JP5196517B2 - Oligothiophene-based liquid crystal compounds, columnar liquid crystal materials and uses thereof - Google Patents

Oligothiophene-based liquid crystal compounds, columnar liquid crystal materials and uses thereof Download PDF

Info

Publication number
JP5196517B2
JP5196517B2 JP2006356341A JP2006356341A JP5196517B2 JP 5196517 B2 JP5196517 B2 JP 5196517B2 JP 2006356341 A JP2006356341 A JP 2006356341A JP 2006356341 A JP2006356341 A JP 2006356341A JP 5196517 B2 JP5196517 B2 JP 5196517B2
Authority
JP
Japan
Prior art keywords
liquid crystal
compound
phase
columnar
crystal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006356341A
Other languages
Japanese (ja)
Other versions
JP2008007497A (en
Inventor
隆史 加藤
琢磨 安田
健史 岸本
武史 下村
潔 箕浦
淳 森田
祐介 赤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2006356341A priority Critical patent/JP5196517B2/en
Publication of JP2008007497A publication Critical patent/JP2008007497A/en
Application granted granted Critical
Publication of JP5196517B2 publication Critical patent/JP5196517B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、オリゴチオフェン系液晶化合物、カラムナー液晶材料およびその用途に関する。   The present invention relates to an oligothiophene liquid crystal compound, a columnar liquid crystal material, and uses thereof.

オリゴチオフェンは、高い電荷移動度を示す有機半導体材料として、従来注目されている。たとえば、3〜5量体のオリゴチオフェン骨格の末端にメチル基またはエチル基を有するオリゴチオフェン誘導体をソースとドレインの間に連続的に配置させた電子素子が提案されている(特許文献1など参照)。   Oligothiophene has been attracting attention as an organic semiconductor material exhibiting high charge mobility. For example, an electronic device in which an oligothiophene derivative having a methyl group or an ethyl group at the end of a 3- to 5-mer oligothiophene skeleton is continuously arranged between a source and a drain has been proposed (see Patent Document 1, etc.). ).

最近、液晶π共役材料は、ナノ構造を容易に形成する電子材料となりうることから多いに注目されている。なかでもπ共役オリゴチオフェンは、電界効果トランジスタ(FET)用有機半導体として期待され、特異的な電気的特性および光学的特性を有する高秩序性の分子集合体を構築しうるオリゴチオフェン誘導体の開発が望まれている。これまで、いくつかスメクチックおよびネマチック液晶オリゴチオフェンが報告され、いくつかはFETに適用されている(たとえば非特許文献1〜3参照)。   Recently, liquid crystal π-conjugated materials have attracted much attention because they can be electronic materials that easily form nanostructures. In particular, π-conjugated oligothiophene is expected as an organic semiconductor for field effect transistors (FETs), and the development of oligothiophene derivatives that can construct highly ordered molecular assemblies with specific electrical and optical properties has been developed. It is desired. So far, several smectic and nematic liquid crystal oligothiophenes have been reported, and some have been applied to FETs (see, for example, Non-Patent Documents 1 to 3).

液晶π共役材料のうちでも、カラムナー液晶は、隣接する分子のπ電子共役系の重なりがカラム方向に最も大きくなるため、一次元の電子移動が高速であることが予想される。π共役カラムナー液晶は、有機EL素子の電荷輸送層、太陽電池などへの利用が期待される。このようなカラム方向に沿う移動性の高められた一次元輸送電荷担体となるπ共役カラムナー液晶材料として、たとえばトリフェニレン、ヘキサベンゾコロネンおよびペリレンジイミド誘導体などが知られている(たとえば非特許文献4参照)。   Among liquid crystal π-conjugated materials, columnar liquid crystals are expected to have a one-dimensional electron transfer at high speed because the overlap of π-electron conjugated systems of adjacent molecules is greatest in the column direction. The π-conjugated columnar liquid crystal is expected to be used for charge transport layers of organic EL elements, solar cells, and the like. As such a π-conjugated columnar liquid crystal material serving as a one-dimensional transport charge carrier with improved mobility along the column direction, for example, triphenylene, hexabenzocoronene, and perylene diimide derivatives are known (see, for example, Non-Patent Document 4). ).

また、ホメオトロピック配向性のデスコティックなカラムナー液晶相を形成可能なフタロシアニン系液晶性化合物の提案もある(特許文献2参照)。   There is also a proposal of a phthalocyanine-based liquid crystalline compound capable of forming a homeotropically oriented discotic columnar liquid crystal phase (see Patent Document 2).

特開平4−133351号公報JP-A-4-133351 特開2004−300281号公報Japanese Patent Laid-Open No. 2004-300281 S. Xiaoら, Angew. Chem. Int. Ed., 2005, 44, 7390S. Xiao et al., Angew. Chem. Int. Ed., 2005, 44, 7390 I. McCullochら, J. Mater. Chem., 2003, 13, 2436I. McCulloch et al., J. Mater. Chem., 2003, 13, 2436 B.-H. Huismanら, Adv. Mater., 2003, 15, 2002B.-H. Huisman et al., Adv. Mater., 2003, 15, 2002 A. J. J. M. van Breemenら, J. Am. Chem. Soc., 2006, 128, 2336A. J. J. M. van Breemen et al., J. Am. Chem. Soc., 2006, 128, 2336

異方的電気伝導性を得るためには、カラムナー液晶相の配向を巨視的にかつ的確に制御することが極めて重要である。本発明は、カラムナー液晶相を自己組織的に形成しうる新規なπ共役液晶化合物を提供することを目的としている。   In order to obtain anisotropic electrical conductivity, it is extremely important to control the alignment of the columnar liquid crystal phase macroscopically and accurately. An object of the present invention is to provide a novel π-conjugated liquid crystal compound capable of self-organizing a columnar liquid crystal phase.

本発明は、上記のようなπ共役液晶化合物として、芳香族コア部として電荷移動度の高いオリゴチオフェン骨格を含む化合物について検討したところ、該中心コア部の両端に、少なくともm−位にジアルコキシ置換基をもつフェニル基を連結し、フェニル基を含む芳香族コア部を完成するとともに、樹枝状の柔軟なアルコキシ基からなる末端溶融部を設計したところ(以下、ダンベル型オリゴチオフェン誘導体と称することもある)、中心コア部と末端部との適切なバランスによりサーモトロピックカラムナー液晶相を形成することを見出した。上述のとおりオリゴチオフェン骨格を有する液晶化合物は知られているが、カラムナー液晶相を形成するものはまだ報告されていない。
したがって本発明は、上記構造すなわち後述する式(1)で示されるとおりのオリゴチオフェン骨格を有する液晶化合物を提供する。
In the present invention, as a π-conjugated liquid crystal compound as described above, a compound containing an oligothiophene skeleton having a high charge mobility as an aromatic core portion was examined. At least both of the central core portions were dialkoxylated at the m-position. When a phenyl group having a substituent is linked to complete an aromatic core part containing a phenyl group, and a terminal melting part composed of a dendritic flexible alkoxy group is designed (hereinafter referred to as a dumbbell-type oligothiophene derivative). It was also found that a thermotropic columnar liquid crystal phase is formed by an appropriate balance between the central core portion and the end portion. As described above, liquid crystal compounds having an oligothiophene skeleton are known, but those that form a columnar liquid crystal phase have not yet been reported.
Therefore, the present invention provides a liquid crystal compound having an oligothiophene skeleton as shown in the above structure, that is, the formula (1) described later.

この液晶化合物のいくつかは、後述する実施例で液晶特性およびカラムナー液晶相の形成が確かめられている。したがって本発明は、上記のような液晶化合物の1種または2種以上を含み、カラムナー液晶相を自己組織的に形成する液晶材料を提供する。
上記液晶材料において、カラムナー液晶相は、液晶化合物の分子層の一次元積層体であるカラムから形成される。
カラムの分子層は、通常、一階層あたり複数の液晶化合物分子を含み、典型的に平均3分子含む。
カラムナー液晶相は、上記のようなカラムのヘキサゴナル集合体(以下、Colとも記す)からなるドメインを有する。
Some of these liquid crystal compounds have been confirmed to have liquid crystal characteristics and columnar liquid crystal phases in Examples described later. Accordingly, the present invention provides a liquid crystal material that includes one or more of the liquid crystal compounds as described above and forms a columnar liquid crystal phase in a self-organizing manner.
In the liquid crystal material, the columnar liquid crystal phase is formed from a column that is a one-dimensional laminate of molecular layers of liquid crystal compounds.
The molecular layer of the column usually contains a plurality of liquid crystal compound molecules per layer, and typically contains an average of 3 molecules.
The columnar liquid crystal phase has a domain composed of a hexagonal aggregate (hereinafter also referred to as Col h ) of the column as described above.

本発明では、上記液晶材料を蛍光発光材料として提供することができる。
上記液晶材料の形態例は、液晶化合物の自己組織膜で形成される液晶性薄膜である。
また、液晶化合物の自己組織膜の一軸配向膜すなわち液晶材料からなる配向膜を提供することもできる。本発明の配向膜は、電荷輸送材料として、また偏光蛍光発光薄膜として有用である。
In the present invention, the liquid crystal material can be provided as a fluorescent material.
A form example of the liquid crystal material is a liquid crystal thin film formed of a self-organized film of a liquid crystal compound.
In addition, a uniaxial alignment film of a self-organized film of a liquid crystal compound, that is, an alignment film made of a liquid crystal material can be provided. The alignment film of the present invention is useful as a charge transport material and as a polarized fluorescent light-emitting thin film.

