JP5196396B2 - Method for pyrolysis of heavy oil - Google Patents

Method for pyrolysis of heavy oil Download PDF

Info

Publication number
JP5196396B2
JP5196396B2 JP2007273432A JP2007273432A JP5196396B2 JP 5196396 B2 JP5196396 B2 JP 5196396B2 JP 2007273432 A JP2007273432 A JP 2007273432A JP 2007273432 A JP2007273432 A JP 2007273432A JP 5196396 B2 JP5196396 B2 JP 5196396B2
Authority
JP
Japan
Prior art keywords
oil
pyrolysis
heavy oil
weight
heavy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007273432A
Other languages
Japanese (ja)
Other versions
JP2009102471A (en
Inventor
研一 濱野
貴之 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2007273432A priority Critical patent/JP5196396B2/en
Publication of JP2009102471A publication Critical patent/JP2009102471A/en
Application granted granted Critical
Publication of JP5196396B2 publication Critical patent/JP5196396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、エチレンクラッカーなどのオレフィン製造プロセスから副生する重質油の熱分解方法に関し、具体的には、中間留分を熱分解することによりオレフィン類を製造するプロセスから副生する重質油を熱分解して、ガソリン・灯油・軽油等を製造する、重質油の熱分解方法に関する。また、本発明は、かかる方法で得られた熱分解処理油に関する。   TECHNICAL FIELD The present invention relates to a method for pyrolyzing heavy oil by-produced from an olefin production process such as ethylene cracker. Specifically, the heavy oil by-produced from a process for producing olefins by pyrolyzing middle distillate. The present invention relates to a heavy oil pyrolysis method in which oil is pyrolyzed to produce gasoline, kerosene, light oil, and the like. Moreover, this invention relates to the pyrolysis process oil obtained by this method.

炭化水素を熱分化して、オレフィンや芳香族炭化水素、石油化学品を製造する方法として、スチームの存在下に、炭化水素を燃焼してスチームを含む高温ガス中に重質炭化水素を供給し熱分解する方法が知られている(特許文献1〜3)。
一方、石油留分の熱分解でエチレンを製造する際に副生する重質油は、石炭乾留タールや石油留分の接触分解の塔底油と比較すると、硫黄、窒素、重金属分が少ないという特徴を持ち、各種炭素材料の原料物質としては適した性状を有しているが、オレフィン製造装置(エチレンクラッカー等)から留出される重質油(ボトム油又はエチレンヘビーエンド)は、自家用燃料として利用するに留まっていた。
As a method of thermal differentiation of hydrocarbons to produce olefins, aromatic hydrocarbons, and petrochemicals, in the presence of steam, hydrocarbons are burned and heavy hydrocarbons are supplied into a high-temperature gas containing steam. Methods for thermal decomposition are known (Patent Documents 1 to 3).
On the other hand, heavy oil produced as a by-product in the production of ethylene by pyrolysis of petroleum fractions has less sulfur, nitrogen, and heavy metal content compared to coal dry distillation tar and bottom oil from catalytic cracking of petroleum fractions. Heavy oil (bottom oil or ethylene heavy end) distilled from olefin production equipment (ethylene crackers, etc.) is a private fuel, although it has characteristics and is suitable as a raw material for various carbon materials. It stayed in use as.

オレフィン製造装置の原料は主にナフサであるが、原料多様化のため更に重質な灯油・軽油の原料化も考えられている。オレフィン製造装置の原料が重質化するとボトム油の留出量も増加するため、自家燃料油としての利用だけでは効率が悪く、新たな利用方法が求められている。
石油留分の熱分解でエチレンを製造する際に副生する重質油を処理する方法としては、固体酸触媒の存在下、水素雰囲気下で処理する方法も知られている(特許文献4、5)。
特公平3−29112号公報 特公平4−16512号公報 特公平4−21717号公報 特公平4−30436号公報 特公平4−30437号公報
The raw material of olefin production equipment is mainly naphtha, but it is also considered to use heavier kerosene and light oil as raw materials for diversification of raw materials. When the raw material of the olefin production apparatus becomes heavier, the bottom oil distillate also increases. Therefore, the efficiency of the use as a private fuel oil alone is poor, and a new utilization method is required.
As a method of treating heavy oil by-produced when producing ethylene by thermal decomposition of petroleum fractions, a method of treating in a hydrogen atmosphere in the presence of a solid acid catalyst is also known (Patent Document 4, 5).
Japanese Examined Patent Publication No. 3-29112 Japanese Examined Patent Publication No. 4-16512 Japanese Patent Publication No. 4-21717 Japanese Patent Publication No. 4-30436 Japanese Patent Publication No. 4-30437

本発明は、自家燃料油としての利用用途しかなかったエチレンボトム油などの重質油を熱分解する方法を提供することを課題とし、特には、エチレンボトム油などの重質油からより付加価値の高い自動車用燃料油、暖房用燃料油といったガソリン、灯油、軽油等の中間留分を製造する重質油の熱分解方法を提供することを課題とする。   It is an object of the present invention to provide a method for thermally decomposing heavy oil such as ethylene bottom oil that has only been used as a private fuel oil, and in particular, more added value from heavy oil such as ethylene bottom oil. It is an object of the present invention to provide a method for thermally decomposing heavy oil for producing middle distillates such as gasoline, kerosene and light oil such as high fuel oil for automobiles and fuel oil for heating.

