JP5198372B2 - Secondary ion mass spectrometry method - Google Patents
Secondary ion mass spectrometry method Download PDFInfo
- Publication number
- JP5198372B2 JP5198372B2 JP2009151334A JP2009151334A JP5198372B2 JP 5198372 B2 JP5198372 B2 JP 5198372B2 JP 2009151334 A JP2009151334 A JP 2009151334A JP 2009151334 A JP2009151334 A JP 2009151334A JP 5198372 B2 JP5198372 B2 JP 5198372B2
- Authority
- JP
- Japan
- Prior art keywords
- secondary ion
- standard sample
- concentration
- base material
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Description
本発明は、固体試料中の微量元素の濃度を測定する二次イオン質量分析方法及びこれに用いられる標準試料に関するものである。 The present invention relates to a secondary ion mass spectrometry method for measuring the concentration of a trace element in a solid sample and a standard sample used therefor.
二次イオン質量分析方法は、その検出下限の良さから、半導体試料中のドーパントなどの微量元素の分析によく用いられる。検出すべき試料中の元素のイオン化のために、プローブとしてイオンビームを用いることで、同時にイオンスパッタリングにより試料表面をエッチングすることができるため、深さ方向の微量元素の濃度分布の分析に用いられることが多い。 Secondary ion mass spectrometry is often used for the analysis of trace elements such as dopants in semiconductor samples because of its good detection limit. Used to analyze the concentration distribution of trace elements in the depth direction because the sample surface can be etched simultaneously by ion sputtering by using an ion beam as a probe for ionization of elements in the sample to be detected. There are many cases.
公知の技術による二次イオン質量分析方法において、目的とする試料中の元素の定量分析を行うには、標準試料を必要とする。例えば、ある母材で形成される試料中のある被分析元素の濃度を定量するには、同一の該母材を用意して、同一の該被分析元素を既定量だけドープして濃度定量用の標準試料とする。該標準試料における該被分析元素の感度係数を得て、目的とする試料における該被分析元素の二次イオン強度より濃度に換算する。 In a secondary ion mass spectrometry method by a known technique, a standard sample is required to perform quantitative analysis of an element in a target sample. For example, to quantify the concentration of an analyte in a sample formed with a matrix, prepare the same matrix and dope the same analyte to a predetermined amount for concentration determination. The standard sample. The sensitivity coefficient of the element to be analyzed in the standard sample is obtained, and converted into a concentration from the secondary ion intensity of the element to be analyzed in the target sample.
このとき、感度係数は通常、母材中の濃度が既知である成分元素を参照元素として、該参照元素と前記被分析元素の二次イオン強度と濃度から与えられる(例えば、非特許文献1を参照。)。すなわち、参照元素R、該参照元素Rの既知の濃度CR、該参照元素Rの同位体Riの二次イオン強度IRi、被分析元素M、該被分析元素Mの既知の濃度CM、該被分析元素Mについて測定される同位体Mjの二次イオン強度IMjとすると、該参照元素Rに対する該分析元素Mの感度係数K(M−R)は、次の式1で与えられる。
ここで、αMjはMjの同位体比、αRiはRiの同位体比、βMは被分析元素Mの二次イオン収率IBGは前記被分析元素Mについて測定される同位体Mjの二次イオン強度IMjのうち、同じ質量位置で観測されるバッググラウンドノイズの強度である。バックグラウンドノイズは、前記参照元素Rの同位体Riの二次イオン強度IRiを測定する場合も信号強度に混じっているが、上記に述べたように、母材中の濃度が既知である成分元素を参照元素Rと定めることから、該二次イオン強度IRiはバックグラウンドノイズに比して十分大きく、該バックグラウンドノイズを差し引かなくても定量にはほとんど影響がない。 Where αMj is the isotope ratio of Mj, αRi is the isotope ratio of Ri, βM is the secondary ion yield IBG of the analyzed element M, and the secondary ion intensity of the isotope Mj measured for the analyzed element M This is the intensity of background noise observed at the same mass position in IMj. The background noise is also mixed in the signal intensity when measuring the secondary ion intensity IRi of the isotope Ri of the reference element R, but as described above, the constituent element whose concentration in the base material is known Is defined as the reference element R, the secondary ion intensity IRi is sufficiently larger than the background noise, and there is almost no influence on the quantification even if the background noise is not subtracted.
このように標準試料から求めた前記参照元素Rに対する前記分析元素Mの感度係数K(M−R)を用いて、実際の分析では、前記母材を同一の母材中の未知濃度C’Mを有する被分析元素Mの定量は、該参照元素Rの同位体Riの二次イオン強度I’Ri、該被分析元素Mについて測定される同位体Mjの二次イオン強度I’Mj、バックグランドノイズの強度I’BGを用いて、以下の式2によって行うことができる。
前述のように、二次イオン質量分析方法においては、目的とする測定試料に合わせて標準試料の母材を選択する必要がある。これは、定量したい元素の濃度が一定であっても、該被分析元素の二次イオン強度が母材によって大きく異なることによる。よって、目的とする試料の母材と被分析元素の組み合わせの数だけ、標準試料が必要となる。また、実際の測定試料では、該濃度分布を得たい対象領域の母材の成分は一成分とは限らない。例えば、炭素鋼の一種を試料として該試料中の微量元素を定量しようとする場合、純鉄に近い組成の部分と、セメンタイト(Fe3C)を組成とする部分が有り、このような場合、母材としてそれぞれの組成をなす部分において定量操作を行い、該被分析元素の二次イオン強度分布から濃度分布を得るという膨大な手間が必要である。さらに、母材が切り替わる界面部分では、組成は徐々に変化していると考えられ、母材の成分自体が正確には分からず、かつ、前記該被分析元素の二次イオン強度の母材成分元素濃度依存性も不明であるため、該被分析元素の濃度分布については定量的な知見を得ることが難しい。 As described above, in the secondary ion mass spectrometry method, it is necessary to select the base material of the standard sample according to the target measurement sample. This is because even if the concentration of the element to be quantified is constant, the secondary ion intensity of the element to be analyzed varies greatly depending on the base material. Therefore, as many standard samples as the number of combinations of the target sample base material and the element to be analyzed are required. Further, in an actual measurement sample, the component of the base material of the target region where the concentration distribution is desired is not necessarily one component. For example, when one kind of carbon steel is used as a sample and a trace element in the sample is to be quantified, there are a portion having a composition close to pure iron and a portion having a composition of cementite (Fe 3 C). A huge amount of labor is required to perform a quantitative operation on the portion having each composition as a base material and obtain a concentration distribution from the secondary ion intensity distribution of the element to be analyzed. Furthermore, at the interface portion where the base material switches, the composition is considered to change gradually, the base material component itself is not accurately known, and the base material component of the secondary ionic strength of the element to be analyzed Since the element concentration dependency is unknown, it is difficult to obtain quantitative knowledge about the concentration distribution of the element to be analyzed.