本発明では、液晶化合物を液晶温度に加熱し、形成された液晶相に機械的剪断を加え、カラムナー液晶相を一軸配向させる、配向膜の製造方法も提供する。   The present invention also provides a method for producing an alignment film, in which a liquid crystal compound is heated to a liquid crystal temperature, mechanical shear is applied to the formed liquid crystal phase, and the columnar liquid crystal phase is uniaxially aligned.

本発明の他の態様例は、上記のような液晶材料を用いた有機電子デバイスである。
本発明のさらに他の態様例は、上記のような液晶材料を用いた光デバイスである。
Another embodiment of the present invention is an organic electronic device using the liquid crystal material as described above.
Still another embodiment of the present invention is an optical device using the liquid crystal material as described above.

本発明は、π共役オリゴチオフェン系サーモトロピックカラムナー液晶をはじめて提供する。本発明に係る液晶材料は、オリゴチオフェン骨格を含有する特定構造の液晶化合物の1種または2種以上からなり、自己組織的にカラムナー液晶相を形成する。このような液晶材料は、π共役カラムナー液晶相による一次元の高速電子移動が見積もられ、有機EL素子の電荷輸送層、太陽電池などへの利用が期待される。   The present invention provides for the first time a π-conjugated oligothiophene-based thermotropic columnar liquid crystal. The liquid crystal material according to the present invention comprises one or more liquid crystal compounds having a specific structure containing an oligothiophene skeleton, and forms a columnar liquid crystal phase in a self-organizing manner. Such a liquid crystal material is estimated for one-dimensional high-speed electron transfer due to the π-conjugated columnar liquid crystal phase, and is expected to be used for a charge transport layer of an organic EL element, a solar cell, and the like.

以下、本発明をより具体的に説明する。
本発明に係る液晶化合物は、下記式(1)で示される。

式中、ZおよびZは、互いに同一であっても異なっていてもよく、単結合、−C(O)−、−C(S)−または−C(O)−NH−であり、である。典型例は、Z=Zであり、−C(O)−である。
nは3〜20である。nは、カラムナー液晶において剛直な中心コア部の長さを決定するものであるが、カラムナー液晶として好ましいn数は、R〜R、R1’〜R5’の置換基数、置換基長さなどによっても異なり、また液晶材料を単一種により形成するか、あるいは2種以上の組み合わせで形成するかによっても異なる。これらから一概にはいえないが、単一種でカラムナー液晶を形成する態様では、通常5以上が望ましい。また剛直性を考慮すれば、最長でも12以下が望ましい。
Hereinafter, the present invention will be described more specifically.
The liquid crystal compound according to the present invention is represented by the following formula (1).

In the formula, Z 1 and Z 2 may be the same or different from each other, and are a single bond, —C (O) —, —C (S) — or —C (O) —NH—, It is. A typical example is Z 1 = Z 2 and —C (O) —.
n is 3-20. n determines the length of the rigid central core portion in the columnar liquid crystal, and the preferred n number for the columnar liquid crystal is the number of substituents R 1 to R 5 , R 1 ′ to R 5 ′ , and the length of the substituents. It depends on whether the liquid crystal material is formed of a single kind or a combination of two or more kinds. Although not unequivocally described from these, in an embodiment in which a single type of columnar liquid crystal is formed, 5 or more is usually desirable. In consideration of rigidity, 12 or less is desirable at the longest.

、R、R2’およびR4’は、互いに同一であっても異なっていてもよく、炭素原子数3〜20のアルコキシ基、好ましくは炭素原子数8以上、より好ましくは炭素原子数12以上のアルコキシ基である。アルコキシ基は特に分岐部を有するものを排除するものではないが、柔軟性の末端構造およびコア部とのナノ相分離の容易さを考慮すれば直鎖状であることが望ましい。
、R、R、R1’、R3’およびR5’は、それぞれ独立に、水素原子、炭素原子数1〜20のアルキルまたはアルコキシ基である。ここでのアルキルまたはアルコキシ基は、上記Rなどと同様である。
R 2 , R 4 , R 2 ′ and R 4 ′ may be the same or different from each other, and are an alkoxy group having 3 to 20 carbon atoms, preferably 8 or more carbon atoms, more preferably a carbon atom. It is an alkoxy group of several 12 or more. The alkoxy group does not particularly exclude those having a branched portion, but is preferably linear in view of the flexible terminal structure and the ease of nanophase separation from the core portion.
R 1 , R 3 , R 5 , R 1 ′ , R 3 ′ and R 5 ′ are each independently a hydrogen atom, an alkyl or alkoxy group having 1 to 20 carbon atoms. The alkyl or alkoxy group here is the same as R 2 described above.

上記のうちでも、合成上、典型的な態様例は、コア部を介して両末端部が同一の構造である。また、RおよびR3’が、R、R、R2’およびR4’と同様のアルコキシ基である態様も、典型的な構造例である。 Among the above, in the case of synthesis, a typical embodiment has a structure in which both end portions are the same through the core portion. An embodiment in which R 3 and R 3 ′ are the same alkoxy groups as R 2 , R 4 , R 2 ′ and R 4 ′ is also a typical structural example.

上記式(1)で示される液晶化合物のうちでも、下記式(2)で示される態様は、後述する実施例に示すとおり、単一種でもカラムナー液晶相を形成する液晶材料であることが確認されている。

式中、nは5または6であり、RはC12−18のアルキル基である。
Among the liquid crystal compounds represented by the above formula (1), it is confirmed that the mode represented by the following formula (2) is a liquid crystal material that forms a columnar liquid crystal phase even in a single type, as shown in the examples described later. ing.

In the formula, n is 5 or 6, and R is a C 12-18 alkyl group.

本発明の液晶材料は、上記のような式(1)で示される液晶化合物の1種または2種以上を含む、カラムナー液晶相を自己組織的に形成する液晶材料である。この液晶材料は、必ずしも単一種でカラムナー液晶相を形成するものに制限されず、他種との組合わせとすることもできる。   The liquid crystal material of the present invention is a liquid crystal material that self-organizes a columnar liquid crystal phase containing one or more of the liquid crystal compounds represented by the above formula (1). This liquid crystal material is not necessarily limited to a single type that forms a columnar liquid crystal phase, and may be a combination with other types.

上記のような式(1)で示される液晶化合物は、公知の合成方法を適宜に選択すれば、合成することができ、特に制限されない。たとえばチオフェン5量体およびチオフェン6量体の誘導体は、後述のパラジウム触媒カプリング反応に基づく合成スキーム1として示す方法により合成可能である。該方法は、オリゴチオフェンの繰り返し単位数を所望数に制御することができ、好ましい。
これら化合物は、クロロホルム、ジクロロメタン、THFおよびトルエンなどの通常の有機溶媒に可溶である。
The liquid crystal compound represented by the above formula (1) can be synthesized by appropriately selecting a known synthesis method, and is not particularly limited. For example, thiophene pentamer and thiophene hexamer derivatives can be synthesized by the method shown as Synthesis Scheme 1 based on the palladium-catalyzed coupling reaction described below. This method is preferable because the number of oligothiophene repeating units can be controlled to a desired number.
These compounds are soluble in common organic solvents such as chloroform, dichloromethane, THF and toluene.

上記のように本発明の液晶化合物の分子設計は、中心部の芳香族コアの各端に連結した末端アルコキシ鎖を有する形態すなわちダンベル型オリゴチオフェン誘導体であることを特徴とし、該分子は、液晶層における一次元分子の積層体すなわちカラムを形成することができる。本発明において、分子間のオリゴチオフェン部位のπ−π相互作用、ならびに中心芳香族コアと周囲のアルコキシ部位とのナノ相分離が、これら分子のカラムナー液晶相の形成を促進する。
また本発明の液晶材料からなるカラムナー液晶相は、通常、カラムのヘキサゴナル集合体からなるドメインを有する態様をとる。
このカラムナー液晶相は、サーモトロピックに自己組織化して形成される。
As described above, the molecular design of the liquid crystal compound of the present invention is characterized in that it has a form having a terminal alkoxy chain linked to each end of the central aromatic core, that is, a dumbbell-type oligothiophene derivative. One-dimensional molecular stacks or columns in the layers can be formed. In the present invention, the π-π interaction of oligothiophene sites between molecules, and the nanophase separation of the central aromatic core and surrounding alkoxy sites promote the formation of columnar liquid crystal phases of these molecules.
Further, the columnar liquid crystal phase made of the liquid crystal material of the present invention usually takes a form having a domain made of a hexagonal aggregate of columns.
This columnar liquid crystal phase is formed by thermotropic self-organization.

このような液晶化合物および液晶材料は、DSC、偏光顕微鏡、紫外−可視吸収スペクトル、蛍光スペクトル、赤外吸収スペクトル、XRDなどの常套の機器分析により、液晶特性、カラムナー相構造などを確認することができる。   Such liquid crystal compounds and liquid crystal materials may be confirmed for liquid crystal properties, columnar phase structure, etc. by conventional instrumental analysis such as DSC, polarizing microscope, ultraviolet-visible absorption spectrum, fluorescence spectrum, infrared absorption spectrum, XRD, etc. it can.