本発明者等は、自家燃料油としての利用用途しかなかった石化原料製造装置であるオレフィン類を製造するプロセスから副生する重質油を熱分解処理することにより、硫黄分の低い中間留分を得ることができるとの知見から本発明に想到した。   The inventors of the present invention have developed a middle distillate having a low sulfur content by thermally decomposing heavy oil by-produced from a process for producing olefins, which is a petrochemical raw material production apparatus that has only been used as a private fuel oil. The present invention has been conceived from the knowledge that can be obtained.

すなわち、本発明は、下記のとおりの炭化水素油の熱分解方法、及びかかる方法で得られた熱分解処理油である。
(1)石油精製における中間留分を熱分解してオレフィン類を製造するプロセスから副生する重質油を、温度400〜600℃、圧力0.01〜1.00MPaで熱分解する重質油の熱分解方法。
(2)重質油は、芳香族分が85〜99重量%、5%留出温度が120〜230℃、及び95%留出温度が550〜700℃である上記(1)に記載の重質油の熱分解方法。
(3)上記(1)又は(2)に記載の方法により得られた、5%留出温度が80〜200℃、95%留出温度が290〜520℃、芳香族分が65〜99容量%の熱分解処理油。
That is, this invention is the thermal decomposition method of the hydrocarbon oil as follows, and the thermal decomposition process oil obtained by this method.
(1) Heavy oil obtained by pyrolyzing heavy oil produced as a by-product from the process of producing olefins by pyrolyzing middle distillate in petroleum refining at a temperature of 400 to 600 ° C. and a pressure of 0.01 to 1.00 MPa. Thermal decomposition method.
(2) Heavy oil has an aromatic content of 85 to 99% by weight, a 5% distillation temperature of 120 to 230 ° C, and a 95% distillation temperature of 550 to 700 ° C. Thermal oil pyrolysis method.
(3) The 5% distillation temperature obtained by the method described in (1) or (2) above is 80 to 200 ° C, the 95% distillation temperature is 290 to 520 ° C, and the aromatic content is 65 to 99 volumes. % Pyrolysis oil.

オレフィン類を製造するプロセスから副生する重質油は、従来、燃料油として、特には自家用燃料油として消費するばかりであったが、本発明により、付加価値の高いガソリン、灯油、軽油等の中間留分に転換することが可能となり、自動車用燃料油や暖房用燃料油等として、あるいはそれらの基材として、有効に利用することができるという格別な効果を奏する。また、原料として用いる上記の重質油は、例えばアスファルト等に比べると硫黄分、窒素分が非常に低いので、これを熱分解して得られる熱分解処理油も、硫黄分が低く、窒素分が低い。このため、得られた熱分解処理油は、特段の精製処理をすること無しに、単に分留するだけで、低硫黄分、低窒素分の自動車用燃料油、暖房用燃料油や、それらの基材を製造することができる。すなわち、本発明によれば、低付加価値の重質油を、エネルギーを大量に投入することなく比較的経済的に、高付加価値の燃料油等に変換することができる。   Conventionally, heavy oil produced as a by-product from the process of producing olefins has only been consumed as fuel oil, particularly as private fuel oil. However, according to the present invention, high-value-added gasoline, kerosene, light oil, etc. It becomes possible to convert to a middle distillate, and there is an extraordinary effect that it can be effectively used as a fuel oil for automobiles, a fuel oil for heating, or a base material thereof. In addition, since the above heavy oil used as a raw material has a very low sulfur content and nitrogen content as compared with, for example, asphalt, the pyrolyzed oil obtained by pyrolyzing this also has a low sulfur content and a nitrogen content. Is low. For this reason, the obtained pyrolysis-treated oil can be obtained by simply fractionating without performing a special refining treatment, and can be used for automotive fuel oil, heating fuel oil, A substrate can be manufactured. That is, according to the present invention, low-value-added heavy oil can be converted into high-value-added fuel oil or the like relatively economically without introducing a large amount of energy.