すなわち、従来の二次イオン質量分析方法では、二成分の母材が存在する試料において被分析元素の濃度分布を得たい場合、それぞれの母材において定量操作を行い、該被分析元素の二次イオン強度分布から濃度分布を得るという膨大な手間が必要である。さらに、従来の二次イオン質量分析方法では、二成分の母材の試料において母材が切り替わる界面部分では、母材の成分自体が不明であり、かつ、該被分析元素の二次イオン強度の母材成分元素濃度依存性も不明であるため、該元素の濃度分布については定量的な知見を得ることが難しい。 That is, in the conventional secondary ion mass spectrometry method, when it is desired to obtain the concentration distribution of an analyte element in a sample in which a two-component matrix is present, a quantitative operation is performed on each matrix and the secondary element of the analyte is analyzed. An enormous amount of work is required to obtain the concentration distribution from the ion intensity distribution. Furthermore, in the conventional secondary ion mass spectrometry method, in the interface portion where the base material is switched in the sample of the two-component base material, the base material component itself is unknown and the secondary ion intensity of the element to be analyzed is Since the dependency on the concentration of the base material component element is also unknown, it is difficult to obtain quantitative knowledge about the concentration distribution of the element.
そこで、本発明は、母材が二成分である測定試料の被分析元素の濃度分布を容易且つ定量的に測定できる二次イオン質量分析方法、これに用いる標準試料、及びその標準試料の製造方法を提供することを目的とする。なお、ここで濃度とは原子濃度を指す。 Therefore, the present invention provides a secondary ion mass spectrometry method capable of easily and quantitatively measuring the concentration distribution of an element to be analyzed in a measurement sample whose base material is a two-component, a standard sample used therefor, and a method for producing the standard sample The purpose is to provide. Here, the concentration refers to the atomic concentration.
上記目的を達成するために、元素Rと元素Aの二成分系の測定試料での定量を行う場合、本発明に係る二次イオン質量分析方法に用いる標準試料は次のように作成する。まず、元素Rで構成される母材に、既知の濃度分布を形成するように測定対象の元素Mをドープする。さらに、母材に、少なくとも1%以上の濃度領域を含む既知の濃度分布を形成するように元素Aをドープして標準試料とする。なお、本明細書では元素R、元素M及び元素Aをそれぞれ第一元素、第二元素及び第三元素と記載することがある。 In order to achieve the above object, when quantification is performed with a binary measurement sample of element R and element A, a standard sample used in the secondary ion mass spectrometry method according to the present invention is prepared as follows. First, the base material composed of the element R is doped with the element M to be measured so as to form a known concentration distribution. Further, the base material is doped with element A so as to form a known concentration distribution including a concentration region of at least 1% or more to obtain a standard sample. In this specification, the element R, the element M, and the element A may be referred to as a first element, a second element, and a third element, respectively.
具体的には、本発明に係る標準試料は、第一元素(元素R)の母材が、深さ方向の原子濃度分布が既知である、前記母材にドープされた第二元素(元素M)と、深さ方向の原子濃度分布が既知であり、且つ該原子濃度分布の一部が1%を超えている、前記母材にドープされた第三元素(元素A)と、を含んでおり、前記第一元素及び前記第三元素で構成された測定試料中に含まれる第二元素の原子濃度を特定する二次イオン質量分析に用いられる。 Specifically, in the standard sample according to the present invention, the base material of the first element (element R) has a known atomic concentration distribution in the depth direction, and the base material is doped with the second element (element M). And a third element (element A) doped in the base material, in which the atomic concentration distribution in the depth direction is known and a part of the atomic concentration distribution exceeds 1%. And used for secondary ion mass spectrometry for specifying the atomic concentration of the second element contained in the measurement sample composed of the first element and the third element.
本標準試料を二次イオン質量分析方法に用いることで、母材が二成分である測定試料の被分析元素の濃度分布を容易且つ定量的に測定できる。 By using this standard sample for the secondary ion mass spectrometry method, the concentration distribution of the element to be analyzed in the measurement sample whose base material is two components can be measured easily and quantitatively.
本発明に係る標準試料は、前記第二元素の深さ方向の原子濃度分布が一定とすることができる。 In the standard sample according to the present invention, the atomic concentration distribution in the depth direction of the second element can be constant.
本発明に係る標準試料は、イオン注入で前記第二元素を前記母材にドープして製造する。イオン注入量及びイオン注入エネルギーを調整することで元素Mについての深さ方向のイオンプロファイルを所望の形に制御することができる。また、元素Mについての深さ方向の濃度分布を一定にする場合、CVD法やスパッタ法等の製膜手段で標準試料を作成することで実現することができる。イオン注入法で元素Mの濃度を深さ方向に一定にすることもできる。この場合、イオン注入の後に所定の条件で標準試料を加熱する必要がある。 The standard sample according to the present invention is manufactured by doping the second element into the base material by ion implantation. By adjusting the ion implantation amount and ion implantation energy, the ion profile in the depth direction of the element M can be controlled to a desired shape. Further, when the concentration distribution in the depth direction of the element M is made constant, it can be realized by preparing a standard sample by a film forming means such as a CVD method or a sputtering method. The concentration of the element M can be made constant in the depth direction by ion implantation. In this case, it is necessary to heat the standard sample under predetermined conditions after ion implantation.