これらの具体的特性は、実施例中で説明するが、本発明化合物の相の挙動は、カラムナー相を示すことから、もっぱらネマチックおよび/またはスメクチック相が観察されると従来報告された液晶オリゴチオフェンの公知文献(たとえば非特許文献1〜3)などに示されるものとは顕著に相違する。
なお、実施例における結果から、剛直なロッド状オリゴチオフェン部分は一次元ドメインを形成し、溶融したアルコキシ部位がカラムの外側部分を埋めていることが推測される。図6中に、挿入部として、ダンベル型オリゴチオフェン誘導体のCol液晶相への自己組織性を模式的に説明する図を示す。ここでアルコキシ鎖はひだ状でかつ隣接カラム間で相互嵌入している。
Although these specific characteristics will be described in the examples, since the behavior of the phase of the compound of the present invention shows a columnar phase, a liquid crystal oligothiophene that has been conventionally reported to be exclusively nematic and / or smectic phase is observed. This is markedly different from those disclosed in known documents (for example, Non-Patent Documents 1 to 3).
From the results in the examples, it is inferred that the rigid rod-shaped oligothiophene portion forms a one-dimensional domain, and the molten alkoxy site fills the outer portion of the column. FIG. 6 schematically illustrates the self-organization of a dumbbell-type oligothiophene derivative into the Col h liquid crystal phase as an insertion portion. Here, the alkoxy chains are pleated and interdigitated between adjacent columns.

カラムの分子層は、通常、一階層あたり複数の液晶化合物分子を含み、実施例に基づき、各カラムの一階層あたり、概ね、平均3分子が含まれていると見積ることができる。
なおカラム各階層の平均分子数(μ)は、次式にしたがって概算した: μ=(√3Nhρ) /2M(ここで、Nはアボガドロ数, aは格子定数(表1参照)、hは層厚み(約4.5オングストローム),ρは密度(1gcm−3と仮定)およびMは化合物の分子量である。)
The molecular layer of the column usually includes a plurality of liquid crystal compound molecules per layer, and it can be estimated that an average of three molecules is included per layer of each column based on the examples.
In addition, the average number of molecules (μ) in each layer was estimated according to the following formula: μ = (√3 N A a 2 hρ) / 2 M (where N A is Avogadro's number, a is the lattice constant (see Table 1) ), H is the layer thickness (approximately 4.5 Å), ρ is the density (assuming 1 gcm −3 ), and M is the molecular weight of the compound.)

一次元カラムナー積層体は、機械的剪断を印加することにより、一軸的に配向することができる。カラム構造の一軸配向は、KBr結晶板またはガラス板に挟み込んだ液晶化材料のCol相のポリドメインに、機械的剪断を加えれば容易に達成することができる。 The one-dimensional columnar laminate can be uniaxially oriented by applying mechanical shear. Uniaxial orientation of the column structure can be easily achieved by applying mechanical shearing to the Col h phase polydomain of the liquid crystallized material sandwiched between KBr crystal plates or glass plates.

Col相の機械的剪断による配向は偏光顕微鏡写真で観察することができる。本発明では、カラムナー材料が剪断方向に平行に整列する傾向があることが観察される。配向した液晶材料の複屈折は、クロスニコル条件下、45°回転ごとに明から暗に交互に変化する。さらに、Col相における配向した液晶材料の偏光赤外スペクトルは、たとえば1435cm−1におけるオリゴチオフェンコアの芳香族C=C伸縮結合について二色性を示す。この観察結果は、オリゴチオフェンのπ−π積層方向が、剪断方向に平行であることの根拠となる。巨視的なカラムの配向は、分子の積層に沿って異方的電荷輸送をさせるであろう。 The orientation of the Col h phase by mechanical shearing can be observed with a polarizing micrograph. In the present invention, it is observed that the columnar material tends to align parallel to the shear direction. The birefringence of the aligned liquid crystal material alternates from light to dark every 45 ° rotation under crossed Nicol conditions. Furthermore, the polarized infrared spectrum of the aligned liquid crystal material in the Col h phase shows dichroism for the aromatic C = C stretch bond of the oligothiophene core at 1435 cm −1 , for example. This observation result is the basis for the fact that the π-π lamination direction of oligothiophene is parallel to the shear direction. Macroscopic column orientation will cause anisotropic charge transport along the stack of molecules.

上記のとおり、ダンベル型オリゴチオフェン誘導体がカラムナー液晶相を示すことを始めて提案する。オリゴチオフェン部分の分子間のπ−π相互作用およびナノ相分離は、そのような一次元の超分子集合体の形成を促進する。カラムナー構造の一軸配向は、液晶状態においてなされる。
このような本発明のカラムナー液晶π共役オリゴチオフェンは、有機光電子デバイスの電荷輸送材料として期待される。したがって本発明では、上記のような液晶材料を電荷輸送材料として用いた有機電子デバイスを提供することができる。
As described above, it is proposed for the first time that a dumbbell-type oligothiophene derivative exhibits a columnar liquid crystal phase. Π-π interactions between molecules of the oligothiophene moiety and nanophase separation promote the formation of such one-dimensional supramolecular assemblies. Uniaxial alignment of the columnar structure is performed in the liquid crystal state.
The columnar liquid crystal π-conjugated oligothiophene of the present invention is expected as a charge transport material for organic optoelectronic devices. Therefore, the present invention can provide an organic electronic device using the liquid crystal material as described above as a charge transport material.

また、本発明に係る液晶化合物は蛍光発光性であり、すなわち本発明の液晶材料は蛍光発光材料でもある。したがって、本発明では、上記のような液晶材料を用いた光デバイスを提供することもできる。   In addition, the liquid crystal compound according to the present invention is fluorescent, that is, the liquid crystal material of the present invention is also a fluorescent material. Therefore, the present invention can also provide an optical device using the liquid crystal material as described above.

上記のような有機電子デバイス、光デバイスの態様において、本発明の液晶材料を用いること以外は、特に制限されず、デバイス形状、構成などはその用途において適宜に設定することができる。   In the aspect of the organic electronic device and the optical device as described above, there is no particular limitation except that the liquid crystal material of the present invention is used, and the device shape, configuration, and the like can be appropriately set in the application.

ここで、本発明で提供する液晶材料の好ましい態様として、液晶性薄膜が挙げられる。この液晶性薄膜は、液晶化合物の自己組織膜で形成されることが特徴的である。液晶性薄膜は、液晶化合物を一旦溶解した後冷却することにより容易に得ることができる。
本発明では、特に、上記したように、液晶化合物の液晶状態におけるカラムナー構造を一軸配向させた液晶性薄膜である配向膜が好ましい態様として挙げることができる。配向膜は、たとえば上記電荷輸送材料、偏光蛍光発光薄膜として有用であり、本発明の液晶材料(液晶化合物)を有機電子デバイス、光デバイスに膜形態で組込むことができる。
Here, as a preferred embodiment of the liquid crystal material provided in the present invention, a liquid crystal thin film can be mentioned. This liquid crystalline thin film is characteristically formed of a self-organized film of a liquid crystal compound. The liquid crystal thin film can be easily obtained by once dissolving the liquid crystal compound and then cooling.
In the present invention, as described above, an alignment film that is a liquid crystalline thin film in which the columnar structure in the liquid crystal state of the liquid crystal compound is uniaxially aligned can be mentioned as a preferred embodiment. The alignment film is useful, for example, as the charge transport material and the polarized fluorescent light-emitting thin film, and the liquid crystal material (liquid crystal compound) of the present invention can be incorporated into an organic electronic device or an optical device in a film form.

本発明において、配向膜は、液晶化合物の自己組織膜を一方向に配向させることにより容易に得ることができる。配向膜の製造方法は特に制限されないが、たとえば液晶化合物を液晶温度に加熱し、液晶温度において、形成された液晶相に機械的剪断(ズリ)を加え、カラムナー液晶相を一軸配向させることにより得ることができる。
この方法において、液晶化合物の液晶温度に加熱し液晶相を形成する工程は、通常、液晶化合物を一旦等方相(液体相)まで加熱した後、液晶温度まで降温させて行なう。
In the present invention, the alignment film can be easily obtained by aligning the self-organized film of the liquid crystal compound in one direction. The method for producing the alignment film is not particularly limited. For example, the alignment film is obtained by heating a liquid crystal compound to a liquid crystal temperature, adding mechanical shear to the formed liquid crystal phase at the liquid crystal temperature, and uniaxially aligning the columnar liquid crystal phase. be able to.
In this method, the step of forming a liquid crystal phase by heating to the liquid crystal temperature of the liquid crystal compound is usually performed by once heating the liquid crystal compound to an isotropic phase (liquid phase) and then lowering the temperature to the liquid crystal temperature.

また、配向膜の別の製造方法としては、表面に配向処理が施された2枚の平板の間に液晶材料を導入し、液晶材料が等方相(液体相)となるまで加熱し,その後、液晶材料が液晶相または固体相となるまで冷却する方法が挙げられる。配向処理された2枚の平板は、たとえば、ラビング処理を施したポリイミド膜などであり、このポリイミド膜は、ガラス板表面に被覆したものであってもよい。   As another method for producing an alignment film, a liquid crystal material is introduced between two flat plates whose surfaces are subjected to alignment treatment, and heated until the liquid crystal material becomes an isotropic phase (liquid phase). And a method of cooling until the liquid crystal material becomes a liquid crystal phase or a solid phase. The two flat plates subjected to orientation treatment are, for example, a polyimide film subjected to rubbing treatment, and the polyimide film may be a glass plate surface coated.

上記のような配向膜の製造において、表面にリブ列を形成した平板(図示せず)を用い、リブ同士の間隙に蛍光発光材料である液晶材料を配し、ズリをかけることにより微細パターン加工をすることもできる。この各リブの間隙に配する液晶材料として、別々の色たとえば赤色と緑色とを配することができる。   In the production of the alignment film as described above, a fine pattern processing is performed by using a flat plate (not shown) having a rib array on the surface, arranging a liquid crystal material that is a fluorescent light emitting material in the gap between the ribs, and applying a gap. You can also As the liquid crystal material disposed in the gap between the ribs, different colors such as red and green can be disposed.