本発明は、石油精製における中間留分の熱分解によりオレフィン類を製造するプロセスから副生する重質油を、温度400〜600℃、0.01〜1.00MPaで熱分解する炭化水素油の熱分解方法である。また、かかる方法により得られた熱分解処理油である。   The present invention relates to a hydrocarbon oil obtained by pyrolyzing heavy oil by-produced from a process of producing olefins by pyrolysis of middle distillate in petroleum refining at a temperature of 400 to 600 ° C. and 0.01 to 1.00 MPa. It is a thermal decomposition method. Moreover, it is the pyrolysis process oil obtained by this method.

〔原料油〕
本発明において、熱分解に供する原料油としては、エチレン等のオレフィンを製造する際に副生する重質油を使用する。石油精製における中間留分を熱分解してオレフィン類を製造するプロセスから副生する重質油であれば、特に限定するものではなく、公知の任意のオレフィン製造プロセスを適宜の運転条件下で稼動して得られた重質油を用いることができる。オレフィン製造プロセスでは、炭化水素の熱分解により目的とするオレフィン分(エチレン、プロピレン)や副製品のLPG、芳香族炭化水素(ベンゼン、トルエン、キシレン)などのガソリン留分、水素、メタンなどのガス分とともに、バイプロダクトとして重質油が生成される。重質油の物性は、オレフィン製造プロセスで処理される原料炭化水素によって異なる。本発明に用いる重質油は、エタン、プロパンやブタン等のLPG、ナフサ、灯軽油、あるいは減圧軽油などの炭化水素を処理するオレフィン製造プロセスから副生する重質油を用いることができる。石油精製において、通常、灯油、軽油、A重油の3種を中間留分と称し、中間三品ともいうが、ここで中間留分とは、これら中間三品に加えて、エタン、プロパンやブタン等のLPG、ナフサ、及びA重油の基材である脱硫減圧軽油なども含めて総称する。原油や残渣油を原料とするオレフィン製造プロセスもあるが、これから副生する重質油は、原油の種類にもよるが、硫黄分や窒素分が比較的多く含まれるため、本発明に用いる原料油としては好ましくない。
エチレンクラッカーに代表されるオレフィン製造プロセスとしては、Lummus法オレフィンプロセスやStone & Webster Eng.社、Kinetics Technology International社、M. W. Kellogg社のプロセスなどが知られている(例えば、石油学会編「石油化学プロセス」、講談社サイエンティフィク、25〜27頁、2001年出版)。
[Raw oil]
In the present invention, heavy oil produced as a by-product when producing an olefin such as ethylene is used as a raw material oil to be subjected to thermal decomposition. Any heavy oil produced as a by-product from the process of producing olefins by pyrolyzing middle distillates in petroleum refining is not particularly limited, and any known olefin production process can be operated under appropriate operating conditions. The heavy oil obtained in this way can be used. In the olefin production process, the target olefin content (ethylene, propylene), by-product LPG, gasoline fractions such as aromatic hydrocarbons (benzene, toluene, xylene), hydrogen, methane, etc., are obtained by thermal decomposition of hydrocarbons. Over time, heavy oil is produced as a by-product. The physical properties of heavy oil vary depending on the raw material hydrocarbons processed in the olefin production process. The heavy oil used in the present invention can be a heavy oil by-produced from an olefin production process for treating hydrocarbons such as LPG such as ethane, propane and butane, naphtha, kerosene oil, or vacuum gas oil. In petroleum refining, kerosene, light oil, and heavy oil A are usually called middle distillates and are also referred to as three intermediate products. Here, middle distillate refers to ethane, propane, butane, etc. in addition to these three intermediate products. It is a general term including LPG, naphtha, and desulfurized vacuum gas oil that is a base material of A heavy oil. Although there are olefin production processes using crude oil and residual oil as raw materials, heavy oil to be produced as a by-product in the future depends on the type of crude oil, but contains a relatively large amount of sulfur and nitrogen, so the raw material used in the present invention It is not preferable as an oil.
Examples of olefin production processes represented by ethylene crackers include the Lummus olefin process and Stone & Webster Eng. Company, Kinetics Technology International, M. W. The process of Kellogg is known (for example, “Petrochemical Process” edited by Petroleum Society, Kodansha Scientific, 25-27, 2001).

本発明において、熱分解に供する原料油の蒸留性状として、5%留出温度は120〜230℃が好ましく、より好ましくは140〜210℃であり、95%留出温度は550〜700℃が好ましく、より好ましくは570〜680℃である。5%留出温度が120℃より低いと熱分解処理した際に低級炭化水素留分(常温常圧でガス状の炭化水素)が多くなるため好ましくなく、また、230℃より大きいと原料油の動粘度が高くなるため、流動性を持たせるために加熱する必要が生じ、消費熱量が大きくなるため好ましくない。また、95%留出温度が550℃より低いと熱分解処理した際に得られる360℃以下の中間留分の生成量が低くなるため好ましくなく、また、700℃より大きいと残留炭素分が増加し、コークドラム前段の加熱炉でコーキングをおこし易くなるため好ましくない。   In the present invention, as a distillation property of the raw material oil subjected to thermal decomposition, the 5% distillation temperature is preferably 120 to 230 ° C, more preferably 140 to 210 ° C, and the 95% distillation temperature is preferably 550 to 700 ° C. More preferably, it is 570-680 degreeC. If the 5% distillation temperature is lower than 120 ° C, the lower hydrocarbon fraction (gaseous hydrocarbon at normal temperature and normal pressure) increases during the pyrolysis treatment. Since the kinematic viscosity is increased, heating is required to provide fluidity, and the amount of heat consumed is increased, which is not preferable. Also, if the 95% distillation temperature is lower than 550 ° C, the amount of middle distillate of 360 ° C or less obtained when pyrolysis is reduced is not preferable, and if it is higher than 700 ° C, the residual carbon content increases. However, it is not preferable because coking is easily performed in a heating furnace in front of the coke drum.

原料油の芳香族分は、熱分解処理した際に得られる熱分解処理油中の芳香族分に影響する。例えば芳香族分の多い原料油を熱分解して得られたガソリン留分は、芳香族分が高く、高いオクタン価を有する。このため、原料油の芳香族分は、85〜99重量%が好ましく、特に好ましくは87〜99重量%である。   The aromatic content of the raw material oil affects the aromatic content in the pyrolyzed oil obtained when pyrolyzed. For example, a gasoline fraction obtained by pyrolyzing a raw material oil having a high aromatic content has a high aromatic content and a high octane number. For this reason, 85-99 weight% is preferable and, as for the aromatic content of raw material oil, Most preferably, it is 87-99 weight%.

硫黄分、窒素分は低いほど望ましいが、オレフィン製造プロセスではこれらを取り除くことができないので、原料油中の硫黄分は好ましくは0.50重量%以下、より好ましくは0.20重量%以下である。同様に、窒素分は好ましくは500重量ppm以下であり、より好ましくは100重量ppm以下である。   The lower the sulfur content and the nitrogen content, the better. However, since these cannot be removed by the olefin production process, the sulfur content in the feedstock is preferably 0.50% by weight or less, more preferably 0.20% by weight or less. . Similarly, the nitrogen content is preferably 500 ppm by weight or less, more preferably 100 ppm by weight or less.

原料油の動粘度は、ハンドリング性及び流動性を持たせるための加熱にエネルギーを投入しなければならなくなることなどから50℃における動粘度は、好ましくは5〜1000mm/sであり、さらに好ましくは10〜200mm/sである。 The kinematic viscosity of the feedstock oil is preferably 5 to 1000 mm 2 / s, more preferably 5 to 1000 mm 2 / s, because energy must be input for heating to provide handling properties and fluidity. Is 10 to 200 mm 2 / s.

〔熱分解プロセス〕
熱分解処理油を得るための熱分解プロセスは、流通式(連続式)、バッチ式(回分式)、半回分式など各種の装置を用いることができる。例えば、ビスブレーキングプロセス、フルードコーキングプロセス、フレキシコーキングプロセス、ディレードコーキングプロセス、ユリカプロセス、HSCプロセスなどが挙げられる(例えば、石油学会編「石油精製プロセス」、講談社サイエンティフィク、197〜205頁、1998年出版)。なかでもディレードコーキングプロセスを好ましく用いることができる。
ディレードコーキングプロセスの装置構成、運転条件は特に限定されるものではなく、公知の任意の製造装置、運転条件を採用できる。ディレードコーキングプロセスは加熱炉で原料油を加熱してコークドラムに張り込み、そこで蒸し焼き状態で熱分解縮重合反応が行われ、より付加価値の高いガス、分解ガソリン、灯油軽油などの石油留分(熱分解処理油)を生成すると同時に、コークスを製造する装置である。コークスはコークドラム中に堆積していくので、いっぱいになったコークドラムは系から切り離して堆積したコークスを切り出す。空になったコークドラムは、再び加熱された原料油を受け入れて熱分解縮重合反応を行う。ディレードコーキングプロセスは、通常、複数基のコークドラムを備えて、上記の操作を順繰りに繰り返す。
[Pyrolysis process]
Various apparatuses, such as a flow type (continuous type), a batch type (batch type), and a semibatch type, can be used for the pyrolysis process for obtaining a pyrolysis process oil. For example, a visbreaking process, a fluid coking process, a flexi coking process, a delayed coking process, a yurika process, an HSC process, etc. (for example, “The Petroleum Society” “Oil Refinery Process”, Kodansha Scientific, pp. 197 to 205, Published in 1998). Among these, a delayed coking process can be preferably used.
The apparatus configuration and operating conditions of the delayed coking process are not particularly limited, and any known manufacturing apparatus and operating conditions can be adopted. In the delayed coking process, the feedstock oil is heated in a heating furnace and placed on a coke drum, where the pyrolysis condensation polymerization reaction is performed in a steamed state, and petroleum fractions such as higher value-added gas, cracked gasoline, kerosene gas oil, etc. This is an apparatus for producing coke at the same time as producing cracked oil. Since coke accumulates in the coke drum, the full coke drum separates from the system and cuts the deposited coke. The emptied coke drum receives the heated raw material oil again and performs a thermal decomposition condensation polymerization reaction. The delayed coking process normally includes a plurality of coke drums and repeats the above operations in order.

中間留分の熱分解によりオレフィン類を製造するプロセスから副生する重質油は、反応温度400〜600℃、より好ましくは450〜550℃、反応圧力0.01〜1.00MPa、より好ましくは0.05〜0.50MPaで熱分解される。これらの反応条件は、この範囲内で適宜設定することができるが、好ましくは熱分解処理油の収率が50重量%以上、より好ましくは60重量%以上になるように設定することが好ましい。
熱分解の反応温度は、400℃より低いと、熱分解処理油の収率が低くなるため好ましくなく、また600℃を超えると分解ガスの生成量が増加するため好ましくない。
反応圧力は、1.00MPaより高いと、熱分解処理油の収率が低くなるため好ましくない。
The heavy oil produced as a by-product from the process of producing olefins by thermal decomposition of middle distillates is a reaction temperature of 400 to 600 ° C, more preferably 450 to 550 ° C, a reaction pressure of 0.01 to 1.00 MPa, more preferably Thermal decomposition at 0.05 to 0.50 MPa. These reaction conditions can be appropriately set within this range, but are preferably set so that the yield of the pyrolysis oil is 50% by weight or more, more preferably 60% by weight or more.
When the reaction temperature for thermal decomposition is lower than 400 ° C., the yield of the pyrolysis oil decreases, which is not preferable. When the reaction temperature exceeds 600 ° C., the generation amount of cracked gas increases, which is not preferable.
A reaction pressure higher than 1.00 MPa is not preferable because the yield of the pyrolysis oil is low.

液空間速度は装置の大きさやコークスの生成量を考慮して設定して構わないが、好ましくは0.01〜0.50h−1であり、より好ましくは0.10〜0.30h−1である。
なお、ここで熱分解処理油の収率(wt%)は、次の式(1)によって得られる値を意味する。
熱分解処理油の収率=熱分解油の重量/原料供給量×100 (1)
式中、熱分解油の重量は、熱分解実験装置の空冷式コンデンサに回収された油の重量であり、原料供給量は、熱分解装置への重質油供給量(重量)である。
Liquid hourly space velocity may be set in consideration of the production of the size and coke device, preferably 0.01~0.50H -1, more preferably 0.10~0.30H -1 is there.
Here, the yield (wt%) of the pyrolysis oil means a value obtained by the following equation (1).
Yield of pyrolysis oil = weight of pyrolysis oil / feed amount of raw material × 100 (1)
In the formula, the weight of the pyrolysis oil is the weight of the oil recovered in the air-cooled condenser of the pyrolysis experimental apparatus, and the raw material supply amount is the heavy oil supply amount (weight) to the pyrolysis device.

〔熱分解処理油〕
前記熱分解により得た熱分解処理油は、収率が50重量%以上、好ましくは65重量%以上であり、また、得られた熱分解処理油に含まれる360℃以下の留分の比率は65重量%以上であることが好ましく、80重量%以上であることがより好ましい。また、270℃以下の留分は50容量%以上が好ましく、より好ましくは60容量%以上である。150〜270℃の留分としては30容量%以上が好ましく、より好ましくは40容量%以上であり、150〜360℃の留分としては60容量%以上が好ましく、より好ましくは70容量%以上である。
[Pyrolyzed oil]
The pyrolysis oil obtained by the pyrolysis has a yield of 50% by weight or more, preferably 65% by weight or more, and the ratio of a fraction of 360 ° C. or less contained in the obtained pyrolysis oil is It is preferably 65% by weight or more, and more preferably 80% by weight or more. The fraction at 270 ° C. or lower is preferably 50% by volume or more, more preferably 60% by volume or more. The fraction at 150 to 270 ° C. is preferably 30% by volume or more, more preferably 40% by volume or more, and the fraction at 150 to 360 ° C. is preferably 60% by volume or more, more preferably 70% by volume or more. is there.

前記熱分解により得た熱分解処理油は、分留、抽出など種々の方法により分画処理することにより、ガソリン、灯油、軽油など各種の燃料油や、又はそれらを製造するための調合用基材等を得ることができる。
熱分解処理油は、蒸留性状の5%留出温度は好ましくは120〜230℃、より好ましくは140〜210℃であり、また95%留出温度は好ましくは290〜520℃、より好ましくは310〜500℃である。この熱分解処理油のうち、360℃以下の留分は、分留をはじめとするその他各種の石油精製手段を用いて上記の各種燃料油、あるいはそれらの基材として分離、調製することができる。
The pyrolysis oil obtained by the above pyrolysis is subjected to fractionation treatment by various methods such as fractional distillation, extraction, etc., so that various fuel oils such as gasoline, kerosene, light oil, or a preparation base for producing them. Materials etc. can be obtained.
The pyrolysis-treated oil has a distillation property of 5% distillation temperature of preferably 120 to 230 ° C, more preferably 140 to 210 ° C, and a 95% distillation temperature of preferably 290 to 520 ° C, more preferably 310. ~ 500 ° C. Of this pyrolysis-treated oil, a fraction of 360 ° C. or lower can be separated and prepared as the above-mentioned various fuel oils or their base materials using various other petroleum refining means including fractional distillation. .

すなわち、得られた熱分解処理油を分留することにより、例えば、30〜220℃の留分はガソリン基材として、150〜270℃の留分は灯油基材として、また、150〜360℃以下の留分が軽油基材として、それぞれ回収することができる。
また、熱分解処理油の硫黄分は、0.5重量%以下が好ましく、より好ましくは0.2重量%以下であり、また、窒素分は1000重量ppm以下が好ましく、より好ましくは200重量ppm以下である。プロダクト中の硫黄分、窒素分は、原料の重質油の性状に依存するが、含有する不純物量は少ないほど好ましい。
That is, by fractionating the obtained pyrolysis-treated oil, for example, a fraction of 30 to 220 ° C. is used as a gasoline base, a fraction of 150 to 270 ° C. is used as a kerosene base, and 150 to 360 ° C. The following fractions can each be recovered as a light oil base.
Further, the sulfur content of the pyrolysis-treated oil is preferably 0.5 wt% or less, more preferably 0.2 wt% or less, and the nitrogen content is preferably 1000 wtppm or less, more preferably 200 wtppm. It is as follows. The sulfur content and nitrogen content in the product depend on the properties of the raw heavy oil, but the smaller the amount of impurities contained, the better.

以下、本発明を実施例により詳しく説明するが、この実施例は本発明を限定するものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this Example does not limit this invention.

(実施例1)
原油由来のナフサを熱分解してエチレンを製造するオレフィン製造プロセス(Lummus社、オレフィンプロセス)から得られたエチレンボトム油Aを、熱分解実験装置により反応圧力0.25MPa、反応温度500℃の条件下で12時間蒸し焼き状態で熱分解した。装置内に堆積したコークスとともに熱分解処理油Bを得た。熱分解処理油の収率は71重量%であった。また、得られた熱分解処理油Bの蒸留性状において、360℃以下の留分は81重量%であった。エチレンボトム油A、熱分解処理油Bの性状等を表1に示す。
熱分解実験装置は、加熱部と冷却部からなる金属製の反応装置であり、加熱部には最大50g程度の試料を仕込むことが可能な装置であり、冷却部は空冷式のコンデンサである。圧力の調整は窒素によって行った。
Example 1
An ethylene bottom oil A obtained from an olefin production process (Lummus, olefin process) for producing ethylene by pyrolyzing naphtha derived from crude oil is subjected to a reaction pressure of 0.25 MPa and a reaction temperature of 500 ° C. using a pyrolysis experimental apparatus. It was pyrolyzed under steaming conditions for 12 hours. A pyrolysis oil B was obtained together with coke deposited in the apparatus. The yield of the pyrolysis oil was 71% by weight. Moreover, in the distillation property of the obtained pyrolysis-processed oil B, the fraction of 360 degrees C or less was 81 weight%. Table 1 shows properties of ethylene bottom oil A and pyrolysis oil B.
The thermal decomposition experimental apparatus is a metal reaction apparatus composed of a heating part and a cooling part. The heating part is an apparatus capable of charging a sample of about 50 g at the maximum, and the cooling part is an air-cooled condenser. The pressure was adjusted with nitrogen.

Figure 0005196396
Figure 0005196396

(比較例1)
エチレンボトム油Aの替わりに減圧蒸留装置により得られたアスファルト(減圧残渣油)Cを原料油として用いた以外は、上記の実施例1と同様にして、熱分解実験装置により反応圧0.25MPa、反応温度500℃の条件下で12時間熱分解し、熱分解処理油Dを得た。熱分解処理油の収率は47重量%であった。また、熱分解処理油Dの蒸留性状において、360℃以下の留分は71重量%であった。アスファルトC、熱分解処理油Dの性状等を表2に示す。
(Comparative Example 1)
A reaction pressure of 0.25 MPa was obtained using a thermal decomposition experimental apparatus in the same manner as in Example 1 except that asphalt (vacuum residue oil) C obtained by a vacuum distillation apparatus was used as a raw material oil instead of the ethylene bottom oil A. Then, pyrolysis was carried out for 12 hours under the reaction temperature of 500 ° C. The yield of the pyrolysis oil was 47% by weight. Moreover, in the distillation property of the pyrolysis-processed oil D, the fraction of 360 degrees C or less was 71 weight%. Table 2 shows the properties of asphalt C and pyrolysis oil D.

Figure 0005196396
Figure 0005196396

実施例1と比較例1を比べると、実施例1の方が、熱分解処理油の収率が高く、また、得られた熱分解処理油中の360℃以下の留分の比率も高い。したがって、従来もっぱら自家燃料油として使われていたエチレンボトム油を、従来減圧蒸留装置により得られたアスファルトをもっぱら原料として処理していたディレードコーカーなどで熱分解することにより、ガソリン留分や灯軽油留分を高い収率で得ることができ、中間留分の増産が可能であることがわかる。   When Example 1 and Comparative Example 1 are compared, Example 1 has a higher yield of pyrolysis-treated oil and a higher fraction of a fraction of 360 ° C. or less in the obtained pyrolysis-treated oil. Therefore, the gasoline bottom and kerosene oil can be obtained by thermally decomposing ethylene bottom oil, which has been used exclusively as an in-house fuel oil, in a delayed coker that has been processed exclusively using asphalt obtained by a conventional vacuum distillation unit. It can be seen that the fraction can be obtained with a high yield and that the production of the middle fraction can be increased.

なお、実施例及び比較例において、原料油及び熱分解処理油の物性、組成は次の方法により測定した。蒸留性状はJIS K2254(ガスクロ法)、硫黄分はJIS K2541(放射線式励起法、紫外蛍光法)、窒素分はJIS K2609(化学発光法)、炭化水素油の密度はJIS K2249、アスファルトの密度はJIS K 2207、炭化水素油の動粘度はJIS K 2283、及びアスファルトの動粘度はJIS K2207に準拠して測定した。また、炭化水素成分組成はTLC(Thin Layer Chromatography)法により測定した。TLC法はクロマトロッド(株式会社三菱化学ヤトロン社製、クロマロッド−SIII)に、試料をチャージし、まずノルマルヘキサンで展開させ、サチュレート分を分離した。次いでトルエンで展開してアロマ分を分離し、さらにジクロロメタン/メタノール(95:5)でレジン分を展開し、3つのブロックに分離した。その後、薄層自動検出装置(株式会社三菱化学ヤトロン社製、new MK−5)により3つのそれぞれのブロックを水素炎イオン化検出器で定量してサチュレート分、アロマ分、レジン分とした。   In Examples and Comparative Examples, the physical properties and composition of raw material oil and pyrolysis oil were measured by the following methods. Distillation properties are JIS K2254 (gas chromatography method), sulfur content is JIS K2541 (radiation excitation method, ultraviolet fluorescence method), nitrogen content is JIS K2609 (chemiluminescence method), hydrocarbon oil density is JIS K2249, and asphalt density is The kinematic viscosity of JIS K 2207, the hydrocarbon oil was measured according to JIS K 2283, and the kinematic viscosity of asphalt was measured according to JIS K 2207. The hydrocarbon component composition was measured by a TLC (Thin Layer Chromatography) method. In the TLC method, a sample was charged on a chromatorod (manufactured by Mitsubishi Chemical Yatron Co., Ltd., Chromarod-SIII), and developed with normal hexane to separate the saturate. Subsequently, the aroma content was separated by developing with toluene, and the resin content was further developed with dichloromethane / methanol (95: 5) and separated into three blocks. Thereafter, each of the three blocks was quantified with a flame ionization detector using a thin layer automatic detection device (manufactured by Mitsubishi Chemical Yatron Co., Ltd., new MK-5) to obtain a saturating component, an aromatic component, and a resin component.

Claims (2)

石油精製における中間留分を熱分解してオレフィン類を製造するプロセスから副生する芳香族分が85〜99重量%、5%留出温度が120〜230℃、及び95%留出温度が550〜700℃である重質油を、温度450〜550℃、圧力0.05〜0.50MPaで、熱分解処理油の収率が60重量%以上になるように熱分解する重質油の熱分解方法。 Aromatics by-produced from the process of producing olefins by pyrolyzing middle distillate in petroleum refining is 85 to 99 wt%, 5% distillation temperature is 120 to 230 ° C, and 95% distillation temperature is 550. Of heavy oil which is pyrolyzed so that the yield of the pyrolysis oil is 60% by weight or more at a temperature of 450 to 550 ° C. and a pressure of 0.05 to 0.50 MPa. Thermal decomposition method. 請求項1に記載の方法によって得られた、5%留出温度が80〜200℃、95%留出温度が290〜520℃、芳香族分が65〜99容量%である熱分解処理油。
A pyrolysis-treated oil obtained by the method according to claim 1, having a 5% distillation temperature of 80 to 200 ° C, a 95% distillation temperature of 290 to 520 ° C, and an aromatic content of 65 to 99% by volume.
JP2007273432A 2007-10-22 2007-10-22 Method for pyrolysis of heavy oil Active JP5196396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273432A JP5196396B2 (en) 2007-10-22 2007-10-22 Method for pyrolysis of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273432A JP5196396B2 (en) 2007-10-22 2007-10-22 Method for pyrolysis of heavy oil

Publications (2)

Publication Number Publication Date
JP2009102471A JP2009102471A (en) 2009-05-14
JP5196396B2 true JP5196396B2 (en) 2013-05-15

Family

ID=40704494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273432A Active JP5196396B2 (en) 2007-10-22 2007-10-22 Method for pyrolysis of heavy oil

Country Status (1)

Country Link
JP (1) JP5196396B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5314546B2 (en) * 2009-09-15 2013-10-16 Jx日鉱日石エネルギー株式会社 Method for pyrolysis of heavy oil
JP5334903B2 (en) * 2010-03-30 2013-11-06 Jx日鉱日石エネルギー株式会社 A heavy oil composition
JP5340230B2 (en) * 2010-06-30 2013-11-13 Jx日鉱日石エネルギー株式会社 C heavy oil composition
JP5881218B2 (en) * 2011-03-31 2016-03-09 Jx日鉱日石エネルギー株式会社 Hydrocarbon oil cracking catalyst and hydrocarbon oil cracking method
JP5687941B2 (en) * 2011-03-31 2015-03-25 Jx日鉱日石エネルギー株式会社 Hydrocarbon oil cracking catalyst and hydrocarbon oil cracking method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144103A (en) * 1974-09-25 1976-04-15 Maruzen Oil Co Ltd Sekyukookusuno seizoho
JPS6057477B2 (en) * 1978-06-16 1985-12-14 日石三菱株式会社 Method for manufacturing petroleum-based pituti
JPS60235890A (en) * 1984-05-08 1985-11-22 Mitsubishi Heavy Ind Ltd Method for thermally cracking hydrocarbon to produce petrochemicals
JP2006063289A (en) * 2004-08-30 2006-03-09 Ebara Corp Management system of gas product or the like produced in gasification facility and/or lightening facility

Also Published As

Publication number Publication date
JP2009102471A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP6553072B2 (en) Method of controlling the supply and distribution of hydrogen gas in a refinery hydrogen system integrated with an olefin and aromatics plant
KR102413259B1 (en) Process and installation for the conversion of crude oil to petrochemicals having an improved propylene yield
JP6215936B2 (en) Conversion process of hydrocarbon feedstock by thermal steam cracking
US9708231B2 (en) Method and apparatus for converting hydrocarbons into olefins using hydroprocessing and thermal pyrolysis
US8440070B2 (en) Process and apparatus for converting high boiling point resid to light unsaturated hydrocarbons
RU2623226C2 (en) Method of obtaining olefins by thermal cracking in steam cracking furnaces
US9868680B2 (en) Method and apparatus for converting hydrocarbons into olefins
TWI415931B (en) Process for cracking synthetic crude oil-containing feedstock
JP2008266592A (en) Method and system for producing reduced resid and bottomless product from heavy hydrocarbon feedstock
US9677014B2 (en) Process and apparatus for converting hydrocarbons
JP6184496B2 (en) Process for producing olefins by thermal steam cracking
CN104619815A (en) Method for converting hydrocarbon feedstocks into olefinic product flows by means of thermal steam cracking
JP5196396B2 (en) Method for pyrolysis of heavy oil
RU2650925C2 (en) Delayed coking process with pre-cracking reactor
TW201022427A (en) Process for flexible vacuum gas oil conversion
JP5314546B2 (en) Method for pyrolysis of heavy oil
CN110753742A (en) Upgrading hydrocarbon pyrolysis products
JP5425373B2 (en) Decomposition method of hydrocarbon oil
US11359148B2 (en) Methods and systems to produce needle coke from aromatic recovery complex bottoms
CN113710776A (en) Conversion of heavy fractions of crude oil or whole crude oil to high value chemicals using thermal hydrotreating, hydrotreating in combination with steam cracker under high severity conditions to maximize ethylene, propylene, butenes and benzene
WO2012099677A2 (en) Method and apparatus for converting hydrocarbons into olefins
KR20200139244A (en) Supercritical water process integrated with Visbreaker
JP5676344B2 (en) Kerosene manufacturing method
WO2012099671A1 (en) Method and apparatus for converting hydrocarbons into olefins using hydroprocessing and thermal pyrolysis
JP5489715B2 (en) Delayed coking process using modified feedstock

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100416

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250