本発明に係る標準試料は、イオン注入で前記第三元素を前記母材にドープして製造する。イオン注入量及びイオン注入エネルギーを調整することで元素Aについての深さ方向のイオンプロファイルを所望の形に制御することができる。 The standard sample according to the present invention is manufactured by doping the base material with the third element by ion implantation. By adjusting the ion implantation amount and ion implantation energy, the ion profile in the depth direction of the element A can be controlled to a desired shape.
本発明に係る二次イオン質量分析方法は、上記の標準試料を元素Rと元素Aの二成分系中の被分析元素Mの標準試料として使用し、任意の元素Rと元素Aの組成比を有する測定試料中の被分析元素Mを定量する。 In the secondary ion mass spectrometry method according to the present invention, the above standard sample is used as the standard sample of the element M to be analyzed in the binary system of the element R and the element A, and the composition ratio of the arbitrary element R and the element A is determined. The element M to be analyzed in the measurement sample is quantified.
本発明に係る二次イオン質量分析方法は、前記標準試料を用いて、前記第一元素及び前記第三元素で構成された測定試料中に含まれる第二元素の原子濃度を特定する。 In the secondary ion mass spectrometry method according to the present invention, the atomic concentration of the second element contained in the measurement sample composed of the first element and the third element is specified using the standard sample.
前記標準試料を使用して二次イオン質量分析方法を行うことで、母材が二成分である測定試料の被分析元素の濃度分布を容易且つ定量的に測定できる。 By performing the secondary ion mass spectrometry method using the standard sample, the concentration distribution of the element to be analyzed in the measurement sample whose base material is two components can be easily and quantitatively measured.
具体的には、本発明に係る二次イオン質量分析方法は、前記標準試料に一次イオンを照射することで前記標準試料から放出される前記第三元素の二次イオン強度を測定し、前記標準試料の深さ方向に対する前記第三元素の二次イオン強度の第三元素二次イオンプロファイルを取得し、前記第三元素二次イオンプロファイルから前記第三元素の原子濃度対前記第三元素の二次イオン強度の第三元素感度曲線を計算し、前記標準試料に一次イオンを照射することで前記標準試料から放出される前記第二元素の二次イオン強度を測定し、前記標準試料の深さ方向に対する前記第二元素の二次イオン強度の第二元素二次イオンプロファイルを取得し、前記第二元素二次イオンプロファイルから前記第二元素の原子濃度対前記第二元素の二次イオン強度の第二元素感度曲線を計算し、前記第三元素二次イオンプロファイルと前記第二元素二次イオンプロファイルとから前記第三元素の二次イオン強度対前記第二元素の二次イオン強度の相関感度曲線を計算する標準試料測定手順と、
前記測定試料に一次イオンを照射することで前記測定試料から放出される前記第二元素の二次イオン強度及び前記第三元素の二次イオン強度を測定し、前記標準試料測定手順で計算した前記第三元素感度曲線を用いて、前記標準試料測定手順で取得した第三元素二次イオンプロファイルから前記第三元素の原子濃度を把握し、前記第三元素の原子濃度が所定値未満の場合、前記標準試料測定手順で計算した前記第二元素感度曲線を用いて、前記標準試料測定手順で取得した前記第二元素二次イオンプロファイルから前記第二元素の原子濃度を取得し、前記第三元素の原子濃度が前記所定値以上の場合、前記標準試料測定手順で計算した前記相関感度曲線を用いて、前記第二元素の二次イオン強度の割増分を取得し、前記第二元素二次イオンプロファイルから前記割増分を差し引いた補正二次イオンプロファイルを計算し、前記標準試料測定手順で計算した前記第二元素感度曲線を用いて、前記補正二次イオンプロファイルから前記第二元素の原子濃度を取得する測定試料測定手順と、を有する。
Specifically, the secondary ion mass spectrometry method according to the present invention measures the secondary ion intensity of the third element released from the standard sample by irradiating the standard sample with primary ions, and the standard A third element secondary ion profile of the secondary ion intensity of the third element with respect to the depth direction of the sample is obtained, and from the third element secondary ion profile, the atomic concentration of the third element versus the second element secondary ion is obtained. Calculate the third element sensitivity curve of the secondary ion intensity, measure the secondary ion intensity of the second element released from the standard sample by irradiating the standard sample with primary ions, and determine the depth of the standard sample. Obtaining a second element secondary ion profile of the secondary ion intensity of the second element relative to the direction, and from the second element secondary ion profile, the atomic concentration of the second element versus the secondary ion intensity of the second element The second element sensitivity curve is calculated, and the correlation sensitivity between the secondary ion intensity of the third element and the secondary ion intensity of the second element from the secondary ion profile of the third element and the secondary ion profile of the second element. A standard sample measurement procedure to calculate the curve;
The secondary ion intensity of the second element and the secondary ion intensity of the third element which are emitted from the measurement sample by irradiating the measurement sample with primary ions are measured, and calculated by the standard sample measurement procedure Using the third element sensitivity curve, grasp the atomic concentration of the third element from the third element secondary ion profile obtained in the standard sample measurement procedure, if the atomic concentration of the third element is less than a predetermined value, Using the second element sensitivity curve calculated in the standard sample measurement procedure, the atomic concentration of the second element is obtained from the second element secondary ion profile obtained in the standard sample measurement procedure, and the third element When the atomic concentration of the second element is equal to or greater than the predetermined value, the second element secondary ion profile is obtained by using the correlation sensitivity curve calculated in the standard sample measurement procedure to obtain a secondary ion intensity split increment of the second element. A corrected secondary ion profile obtained by subtracting the split increment from the file is calculated, and the atomic concentration of the second element is calculated from the corrected secondary ion profile using the second element sensitivity curve calculated in the standard sample measurement procedure. A measurement sample measurement procedure to be acquired.
従来必要であった、測定試料の母材と被分析元素の組み合わせの数の標準試料が不要となり、簡易に元素Mの濃度を測定できる。さらに、元素Aと元素Mの感度曲線を得ることができるため、測定試料中の元素Rと元素Aとの比率が不明であっても元素Mの濃度を定量できる。従って、本発明に係る二次イオン質量分析方法は、母材が二成分である測定試料の被分析元素の濃度分布を容易且つ定量的に測定できる。 The standard sample of the number of combinations of the base material of the measurement sample and the element to be analyzed, which has been necessary in the past, becomes unnecessary, and the concentration of the element M can be measured easily. Furthermore, since the sensitivity curve of the element A and the element M can be obtained, the concentration of the element M can be quantified even if the ratio of the element R and the element A in the measurement sample is unknown. Therefore, the secondary ion mass spectrometry method according to the present invention can easily and quantitatively measure the concentration distribution of the element to be analyzed in the measurement sample whose base material is the two components.
本発明は、母材が二成分である測定試料の被分析元素の濃度分布を容易且つ定量的に測定できる二次イオン質量分析方法、これに用いる標準試料、及びその標準試料の製造方法を提供することができる。 The present invention provides a secondary ion mass spectrometry method capable of easily and quantitatively measuring the concentration distribution of an element to be analyzed in a measurement sample whose base material is a two-component material, a standard sample used therefor, and a method for producing the standard sample can do.
添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.
図6は、二次イオン質量分析方法で測定した従来の標準試料における深さ方向の濃度分布である。元素Rは母材を構成する元素であるので、深さ方向に濃度は一定であり、その濃度も既知である。これを反映して二次イオン質量分析方法で得られる二次イオンの深さ方向プロファイルも、深さ方向に一定となる。一方、元素Mの深さ方向分布はイオン注入によって母材に注入されたものであり、一般に平均飛程Rp(M) in Rを濃度の最大値とするガウシアン分布となる。この場合、イオン注入のエネルギーあるいは加速電圧と、母材の結晶構造を決めれば、計算によって、元素Mの分布曲線はほぼ正確に求められ、その一部は一覧表となっている(例えば、非特許文献2を参照。)。 FIG. 6 is a concentration distribution in the depth direction of a conventional standard sample measured by a secondary ion mass spectrometry method. Since the element R is an element constituting the base material, the concentration is constant in the depth direction, and the concentration is also known. Reflecting this, the depth profile of secondary ions obtained by the secondary ion mass spectrometry method is also constant in the depth direction. On the other hand, the depth direction distribution of the element M is injected into the base material by ion implantation, and is generally a Gaussian distribution having an average range Rp (M) in R as a maximum concentration value. In this case, if the ion implantation energy or acceleration voltage and the crystal structure of the base material are determined, the distribution curve of the element M can be obtained almost accurately by calculation, and a part of the distribution curve is listed (for example, a non-table). (See Patent Document 2).
一方、元素Mの濃度の絶対値は、イオン注入量によって、図中において上下にシフトし得るが、1価のイオンの場合、イオン注入量は、イオン注入時の電流量の時間積算値を素電荷で除した値と同一であるであるので、正確に求められる。つまり、イオン注入量を既定とすれば、元素Rと同様、元素Mも濃度分布は正確に求められるので、この図で示した試料は標準試料になり得る。この試料を標準試料として、成分元素Rを含むこの母材中での被分析元素Mの感度係数を、元素Rと元素Mの二次イオン強度比および濃度比から計算することができる。このため、この標準試料と母材が同一の測定試料との測定条件を同一とすることで、測定試料中の元素Mの定量が可能となる。 On the other hand, the absolute value of the concentration of the element M can be shifted up and down in the figure depending on the ion implantation amount. However, in the case of monovalent ions, the ion implantation amount is obtained by subtracting the time integrated value of the current amount during ion implantation. Since it is the same as the value divided by the electric charge, it is obtained accurately. In other words, if the ion implantation amount is set as a predetermined value, the concentration distribution of the element M can be accurately obtained in the same manner as the element R. Therefore, the sample shown in this figure can be a standard sample. Using this sample as a standard sample, the sensitivity coefficient of the analyzed element M in the base material containing the component element R can be calculated from the secondary ion intensity ratio and the concentration ratio of the element R and the element M. Therefore, the element M in the measurement sample can be quantified by making the measurement conditions of the standard sample and the measurement sample having the same base material the same.
図7は、二次イオン質量分析方法で測定した従来の標準試料における深さ方向の濃度分布を模式的に示した。この標準試料は、図6と同様に、成分元素Aを含む母材中での被分析元素Mの定量に用いる。しかし、元素Mのイオン注入量が図6の標準試料と同一で、測定条件が同一であっても、二次イオン強度は異なる。このため、この標準試料を使用して求めた元素Aを含むこの母材中での被分析元素Mの感度係数は、図6で示した元素Rを含むこの母材中での被分析元素Mの感度係数とは異なる。すなわち、従来の標準試料を用いた二次イオン質量分析方法の場合、目的とする測定試料の母材と被分析元素の組み合わせの数だけ、標準試料が必要となる。 FIG. 7 schematically shows the concentration distribution in the depth direction of a conventional standard sample measured by secondary ion mass spectrometry. This standard sample is used for quantifying the element M to be analyzed in the base material containing the component element A, as in FIG. However, even if the amount of ion implantation of the element M is the same as that of the standard sample of FIG. Therefore, the sensitivity coefficient of the element M to be analyzed in the base material containing the element A obtained using the standard sample is the element M to be analyzed in the base material including the element R shown in FIG. This is different from the sensitivity coefficient. That is, in the case of a secondary ion mass spectrometry method using a conventional standard sample, as many standard samples as the number of combinations of the target measurement sample base material and the element to be analyzed are required.
図8は、参考として深さ方向に母材が変化する参考試料の作成方法である。この参考資料は、図7で説明した母材と同一の元素Aを成分とする母材の上に、図6で説明した母材と同一の元素Rを成分とする母材を積層した基板に、元素Mをイオン注入して作成した。積層する条件や、イオン注入の条件により、該2つの母材の界面は急峻ではなく、界面層を形成することが多い。 FIG. 8 shows a method for preparing a reference sample in which the base material changes in the depth direction as a reference. This reference material is obtained by laminating a base material having the same element R as the base material described in FIG. 6 on a base material having the same element A as the base material described in FIG. Element M was prepared by ion implantation. Depending on the lamination conditions and ion implantation conditions, the interface between the two base materials is not steep and often forms an interface layer.