次に本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
<材料および合成>
以下の実施例において、試薬および溶媒はすべて、アルドリッチケミカル社または東京化成工業(株)から入手した。
Pd(PPhは、文献(D. R. Coulson, Inorg. Synth., 1972, 13, 121)に準じて得た。
チオフェン-2,5-ジボロン酸(下記スキーム1中の8)および2,2'-ビチオフェン-5,5'-ジボロン酸(スキーム1中の9)を、文献(T. Olinga, S. Destri and W. Porzio, Macromol. Chem. Phys., 1997, 198, 1091);M. Jayakannan, J. L. J. van Dongen and R. A. J. Janssen, Macromolecules, 2001, 34, 5386)の記載と同様の手順により調製した。
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
<Materials and synthesis>
In the following examples, all reagents and solvents were obtained from Aldrich Chemical Co. or Tokyo Chemical Industry Co., Ltd.
Pd (PPh 3 ) 4 was obtained according to the literature (DR Coulson, Inorg. Synth., 1972, 13 , 121).
Thiophene-2,5-diboronic acid (8 in Scheme 1 below) and 2,2'-bithiophene-5,5'-diboronic acid (9 in Scheme 1) are described in the literature (T. Olinga, S. Destri and W. Porzio, Macromol. Chem. Phys., 1997, 198 , 1091); M. Jayakannan, JLJ van Dongen and RAJ Janssen, Macromolecules, 2001, 34 , 5386).

<機器分析>
H-および13C{H}-NMRスペクトルは、日本電子(株)(JEOL)製JNM-LA400スペクトロメータを用いて測定した。
マススペクトル(MS)は、パーセプティブ バイオシステムス社(PerSeptive Biosystems)製Voyager-DE STRスペクトロメータを用いて測定した。
元素分析はヤナコ社製MT−6CHNコーダーを用いて行った。
示差走査熱量測定(DSC)は、ネッチ社(NETZSCH)製DSC204 Phoenix熱量計により、昇温速度5℃min−1で実施した。
光学顕微鏡観察には、メトラー社(Mettler)製FP82HTホットステージを装備したオリンパス社製偏光顕微鏡BH-51を用いた。
FT-IRスペクトルの測定は、日本分光(株)(JASCO)製IRT-30顕微鏡およびMettler FP82HTホットステージを装備したJASCO製FT/IR-660 Plusスペクトロメータで行った。
配向サンプルは、文献(M. Yoshio,T. Mukai,H. OhnoおよびT. Kato,J. Am. Chem. Soc.,2004,126,994)に準じて、KBr結晶板またはガラス板でサンドイッチして、機械的剪断を印加することにより調製した。
X線回折(XRD)パターンは、加熱装置を装備したリガク社(Rigaku)製RINT-2500回折装置により、線源:CuKα線を用いて測定した。
紫外−可視(UV-vis)吸収スペクトルおよび蛍光(PL)スペクトルは、それぞれ、アジレント社(Agilent)製8453およびJASCO製FP-777W分光器を用いて測定した。
<Instrument analysis>
1 H- and 13 C { 1 H} -NMR spectra were measured using a JNM-LA400 spectrometer manufactured by JEOL Ltd. (JEOL).
Mass spectra (MS) were measured using a Voyager-DE STR spectrometer manufactured by PerSeptive Biosystems.
Elemental analysis was performed using MT-6CHN coder manufactured by Yanaco.
Differential scanning calorimetry (DSC) was performed with a DSC 204 Phoenix calorimeter manufactured by NETZSCH at a heating rate of 5 ° C. min −1 .
For the optical microscope observation, an Olympus polarizing microscope BH-51 equipped with a Mettler FP82HT hot stage was used.
The FT-IR spectrum was measured with a JASCO FT / IR-660 Plus spectrometer equipped with an IRT-30 microscope manufactured by JASCO Corporation (JASCO) and a Mettler FP82HT hot stage.
Oriented samples are sandwiched between KBr crystal plates or glass plates according to literature (M. Yoshio, T. Mukai, H. Ohno and T. Kato, J. Am. Chem. Soc., 2004, 126 , 994). And by applying mechanical shear.
The X-ray diffraction (XRD) pattern was measured with a RINT-2500 diffractometer manufactured by Rigaku equipped with a heating device, using a source: CuKα rays.
UV-vis absorption spectrum and fluorescence (PL) spectrum were measured using Agilent 8453 and JASCO FP-777W spectrometer, respectively.

<スキーム1>
<Scheme 1>

(合成例1)キンキチオフェン(5量体)誘導体の合成

上記スキーム1に示す合成経路を用いて化合物1a−1cおよび2a−2cを得た。すべての反応は、標準的なシュレンク技術を用いてAr雰囲気下で行った。
Synthesis Example 1 Synthesis of Kinkythiophene (Pentamer) Derivative

Compounds 1a-1c and 2a-2c were obtained using the synthetic route shown in Scheme 1 above. All reactions were performed under Ar atmosphere using standard Schlenk techniques.

工程1:2-ブロモ-5-(3,4,5-トリメトキシベンゾイル)チオフェン(3)の合成
3,4,5-トリメトキシベンゾイルクロライド(20.8g,90mmol)および2-ブロモチオフェン(15.3g,94mmol)の乾燥CHCl(200mL)溶液に、0℃で、Ar雰囲気下、ゆっくりとAlCl(13.2g,99mmol)を添加した。その後、混合物を室温で3時間撹拌した。反応混合物を、希塩酸(ca.5%)中に加え、生成物をCHClで3回抽出した。有機相を1つに合わせ、水で洗浄した後、無水NaSOで乾燥した。ろ過、次いで溶媒を留去した後、粗生成物をカラムクロマトグラフィー(シリカ,CHCl)で精製し、真空乾燥して、標題の化合物3を淡黄色固体で得た(収量21.8g,収率68%)。
Step 1: Synthesis of 2-bromo-5- (3,4,5-trimethoxybenzoyl) thiophene (3) 3,4,5-trimethoxybenzoyl chloride (20.8 g, 90 mmol) and 2-bromothiophene (15 To a solution of .3 g, 94 mmol) in dry CH 2 Cl 2 (200 mL) was slowly added AlCl 3 (13.2 g, 99 mmol) at 0 ° C. under Ar atmosphere. The mixture was then stirred at room temperature for 3 hours. The reaction mixture was added into dilute hydrochloric acid (ca. 5%) and the product was extracted 3 times with CHCl 3 . The organic phases were combined, washed with water and then dried over anhydrous Na 2 SO 4 . After filtration and then evaporation of the solvent, the crude product was purified by column chromatography (silica, CHCl 3 ) and dried in vacuo to give the title compound 3 as a pale yellow solid (yield 21.8 g, yield). Rate 68%).

工程2:5-(3,4,5-トリメトキシベンゾイル)-2,2’-ビチオフェン(4)の合成
上記で得られた化合物3(14.3g,40mmol)および2-トリブチルスタニルチオフェン(16.4g,44mmol)を含む乾燥DMF(160mL)溶液に、室温で、Ar雰囲気下、Pd(PPh(1.85g,1.6mmol)を添加した。混合物を80℃で10時間撹拌した。室温に冷却後、反応混合物を、KF水溶液(ca.5%)中に注ぎ、析出させた。沈殿物をろ別し、CHClに溶解した後、カラムクロマトグラフィー(シリカ,CHCl)で精製した。CHCl/ヘキサンで再結晶して、標題の化合物4を黄色固体で得た(収量12.8g,収率89%)。
Step 2: Synthesis of 5- (3,4,5-trimethoxybenzoyl) -2,2′-bithiophene (4) Compound 3 (14.3 g, 40 mmol) obtained above and 2-tributylstannylthiophene ( Pd (PPh 3 ) 4 (1.85 g, 1.6 mmol) was added to a dry DMF (160 mL) solution containing 16.4 g, 44 mmol) at room temperature under Ar atmosphere. The mixture was stirred at 80 ° C. for 10 hours. After cooling to room temperature, the reaction mixture was poured into an aqueous KF solution (ca. 5%) and precipitated. The precipitate was filtered off, was dissolved in CHCl 3, and purified by column chromatography (silica, CHCl 3). Recrystallization from CHCl 3 / hexane gave the title compound 4 as a yellow solid (yield 12.8 g, 89% yield).

工程3:5-ブロモ-5’-(3,4,5-トリメトキシベンゾイル)-2,2’-ビチオフェン(5)の合成
上記で得られた化合物4(7.21g,20mmol)の乾燥DMF溶液(150mL)に、0℃で、Ar雰囲気下、ゆっくりとN-ブロモスクシンイミド(3.56g,20mmol)を添加した。混合物を室温で10時間撹拌し、その後大容量の水中に注いだ。生成物をCHClで3回抽出した。有機相を1つに合わせ、水で洗浄した後、無水NaSOで乾燥した。ろ過、次いで溶媒を留去した後、粗生成物をカラムクロマトグラフィー(シリカ,CHCl/ヘキサン/酢酸エチル=5:5:1)で精製し、真空乾燥して、標題の化合物5を黄色固体で得た(収量7.64g,収率87%)。
Step 3: Synthesis of 5-bromo-5 ′-(3,4,5-trimethoxybenzoyl) -2,2′-bithiophene (5) Dry DMF of Compound 4 (7.21 g, 20 mmol) obtained above To the solution (150 mL), N-bromosuccinimide (3.56 g, 20 mmol) was added slowly at 0 ° C. under Ar atmosphere. The mixture was stirred at room temperature for 10 hours and then poured into a large volume of water. The product was extracted 3 times with CHCl 3 . The organic phases were combined, washed with water and then dried over anhydrous Na 2 SO 4 . After filtration and then evaporation of the solvent, the crude product was purified by column chromatography (silica, CHCl 3 / hexane / ethyl acetate = 5: 5: 1) and dried in vacuo to give the title compound 5 as a yellow solid (Yield 7.64 g, yield 87%).

工程4:5-ブロモ-5’-(3,4,5-トリヒドロキシベンゾイル)-2,2’-ビチオフェン(6)の合成
上記で得られた化合物5(7.03g,16mmol)の乾燥CHCl(200mL)溶液中に、撹拌しながら、0℃で、Ar雰囲気下、BBr(1.0M CHCl溶液,53mL)を滴下した。混合物を室温まで加温し、さらに4時間撹拌した。その後、反応混合物をメタノールでクエンチして、減圧下で乾燥した。得られた残渣を水中に装入し、黄色沈殿を得た。生成物をろ取し、冷メタノール、CHCl、ヘキサンの順で洗浄し、真空乾燥して、標題の化合物6を黄色固体で得た(収量量=6.17g,収率97%)。
Step 4: Synthesis of 5-bromo-5 ′-(3,4,5-trihydroxybenzoyl) -2,2′-bithiophene (6) Compound 5 (7.03 g, 16 mmol) obtained above in dry CH BBr 3 (1.0 M CH 2 Cl 2 solution, 53 mL) was added dropwise into a 2 Cl 2 (200 mL) solution at 0 ° C. under Ar atmosphere with stirring. The mixture was warmed to room temperature and stirred for an additional 4 hours. The reaction mixture was then quenched with methanol and dried under reduced pressure. The obtained residue was charged in water to obtain a yellow precipitate. The product was collected by filtration, washed with cold methanol, CHCl 3 and hexane in this order, and dried in vacuo to give the title compound 6 as a yellow solid (yield = 6.17 g, 97% yield).

工程5a:5-ブロモ-5’-(3,4,5-トリ-N-ドデシルオキシベンゾイル)-2,2’-ビチオフェン (7a)の合成
乾燥DMF(30mL)中に、上記で得られた化合物6(2.38g,4.0mmol),1-ブロモドデカン(4.98g,20mmol)およびKCO(4.15g,30mmol)を含む混合物を、80℃で、Ar雰囲気下、20時間激しく撹拌した。室温まで冷却した後、反応混合物を、希塩酸(ca.5%)中に加え、生成物をCHClで3回抽出した。有機相を1つに合わせ、塩水および水で洗浄した後、無水NaSOで乾燥した。ろ過、次いで溶媒を留去した後、生成物をカラムクロマトグラフィー(シリカ,CHCl/ヘキサン=2:1,v/v)で精製し、真空乾燥して、標題の化合物7aを淡黄色固体で得た(収量4.81g,収率89%)。
Step 5a: Synthesis of 5-bromo-5 ′-(3,4,5-tri-N-dodecyloxybenzoyl) -2,2′-bithiophene (7a) obtained above in dry DMF (30 mL). A mixture containing compound 6 (2.38 g, 4.0 mmol), 1-bromododecane (4.98 g, 20 mmol) and K 2 CO 3 (4.15 g, 30 mmol) was stirred at 80 ° C. under Ar atmosphere for 20 hours. Stir vigorously. After cooling to room temperature, the reaction mixture was added into dilute hydrochloric acid (ca. 5%) and the product was extracted 3 times with CHCl 3 . The organic phases were combined and washed with brine and water, then dried over anhydrous Na 2 SO 4 . After filtration and then evaporation of the solvent, the product was purified by column chromatography (silica, CHCl 3 / hexane = 2: 1, v / v) and dried in vacuo to give the title compound 7a as a pale yellow solid Obtained (yield 4.81 g, yield 89%).

工程5b:5-ブロモ-5’-(3,4,5-トリ-N-テトラデシルオキシベンゾイル)-2,2’-ビチオフェン(7b)の合成
1-ブロモドデカンを、1-ブロモテトラデカン(20mmol)に代えた以外は、工程5aと同様の操作により、標題の化合物7bを淡黄色固体として得た(収量91%)。
Step 5b: Synthesis of 5-bromo-5 ′-(3,4,5-tri-N-tetradecyloxybenzoyl) -2,2′-bithiophene (7b)
The title compound 7b was obtained as a pale yellow solid in the same manner as in Step 5a except that 1-bromododecane was replaced with 1-bromotetradecane (20 mmol) (yield 91%).

工程5c:5-ブロモ-5’-(3,4,5-トリ-N-オクタデシルオキシベンゾイル)-2,2’-ビチオフェン(7c)の合成
1-ブロモドデカンを、1-ブロモオクタデカン(20mmol)に代えた以外は、工程5aと同様の操作により、標題の化合物7cを淡黄色固体として得た(収量87%)。
Step 5c: Synthesis of 5-bromo-5 ′-(3,4,5-tri-N-octadecyloxybenzoyl) -2,2′-bithiophene (7c)
The title compound 7c was obtained as a pale yellow solid in the same manner as in Step 5a, except that 1-bromododecane was replaced with 1-bromooctadecane (20 mmol) (yield 87%).

工程6a:化合物1aの合成
上記工程5aで得られた化合物7a(1.17g,1.3mmol)およびチオフェン-2,5-ジボロン酸(スキーム1中の化合物8)(0.10g,0.6mmol)を乾燥THF(10mL)に溶解させ、Ar雰囲気下、Pd(PPh(0.03g,0.03mmol)およびKCO(2.0M,5mL;使用前にArで脱気)を加えた。混合物を60℃で28時間撹拌した。反応混合物は、室温まで冷却した後、水中に注ぎ、CHClで3回抽出した。有機相を1つに合わせ、塩水および水で洗浄した後、無水NaSOで乾燥した。ろ過、次いで溶媒を留去した後、生成物をカラムクロマトグラフィー(シリカ,CHCl)で精製し、CHCl/アセトンで再結晶して、真空乾燥した。目的の化合物1aをオレンジ色固体で得た(収量0.86g,収率83%)。
Step 6a: Synthesis of Compound 1a Compound 7a (1.17 g, 1.3 mmol) and thiophene-2,5-diboronic acid (Compound 8 in Scheme 1) (0.10 g, 0.6 mmol) obtained in Step 5a above. ) Was dissolved in dry THF (10 mL) and Pd (PPh 3 ) 4 (0.03 g, 0.03 mmol) and K 2 CO 3 (2.0 M, 5 mL; degassed with Ar before use) under Ar atmosphere Was added. The mixture was stirred at 60 ° C. for 28 hours. The reaction mixture was cooled to room temperature, poured into water and extracted 3 times with CHCl 3 . The organic phases were combined and washed with brine and water, then dried over anhydrous Na 2 SO 4 . After filtration and then evaporation of the solvent, the product was purified by column chromatography (silica, CHCl 3 ), recrystallized from CHCl 3 / acetone and dried in vacuo. The target compound 1a was obtained as an orange solid (yield 0.86 g, yield 83%).

工程6b:化合物1bの合成
化合物7aを、上記工程5bで得られた化合物7b(1.28g,1.3mmol)に代えた以外は、工程6aと同様の手順により化合物1bを調製した。目的の化合物1bをオレンジ色固体で得た(収量1.05g,収率92%)。
Step 6b: Synthesis of Compound 1b Compound 1b was prepared by the same procedure as in Step 6a, except that Compound 7a was replaced with Compound 7b (1.28 g, 1.3 mmol) obtained in Step 5b above. The target compound 1b was obtained as an orange solid (yield 1.05 g, yield 92%).

工程6c:化合物1cの合成
化合物7aを、上記工程5cで得られた化合物7c(1.50g,1.3mmol)に代えた以外は、工程6aと同様の手順により化合物1cを調製した。目的の化合物1cをオレンジ色固体で得た(収量0.96g,収率72%)。
Step 6c: Synthesis of Compound 1c Compound 1c was prepared by the same procedure as Step 6a, except that Compound 7a was replaced with Compound 7c (1.50 g, 1.3 mmol) obtained in Step 5c above. The target compound 1c was obtained as an orange solid (yield 0.96 g, yield 72%).

(合成例2)セキシチオフェン(6量体)誘導体の合成

工程6a:化合物2aの合成
実施例1の工程6aにおけるチオフェン-2,5-ジボロン酸を、2,2'-ビチオフェン-5,5'-ジボロン酸(スキーム1中の9)(0.15g,0.6mmol)に代えた以外は、実施例1と同様の手順により化合物2aを調製した。目的の化合物2aを赤紫色固体で得た(収量0.86g,収率80%)。
Synthesis Example 2 Synthesis of sexithiophene (hexamer) derivative

Step 6a: Synthesis of Compound 2a The thiophene-2,5-diboronic acid in Step 6a of Example 1 was converted to 2,2′-bithiophene-5,5′-diboronic acid (9 in Scheme 1) (0.15 g, Compound 2a was prepared by the same procedure as in Example 1 except that 0.6 mmol) was used. The target compound 2a was obtained as a reddish purple solid (yield 0.86 g, yield 80%).

工程6b:化合物2bの合成
化合物7aを、実施例1の工程5bで得られた化合物7b(1.28g,1.3mmol)に代えた以外は、上記化合物2aの合成工程6aと同様の手順により化合物2bを調製した。目的の化合物2bを赤紫色固体で得た(収量1.08g,収率91%)。
Step 6b: Synthesis of Compound 2b Except that Compound 7a was replaced with Compound 7b (1.28 g, 1.3 mmol) obtained in Step 5b of Example 1, the same procedure as in Synthesis Step 6a of Compound 2a was used. Compound 2b was prepared. The target compound 2b was obtained as a reddish purple solid (yield 1.08 g, 91% yield).

工程6c:化合物2cの合成
化合物7aを、実施例1の工程5cで得られた化合物7c(1.50g,1.3mmol)に代えた以外は、上記化合物2aの合成工程6aと同様の手順により化合物2cを調製した。目的の化合物2cを赤紫色固体で得た(収量1.02g,収率73%)。
Step 6c: Synthesis of Compound 2c Except that Compound 7a was replaced with Compound 7c (1.50 g, 1.3 mmol) obtained in Step 5c of Example 1, the same procedure as in Synthesis Step 6a of Compound 2a was used. Compound 2c was prepared. The target compound 2c was obtained as a reddish purple solid (yield 1.02 g, yield 73%).

(合成例3)ターチオフェン(3量体)誘導体10a〜cの合成

実施例1において、チオフェン骨格延長工程2〜3を省略した以外は、実施例1と同様にして、化合物10a〜cを得た。代表化合物10aのNMRデータを以下に示す。
(Synthesis Example 3) Synthesis of terthiophene (trimer) derivatives 10a-c

In Example 1, compounds 10a to 10c were obtained in the same manner as in Example 1 except that the thiophene skeleton extension steps 2 to 3 were omitted. The NMR data of the representative compound 10a are shown below.

(合成例4)クォーターチオフェン(4量体)誘導体11a〜cの合成

実施例2において、チオフェン骨格延長工程2〜3を省略した以外は、実施例2と同様にして、化合物11a〜cを得た。代表化合物11aのNMRデータを以下に示す。
Synthesis Example 4 Synthesis of Quarterthiophene (Tetramer) Derivatives 11a to 11c

In Example 2, compounds 11a to 11c were obtained in the same manner as in Example 2 except that the thiophene skeleton extension steps 2 to 3 were omitted. The NMR data of the representative compound 11a are shown below.

(実施例1)
上記で合成した化合物の熱特性を評価した。
<DSC>
合成例1〜2で得られた化合物1a−cおよび化合物2a−cのDSCを測定した。結果を表1に示す。代表的に化合物1aのDSCサーモグラムを図1に示す。

表1中、
DSC(2次加熱;5℃min−1)による相転移点(℃)。Cr:結晶相,Cr’:結晶相,M:メソフェーズ,Col:カラムナー相,Col:ヘキサゴナルCol相,Iso:等方相。
冷却によってのみ観察される。
1a,bについては90℃での、2a−cについては105℃でのCol相。
メソフェーズのXRDパターン獲得は困難であるが光学的組織はCol相に一致。
Example 1
The thermal properties of the compounds synthesized above were evaluated.
<DSC>
The DSCs of compounds 1a-c and 2a-c obtained in Synthesis Examples 1 and 2 were measured. The results are shown in Table 1. A DSC thermogram of compound 1a is typically shown in FIG.

In Table 1,
a Phase transition point (° C.) by DSC (secondary heating; 5 ° C. min −1 ). Cr: Crystal phase, Cr ′: Crystal phase, M: Mesophase, Col: Columnar phase, Col h : Hexagonal Col phase, Iso: Isotropic phase.
b Observed only by cooling.
Col h phase at 90 ° C. for c 1a, b and 105 ° C. for 2a-c.
Although it is difficult to obtain an XRD pattern in the d mesophase, the optical structure coincides with the Col phase.

表1に示すように、化合物1a,1b,2bおよび2cは、エナンチオトロピックCol相を示し、化合物1cおよび2aは、等方溶融からの冷却によってのみモノトロピックCol相を示した。典型例として、6つのドデシルオキシ置換基を有する化合物1aは、79℃(ΔH=27kJmol−1)でCol相を形成し、101 ℃(ΔH=1.7kJmol−1)で等方状態となる。 As shown in Table 1, compounds 1a, 1b, 2b and 2c exhibited an enantiomeric Col phase, and compounds 1c and 2a exhibited a monotropic Col phase only upon cooling from isotropic melting. As a typical example, Compound 1a having six dodecyloxy substituents forms a Col h phase at 79 ° C. (ΔH = 27 kJ mol −1 ) and becomes isotropic at 101 ° C. (ΔH = 1.7 kJ mol −1 ). .

(実施例2)
<XRD>
90℃(液晶状態)における化合物1aのX線回折パターンを図2に示す。ヘキサゴナルカラムナー液晶相(Col相)であることを確認した。すなわち、小角領域において、1:√3:2の逆d格子面間隔比をもつ、39.6Åの強いピークと、22.8Åおよび19.7Åの2つの弱いピークが観察された。これらピークは、それぞれ(100),(110)および(200)反射に対応し、二次元ヘキサゴナル配列であることを示す。図2中の挿入部は、ダンベル型オリゴチオフェン1aのColメソフェーズへの自己組織性を模式的に説明する図である。ここでアルコキシ鎖はひだ状でかつ隣接カラム間で相互嵌入している。約4.5Åの散乱性回折の存在は、長いアルコキシ鎖が液状といえる状態をとっていることを意味する。アルコキシ鎖の延長またはオリゴチオフェンのコア長さの延長に伴い、カラム間距離が増大する。
90℃における化合物1bおよび105℃における化合物2a−cの各X線回折パターンを図3に示す。
また、化合物1a−b(90℃)、2a−c(105℃)の各Col相の格子定数を表1に示す。
(Example 2)
<XRD>
FIG. 2 shows the X-ray diffraction pattern of Compound 1a at 90 ° C. (liquid crystal state). It was confirmed to be a hexagonal columnar liquid crystal phase (Col h phase). That is, in the small-angle region, a strong peak of 39.6Å having an inverse d lattice spacing ratio of 1: √3: 2 and two weak peaks of 22.8Å and 19.7Å were observed. These peaks correspond to (100), (110) and (200) reflections, respectively, and indicate a two-dimensional hexagonal arrangement. The insertion part in FIG. 2 is a diagram schematically illustrating the self-organization property of the dumbbell-type oligothiophene 1a into the Col h mesophase. Here, the alkoxy chains are pleated and interdigitated between adjacent columns. The presence of scattering diffraction of about 4.5 mm means that the long alkoxy chain is in a liquid state. The inter-column distance increases with the extension of the alkoxy chain or the extension of the oligothiophene core length.
FIG. 3 shows X-ray diffraction patterns of Compound 1b at 90 ° C. and Compounds 2a-c at 105 ° C.
Table 1 shows the lattice constants of the Col h phases of compounds 1a-b (90 ° C.) and 2a-c (105 ° C.).

(実施例3)
<偏光顕微鏡観察>
図4および図5は、それぞれ、液晶状態での化合物1aおよび化合物2cの偏光顕微鏡観察像である。各図の(a)は剪断を加えてない液晶相の観察像、(b)および(c)は、ガラスに挟み込んだ液晶状態の化合物に一方向に機械的剪断(ズリ)を加えたときの観察像を示す。図中矢印は、剪断力の方向、偏光子(P)およ検光子(A)の各軸を示す。
液晶状態(剪断なし)の化合物1a(90℃)および化合物2c(105℃)は、クロスニコル条件下、ファン組織が観察された(各図(a))。
一方、剪断を加えた液晶相は、クロスニコル条件下、45°回転により生じる周期的な明(各図(b))および暗(各図(c))イメージを示した。剪断方向が偏光子(P)および検光子(A)軸上にあるとき、サンプルの複屈折は消失する。
すなわち本発明化合物は、Col相のポリドメインが剪断方向に平行に整列する傾向があることが示された。
(Example 3)
<Observation with polarizing microscope>
4 and 5 are polarization microscope observation images of Compound 1a and Compound 2c, respectively, in the liquid crystal state. In each figure, (a) is an observation image of a liquid crystal phase without applying shear, and (b) and (c) are obtained when mechanical shear (slip) is applied in one direction to a compound in a liquid crystal state sandwiched between glasses. An observation image is shown. The arrows in the figure indicate the direction of the shearing force and the axes of the polarizer (P) and the analyzer (A).
In compound 1a (90 ° C.) and compound 2c (105 ° C.) in a liquid crystal state (no shear), a fan structure was observed under crossed Nicols conditions (each figure (a)).
On the other hand, the liquid crystal phase to which shear was applied exhibited periodic bright (each figure (b)) and dark (each figure (c)) images generated by 45 ° rotation under crossed Nicol conditions. When the shear direction is on the polarizer (P) and analyzer (A) axes, the birefringence of the sample disappears.
That is, it was shown that the compound of the present invention tends to align the Col h phase polydomains parallel to the shear direction.

(実施例4)
<偏光IRスペクトル>
図6(a)は、液晶状態において剪断を加えて一軸配向させた化合物1a(薄膜)の偏光赤外吸収スペクトルである。化合物1aの剪断方向に対する偏光角が0°と90°のときのスペクトルを示す。
図6(b)は、上記化合物1a(薄膜)について、1435cm−1(芳香族C=C伸縮振動)における吸収強度の偏光角に対する極座標プロットを示す。
図6に示すとおり、オリゴチオフェンコアの芳香族C=C伸縮結合(1435cm−1)について、剪断方向(0°)と、直交方向(90°)とでの二色性が示された。
Example 4
<Polarized IR spectrum>
FIG. 6A is a polarized infrared absorption spectrum of the compound 1a (thin film) that is uniaxially aligned by applying shear in the liquid crystal state. The spectrum when the polarization angles with respect to the shear direction of Compound 1a are 0 ° and 90 ° is shown.
FIG.6 (b) shows the polar coordinate plot with respect to the polarization angle of the absorption intensity in 1435cm < -1 > (aromatic C = C stretching vibration) about the said compound 1a (thin film).
As shown in FIG. 6, the dichroism in the shear direction (0 °) and the orthogonal direction (90 °) was shown for the aromatic C═C stretch bond (1435 cm −1 ) of the oligothiophene core.

(実施例5)
<UV-vis吸収スペクトルおよび蛍光スペクトル>
本発明化合物の溶液中または凝集状態での分光特性を評価した。化合物1aのUV-vis吸収スペクトルを図7(a)に、蛍光スペクトルを図7(b)に示す。
各図中、(1)はクロロホルム中、(2)は液晶状態(90℃)での、(3)は固相薄膜のスペクトルを示す。固相薄膜は、クロロホルム溶液を石英基板上にキャストして作製した。
(Example 5)
<UV-vis absorption spectrum and fluorescence spectrum>
The spectral characteristics of the compound of the present invention in solution or in an aggregated state were evaluated. The UV-vis absorption spectrum of Compound 1a is shown in FIG. 7 (a), and the fluorescence spectrum is shown in FIG. 7 (b).
In each figure, (1) is in chloroform, (2) is in the liquid crystal state (90 ° C.), and (3) is the spectrum of the solid phase thin film. The solid phase thin film was produced by casting a chloroform solution on a quartz substrate.

図7(a)に示すUV-vis吸収スペクトルにおいて、クロロホルム中の化合物1a(1)は、462nmにπ−π吸収極大を示す。これは、化合物1aのカルボニル基が中心部のオリゴチオフェンコアの共役に影響を及ぼしていることを示唆する。また、液晶(2)および固相薄膜(3)での吸収ピークは、溶液の場合よりも短波長側にシフトするだけでなく(ca.10nm)、540nm近辺にブロードな吸収が出現する。 In the UV-vis absorption spectrum shown in FIG. 7A, compound 1a (1) in chloroform exhibits a π-π * absorption maximum at 462 nm. This suggests that the carbonyl group of compound 1a affects the conjugation of the oligothiophene core at the center. Further, the absorption peaks in the liquid crystal (2) and the solid phase thin film (3) are not only shifted to a shorter wavelength side than in the case of the solution (ca. 10 nm), but broad absorption appears in the vicinity of 540 nm.

また、図7(b)に示す蛍光スペクトルにおいて、クロロホルム中の化合物1aは、544および575nmに発光ピークを示すのに対し、Col相では、585nmにブロードで赤色側にシフトした発光ピークを示す。これらのスペクトル変化から、ダンベル型オリゴチオフェン誘導体のH型平行積層モードのπ−積層集合体が形成されていることが考えられ、これら光学的特徴は、Col相で観察される上述の自己組織を裏付ける。
なお、化合物2a(クロロホルム中)は、470nmにUV-vis吸収ピークを示し、548nmに発光ピークを示した(図示せず)。
In the fluorescence spectrum shown in FIG. 7 (b), Compound 1a in chloroform shows emission peaks at 544 and 575 nm, whereas in the Col h phase, it shows an emission peak broadly shifted to the red side at 585 nm. . From these spectral changes, it is considered that a π-stacked aggregate of dumbbell-type oligothiophene derivatives in the H-type parallel stacked mode is formed, and these optical features are the above self-organization observed in the Col h phase. Back up.
Compound 2a (in chloroform) showed a UV-vis absorption peak at 470 nm and an emission peak at 548 nm (not shown).

(実施例6)
<偏光蛍光特性>
1)配向膜の作製
化合物2c(セキシチオフェン誘導体)を、スライドガラス(26mm×76mm)上の中央部分に載せ、ホットプレートで一旦125℃まで加熱して化合物2cを溶解(溶解温度117℃)し、次いで115℃まで降温した後、液晶相の化合物2cに別のスライドガラスを載せ長手方向にズリをかけた後、室温まで冷却して、化合物2cの配向膜を得た。
(Example 6)
<Polarized fluorescence characteristics>
1) Preparation of alignment film Compound 2c (sexithiophene derivative) is placed on the center of a slide glass (26 mm × 76 mm) and heated to 125 ° C. with a hot plate to dissolve compound 2c (dissolution temperature 117 ° C.) Then, after the temperature was lowered to 115 ° C., another glass slide was placed on the compound 2c in the liquid crystal phase and the longitudinal direction was shifted, and then cooled to room temperature to obtain an alignment film of compound 2c.

2)蛍光スペクトルの測定
ファイバーマルチチャンネル分光器(オーシャンオプティクス社(Ocean Optics)製ファイバーマルチチャンネル分光器USB2000)を用いて、上記で得られた配向膜の蛍光スペクトルを測定した。測定系を図8に模式的に示す。測定系1において、励起光源3からの波長462nmの励起光を試料台2上の配向膜10に対して45°上方から照射し、配向膜10から正面方向に出射された発光を偏光板4を介して受光器5で受光し、蛍光スペクトルを測定した。偏光板4の透過軸を薄膜10のズリ方向に平行させた場合(図中、◆)と直交させた場合(図中、○)とについてそれぞれ測定した。これら蛍光スペクトルを図9に示す。
2) Measurement of fluorescence spectrum The fluorescence spectrum of the alignment film obtained above was measured using a fiber multichannel spectrometer (fiber multichannel spectrometer USB2000 manufactured by Ocean Optics). A measurement system is schematically shown in FIG. In the measurement system 1, excitation light having a wavelength of 462 nm from the excitation light source 3 is irradiated from above 45 ° onto the alignment film 10 on the sample stage 2, and light emitted from the alignment film 10 in the front direction is applied to the polarizing plate 4. And the fluorescence spectrum was measured. The measurement was performed for the case where the transmission axis of the polarizing plate 4 was made parallel to the shear direction of the thin film 10 (in the drawing, ◆) and the case where the transmission axis was made orthogonal (in the drawing, ◯). These fluorescence spectra are shown in FIG.

図9に示されるとおり、平行時(◆)と直交時(○)とでは、発光強度の異なる蛍光スペクトルが得られ、本発明化合物の優れた偏光蛍光性が示された。平行時(◆)および直交時(○)の2つのスペクトルから、各波長における光強度をバックグラウンド補正して二色性比を求めたところ、平行スペクトル(◆)のピーク628nm付近での二色性比が最大となった。この最大値は14.9であり、従来の偏光材料の二色性比に比べ、非常に大きな値であった。
なお、上記1)においてズリをかけないで作製した化合物2cの無配向薄膜は、650nm近辺に単一のブロードなピークをもつ蛍光スペクトルを示した(図示せず)。偏光板4の透過軸を90°変化させても蛍光スペクトルに差異はなかった。
As shown in FIG. 9, fluorescence spectra with different emission intensities were obtained when parallel (♦) and orthogonal (◯), indicating the excellent polarization fluorescence of the compound of the present invention. The dichroic ratio was obtained by correcting the light intensity at each wavelength from the two spectra at the time of parallel (♦) and at the time of orthogonal (◯), and the dichroic ratio was obtained. Sex ratio was maximized. This maximum value was 14.9, which was a very large value compared to the dichroic ratio of the conventional polarizing material.
In addition, the non-oriented thin film of Compound 2c prepared without applying a shift in the above 1) showed a fluorescence spectrum having a single broad peak in the vicinity of 650 nm (not shown). Even when the transmission axis of the polarizing plate 4 was changed by 90 °, there was no difference in the fluorescence spectrum.

本発明化合物の一例についてのDSCサーモグラムを示す図である。It is a figure which shows the DSC thermogram about an example of this invention compound. 90℃における化合物1aのX線回折パターンを示す図であり、挿入部は本発明におけるカラムナー液晶相の模式的構造を示す。It is a figure which shows the X-ray-diffraction pattern of the compound 1a in 90 degreeC, and an insertion part shows the typical structure of the columnar liquid crystal phase in this invention. 90℃における化合物1bおよび105℃における化合物2a−cの各X線回折パターンを示す図である。It is a figure which shows each X-ray-diffraction pattern of the compound 1b in 90 degreeC, and the compound 2a-c in 105 degreeC. 90℃における化合物1aの偏光顕微鏡観察像であり、(a)は剪断を加える前のCol相、(b)および(c)は機械的剪断を加えたCol相を示す。It is a polarizing microscope observation image of the compound 1a in 90 degreeC, (a) shows the Col h phase before adding a shear, (b) and (c) show the Col h phase which added mechanical shear. 105℃における化合物2cの偏光顕微鏡観察像であり、(a)は剪断を加える前のCol相、(b)および(c)は機械的剪断を加えたCol相を示す。It is a polarizing microscope observation image of the compound 2c at 105 degreeC, (a) shows the Col h phase before adding a shear, (b) and (c) show the Col h phase which added mechanical shear. (a)は一軸配向させた1aのCol相の偏光角0°および90°での赤外スペクトルを示す図であり、(b)は1435cm−1での吸収強度の偏光角に対する極座標プロットを示す図である。(A) is a figure which shows the infrared spectrum in the polarization angles 0 degree and 90 degrees of the col h phase of 1a uniaxially oriented, (b) is a polar coordinate plot with respect to the polarization angle of the absorption intensity in 1435 cm < -1 >. FIG. 化合物1aの溶液中または凝集状態での分光特性を示し、(a)はUV-vis吸収スペクトル、(b)は蛍光スペクトルを示す図である。The spectral characteristics of the compound 1a in a solution or in an aggregated state are shown, (a) is a UV-vis absorption spectrum, and (b) is a fluorescence spectrum. 本発明における配向膜の蛍光スペクトル測定系を示す模式図である。It is a schematic diagram which shows the fluorescence spectrum measurement system of the alignment film in this invention. 本発明化合物の配向膜の偏光蛍光スペクトルを示す図である。It is a figure which shows the polarization | polarized-light fluorescence spectrum of the orientation film | membrane of this invention compound.

Claims (12)

下記式(1)で示される液晶化合物:

式中、ZおよびZは、互いに同一であっても異なっていてもよく、−C(O)−または−C(S)−であり、R、R、R2’およびR4’は、互いに同一であっても異なっていてもよく、炭素原子数3〜20のアルコキシ基であり、 およびR 3’ は、それぞれ独立に、炭素原子数1〜20のアルコキシ基であり、 、R 、R よびR5’は、それぞれ独立に、水素原子、炭素原子数1〜20のアルキルまたはアルコキシ基であり、nは3〜20である。
Liquid crystal compound represented by the following formula (1):

Wherein, Z 1 and Z 2, which may be the being the same or different, - C (O) - or -C (S) - a and, R 2, R 4, R 2 'and R 4 ' May be the same or different from each other, and is an alkoxy group having 3 to 20 carbon atoms, and R 3 and R 3' are each independently an alkoxy group having 1 to 20 carbon atoms. , R 1, R 5, R 1 ' Contact and R 5' are each independently a hydrogen atom, an alkyl or alkoxy group having a carbon number of 1 to 20, n is 3 to 20.
請求項1に記載の液晶化合物の1種または2種以上を含む、前記液晶化合物のカラムナー液晶相を自己組織的に形成する液晶材料。   A liquid crystal material that self-organizes a columnar liquid crystal phase of the liquid crystal compound, comprising one or more of the liquid crystal compounds according to claim 1. 前記カラムナー液晶相が、前記液晶化合物の分子層の一次元積層体からなるカラムから形成される請求項2に記載の液晶材料。   The liquid crystal material according to claim 2, wherein the columnar liquid crystal phase is formed from a column formed of a one-dimensional laminate of molecular layers of the liquid crystal compound. 前記カラムの分子層が、一階層あたり平均3分子の前記液晶化合物を含む請求項3に記載の液晶材料。   The liquid crystal material according to claim 3, wherein the molecular layer of the column contains an average of 3 liquid crystal compounds per layer. 前記カラムナー液晶相が、前記カラムのヘキサゴナル集合体からなるドメインを有する請求項3または4に記載の液晶材料。   The liquid crystal material according to claim 3, wherein the columnar liquid crystal phase has a domain composed of hexagonal aggregates of the column. 蛍光発光材料である請求項2〜5のいずれかに記載の液晶材料。   The liquid crystal material according to claim 2, which is a fluorescent light emitting material. 前記液晶化合物の自己組織膜で形成される請求項2〜6のいずれかに記載の液晶材料からなる液晶性薄膜。   A liquid crystalline thin film made of a liquid crystal material according to claim 2, which is formed of a self-organized film of the liquid crystal compound. 前記液晶化合物の自己組織膜の一軸配向膜である請求項2〜6のいずれかに記載の液晶材料からなる配向膜。   The alignment film made of a liquid crystal material according to claim 2, which is a uniaxial alignment film of the self-organized film of the liquid crystal compound. 請求項8に記載の配向膜からなる偏光蛍光発光薄膜。   A polarized fluorescent light-emitting thin film comprising the alignment film according to claim 8. 前記液晶化合物を液晶温度に加熱し、形成された液晶相に機械的剪断を加え、カラムナー液晶相を一軸配向させる、請求項8に記載の配向薄膜の製造方法。   The method for producing an alignment thin film according to claim 8, wherein the liquid crystal compound is heated to a liquid crystal temperature, mechanical shear is applied to the formed liquid crystal phase, and the columnar liquid crystal phase is uniaxially aligned. 請求項2〜6のいずれかに記載の液晶材料を用いた有機電子デバイス。   The organic electronic device using the liquid-crystal material in any one of Claims 2-6. 請求項2〜6のいずれかに記載の液晶材料を用いた光デバイス。   An optical device using the liquid crystal material according to claim 2.
JP2006356341A 2006-05-30 2006-12-28 Oligothiophene-based liquid crystal compounds, columnar liquid crystal materials and uses thereof Expired - Fee Related JP5196517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006356341A JP5196517B2 (en) 2006-05-30 2006-12-28 Oligothiophene-based liquid crystal compounds, columnar liquid crystal materials and uses thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006150460 2006-05-30
JP2006150460 2006-05-30
JP2006356341A JP5196517B2 (en) 2006-05-30 2006-12-28 Oligothiophene-based liquid crystal compounds, columnar liquid crystal materials and uses thereof

Publications (2)

Publication Number Publication Date
JP2008007497A JP2008007497A (en) 2008-01-17
JP5196517B2 true JP5196517B2 (en) 2013-05-15

Family

ID=39066009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006356341A Expired - Fee Related JP5196517B2 (en) 2006-05-30 2006-12-28 Oligothiophene-based liquid crystal compounds, columnar liquid crystal materials and uses thereof

Country Status (1)

Country Link
JP (1) JP5196517B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5004354B2 (en) * 2008-01-23 2012-08-22 日東電工株式会社 Birefringent film and polarizing element
JP2013191821A (en) 2012-02-15 2013-09-26 Kyushu Univ Organic semiconductor device and method of manufacturing the same, and compound
DE102015000815A1 (en) * 2015-01-21 2016-07-21 Heinz Langhals Alkylketo-oligothiophenes and their use in high speed optical signal transmission
JP6245577B2 (en) * 2015-03-10 2017-12-13 国立大学法人山口大学 Thiophene compound having ferrocenylthiocarbonyl group

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4343487B2 (en) * 2002-03-26 2009-10-14 大日本印刷株式会社 Organic semiconductor, light emitting element and light receiving element using the same
KR100580621B1 (en) * 2003-03-07 2006-05-16 삼성전자주식회사 A conductive compound, an electrode and a sensor containing the same and a method for detecting a target molecule using the sensor

Also Published As

Publication number Publication date
JP2008007497A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
Ye et al. Thermally tunable circular dichroism and circularly polarized luminescence of tetraphenylethene with two cholesterol pendants
JP5618272B2 (en) Photoresponsive liquid crystal compounds and their applications
Rodrigues et al. 1, 2, 3/1, 2, 4-Triazole containing liquid crystalline materials: An up-to-date review of their synthetic design and mesomorphic behavior
Zabulica et al. Novel luminescent phenothiazine-based Schiff bases with tuned morphology. Synthesis, structure, photophysical and thermotropic characterization
Gupta et al. Self-assembly of luminescent N-annulated perylene tetraesters into fluid columnar phases
Zhu et al. Design and synthesis of luminescent liquid crystalline polymers with “jacketing” effect and luminescent patterning applications
Jiang et al. Circularly polarized luminescence based on columnar self-assembly of tetraphenylethylene with multiple cholesterol units
Zhu et al. Novel fluorescent perylene liquid crystal with diphenylacrylonitrile groups: Observation of a large pseudo stokes shift based on AIE and FRET effects
JP5196517B2 (en) Oligothiophene-based liquid crystal compounds, columnar liquid crystal materials and uses thereof
Cross et al. Unsymmetrical alkoxy-substituted triphenylenes: the dependence of mesomorphism on molecular shape
Gupta et al. Room temperature columnar liquid crystalline self-assembly of acidochromic, luminescent, star-shaped molecules with cyanovinylene chromophores
Fan et al. Discotic mesogens based on triphenylene-fused benzimidazole or perimidine: facile synthesis, mesomorphism, optical properties and self-assembly
Zhang et al. First columnar rufigallol liquid crystals with high fluorescence at aggregated states
Yuan et al. Influence of alkoxy tail length on the properties of side chain liquid crystal polymers with aggregation–induced emission enhancement characteristics
US7371887B2 (en) Oligo(p-phenylene vinylene) amphiphiles and methods for self-assembly
Shanker et al. Perspective on structure-property relationship of room temperature single-component liquid crystals
Lin et al. Synthesis, self-assembly and optical properties of some rigid π-bridged triphenylene dimers
Benevides et al. Phase-dependent photoluminescence of non-symmetric 2, 1, 3-benzothiadiazole liquid crystals
Peng et al. Ionic liquid crystals with aggregation-induced emission properties based on pyrrolo [3, 2-b] pyrrole salt compounds
Guan et al. Synthesis and properties of novel liquid crystalline materials with super high birefringence: styrene monomers bearing diacetylenes, naphthyl, and nitrogen-containing groups
Aguiar et al. Molecular 5, 8-π-extended quinoxaline derivatives as chromophores for photoluminescence applications
Sakthivel et al. Investigation on thermotropic liquid crystalline and photocrosslinkable polyarylidene arylphosphate esters containing cyclohexanone units
Yelamaggad et al. Tris (N-salicylideneanilines)[TSANs] exhibiting a room temperature columnar mesophase: synthesis and characterization
Zhang et al. Synthesis and nonlinear optical properties of rod-like luminescent materials containing Schiff-base and naphthalimide units
Blanke et al. Tuning the fluorescence in dynamic covalent bonded liquid crystals

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080717

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees