain the electrode part at an appropriate temperature, and improve the efficiency of stable spraying and atomization.

本発明の冷蔵庫は、霧化電極を適切な温度に保つことができるので安定したミスト噴霧を行うことができ、より保鮮性を向上させた使い勝手のよい冷蔵庫を提供することができる。   Since the refrigerator of this invention can maintain an atomization electrode at appropriate temperature, it can perform stable mist spraying and can provide the easy-to-use refrigerator which improved freshness more.

請求項1に記載の発明は、断熱区画された貯蔵室と、水分を高電位差により微細化して前記貯蔵室にミストとして噴霧させる霧化装置と、前記貯蔵室への風量を調整するダンパ
と、霧化に適した霧化電極先端部の温度制御を行うための制御手段を備え、前記霧化装置は電位差を発生させる電圧印加部と、前記電圧印加部に電気的に接続された霧化電極と前記霧化電極の先端の温度を調整するための加熱手段を有し、前記制御手段は前記ダンパの開閉動作に基づいて前記加熱手段を制御するものである。
The invention according to claim 1 is a storage chamber partitioned by heat insulation, an atomization device that atomizes moisture by a high potential difference and sprays it as mist on the storage chamber, and a damper that adjusts the air volume to the storage chamber
And a control means for controlling the temperature of the tip of the atomization electrode suitable for atomization, the atomization device includes a voltage application unit for generating a potential difference, and a fog electrically connected to the voltage application unit And heating means for adjusting the temperature of the tip of the atomizing electrode and the tip of the atomizing electrode, and the control means controls the heating means based on the opening / closing operation of the damper .

この発明によれば、霧化電極先端部の温度が霧化に適した温度になるように制御を行うことにより霧化電極の先端の温度を適正に調節することができる。   According to this invention, the temperature at the tip of the atomization electrode can be appropriately adjusted by performing control so that the temperature at the tip of the atomization electrode becomes a temperature suitable for atomization.

請求項2に記載の発明は、前記霧化装置は、冷却ピンを備え、前記霧化装置を庫内背面側に設けたものである。 According to a second aspect of the present invention, the atomization device includes a cooling pin, and the atomization device is provided on the back side of the inside of the cabinet .

請求項に記載の発明は、外気温度を検出する外気温度検出手段を備え、霧化電極先端温度を調整する加熱手段を外気温度により制御するものである。 The invention described in claim 3 includes an outside air temperature detecting means for detecting the outside air temperature, and controls the heating means for adjusting the atomizing electrode tip temperature by the outside air temperature.

この発明によれば、外気温度による冷蔵庫の運転状態が変化しても、霧化電極先端温度を調整する加熱手段の通電率を適正になるよう設定することにより霧化電極先端温度を適切な温度に保つことができる。   According to this invention, even if the operation state of the refrigerator due to the outside air temperature changes, the atomization electrode tip temperature is set to an appropriate temperature by setting the energization rate of the heating means for adjusting the atomization electrode tip temperature to be appropriate. Can be kept in.

請求項に記載の発明は、各貯蔵室の温度帯を調節することができる操作部を備え、加熱手段を前記操作部によって調節された各貯蔵室の温度設定により制御するものである。 According to a fourth aspect of the present invention, an operation unit capable of adjusting the temperature zone of each storage room is provided, and the heating means is controlled by the temperature setting of each storage room adjusted by the operation unit.

この発明によれば、各貯蔵室温度設定により各貯蔵室の温度帯が変化しても、霧化電極先端温度を調整する加熱手段の通電率を適正になるよう設定することにより霧化電極先端温度をより適切な温度に保ち安定したミスト噴霧を行うことができる。   According to this invention, even if the temperature zone of each storage chamber changes due to the setting of each storage chamber temperature, the atomization electrode tip is set by setting the energization rate of the heating means for adjusting the atomization electrode tip temperature to be appropriate. Stable mist spraying can be performed while maintaining the temperature at a more appropriate temperature.

請求項に記載の発明は、庫内温度を検出する庫内温度検出手段を備え庫内温度が高い時は、加熱手段を停止させるものである。 The invention according to claim 5 is provided with an internal temperature detecting means for detecting the internal temperature, and stops the heating means when the internal temperature is high.

この発明によれば、電源投入時、冷蔵庫の庫内温度が高い状態においては加熱手段を停止させ、霧化電極先端の温度上昇を防止し、無駄な通電を行わず、消費電力低減を図ることができる。   According to the present invention, when the power is turned on, the heating means is stopped in a state where the refrigerator interior temperature is high, the temperature rise at the tip of the atomizing electrode is prevented, and unnecessary power is not applied, thereby reducing power consumption. Can do.

以下、本発明による冷蔵庫の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of a refrigerator according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における冷蔵庫の縦断面図である。図2は、本発明の実施の形態1における冷蔵庫の野菜室近傍の正面図である。図3は、図2のA−A部の静電霧化装置近傍の詳細断面図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a front view of the vicinity of the vegetable compartment of the refrigerator in the first embodiment of the present invention. FIG. 3 is a detailed cross-sectional view of the vicinity of the electrostatic atomizer in the AA portion of FIG.

図1から図3において、冷蔵庫100の断熱箱体101は、主に鋼板からなる外箱102と樹脂で成型された内箱103で構成され、外箱102と内箱103の内部には例えば硬質発泡ウレタンなどの発泡断熱材が充填、周囲と断熱し、複数の貯蔵室に区分されている。最上部から冷蔵室104、その下部に左右に並んで切換室105と製氷室106が設けられ、その切換室105と製氷室106の下部に野菜室107、そして最下部に冷凍室108が異なる温度の貯蔵空間として配置されている。   In FIG. 1 to FIG. 3, the heat insulating box body 101 of the refrigerator 100 is composed of an outer box 102 mainly made of a steel plate and an inner box 103 molded of resin. Foam insulation such as foamed urethane is filled and insulated from the surroundings, and is divided into a plurality of storage rooms. A refrigerating chamber 104 is provided from the top, and a switching chamber 105 and an ice making chamber 106 are provided side by side on the lower side, the vegetable chamber 107 is located at the bottom of the switching chamber 105 and the ice making chamber 106, and the freezer compartment 108 is located at the bottom. It is arranged as a storage space.

冷蔵室104は通常1℃〜5℃とし、野菜室107は冷蔵室104と同等もしくは若干高い温度設定の2℃〜7℃としている。   The refrigerator compartment 104 is normally set to 1 ° C. to 5 ° C., and the vegetable compartment 107 is set to 2 ° C. to 7 ° C., which is a temperature setting equal to or slightly higher than that of the refrigerator compartment 104.

断熱箱体101の天面部は冷蔵庫の背面方向に向かって階段状に凹みを設けた形状であり、この階段状の凹部に機械室101bを形成して圧縮機109、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収容されている。すなわち、圧縮機109を配設する機械室は、冷蔵室104内の最上部の後方領域に食い込んで形成されることになる。   The top surface portion of the heat insulating box 101 has a stepped recess shape toward the back side of the refrigerator. The compressor chamber 109 and a dryer for removing moisture are formed by forming a machine chamber 101b in the stepped recess. High-pressure side components of the refrigeration cycle such as not shown) are accommodated. That is, the machine room in which the compressor 109 is disposed is formed by biting into the uppermost rear region in the refrigerator compartment 104.

野菜室107と冷凍室108の背面には冷気を生成する冷却室110が設けられ、その間には、断熱性を有する各室への冷気の搬送風路と、各室と断熱区画するために構成された奥面仕切り壁111が構成されている。冷却室110内には、冷却器112が配設されており、冷却器112の上部空間には強制対流方式により冷却器112で冷却した冷気を冷蔵室104、切換室105、製氷室106、野菜室107、冷凍室108に送風する冷却ファン113が配置され、冷却器112の下部空間には冷却時に冷却器112やその周辺に付着する霜や氷を除霜するためのガラス管製のラジアントヒータ114が設けられ、さらにその下部には除霜時に生じる除霜水を受けるためのドレンパン115、その最深部から庫外に貫通したドレンチューブ116が構成され、その下流側の庫外に蒸発皿117が構成されている。   A cooling chamber 110 for generating cold air is provided on the back of the vegetable chamber 107 and the freezing chamber 108, and a cooling air conveyance path to each chamber having heat insulation is provided between the vegetable chamber 107 and the freezing chamber 108, and the chamber is configured to be insulated from each chamber. The rear partition wall 111 is configured. In the cooling chamber 110, a cooler 112 is disposed, and in the upper space of the cooler 112, the cold air cooled by the cooler 112 by a forced convection method is stored in the refrigerator 104, the switching chamber 105, the ice making chamber 106, the vegetables. A cooling fan 113 for blowing air to the chamber 107 and the freezing chamber 108 is disposed, and a radiant heater made of glass tube for defrosting the frost and ice adhering to the cooler 112 and its surroundings at the time of cooling in the lower space of the cooler 112 114, and a drain pan 115 for receiving defrost water generated at the time of defrosting, and a drain tube 116 penetrating from the deepest part to the outside of the chamber are configured at the lower portion thereof, and the evaporating dish 117 is disposed outside the downstream side of the chamber. Is configured.

野菜室107には、野菜室107の引き出し扉118に取り付けられたフレームに載置された下段収納容器119と、下段収納容器119に載置された上段収納容器120が配置されており、奥面仕切り壁111の上部には、野菜室107用の吐出口124が設けられ、奥面仕切り壁111の下部には、野菜室107内を冷却し熱交換された冷気が冷却器112に戻るための野菜室107用の吸込み口126が設けられている。   In the vegetable compartment 107, a lower storage container 119 placed on a frame attached to the drawer door 118 of the vegetable compartment 107 and an upper storage container 120 placed on the lower storage container 119 are arranged. A discharge port 124 for the vegetable compartment 107 is provided at the upper part of the partition wall 111, and the cold air that has cooled and heat-exchanged the vegetable compartment 107 is returned to the cooler 112 at the lower part of the rear partition wall 111. A suction port 126 for the vegetable compartment 107 is provided.

奥面仕切り壁111は、ABSなどの樹脂で構成された奥面仕切り部表面151と風路や冷却室110を隔離、断熱性を確保するための発泡スチロールなどで構成された断熱材152で構成されている。ここで、奥面仕切り壁111の貯蔵室内側の壁面の一部に他の箇所より低温になるように凹部を設け、その箇所にミストを噴霧させる霧化部139を有する静電霧化装置131が埋設されている。   The rear surface partition wall 111 is made of a heat insulating material 152 made of foamed polystyrene or the like for isolating the rear surface partition portion surface 151 made of a resin such as ABS and the air passage or the cooling chamber 110 to ensure heat insulation. ing. Here, the electrostatic atomizer 131 which has the atomization part 139 which provides a recessed part in a part of wall surface by the side of the storage chamber of the back surface partition wall 111 so that it may become low temperature from another location, and sprays mist in the location. Is buried.

また、断熱材152に設けられた風路141には、各貯蔵室を冷却する冷気を調整するためのダンパ145が埋設されている。   Further, a damper 145 for adjusting cool air for cooling each storage chamber is embedded in the air passage 141 provided in the heat insulating material 152.

静電霧化装置131は、主に霧化部139、高電圧発生回路部133、外郭ケース137で構成され、外郭ケース137の一部には、噴霧口132と湿度供給口138が構成されている。霧化部139は、先端に水分を結露させる霧化電極135が設置され、霧化電極135はアルミニウムやステンレスなどの良熱伝導部材である冷却ピン134に熱的に直接的または間接的に固定されている。冷却ピン134は、外郭ケース137に固定され、冷却ピン134自体は外郭から突出して構成されている。また、霧化電極135に対向している位置で貯蔵室側にドーナツ円盤状の対向電極136が、霧化電極135の先端と一定距離を保つように取付けられ、その延長上に噴霧口132が構成されている。   The electrostatic atomizer 131 mainly includes an atomization unit 139, a high voltage generation circuit unit 133, and an outer case 137, and a spray port 132 and a humidity supply port 138 are configured in part of the outer case 137. Yes. The atomizing part 139 is provided with an atomizing electrode 135 that condenses moisture at the tip, and the atomizing electrode 135 is thermally directly or indirectly fixed to a cooling pin 134 that is a good heat conducting member such as aluminum or stainless steel. Has been. The cooling pin 134 is fixed to the outer case 137, and the cooling pin 134 itself is configured to protrude from the outer case. Also, a donut disk-shaped counter electrode 136 is attached to the storage chamber side at a position facing the atomizing electrode 135 so as to maintain a certain distance from the tip of the atomizing electrode 135, and a spray port 132 is formed on the extension. It is configured.

さらに、霧化部139の近傍に高電圧発生回路部133が構成され、高電圧を発生する高電圧発生回路部133の負電位側が霧化電極135と、正電位側が対向電極136とそれぞれ電気的に接続されている。たとえば、霧化電極135には基準電位であるグランド(0V)、対向電極136には4〜10kVの高電圧が印加されている。   Further, a high voltage generation circuit unit 133 is configured in the vicinity of the atomization unit 139. The high voltage generation circuit unit 133 that generates a high voltage is electrically connected to the atomization electrode 135 on the negative potential side and the counter electrode 136 on the positive potential side. It is connected to the. For example, a ground (0 V) that is a reference potential is applied to the atomizing electrode 135, and a high voltage of 4 to 10 kV is applied to the counter electrode 136.

高電圧発生回路部133は、冷蔵庫本体100の制御手段146と通信/制御され、高電圧のON/OFFを行う。   The high voltage generation circuit unit 133 communicates / controls with the control means 146 of the refrigerator main body 100, and turns on / off the high voltage.

なお、静電霧化装置131を固定している奥面仕切り表面151には、貯蔵室の温度調節をする、もしくは表面の結露を防止するためヒータ等の結露防止ヒータ155が奥面仕切り壁表面151と断熱材152の間に設置されている。さらに静電霧化装置131に備えられた電極接続部材である冷却ピン134の温度調整と、霧化電極135を含めた周辺部の過剰結露を防止するための加熱手段である冷却ピンヒータ158が霧化部139近傍に設置されている。   The back partition surface 151 to which the electrostatic atomizer 131 is fixed has a condensation prevention heater 155 such as a heater for adjusting the temperature of the storage room or preventing the surface condensation. 151 and the heat insulating material 152. Further, the cooling pin heater 158 which is a heating means for adjusting the temperature of the cooling pin 134 which is an electrode connecting member provided in the electrostatic atomizer 131 and preventing excessive dew condensation in the peripheral portion including the atomizing electrode 135 is fogged. It is installed in the vicinity of the conversion unit 139.

以上のように構成された冷蔵庫100について、以下その動作、作用を説明する。   About the refrigerator 100 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、冷凍サイクルの動作について説明する。庫内の設定された温度に応じて制御基板(図示せず)からの信号により冷凍サイクルが動作して冷却運転が行われる。圧縮機109の動作により吐出された高温高圧の冷媒は、凝縮器(図示せず)である程度凝縮液化し、さらに冷蔵庫本体の側面や背面、また冷蔵庫本体の前面間口に配設された冷媒配管(図示せず)などを経由し冷蔵庫本体の結露を防止しながら凝縮液化し、キャピラリーチューブ(図示せず)に至る。その後、キャピラリーチューブでは圧縮機109への吸入管(図示せず)と熱交換しながら減圧されて低温低圧の液冷媒となって冷却器112に至る。   First, the operation of the refrigeration cycle will be described. The refrigeration cycle is operated by a signal from a control board (not shown) according to the set temperature in the cabinet, and the cooling operation is performed. The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed to some extent by a condenser (not shown), and further, refrigerant piping ( (Not shown) and the like, while condensing and liquefying while preventing condensation on the refrigerator body, it reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 109 to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 112.

ここで、低温低圧の液冷媒は、冷却ファン113の動作により搬送する冷凍室吐出風路141などの各貯蔵室内の空気と熱交換され、冷却器112内の冷媒は蒸発気化する。この時、冷却室110内で各貯蔵室を冷却するための冷気を生成する。低温の冷気は冷却ファン113から冷蔵室104、切替室105、製氷室106、野菜室107、冷凍室108に冷気を風路やダンパ145を用いて分流させ、それぞれの目的温度帯に冷却する。   Here, the low-temperature and low-pressure liquid refrigerant exchanges heat with the air in each storage chamber such as the freezer discharge air passage 141 conveyed by the operation of the cooling fan 113, and the refrigerant in the cooler 112 evaporates. At this time, cool air for cooling each storage chamber in the cooling chamber 110 is generated. The low-temperature cold air is diverted from the cooling fan 113 to the refrigerating room 104, the switching room 105, the ice making room 106, the vegetable room 107, and the freezing room 108 using an air passage or a damper 145, and cooled to the respective target temperature zones.

冷蔵室104は、冷蔵室104に設けた温度センサ(図示せず)により、冷気量をダンパ145により調整され、目的温度に冷却されている。特に、野菜室107は、冷気の配分や加熱手段(図示せず)などのON/OFF運転により2℃から7℃になるように調整される。   The refrigerator compartment 104 is cooled to a target temperature by adjusting the amount of cold air with a damper 145 by a temperature sensor (not shown) provided in the refrigerator compartment 104. In particular, the vegetable compartment 107 is adjusted to 2 ° C. to 7 ° C. by ON / OFF operation such as cold air distribution and heating means (not shown).

野菜室107は、冷蔵室104を冷却した後、その空気を冷却器112に循環させるための冷蔵室戻り風路140の途中に構成された野菜室107用の吐出口124から野菜室107に吐出し、上段収納容器120や下段収納容器119の外周に流し間接的に冷却し、その後、野菜室107用の吸込み口126から再び冷却器112に戻る。   The vegetable compartment 107 cools the refrigerator compartment 104 and then discharges it to the vegetable compartment 107 from the outlet 124 for the vegetable compartment 107 configured in the middle of the refrigerator compartment return air passage 140 for circulating the air to the cooler 112. Then, it flows to the outer peripheries of the upper storage container 120 and the lower storage container 119 and indirectly cools, and then returns to the cooler 112 from the suction port 126 for the vegetable compartment 107 again.

奥面仕切り壁111の比較的高湿度環境である箇所の一部について、断熱材152が、他の箇所より壁厚が薄く、特に、冷却ピン134の後方の断熱材の厚みは10mm以下で構成されている。これにより、奥面仕切り壁111は凹部が構成され、この箇所に静電霧化装置131が取り付けられている。   The heat insulating material 152 has a thinner wall thickness than other portions of a part of the rear partition wall 111 that is a relatively high humidity environment, and in particular, the thickness of the heat insulating material behind the cooling pin 134 is 10 mm or less. Has been. Thereby, the recessed part is comprised in the back surface partition wall 111, and the electrostatic atomizer 131 is attached to this location.

冷却ピン134の背面にある冷凍室108の吐出風路141には、冷却システムの運転により冷却器112で生成し、冷却ファン113により−15〜−25℃程度の冷気が流れ、風路表面からの熱伝導で冷却ピン134が例えば0〜−6℃程度に冷却される。このとき、冷却ピン134は、良熱伝導部材であるため、冷熱を非常に伝えやすく、霧化電極135も0〜−6℃程度に冷却される。   The discharge air passage 141 of the freezer compartment 108 on the back surface of the cooling pin 134 is generated by the cooler 112 by the operation of the cooling system, and cool air of about −15 to −25 ° C. flows by the cooling fan 113 from the air passage surface. The cooling pin 134 is cooled to, for example, about 0 to −6 ° C. by the heat conduction. At this time, since the cooling pin 134 is a good heat conducting member, it is very easy to transmit cold heat, and the atomizing electrode 135 is also cooled to about 0 to −6 ° C.

ここで、野菜室107は2℃から7℃で、かつ野菜などからの蒸散により比較的高湿状態であるので、霧化電極135は露点温度以下となり、先端を含め、霧化電極135には水が生成、付着する。   Here, since the vegetable compartment 107 is 2 ° C. to 7 ° C. and is in a relatively high humidity state due to transpiration from vegetables, the atomizing electrode 135 is at or below the dew point temperature. Water is generated and attached.

水滴が付着した霧化電極135に負電圧側、対向電極136を正電圧側として、高電圧発生部133によりこの電極間に高電圧(たとえば、霧化電極135を0V(GND)、対向電極136を4〜10kV)を印加させる。このとき電極間でコロナ放電が起こり、霧化電極135の先端に結露した水滴が、静電エネルギにより微細化され、さらに液滴が帯電しているためレイリー分裂により数nmレベルの目視できない電荷をもったナノレベルの微細ミストと、それに付随してオゾンやOHラジカル、酸素ラジカルなどが発生する。電極間に印加する電圧は、4〜10kVと非常に高電圧であるが、そのときの放電電流値は数μAレベルであり、入力としては0.5〜1.5Wと非常に低入力である。   A negative voltage side is set on the atomizing electrode 135 to which water droplets adhere and the counter electrode 136 is set on the positive voltage side. A high voltage is generated between the electrodes by the high voltage generator 133 (for example, the atomizing electrode 135 is set to 0 V (GND)) 4 to 10 kV). At this time, corona discharge occurs between the electrodes, and the water droplets condensed at the tip of the atomizing electrode 135 are refined by electrostatic energy, and further, the droplets are charged. Nano-level fine mist with ozone, OH radical, oxygen radical, etc. is generated. The voltage applied between the electrodes is a very high voltage of 4 to 10 kV, but the discharge current value at that time is a few μA level, and the input is a very low input of 0.5 to 1.5 W. .

このようにして霧化電極135で発生したナノレベルの微細ミストが霧化部139から噴霧されるとき、イオン風が発生する。このとき、湿度供給口138より、新たに高湿な空気が霧化部139に流入するため、連続して噴霧することができる。   When nano-level fine mist generated at the atomizing electrode 135 in this way is sprayed from the atomizing portion 139, an ion wind is generated. At this time, freshly humid air flows into the atomizing unit 139 from the humidity supply port 138, and therefore, it can be continuously sprayed.

さらに、発生した微細ミストは、イオン風にのって下段収納容器119内に噴霧され、非常に小さい微粒子のため拡散性があり、上段収納容器120にも微細ミストは到達する。噴霧される微細ミストは、高圧放電で生成されたため、マイナスの電荷を帯びている。野菜室107内には青果物である野菜の中でも緑の菜っ葉ものや果物等も保存されており、これらの青果物は蒸散あるいは保存中の蒸散によってより萎れやすいものである。野菜室107内に保存されている野菜や果物の中には、通常、購入帰路時での蒸散あるいは保存中の蒸散によってやや萎れかけた状態のものが含まれており、プラスの電荷を持つ。よって、霧化されたミストは、野菜の表面に集まりやすく、これにより保鮮性が向上する。   Further, the generated fine mist is sprayed into the lower storage container 119 along the ion wind, and is very diffusible due to very small fine particles, and the fine mist reaches the upper storage container 120. Since the fine mist to be sprayed is generated by high-pressure discharge, it has a negative charge. Among the vegetables that are fruits and vegetables, green vegetable leaves and fruits are also stored in the vegetable room 107, and these fruits and vegetables are more susceptible to wilt due to transpiration or transpiration during storage. The vegetables and fruits stored in the vegetable room 107 usually include those that are slightly deflated by transpiration at the time of purchase return or transpiration during storage, and have a positive charge. Therefore, the atomized mist is easy to gather on the surface of vegetables, and this improves the freshness.

また、野菜表面に付着したナノレベルの微細ミストは、OHラジカルと微量ではあるがオゾンなどを多く含んでおり、殺菌、抗菌、除菌などに効果がある他、酸化分解による農薬除去や抗酸化によるビタミンC量などの栄養素の増加を野菜に促す。   In addition, nano-level fine mist adhering to the vegetable surface contains a lot of OH radicals and a small amount of ozone, etc., and is effective for sterilization, antibacterial, sterilization, etc. Encourages vegetables to increase nutrients such as vitamin C.

冷蔵室104は、先述のようにダンパ145により目的温度帯になるように制御されている。すなわち、冷蔵室104が目的温度より高いとき、ダンパ145を開放し冷却する。その動作に応じて、野菜室107には冷蔵室104を冷却した後の比較的乾いた空気が冷蔵室104の戻り風路140を通して、野菜室107の吐出口124から流れ込み、野菜室107を冷却する。   The refrigerator compartment 104 is controlled by the damper 145 so as to be in the target temperature zone as described above. That is, when the refrigerator compartment 104 is higher than the target temperature, the damper 145 is opened and cooled. In response to the operation, relatively dry air after cooling the refrigerator compartment 104 flows into the vegetable compartment 107 through the return air passage 140 of the refrigerator compartment 104 from the discharge port 124 of the vegetable compartment 107, and cools the vegetable compartment 107. To do.

この時、冷却ピン134は、−15〜−20℃程度の冷気により常時冷却されているため、野菜室107内の環境により、霧化電極は過剰に結露していることがありえる。よって、ダンパ145で制御されている比較的乾いた冷蔵室からの戻り空気を利用して、霧化電極135に過剰に結露した水滴を乾燥させ、霧化電極を霧化可能な状態に制御する。   At this time, since the cooling pin 134 is constantly cooled by cold air of about −15 to −20 ° C., the atomization electrode may be excessively condensed due to the environment in the vegetable compartment 107. Therefore, using the return air from the relatively dry refrigerator compartment controlled by the damper 145, water droplets excessively condensed on the atomizing electrode 135 are dried, and the atomizing electrode is controlled to be in an atomizable state. .

図4は、同実施の形態1における冷蔵庫の機能ブロック図である。図5は、本発明の実施の形態1の冷蔵庫の動作を示すフローチャートである。   FIG. 4 is a functional block diagram of the refrigerator in the first embodiment. FIG. 5 is a flowchart showing the operation of the refrigerator according to the first embodiment of the present invention.

図4において、静電霧化装置131の動作を制御する制御装置160は、静電霧化装置131の高電圧発生回路部133に電圧を供給する電源回路161と制御手段146と冷却ピンヒータを駆動するヒータ駆動手段159からなり、制御手段146は、高電圧発生回路部133への高電圧の印加を制御する高電圧回路判定手段と庫内温度検出手段162で検出された庫内温度を判定しダンパ145、圧縮機109を制御する庫内温度判定手段と外気温度検出手段163で検出された外気温度や操作部164で設定された各貯蔵室の温度設定により冷却ピンヒータの通電率を制御するヒータ制御手段からなる。   In FIG. 4, a control device 160 that controls the operation of the electrostatic atomizer 131 drives a power supply circuit 161 that supplies a voltage to the high voltage generation circuit unit 133 of the electrostatic atomizer 131, a control unit 146, and a cooling pin heater. The controller 146 determines the internal temperature detected by the internal voltage detection means 162 and the high voltage circuit determination means that controls the application of the high voltage to the high voltage generation circuit unit 133. Heater for controlling the energization rate of the cooling pin heater by the outside temperature detected by the outside temperature detecting means 163 which controls the damper 145 and the compressor 109 and the temperature setting of each storage chamber set by the operation unit 164 It consists of control means.

例えば、圧縮機109やダンパ145の挙動により貯蔵室内の湿度が変動するので、圧縮機109やダンパ145と連動して、高電圧発生回路部133をON/OFFさせ、霧化電極135が過剰結露状態と想定される場合、加熱手段である冷却ピンヒータ158に通電、加熱させ、霧化電極135表面に付着している結露水を融解・蒸発させ、霧化電極135の水量を調整する。また、霧化電極135が過冷却状態と想定される場合、加熱手段である冷却ピンヒータ158に通電、加熱させ、霧化電極135の温度を調整する。   For example, since the humidity in the storage chamber fluctuates due to the behavior of the compressor 109 and the damper 145, the high voltage generation circuit unit 133 is turned on / off in conjunction with the compressor 109 and the damper 145, and the atomization electrode 135 is excessively condensed. When the state is assumed, the cooling pin heater 158 which is a heating unit is energized and heated, and the condensed water adhering to the surface of the atomizing electrode 135 is melted and evaporated to adjust the amount of water of the atomizing electrode 135. When the atomizing electrode 135 is assumed to be in a supercooled state, the cooling pin heater 158 that is a heating unit is energized and heated to adjust the temperature of the atomizing electrode 135.

以上のように構成された冷蔵庫の制御装置について、図4、図5を用いてその動作を説明する。   About the control apparatus of the refrigerator comprised as mentioned above, the operation | movement is demonstrated using FIG. 4, FIG.

図5において、冷蔵庫100に電源が投入され、ステップ200で庫内温度検出手段162で検出された冷蔵室104の庫内温度が高いと判定すると、ステップ201でダンパ145を開させ、ステップ200で庫内温度検出手段162で検出された冷蔵室104の庫内温度が低いと判定すると、ステップ202でダンパ145を閉させる。   In FIG. 5, when the refrigerator 100 is turned on and it is determined in step 200 that the internal temperature of the refrigerator compartment 104 detected by the internal temperature detection means 162 is high, the damper 145 is opened in step 201, and in step 200. If it is determined that the internal temperature of the refrigerator compartment 104 detected by the internal temperature detection means 162 is low, the damper 145 is closed in step 202.

次にステップ203で制御装置160の電源回路161より静電霧化装置131の高電圧発生回路部133に回路電圧(DC14V)が供給され、野菜室107が設定温度に冷却された後、風路140に設けられたダンパ145が開から閉に動作した時に、ステップ203で高電圧発生信号の出力を行い高電圧発生回路部133より霧化部139に高電圧が印加されることにより霧化電極135に付着した水が、高電圧により野菜室107にナノレベルの微細ミストとして霧化される。次にダンパ145が閉から開に動作した時、ステップ204で高電圧発生信号の出力を停止させる。   Next, in step 203, a circuit voltage (DC14V) is supplied from the power supply circuit 161 of the control device 160 to the high voltage generation circuit unit 133 of the electrostatic atomizer 131, and the vegetable compartment 107 is cooled to the set temperature, and then the air path. When the damper 145 provided in 140 is operated from open to closed, a high voltage generation signal is output in step 203, and a high voltage is applied to the atomization unit 139 from the high voltage generation circuit unit 133, whereby the atomization electrode The water adhering to 135 is atomized as a nano-level fine mist in the vegetable compartment 107 by a high voltage. Next, when the damper 145 operates from closing to opening, the output of the high voltage generation signal is stopped in step 204.

以上のように、冷気の風路において野菜室107より上流に位置する冷蔵室104のダンパ145が開放することによって、冷蔵室104を介して野菜室への冷気の導入が行われる為、野菜室の上流風路に備えられたダンパ145の開閉は、霧化部139周辺の結露や乾燥を支配する冷気の流れが変わると推定される重要なタイミングであるため、判定タイミング設定手段をダンパ145とし、野菜室107が目的の温度に冷却された後、ダンパ145が開から閉に動作を行ったとき、高電圧発生回路133より霧化電極135と対向電極136に高電圧を印加させ目的のミストを発生させることができる。   As described above, since the damper 145 of the refrigerator compartment 104 located upstream of the vegetable compartment 107 in the cold air passage opens, cold air is introduced into the vegetable compartment via the refrigerator compartment 104. The opening and closing of the damper 145 provided in the upstream air passage is an important timing that is estimated to change the flow of cool air that controls the condensation and drying around the atomizing section 139, and therefore the determination timing setting means is the damper 145. After the vegetable compartment 107 is cooled to the target temperature, when the damper 145 operates from opening to closing, the high voltage generating circuit 133 applies a high voltage to the atomizing electrode 135 and the counter electrode 136 so that the target mist Can be generated.

また、ステップ300でダンパ145が開の時、冷気による除湿に加え、冷却ピンヒータ158を通電することにより霧化電極135を加熱し、ダンパ145が閉の時にステップ301で冷却ピンヒータ158をOFFさせる。   Further, when the damper 145 is opened in step 300, in addition to dehumidification by cold air, the atomizing electrode 135 is heated by energizing the cooling pin heater 158, and when the damper 145 is closed, the cooling pin heater 158 is turned off in step 301.

以上のように、ダンパの開閉動作により加熱手段である冷却ピンヒータのON/OFFを制御することにより、付着している水滴の蒸発を促進させ、過剰結露を防止し、継続的・安定的に霧化を行うことができる。   As described above, the ON / OFF of the cooling pin heater, which is a heating means, is controlled by the opening / closing operation of the damper, thereby promoting the evaporation of adhering water droplets, preventing excessive condensation, and continuously and stably Can be made.

またステップ400で外気温度検出手段163で検出された外気温度が低いと判断した時は、ステップ401で庫内温度検出手段162で検出された冷凍室108の庫内温度が圧縮機をONさせる判定温度より高いと判定すると、ステップ402で圧縮機109をONさせ、ステップ401で庫内温度検出手段162で検出された冷凍室108の庫内温度が圧縮機をOFFさせる温度より低いと判定すると、ステップ403で圧縮機109をOFFさせる。野菜室107が設定温度に冷却された後、圧縮機109が停止した時に、ステップ404で高電圧発生信号の出力を行い高電圧発生回路部133より霧化部139に高電圧が印加されることにより霧化電極135に付着した水が、高電圧により野菜室107にナノレベルの微細ミストとして霧化される。次に圧縮機109がOFFからONになった時、ステップ405で高電圧発生信号の出力を停止させる。   If it is determined in step 400 that the outside air temperature detected by the outside air temperature detecting means 163 is low, the inside temperature of the freezer compartment 108 detected by the inside temperature detecting means 162 in step 401 determines that the compressor is turned on. If it is determined that the temperature is higher than the temperature, the compressor 109 is turned ON in step 402, and if it is determined in step 401 that the internal temperature of the freezer compartment 108 detected by the internal temperature detection means 162 is lower than the temperature at which the compressor is turned OFF, In step 403, the compressor 109 is turned off. When the compressor 109 stops after the vegetable compartment 107 is cooled to the set temperature, a high voltage generation signal is output in step 404 and a high voltage is applied to the atomization unit 139 from the high voltage generation circuit unit 133. Thus, the water adhering to the atomizing electrode 135 is atomized as a nano-level fine mist in the vegetable compartment 107 by a high voltage. Next, when the compressor 109 is turned from OFF to ON, the output of the high voltage generation signal is stopped in Step 405.

以上のように、外気温度が低い時などダンパ145の開時間が短い時等は圧縮機がON・OFFが、霧化部139周辺の結露や乾燥を支配する冷気の流れが変わると推定される重要なタイミングであるため、判定タイミング設定手段を圧縮機109とし、野菜室107が目的の温度に冷却された後、圧縮機109が停止したとき、高電圧発生回路133より霧化電極135と対向電極136に高電圧を印加させ目的のミストを発生させることができる。   As described above, when the open time of the damper 145 is short, such as when the outside air temperature is low, it is estimated that the compressor is turned on and off, and the flow of cool air governing the condensation and drying around the atomizing unit 139 is changed. Since it is an important timing, the determination timing setting means is the compressor 109, and when the compressor 109 stops after the vegetable compartment 107 is cooled to the target temperature, the high voltage generation circuit 133 faces the atomizing electrode 135. A high voltage can be applied to the electrode 136 to generate a desired mist.

また、ステップ500で圧縮機がONの時、冷気による除湿に加え、冷却ピンヒータ158を通電することにより霧化電極135を加熱し、圧縮機109がOFFの時にステップ406で冷却ピンヒータ158をOFFさせる。   Further, when the compressor is ON in step 500, in addition to dehumidification by cold air, the atomizing electrode 135 is heated by energizing the cooling pin heater 158, and when the compressor 109 is OFF, the cooling pin heater 158 is turned OFF in step 406. .

以上のように、外気温度が低い時などダンパの開時間が短い時でも圧縮機の動作により加熱手段である冷却ピンヒータのON/OFFを制御することにより、圧縮機動作時の霧化電極先端部の過冷却を防止し、温度を適切に制御することができ、継続的・安定的に霧化を行うことができる。   As described above, the tip of the atomizing electrode during compressor operation is controlled by controlling the ON / OFF of the cooling pin heater, which is a heating means, by the operation of the compressor even when the damper opening time is short, such as when the outside air temperature is low Overcooling can be prevented, the temperature can be controlled appropriately, and atomization can be carried out continuously and stably.

また、ステップ600で、圧縮機ONから設定時間経過していない時は、ステップ500で冷却ピンヒータ158をONさせ、設定時間経過した時は。ステップ601で冷却ピンヒータ158をOFFさせる。   If the set time has not elapsed since the compressor was turned on in step 600, the cooling pin heater 158 is turned on in step 500, and the set time has passed. In step 601, the cooling pin heater 158 is turned off.

以上のように、外気温度が低い時などは霧化装置電圧印加OFF時に時間により冷却ピンヒータの通電を制御することにより、過冷却を防止し、霧化電極先端の温度を適切に制御することができる。   As described above, when the outside air temperature is low, by controlling the energization of the cooling pin heater according to the time when the atomizer voltage application is turned off, it is possible to prevent overcooling and appropriately control the temperature of the tip of the atomization electrode. it can.

また、ステップ700で冷却ピンヒータ158をONさせるタイミングと判定した時にステップ701で冷却ピンヒータ158の通電率を外気温度により決定し、外気温度により通電率を可変させる。低外気時は通電率を多めにし、高外気時には通電率を少なめにするよう設定する。   When it is determined in step 700 that the cooling pin heater 158 is to be turned on, in step 701, the energization rate of the cooling pin heater 158 is determined based on the outside air temperature, and the energization rate is varied depending on the outside air temperature. The energization rate is set to be higher at low outside air, and the energization rate is set to be lower at high outside air.

以上のように、外気温度変動により庫内温調が変動し、霧化電極135が過冷になる場合があるため、外気温度により冷却ピンヒータの通電率を制御することにより、霧化電極135の温度を調整し霧化電極先端の温度を適切に制御することができる。   As described above, the internal temperature control fluctuates due to fluctuations in the outside air temperature, and the atomization electrode 135 may be supercooled. Therefore, by controlling the energization rate of the cooling pin heater according to the outside air temperature, The temperature at the tip of the atomizing electrode can be appropriately controlled by adjusting the temperature.

また、ステップ700で冷却ピンヒータ158をONさせるタイミングと判定した時にステップ800で操作部164によって調節された各貯蔵室の温度設定により冷却ピンヒータ158の通電率を決定し、通電率を可変させる。温度設定が低い温度帯に設定時は通電率を多めにし、温度設定が高い温度帯に設定時には通電率を少なめにするよう設定する。   Further, when it is determined in step 700 that the cooling pin heater 158 is to be turned on, the energization rate of the cooling pin heater 158 is determined by the temperature setting of each storage chamber adjusted by the operation unit 164 in step 800, and the energization rate is varied. When the temperature setting is set to a low temperature range, the energization rate is increased, and when the temperature setting is set to a high temperature range, the energization rate is set to be small.

以上のように、各貯蔵室の温度設定により庫内温調が変動し、霧化電極135が過冷になる場合があるため、各貯蔵室の温度設定により冷却ピンヒータの通電率を制御することにより、霧化電極135の温度を調整し、霧化電極先端の温度をさらに適切に制御することができる。   As described above, the temperature inside the cabinet varies depending on the temperature setting of each storage chamber, and the atomization electrode 135 may be supercooled. Therefore, the conduction rate of the cooling pin heater is controlled by the temperature setting of each storage chamber. Thereby, the temperature of the atomization electrode 135 can be adjusted and the temperature of the atomization electrode front-end | tip can be controlled further appropriately.

またステップ900で、庫内温度検出手段162で検出された冷凍室108の庫内温度から、電源投入時等、庫内温度が全く冷えていない時と判定すると、ステップ901で霧化装置131電圧印加OFF、冷却ピンヒータ158をOFFさせる。   If it is determined in step 900 that the internal temperature of the freezer compartment 108 detected by the internal temperature detection means 162 is not cooled at all, such as when the power is turned on, the atomizer 131 voltage is determined in step 901. Application OFF and cooling pin heater 158 are turned OFF.

以上にように、電源投入時等、庫内温度が全く冷えていない時は、霧化電極に結露、水が生成、付着することがなく噴霧できない状態であるので、無駄な通電を行わず、消費電力低減を図ることができる。   As mentioned above, when the internal temperature is not cooled at all, such as when the power is turned on, condensation or water is not generated on the atomizing electrode, it is in a state where it can not be sprayed, so no unnecessary energization is performed, Power consumption can be reduced.

以上のように、本発明にかかる冷蔵庫は、家庭用又は業務用冷蔵庫もしくは野菜専用庫に対して実施することはもちろん、野菜などの食品低温流通、倉庫などの用途にも適用できる。   As described above, the refrigerator according to the present invention can be applied not only to household or commercial refrigerators or vegetable storage, but also to applications such as low-temperature distribution of food such as vegetables and warehouses.

本発明の実施の形態1における冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の野菜室近傍の正面図The front view of the vegetable compartment vicinity of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における図2のA−A部の静電霧化装置近傍の詳細断面図2 is a detailed cross-sectional view of the vicinity of the electrostatic atomizer of AA portion in FIG. 2 according to Embodiment 1 of the present invention. 本発明の実施の形態1における冷蔵庫の機能ブロック図Functional block diagram of the refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1の冷蔵庫の動作を示すフローチャートの一例を示す図The figure which shows an example of the flowchart which shows the operation | movement of the refrigerator of Embodiment 1 of this invention. 従来の冷蔵庫の超音波霧化装置近傍の縦断面図Longitudinal sectional view near the ultrasonic atomizer of a conventional refrigerator 従来の冷蔵庫の霧化装置の要部断面図Cross section of the main part of a conventional atomizer for refrigerators

符号の説明Explanation of symbols

100 冷蔵庫
101 断熱箱体
107 野菜室(貯蔵室)
111 奥面仕切り壁
112 冷却器
113 冷却ファン
124 野菜室用吐出口
131 静電霧化装置
132 噴霧口
133 電圧印加部(高電圧発生回路部)
134 冷却ピン
135 霧化電極
136 対向電極
139 霧化部
145 ダンパ
146 制御手段
158 冷却ピンヒータ
159 ヒータ駆動手段
160 制御装置
161 電源回路
162 庫内温度検出手段
163 外気温度検出手段
164 操作部
100 refrigerator 101 heat insulation box 107 vegetable room (storage room)
111 Back Partition Wall 112 Cooler 113 Cooling Fan 124 Vegetable Room Ejection Port 131 Electrostatic Atomizer 132 Spray Port 133 Voltage Application Unit (High Voltage Generation Circuit Unit)
134 Cooling Pin 135 Atomizing Electrode 136 Counter Electrode 139 Atomizing Part 145 Damper 146 Control Unit 158 Cooling Pin Heater 159 Heater Driving Unit 160 Controller 161 Power Supply Circuit 162 Inside Temperature Detection Unit 163 Outside Air Temperature Detection Unit 164 Operation Unit

Claims (5)

断熱区画された貯蔵室と、水分を高電位差により微細化して前記貯蔵室にミストとして噴霧させる霧化装置と、前記貯蔵室への風量を調整するダンパと、霧化に適した霧化電極先端部の温度制御を行うための制御手段を備え、前記霧化装置は電位差を発生させる電圧印加部と、前記電圧印加部に電気的に接続された霧化電極と前記霧化電極の先端の温度を調整するための加熱手段を有し、前記制御手段は前記ダンパの開閉動作に基づいて前記加熱手段を制御する冷蔵庫。 An insulated compartment storage room, an atomization device that atomizes moisture by a high potential difference and sprays the storage room as a mist, a damper that adjusts the air volume to the storage room, and an atomization electrode tip suitable for atomization Control means for performing temperature control of the part, the atomization device is a voltage application unit for generating a potential difference, an atomization electrode electrically connected to the voltage application unit, and the temperature of the tip of the atomization electrode A refrigerator having a heating means for adjusting the temperature, wherein the control means controls the heating means based on an opening / closing operation of the damper. 前記霧化装置は、冷却ピンを備え、前記霧化装置を庫内背面側に設けた請求項1に記載の冷蔵庫。The refrigerator according to claim 1, wherein the atomizing device includes a cooling pin, and the atomizing device is provided on the back side in the cabinet. 外気温度を検出する外気温度検出手段を備え、霧化電極と前記霧化電極の先端の温度を調整するための加熱手段を外気温度により制御する制御手段を備えた請求項1から2のいずれか一項に記載の冷蔵庫。 3. The apparatus according to claim 1, further comprising an outside air temperature detecting unit that detects an outside air temperature, and a control unit that controls the atomizing electrode and a heating unit for adjusting the temperature of the tip of the atomizing electrode according to the outside air temperature. The refrigerator according to one item. 各貯蔵室の温度帯を調節することができる操作部を備え、霧化電極と前記霧化電極の先端の温度を調整するための加熱手段を前記操作部によって調節された各貯蔵室の温度設定により制御する制御手段を備えた請求項1から2のいずれか一項に記載の冷蔵庫。 Each storage room is provided with an operation unit capable of adjusting the temperature zone, and the temperature setting of each storage room is adjusted by the operation unit with the heating means for adjusting the temperature of the atomization electrode and the tip of the atomization electrode. The refrigerator as described in any one of Claim 1 to 2 provided with the control means controlled by this. 庫内温度を検出する庫内温度検出手段を備え庫内温度が高い時は、霧化電極と前記霧化電極の先端の温度を調整するための加熱手段を停止させる制御手段を備えた請求項1から2のいずれか一項に記載の冷蔵庫。 A control means for stopping the heating means for adjusting the temperature of the atomization electrode and the tip of the atomization electrode when the internal temperature is high, the internal temperature detection means for detecting the internal temperature is provided. the refrigerator according to any one of 1 to 2.
JP2008020489A 2008-01-31 2008-01-31 refrigerator Active JP5200562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008020489A JP5200562B2 (en) 2008-01-31 2008-01-31 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008020489A JP5200562B2 (en) 2008-01-31 2008-01-31 refrigerator

Publications (2)

Publication Number Publication Date
JP2009180447A JP2009180447A (en) 2009-08-13
JP5200562B2 true JP5200562B2 (en) 2013-06-05

Family

ID=41034571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008020489A Active JP5200562B2 (en) 2008-01-31 2008-01-31 refrigerator

Country Status (1)

Country Link
JP (1) JP5200562B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8800312B2 (en) 2009-08-26 2014-08-12 Panasonic Corporation Refrigerator
JP2011047549A (en) * 2009-08-26 2011-03-10 Panasonic Corp Refrigerator
JP2012040158A (en) * 2010-08-19 2012-03-01 Panasonic Corp Sterilization device and sterilization method using the same
JP6918848B2 (en) * 2017-07-04 2021-08-11 東芝ライフスタイル株式会社 refrigerator
CN113124634B (en) * 2019-12-31 2022-05-13 海信集团有限公司 Refrigerator with a door

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150781U (en) * 1982-04-05 1983-10-08 星崎電機株式会社 refrigerator
JPH0220086U (en) * 1988-07-26 1990-02-09
JP3190732B2 (en) * 1992-05-18 2001-07-23 ホシザキ電機株式会社 Storage
JPH0674630A (en) * 1992-08-21 1994-03-18 Sanyo Electric Co Ltd Cooling and storing device
JP4581561B2 (en) * 2004-06-18 2010-11-17 パナソニック電工株式会社 Electrostatic atomizer
JP4123203B2 (en) * 2004-07-15 2008-07-23 松下電器産業株式会社 Air conditioner
JP4196127B2 (en) * 2004-07-22 2008-12-17 パナソニック株式会社 refrigerator
JP4725444B2 (en) * 2005-07-13 2011-07-13 パナソニック株式会社 refrigerator

Also Published As

Publication number Publication date
JP2009180447A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5891420B2 (en) refrigerator
CN102519203B (en) Refrigerator
US20100147003A1 (en) Refrigerator
WO2011024454A1 (en) Refrigerator
JP5200562B2 (en) refrigerator
JP5301141B2 (en) refrigerator
WO2012039125A1 (en) Method for controlling atomizing device, method for controlling discharging device, and refrigerator
JP5589698B2 (en) refrigerator
JP4179398B1 (en) refrigerator
JP2010038441A (en) Refrigerator
JP5251275B2 (en) refrigerator
JP2011069604A (en) Refrigerator
JP5347260B2 (en) refrigerator
JP2009264667A (en) Refrigerator
JP5262133B2 (en) refrigerator
JP4151741B1 (en) refrigerator
JP4151742B1 (en) refrigerator
JP4151740B1 (en) refrigerator
JP5239455B2 (en) refrigerator
JP2010025429A (en) Refrigerator
RU2537196C2 (en) Refrigerator and electric device
JP2011047549A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110119

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R151 Written notification of patent or utility model registration

Ref document number: 5200562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3