図9は、図8で説明した参考試料において、元素Mの深さ方向の二次イオンプロファイルを測定した例である。従来の二次イオン質量分析方法では、元素Rを成分とする母材と元素Aを成分とする母材で、それぞれ被分析元素Mの感度係数を求めた上で、Rを成分とする母材の領域とAを成分とする母材の領域のそれぞれで被分析元素Mの定量を行わなければならない。また、元素Rの母材と元素Aの母材との間の界面層の領域では、母材の成分自体が不明確であり、かつ、元素Mの二次イオン強度の母材成分元素濃度依存性も不明であるため、元素Mの定量が難しい。図8での説明のように参考試料はイオン注入で作成しているので、被分析元素Mの界面層における濃度の推定は可能であるが、未知の濃度分布を有する元素Mが、2つの母材にまたがって分布する場合、界面層での母材の成分自体が不明であり、かつ、元素Mの二次イオン強度の母材成分元素濃度依存性も不明であるため、元素Mの濃度分布を定量することは難しい。 FIG. 9 shows an example in which the secondary ion profile in the depth direction of the element M is measured in the reference sample described in FIG. In the conventional secondary ion mass spectrometry method, the sensitivity coefficient of the element M to be analyzed is obtained for each of the base material containing the element R and the base material containing the element A, and then the base material containing R as the component. The element M to be analyzed must be quantified in each of the above region and the base material region containing A as a component. In the region of the interface layer between the base material of element R and the base material of element A, the component of the base material itself is unclear, and the secondary ion strength of element M depends on the concentration of the base material component element. Since the nature is unknown, it is difficult to quantify the element M. Since the reference sample is prepared by ion implantation as described in FIG. 8, it is possible to estimate the concentration of the element M to be analyzed in the interface layer, but the element M having an unknown concentration distribution has two mothers. In the case of distribution across the material, the component itself of the base material in the interface layer is unknown, and the dependency of the secondary ionic strength of the element M on the concentration of the base material component element is also unknown, so the concentration distribution of the element M It is difficult to quantify.
そこで、本実施形態では次のような標準試料を使用する。本標準試料は、第一元素(元素R)の母材が、深さ方向の原子濃度分布が既知である、前記母材にドープされた第二元素(元素M)と、深さ方向の原子濃度分布が既知であり、且つ該原子濃度分布の一部が1%を超えている、前記母材にドープされた第三元素(元素A)と、を含んでいる。 Therefore, in this embodiment, the following standard sample is used. In this standard sample, the base material of the first element (element R) has a known atomic concentration distribution in the depth direction, the second element (element M) doped in the base material, and atoms in the depth direction. And a third element doped with the base material (element A), the concentration distribution of which is known and a part of the atomic concentration distribution exceeds 1%.
図1は、本標準試料に含まれる3つの元素(元素R、元素A、元素M)の深さ方向に対する濃度を説明する図である。本標準試料は、成分元素Rで構成される母材に、目的とする被分析元素Mを既知の濃度分布を形成するようにドープし、さらに、もう1つの成分となる元素Aをドープしている。 FIG. 1 is a diagram for explaining the concentration in the depth direction of three elements (element R, element A, element M) contained in this standard sample. In this standard sample, a base material composed of the component element R is doped with a target analyte element M so as to form a known concentration distribution, and further doped with an element A as another component. Yes.
以降、標準試料を用いた二次イオン質量分析方法について説明する。本標準試料は、濃度分布が深さ方向に一定になるように元素Mがイオン注入でドープされている。なお、図1では元素Mの濃度を深さ方向に一定としたが、濃度分布が既知であれば一定でなくてもよい。また、本標準試料は、既知の濃度分布を形成するため、元素Aが既定のイオン注入エネルギー及びイオン注入量でイオン注入されている。この濃度分布はガウシアン分布と考えてよい。元素Aの平均飛程Rp(A)における元素Aの濃度は1%を超えるものとした。 Hereinafter, a secondary ion mass spectrometry method using a standard sample will be described. This standard sample is doped with the element M by ion implantation so that the concentration distribution is constant in the depth direction. In FIG. 1, the concentration of the element M is constant in the depth direction, but may not be constant as long as the concentration distribution is known. In addition, in this standard sample, the element A is ion-implanted with a predetermined ion implantation energy and ion implantation amount in order to form a known concentration distribution. This density distribution may be considered as a Gaussian distribution. The concentration of the element A in the average range Rp (A) of the element A was over 1%.
図2は、図1で示した本標準試料を二次イオン質量分析方法で測定したことにより得られる元素Aの深さ方向の二次イオンプロファイルである。元素Aの平均飛程Rp(A)付近では、元素Aの濃度が高いために元素A自身によって母材から放出される二次イオン強度が変化していると考えられる。この領域では、二次イオン質量分析方法で得られる元素Aの深さ方向の二次イオンプロファイルは、実際の分布と異なる。図2では歪のあるガウシアン分布となっている。しかし、元素Rと元素Aの2成分系において、測定条件を一定にすれば、元素Aの二次イオン強度と濃度との関係は得られる。 FIG. 2 is a secondary ion profile in the depth direction of the element A obtained by measuring the standard sample shown in FIG. 1 by a secondary ion mass spectrometry method. In the vicinity of the average range Rp (A) of the element A, it is considered that the secondary ion intensity released from the base material is changed by the element A itself because the concentration of the element A is high. In this region, the secondary ion profile in the depth direction of the element A obtained by the secondary ion mass spectrometry method is different from the actual distribution. In FIG. 2, a distorted Gaussian distribution is obtained. However, in the two-component system of the element R and the element A, the relationship between the secondary ion intensity and the concentration of the element A can be obtained if the measurement conditions are made constant.
図3は、図2から計算した元素Aの二次イオン強度と濃度との関係図である。二次イオン強度と濃度をともに対数で示した場合、元素Aの低濃度領域では、元素Aの二次イオン強度と濃度との間に比例関係があるので、バックグラウンドノイズの影響を除けば、傾き45度の直線上にある。そして、元素Aの濃度が濃度C0(A)を超えるあたりから、元素Aの二次イオン強度と濃度との間に比例関係は成り立たなくなる。しかし、元素Aの二次イオン強度と濃度との関係は非線形であるが、単調増加関数であるので図3を用いて元素Aの二次イオン強度から元素Aの濃度を求めることができる。すなわち、元素A自体による元素Aの感度係数の変化を示す感度曲線A−A(第三元素感度曲線)が得られる。 FIG. 3 is a relationship diagram between the secondary ion intensity and the concentration of the element A calculated from FIG. When both the secondary ion intensity and the concentration are expressed in logarithm, in the low concentration region of the element A, there is a proportional relationship between the secondary ion intensity and the concentration of the element A. Therefore, except for the influence of the background noise, It is on a straight line with an inclination of 45 degrees. Then, since the concentration of the element A exceeds the concentration C0 (A), the proportional relationship does not hold between the secondary ion intensity and the concentration of the element A. However, the relationship between the secondary ion intensity and the concentration of the element A is non-linear, but since it is a monotonically increasing function, the concentration of the element A can be obtained from the secondary ion intensity of the element A using FIG. That is, a sensitivity curve AA (third element sensitivity curve) showing a change in the sensitivity coefficient of the element A due to the element A itself is obtained.
図4は、図1で示した本標準試料を二次イオン質量分析方法で測定したことにより得られる元素Mの深さ方向の二次イオンプロファイルである。元素Aの平均飛程Rp(A)付近以外の領域は、母材は、元素Rで構成される均一の母材と考えてよいので、元素Mの元素Rに対する感度係数M−M(第二元素感度曲線)を求めることができる。この感度係数M−Mで、元素Mの濃度が未知である測定試料中の元素Mの定量が可能になる。一方、元素Aの平均飛程Rp(A)付近では、元素Aの濃度が高いために母材から放出される二次イオン強度が変化していると考えられる。この領域では、二次イオン質量分析方法で得られる元素Mの深さ方向の二次イオンプロファイルは、実際の分布と異なる。しかし、測定条件を一定にすれば、元素Aの二次イオン強度と元素Mの二次イオン強度との対応関係を得ることができる。 FIG. 4 is a secondary ion profile in the depth direction of the element M obtained by measuring the standard sample shown in FIG. 1 by a secondary ion mass spectrometry method. In the region other than the vicinity of the average range Rp (A) of the element A, the base material may be considered as a uniform base material composed of the element R. Therefore, the sensitivity coefficient M−M (second) of the element M with respect to the element R Elemental sensitivity curve). With this sensitivity coefficient MM, the element M in the measurement sample whose element M concentration is unknown can be quantified. On the other hand, in the vicinity of the average range Rp (A) of the element A, it is considered that the secondary ion intensity released from the base material changes due to the high concentration of the element A. In this region, the secondary ion profile in the depth direction of the element M obtained by the secondary ion mass spectrometry method is different from the actual distribution. However, if the measurement conditions are made constant, the correspondence between the secondary ion intensity of element A and the secondary ion intensity of element M can be obtained.
図5は、図4の結果を元素Aの二次イオン強度と元素Mの二次イオン強度との対応関係で示したものである。元素Mの濃度は一定であるはずだが、この例では、元素Aの濃度が濃度C0(A)を超えるあたりから、元素Mの二次イオン強度は増加する。ある一定の測定条件で元素Aの二次イオン強度がある値を示したとき、図5を用いることで元素Mの二次イオン強度がどれだけ増加しているかを知ることができる。すなわち、図5は元素Mの感度係数の変化を示す感度曲線M−A(相関感度曲線)と考えることができる。 FIG. 5 shows the result of FIG. 4 as a correspondence relationship between the secondary ion intensity of the element A and the secondary ion intensity of the element M. Although the concentration of the element M should be constant, in this example, the secondary ion intensity of the element M increases from the time when the concentration of the element A exceeds the concentration C0 (A). When the secondary ion intensity of the element A shows a certain value under a certain measurement condition, it is possible to know how much the secondary ion intensity of the element M has increased by using FIG. That is, FIG. 5 can be considered as a sensitivity curve MA (correlation sensitivity curve) showing a change in the sensitivity coefficient of the element M.
以上をまとめると、元素Rと元素Aの2成分系の測定試料中の微量元素Mについて、図5に示した感度曲線M−Aから、元素Aの二次イオン強度の程度で元素Mの二次強度の増感の程度を知ることができる。そして、図2の元素Aのイオンプロファイルを用いて元素Aの二次イオン強度から元素Aの濃度を知ることができ、測定試料の元素Aと元素Rの組成比を知ることができる。従って、本標準試料は、母材の組成において元素Aが0%(元素Rが100%)から元素Aの最大濃度にいたるまでの組成の母材における元素Mの標準試料とすることができる。すなわち、本標準試料を二次イオン質量分析方法に使用することで、図1で示した試料を標準試料として、元素Rと元素Aとの任意組成である2成分系測定試料中の濃度未知の元素Mの定量を行うことができる。 Summarizing the above, regarding the trace element M in the binary component measurement sample of the element R and the element A, from the sensitivity curve MA shown in FIG. The degree of sensitization of the next intensity can be known. Then, using the ion profile of element A in FIG. 2, the concentration of element A can be known from the secondary ion intensity of element A, and the composition ratio of element A and element R in the measurement sample can be known. Therefore, this standard sample can be used as a standard sample of the element M in the base material having a composition from 0% of the element A (element R is 100%) to the maximum concentration of the element A in the base material composition. That is, by using this standard sample in the secondary ion mass spectrometry method, the concentration in the binary measurement sample having an arbitrary composition of the element R and the element A with the sample shown in FIG. 1 as the standard sample is unknown. The element M can be quantified.
本実施形態の二次イオン質量分析方法の具体的な測定方法を以下に説明する。まず、二次イオン質量分析装置のチャンバ内に本標準試料と測定試料をセットする。続いて、チャンバ内を真空とし、本標準試料に、セシウムイオン、酸素イオン、アルゴンイオン等の一次イオンビームを照射する。このとき本標準試料から放出される元素R、元素A及び元素Mの二次イオンを質量分離して検出し、それぞれ二次イオン強度と深さ方向の二次イオンプロファイルを取得する。標準試料の深さ方向の各元素の濃度は既知であるため、取得した二次イオン強度から図3のような元素Aについての感度曲線A−A、元素Mについての感度曲線M−M、及び図5のような元素Aと元素Mとの感度曲線M−Aを取得する。 A specific measurement method of the secondary ion mass spectrometry method of the present embodiment will be described below. First, the standard sample and the measurement sample are set in the chamber of the secondary ion mass spectrometer. Subsequently, the chamber is evacuated and the standard sample is irradiated with a primary ion beam such as cesium ions, oxygen ions, and argon ions. At this time, secondary ions of element R, element A, and element M released from this standard sample are detected by mass separation, and secondary ion intensity and secondary ion profile in the depth direction are obtained. Since the concentration of each element in the depth direction of the standard sample is known, the sensitivity curve AA for the element A, the sensitivity curve MM for the element M as shown in FIG. A sensitivity curve MA of the element A and the element M as shown in FIG.
次に、測定試料に一次イオンビームを照射する。このとき測定試料から放出される元素R、元素A及び元素Mの二次イオンを質量分離して検出し、それぞれ二次イオン強度と深さ方向の二次イオンプロファイルを取得する。ここで、元素Aの二次イオン強度と感度曲線A−Aを用いて測定試料内の元素Aの濃度を確認する。元素Aの濃度がC0(A)未満であれば、元素Mの二次イオン強度と感度曲線M−Mを用いて元素Mの濃度を知ることができる。 Next, the measurement sample is irradiated with a primary ion beam. At this time, secondary ions of element R, element A, and element M released from the measurement sample are detected by mass separation, and secondary ion intensity and secondary ion profile in the depth direction are obtained. Here, the concentration of the element A in the measurement sample is confirmed using the secondary ion intensity of the element A and the sensitivity curve AA. If the concentration of the element A is less than C0 (A), the concentration of the element M can be known using the secondary ion intensity of the element M and the sensitivity curve MM.
一方、元素Aの濃度がC0(A)以上の場合、感度曲線M−Aを用いて元素Mの二次イオン強度の増加の程度を取得する。続いて元素Mの二次イオン強度から増加分の強度を差し引いた補正二次イオン強度を取得する。この補正二次イオン強度と感度曲線M−Mを用いて元素Mの濃度を知ることができる。 On the other hand, when the concentration of the element A is C0 (A) or higher, the degree of increase in the secondary ion intensity of the element M is acquired using the sensitivity curve MA. Subsequently, a corrected secondary ion intensity obtained by subtracting the increased intensity from the secondary ion intensity of the element M is acquired. The concentration of the element M can be known using the corrected secondary ion intensity and the sensitivity curve MM.
例えば、元素Rを鉄とし、元素Aを炭素として、図1における元素A、すなわち炭素の最大濃度を25%超とすれば、純鉄とセメンタイト(Fe3C)の間で任意の組成を有する鉄−炭素化合物について、任意の元素Mの定量が可能である。 For example, if the element R is iron, the element A is carbon, and the element A in FIG. 1, that is, the maximum concentration of carbon exceeds 25%, it has an arbitrary composition between pure iron and cementite (Fe 3 C). Arbitrary element M can be quantified about an iron-carbon compound.
Rp(M):元素Mの平均飛程
Rp(A):元素Aの平均飛程
Rp (M): Average range of element M Rp (A): Average range of element A
Claims (1)
深さ方向の原子濃度分布が既知である、前記母材にドープされた第二元素と、
深さ方向の原子濃度分布が既知であり、且つ該原子濃度分布の一部が1%を超えている、前記母材にドープされた第三元素と、
を含んでおり、
前記第一元素及び前記第三元素で構成された測定試料中に含まれる第二元素の原子濃度を特定する二次イオン質量分析に用いられる標準試料を用いて、
前記第一元素及び前記第三元素で構成された測定試料中に含まれる第二元素の原子濃度を特定する二次イオン質量分析方法であって、
前記標準試料に一次イオンを照射することで前記標準試料から放出される前記第三元素の二次イオン強度を測定し、前記標準試料の深さ方向に対する前記第三元素の二次イオン強度の第三元素二次イオンプロファイルを取得し、
前記第三元素二次イオンプロファイルから前記第三元素の原子濃度対前記第三元素の二次イオン強度の第三元素感度曲線を計算し、
前記標準試料に一次イオンを照射することで前記標準試料から放出される前記第二元素の二次イオン強度を測定し、前記標準試料の深さ方向に対する前記第二元素の二次イオン強度の第二元素二次イオンプロファイルを取得し、
前記第二元素二次イオンプロファイルから前記第二元素の原子濃度対前記第二元素の二次イオン強度の第二元素感度曲線を計算し、
前記第三元素二次イオンプロファイルと前記第二元素二次イオンプロファイルとから前記第三元素の二次イオン強度対前記第二元素の二次イオン強度の相関感度曲線を計算する標準試料測定手順と、
前記測定試料に一次イオンを照射することで前記測定試料から放出される前記第二元素の二次イオン強度及び前記第三元素の二次イオン強度を測定し、
前記標準試料測定手順で計算した前記第三元素感度曲線を用いて、前記標準試料測定手順で取得した第三元素二次イオンプロファイルから前記第三元素の原子濃度を把握し、
前記第三元素の原子濃度が所定値未満の場合、前記標準試料測定手順で計算した前記第二元素感度曲線を用いて、前記標準試料測定手順で取得した前記第二元素二次イオンプロファイルから前記第二元素の原子濃度を取得し、
前記第三元素の原子濃度が前記所定値以上の場合、前記標準試料測定手順で計算した前記相関感度曲線を用いて、前記第二元素の二次イオン強度の割増分を取得し、前記第二元素二次イオンプロファイルから前記割増分を差し引いた補正二次イオンプロファイルを計算し、
前記標準試料測定手順で計算した前記第二元素感度曲線を用いて、前記補正二次イオンプロファイルから前記第二元素の原子濃度を取得する測定試料測定手順と、
を有する二次イオン質量分析方法。 The base material of the first element
A second element doped in the base material with a known atomic concentration distribution in the depth direction;
A third element doped in the base material, in which the atomic concentration distribution in the depth direction is known and a part of the atomic concentration distribution exceeds 1%;
Contains
Using a standard sample used for secondary ion mass spectrometry that specifies the atomic concentration of the second element contained in the measurement sample composed of the first element and the third element ,
A secondary ion mass spectrometry method for specifying an atomic concentration of a second element contained in a measurement sample composed of the first element and the third element,
By irradiating the standard sample with primary ions, the secondary ion intensity of the third element released from the standard sample is measured, and the secondary ion intensity of the third element with respect to the depth direction of the standard sample is measured. Acquire a three-element secondary ion profile,
Calculating the third element sensitivity curve of the third element secondary ion intensity versus the third element secondary ion intensity from the third element secondary ion profile;
The secondary ion intensity of the second element emitted from the standard sample is measured by irradiating the standard sample with primary ions, and the secondary ion intensity of the second element with respect to the depth direction of the standard sample is measured. Acquire a two-element secondary ion profile,
Calculating a second element sensitivity curve of the second element atomic concentration versus the second element secondary ion intensity from the second element secondary ion profile;
A standard sample measurement procedure for calculating a correlation sensitivity curve between the secondary ion intensity of the third element and the secondary ion intensity of the second element from the secondary ion profile of the third element and the secondary ion profile of the second element; ,
Measure the secondary ion intensity of the second element and the secondary ion intensity of the third element emitted from the measurement sample by irradiating the measurement sample with primary ions,
Using the third element sensitivity curve calculated in the standard sample measurement procedure, grasp the atomic concentration of the third element from the third element secondary ion profile obtained in the standard sample measurement procedure,
When the atomic concentration of the third element is less than a predetermined value, the second element sensitivity curve calculated in the standard sample measurement procedure is used, and the second element secondary ion profile obtained in the standard sample measurement procedure is used. Get the atomic concentration of the second element,
When the atomic concentration of the third element is equal to or greater than the predetermined value, the percent increment of the secondary ion intensity of the second element is obtained using the correlation sensitivity curve calculated in the standard sample measurement procedure, and the second element Calculate a corrected secondary ion profile obtained by subtracting the percent increment from the elemental secondary ion profile,
Using the second element sensitivity curve calculated in the standard sample measurement procedure, a measurement sample measurement procedure for obtaining the atomic concentration of the second element from the corrected secondary ion profile;
Secondary ion mass spectrometry method having
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009151334A JP5198372B2 (en) | 2009-06-25 | 2009-06-25 | Secondary ion mass spectrometry method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009151334A JP5198372B2 (en) | 2009-06-25 | 2009-06-25 | Secondary ion mass spectrometry method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011007625A JP2011007625A (en) | 2011-01-13 |
JP5198372B2 true JP5198372B2 (en) | 2013-05-15 |
Family
ID=43564470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009151334A Expired - Fee Related JP5198372B2 (en) | 2009-06-25 | 2009-06-25 | Secondary ion mass spectrometry method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5198372B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0887975A (en) * | 1994-09-14 | 1996-04-02 | Fujitsu Ltd | Quantitative analysis |
JPH1151885A (en) * | 1997-08-04 | 1999-02-26 | Nippon Telegr & Teleph Corp <Ntt> | Secondary ion mass spectrometry |
JP2002181746A (en) * | 2000-12-18 | 2002-06-26 | Matsushita Electric Ind Co Ltd | Quantitative analysis method and auxiliary sample and standard sample thereof |
-
2009
- 2009-06-25 JP JP2009151334A patent/JP5198372B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011007625A (en) | 2011-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sato et al. | Relation between Vickers hardness and Bragg-edge broadening in quenched steel rods observed by pulsed neutron transmission imaging | |
WO2013035082A1 (en) | Combined method of secondary ion mass spectroscopy and energy dispersive x-ray for quantitative chemical analysis of various solid materials and thin films without the use of specific patterns or standards | |
WO2021161631A1 (en) | Quantitative analysis method, quantitative analysis program, and fluorescence x-ray analysis device | |
Colaux et al. | Accurate electronics calibration for particle backscattering spectrometry | |
Shard et al. | Intensity calibration for monochromated Al Kα XPS instruments using polyethylene | |
JP5198372B2 (en) | Secondary ion mass spectrometry method | |
Jablonski | Determination of the electron inelastic mean free path in solids from the elastic electron backscattering intensity | |
Kim et al. | Quantitative surface analysis of Fe Ni alloy films by XPS, AES and SIMS | |
JP5557161B2 (en) | Structural analysis method | |
Murdoch et al. | Quantitative depth‐dependent analysis using the inelastic scattering backgrounds from X‐ray photoelectron spectroscopy and hard X‐ray photoelectron spectroscopy | |
Weaver et al. | Energy broadening of neutron depth profiles by thin polyamide films | |
JP4410154B2 (en) | Deconvolution analysis device, deconvolution analysis program, and deconvolution analysis method | |
JP2006313132A (en) | Sample analyzing method and x-ray analyzing system | |
Staub et al. | Quantitative determination of dopant dose in shallow implants using the low energy X-ray emission spectroscopy technique | |
Parri et al. | New pathways for improved quantification of energy‐dispersive X‐ray spectra of semiconductors with multiple X‐ray lines from thin foils investigated in transmission electron microscopy | |
Tomita et al. | Estimation of ultra-shallow implants using SIMS, NRA and chemical analysis | |
JP4834613B2 (en) | X-ray fluorescence analyzer and method | |
Newbury et al. | Faults and foibles of quantitative scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) | |
JP5391942B2 (en) | Primary ion energy correction method in secondary ion mass spectrometry | |
Wang et al. | Accurate Determination of the Matrix Composition Profile of Hg 1–x Cd x Te by Secondary Ion Mass Spectrometry | |
JP2002181746A (en) | Quantitative analysis method and auxiliary sample and standard sample thereof | |
JP2004157089A (en) | Concentration profile calibration method and concentration profile analysis processing apparatus | |
Higashi et al. | Quantification method using the inverse velocity dependence of ion intensities in secondary ion mass spectrometry: the high-energy method | |
JP5381916B2 (en) | Fine site analysis apparatus using focused ion beam and fine site analysis method using focused ion beam | |
JP2001004564A (en) | Quantitative determination method for trace amount of boron in thin-film solid and analytical method for composition of thin-film solid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121127 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130206 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160215 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5198372 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |