JP5196176B2 - Variable valve assembly adjustment method - Google Patents

Variable valve assembly adjustment method Download PDF

Info

Publication number
JP5196176B2
JP5196176B2 JP2009000755A JP2009000755A JP5196176B2 JP 5196176 B2 JP5196176 B2 JP 5196176B2 JP 2009000755 A JP2009000755 A JP 2009000755A JP 2009000755 A JP2009000755 A JP 2009000755A JP 5196176 B2 JP5196176 B2 JP 5196176B2
Authority
JP
Japan
Prior art keywords
valve
lift
valve lift
variable
variable valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009000755A
Other languages
Japanese (ja)
Other versions
JP2010159640A (en
Inventor
幹雄 田辺
仁司 戸田
学 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2009000755A priority Critical patent/JP5196176B2/en
Publication of JP2010159640A publication Critical patent/JP2010159640A/en
Application granted granted Critical
Publication of JP5196176B2 publication Critical patent/JP5196176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、低バルブリフトから高バルブリフトまで可変可能に組まれた可変動弁アッセンブリの気筒間ばらつきを調整するアッセンブリ調整方法に関する。   The present invention relates to an assembly adjustment method for adjusting variation between cylinders of a variable valve assembly that is variably assembled from a low valve lift to a high valve lift.

自動車に搭載されるレシプロ式のエンジン(内燃機関)では、近時、エンジンの排出ガスの対策やポンピングロスの改善を図るために、シリンダヘッドに、吸気バルブのバルブ駆動出力を連続的に制御する可変動弁系を搭載することが行われつつある。
可変動弁系の多くは、吸入空気量の調整を担うために、少なくとも吸気バルブのバルブリフト量を連続的に変化させることが行なわれる。例えば特許文献1に開示されているように、カムシャフトに形成されている吸気カムのカム変位を可変動弁機構で受け、制御シャフト(制御部材)の変位で、吸気カムからのバルブ駆動出力を連続的に低バルブリフトから高バルブリフトまで可変させてバルブ駆動部材へ伝え、吸気バルブを駆動する機構が用いられる。
Recently, in a reciprocating engine (internal combustion engine) installed in an automobile, the valve drive output of an intake valve is continuously controlled by a cylinder head in order to prevent engine exhaust gas and improve pumping loss. A variable valve system is being installed.
In many variable valve systems, at least the valve lift amount of the intake valve is continuously changed in order to adjust the intake air amount. For example, as disclosed in Patent Document 1, the cam displacement of the intake cam formed on the camshaft is received by a variable valve mechanism, and the valve drive output from the intake cam is generated by the displacement of the control shaft (control member). A mechanism is used in which the intake valve is driven by continuously changing the valve lift from a low valve lift to a high valve lift and transmitting it to the valve drive member.

ところで、通常、エンジンの動弁系は、シリンダヘッドを組み立てるヘッド組立ラインを利用して、気筒毎、動弁系の各部材を組み付けている。そのため、可変動弁系の組み付けも、ヘッド組立ラインを利用して、同ラインを流れるシリンダヘッドに組み付ける。
ところが、可変動弁系は、その組み立て作業工数が多いため、ヘッド組立ラインには、かなりの負担となる。
By the way, normally, the valve system of an engine has assembled each member of a valve system for every cylinder using the head assembly line which assembles a cylinder head. Therefore, the assembly of the variable valve system is also assembled to the cylinder head that flows through the head assembly line.
However, since the variable valve system has a large number of assembly man-hours, it places a considerable burden on the head assembly line.

そのため、特許文献2に開示されているロッカアームアッセンブリを組み付ける技術を利用して、ヘッド組立ラインとは別な場所で、バルブやカムシャフトを除く可変動弁系の各部をアッセンブリし、この可変動弁系アッセンブリを、カムシャフトの組付けを終えたシリンダヘッドに組み付けることが考えられる。
しかし、可変動弁系の場合、特許文献2のようなロッカアームアッセンブリとは異なり、気筒間のバルブリフト特性が一様でないため、気筒間の燃焼ばらつきを抑える気筒間のばらつき調整が必要である。この調整は、カムシャフトが組み合った状態でないと行なえない。
Therefore, using the technique for assembling the rocker arm assembly disclosed in Patent Document 2, the parts of the variable valve system excluding the valve and the camshaft are assembled at a place different from the head assembly line, and this variable valve It is conceivable to assemble the system assembly to the cylinder head after the camshaft has been assembled.
However, in the case of a variable valve system, unlike the rocker arm assembly as in Patent Document 2, since the valve lift characteristics between cylinders are not uniform, it is necessary to adjust the variation among cylinders to suppress the variation in combustion among the cylinders. This adjustment can be performed only when the camshaft is assembled.

そこで、制御シャフトやバルブ駆動部材などと一緒にアッセンブリした可変動弁アッセンブリを用いて、気筒間のばらつきを調整することが考えられる。しかし、気筒間のばらつき調整は、通常、低バルブリフト位置から高バルブリフト位置までの各リフト位置のバルブリフト高を計測して、計測したバルブリフト高の位置から、気筒間ばらつきの有無を確認する手法が用いられる。そして、規定の公差から外れるばらつきが有るような場合、公差内に収まるようバルブリフト量の調整を行なっている。   Therefore, it is conceivable to adjust the variation among the cylinders using a variable valve assembly assembled together with a control shaft, a valve driving member, and the like. However, the variation adjustment between cylinders usually measures the valve lift height at each lift position from the low valve lift position to the high valve lift position, and confirms whether there is variation between cylinders from the measured valve lift height position. Is used. When there is a variation that deviates from the specified tolerance, the valve lift amount is adjusted so as to be within the tolerance.

特開2005−299536号公報JP 2005-299536 A 特開平10−249656号公報JP-A-10-249656

しかしながら、こうした気筒間のばらつき調整は、各リフト位置で計測したり、計測した各バルブリフト高のばらつきを判定したりすることが求められるので、かなり面倒である。
そこで、本発明の目的は、カムシャフトを組んでアッセンブリされた可変動弁アッセンブリの気筒間ばらつきの調整が、容易、かつ高い調整精度で行なえる可変動弁アッセンブリ調整方法を提供することにある。
However, such variation adjustment between cylinders is considerably troublesome because it is required to measure at each lift position or to determine variation in the measured valve lift heights.
SUMMARY OF THE INVENTION An object of the present invention is to provide a variable valve assembly adjusting method capable of easily adjusting the variation between cylinders of a variable valve assembly assembled with a camshaft with high adjustment accuracy.

請求項1に記載の発明は、上記目的を達成するために、可変動弁アッセンブリの気筒間ばらつき調整は、制御部材を高バルブリフト方向へ変位させて任意のリフト位置にセットし、同リフト位置で各バルブ駆動部材から出力されるバルブリフト高の差を所定の公差内に調整してから、前記制御部材を高バルブリフト方向と反対側の低バルブリフト方向へ変位させて、所定の低バルブリフト量となるリフト位置に位置決め、そのリフト位置において各バルブ駆動部材から出力されるバルブリフト高の差が、同リフト位置における規定の公差内に収まるかを確認し、規定の公差を超えているのであれば、再び高バルブリフト側の任意位置で調整を行うか、もしくは低リフト側で微小調整を加えることにより行うこととした。 According to the first aspect of the present invention, in order to achieve the above object, the adjustment of the variation between cylinders of the variable valve assembly is performed by displacing the control member in the high valve lift direction and setting it to an arbitrary lift position. After adjusting the difference in valve lift height output from each valve drive member within a predetermined tolerance, the control member is displaced in the low valve lift direction opposite to the high valve lift direction, so that the predetermined low valve Positioning at the lift position that is the lift amount, check whether the difference in valve lift height output from each valve drive member at that lift position is within the specified tolerance at the lift position , and exceeds the specified tolerance In this case, the adjustment is performed again at an arbitrary position on the high valve lift side or by performing a fine adjustment on the low lift side .

つまり、可変動弁系は、エンジンに吸入される空気量差がエンジン特性差として大きく現われるため(たとえばアイドル回転でバルブリフトが違うと回転数が変化する)、高バルブリフト位置よりも低バルブリフト位置のほうが高い精度を要求されるという特性がある。そこで、この特性を考慮して、要求精度が低い高バルブリフト側の地点でバルブリフト高を調整してから、精度が要求される一定の低バルブリフト量の位置に代えて、その位置の各バルブリフト高が、予め定められた同リフト位置における規定の公差内に収まることを確認すれば、高バルブリフトという、精度が要求されない地点でのバルブリフト高のばらつきが、調整精度が要求される一定の低バルブリフト量の地点に代えても微小な公差内に収まるという判断から、複数の地点において公差内であるか否かを判定するという面倒な作業を必要とせず、気筒間のばらつきが調整される。つまり、容易、かつ高い調整精度で、可変動弁アセンブリの気筒間ばらつき調整が行なえる。特に高バルブリフト側での作業は、精密さが求められないので、簡便となる。   In other words, in the variable valve system, the difference in the amount of air drawn into the engine appears as a large difference in engine characteristics (for example, the engine speed changes when the valve lift differs during idle rotation), so the valve lift is lower than the high valve lift position. There is a characteristic that the position requires higher accuracy. Therefore, considering this characteristic, after adjusting the valve lift height at a point on the high valve lift side where the required accuracy is low, instead of the position of a certain low valve lift amount where accuracy is required, If it is confirmed that the valve lift height is within the specified tolerance at the predetermined lift position, the variation of the valve lift height at a point where accuracy is not required, such as high valve lift, requires adjustment accuracy. Even if it is replaced with a fixed low valve lift amount, it can be kept within a small tolerance, so there is no need for the troublesome task of determining whether it is within the tolerance at multiple points, and there is variation between cylinders. Adjusted. That is, the variation among cylinders of the variable valve assembly can be adjusted easily and with high adjustment accuracy. In particular, work on the high valve lift side is simple because precision is not required.

請求項2に記載の発明は、さらに、制御部材の変位を検出する変位検出センサの調整も行なうために、変位検出センサは、低バルブリフト量となるリフト位置で、各バルブ駆動部材から出力されるバルブリフト高の差が規定の公差内に収まるかが確認されたら、所期のセンサ出力となるように調整することとした。
請求項3に記載の発明は、さらに、制御部材のバルブリフトの可変範囲を規定するストッパ部の調整も行なうために、ストッパ部の位置は、低バルブリフト量となるリフト位置で、各バルブ駆動部材から出力されるバルブリフト高の差が規定の公差内に収まることが確認されたら、バルブリフトの可変範囲の端で制御部材の動きを規制するように調整することとした。
請求項4に記載の発明は、制御部材が、カムシャフトと平行に配置される制御シャフトを備え、可変動弁機構は、制御シャフトを回動変位させることでカムのカム変位を低バルブリフトと高バルブリフトとの間で可変するものであって、気筒間ばらつき調整は、制御シャフトの軸心に垂直な方向に形成される通孔に螺挿された気筒間ばらつき調整ねじを進退させることにより行うものとした。
According to the second aspect of the present invention, since the displacement detection sensor for detecting the displacement of the control member is also adjusted, the displacement detection sensor is output from each valve driving member at a lift position where the valve lift amount is low. When it is confirmed whether the difference in the valve lift height is within the specified tolerance, the adjustment is made so that the desired sensor output is obtained.
According to the third aspect of the present invention, since the stopper portion that defines the variable range of the valve lift of the control member is also adjusted, the position of the stopper portion is a lift position where the valve lift amount is low, and each valve drive When it was confirmed that the difference in the valve lift height output from the member was within the specified tolerance, the control member was adjusted so as to restrict the movement of the control member at the end of the variable range of the valve lift.
According to a fourth aspect of the present invention, the control member includes a control shaft disposed in parallel with the camshaft, and the variable valve mechanism is configured to reduce the cam displacement of the cam by rotating the control shaft. It is variable between the high valve lift and the inter-cylinder variation adjustment is performed by advancing and retracting the inter-cylinder variation adjusting screw screwed into a through hole formed in a direction perpendicular to the axis of the control shaft. To do.

請求項1,4の発明によれば、高バルブリフト位置よりも低バルブリフト位置のほうが高い精度を要求されるという可変動弁系の特性を利用して、要求精度が低い高バルブリフト側の地点でのバルブリフト高のばらつきが、精度が要求される一定の低バルブリフト量の地点に代えても微小な公差内に収まりさえすれば、複数の地点において公差内であるか否かを判定するという面倒な作業を必要とせず、可変動弁系アッセンブリにおける気筒間のばらつきが調整できる。 According to the first and fourth aspects of the invention, by utilizing the characteristics of the variable valve system in which a higher accuracy is required at the low valve lift position than at the high valve lift position, As long as the variation in the valve lift height at a point is within a small tolerance even if it is replaced by a point with a certain amount of low valve lift that requires accuracy, it is determined whether or not it is within tolerance at multiple points. It is possible to adjust the variation among the cylinders in the variable valve system assembly without requiring the troublesome work of doing.

したがって、熟練した作業者でなくとも、容易な作業で、さらには高い調整精度で、カムシャフトを組んだ可変動弁アッセンブリの気筒間のばらつき調整が行なえる。特に高バルブリフト側での作業は、精密さが求められないので、作業負担は軽くてすむ。
請求項2の発明によれば、さらに、制御部材の変位を検出する変位検出センサも、容易に高い調整精度で調整できる。
Therefore, even if it is not a skilled worker, the dispersion | variation adjustment between the cylinders of the variable valve assembly which assembled the camshaft can be performed by easy work and also with high adjustment accuracy. In particular, work on the high valve lift side does not require precision, so the workload is light.
According to the second aspect of the present invention, the displacement detection sensor for detecting the displacement of the control member can be easily adjusted with high adjustment accuracy.

請求項3の発明によれば、さらに、制御部材のバルブリフトの可変範囲を規定するストッパ部の調整も、容易に高い調整精度で行なえる。   According to the invention of claim 3, the adjustment of the stopper portion that defines the variable range of the valve lift of the control member can be easily performed with high adjustment accuracy.

本発明の一実施形態に係る可変動弁アッセンブリ調整方法の対象となる可変動弁アッセンブリを、気筒間ばらつき調整を行なう調整治具と共に示す斜視図。The perspective view which shows the variable valve assembly used as the object of the variable valve assembly adjustment method which concerns on one Embodiment of this invention with the adjustment jig | tool which performs the dispersion | variation adjustment between cylinders. 可変動弁アッセンブリを調整治具に組み付けた状態を示す斜視図。The perspective view which shows the state which assembled | attached the variable valve assembly to the adjustment jig. 制御シャフトを高バルブリフト側の任意位置にセットする作業、同位置でバルブリフト高の差を調整する作業を説明するための図2中のA−A線に沿う断面図。Sectional drawing in alignment with the AA in FIG. 2 for demonstrating the operation | work which sets the control shaft to the arbitrary positions on the high valve lift side, and the operation | work which adjusts the difference of valve lift height in the same position. 一定の低バルブリフト量となる位置でのバルブリフト高の確認作業を説明する断面図。Sectional drawing explaining the check operation | work of the valve lift height in the position used as fixed low valve lift amount. 制御シャフトに組み付く変位検出センサの調整の仕方を説明するための図。The figure for demonstrating how to adjust the displacement detection sensor assembled | attached to a control shaft. 図2中のB線に沿う減速機部の断面図。Sectional drawing of the reduction gear part in alignment with the B line in FIG. 図2中のC−C線に沿うストッパ部の断面図。Sectional drawing of the stopper part which follows the CC line in FIG. バルブリフト大時におけるバルブリフト高を示す線図。The diagram which shows the valve lift height at the time of valve lift large. バルブリフト小時に代えたときのバルブリフト高を示す線図。The diagram which shows the valve lift height when it replaces at the time of valve lift small.

以下、本発明を図1〜図9に示す一実施形態にもとづいて説明する。
図1は、気筒間ばらつき調整を行なう対象となる多気筒エンジンに用いられる可変動弁アッセンブリ1を、同アッセンブリ1の気筒間ばらつき調整に用いる調整治具40と共に示し、図2は、同可変動弁アセンブリ1を調整治具40に組み付けたときの状態を示し、図3はそのときの断面図(図2中のA−A線)を示している。
Hereinafter, the present invention will be described based on an embodiment shown in FIGS.
FIG. 1 shows a variable valve assembly 1 used in a multi-cylinder engine that is subject to adjustment of variation among cylinders, together with an adjustment jig 40 used for adjustment of variation among cylinders of the assembly 1, and FIG. The state when the valve assembly 1 is assembled to the adjustment jig 40 is shown, and FIG. 3 shows a cross-sectional view (A-A line in FIG. 2) at that time.

ここで、可変動弁アッセンブリ1の組立調整する方法を説明する前に、調整対象となる可変動弁アッセンブリ1がどのようなものであるかを説明する。
同可変動弁アッセンブリ1は、図1〜図3に示されるように気筒間ピッチで気筒列に沿って配置した複数のホルダ部材2に、上部を渡る支持シャフト10を組み付け、ホルダ部材2の中段片側に渡り排気ロッカシャフト12を組み付けてフレームとし、同フレームの吸気側(排気ロッカシャフト12と反対側)のホルダ部材2間に渡り、吸気ロッカシャフトを兼ねる制御シャフト13を回動可能に組み付ける。さらに、これらホルダ部材2の下部に、カムキャップ15で、カムシャフト17を回動自在に組み付ける。また気筒毎、制御シャフト13に、吸気バルブ(図示しない)を駆動する双頭式の吸気ロッカアーム22(本願のバルブ駆動部材に相当)を回動自在に組み付ける。さらに図3に示されるように、気筒毎、吸気ロッカアーム22とカムシャフト17の吸気カム17a間には、吸気カム17aのバルブ特性を可変、ここではバルブリフト量、開閉タイミング、開閉期間を、制御シャフト13の回動変位にしたがい可変する可変動弁機構19を組み付ける。可変動弁機構19は、気筒間ばらつきを調整する気筒間ばらつき調整ねじ35を有している。つまり、カムシャフト17、吸気ロッカアーム22、ばらつき調整機能付の可変動弁機構19を集約させている。なお、排気ロッカシャフト12には、排気バルブ(図示しない)を一義的に開閉させる排気ロッカアーム20(図3に図示)が組み付き、制御シャフト13の一端部には、バルブリフトを入力するための入力部、例えばウォーム式の減速機部4(ウォームホイール4aとウォームシャフト4bとで構成)が組み付いている。4cは、そのウォームホイール4aを制御シャフト13端に固定する固定ボルトを示している。さらに例えばウォームホイール4aには、制御シャフト13の最小バルブリフト位置を規定するストッパ部7が組み付いている。また制御シャフト13の他端部には、同制御シャフト13の回動変位を検出する制御シャフト変位検出センサ6(図2に図示:本願の変位検出センサに相当)が組み付く。
Here, before explaining the method for assembling and adjusting the variable valve assembly 1, the variable valve assembly 1 to be adjusted will be described.
As shown in FIGS. 1 to 3, the variable valve assembly 1 includes a plurality of holder members 2 arranged along a cylinder row at an inter-cylinder pitch, and a support shaft 10 that extends over the upper part. An exhaust rocker shaft 12 is assembled on one side to form a frame, and a control shaft 13 that also serves as an intake rocker shaft is rotatably assembled across the holder member 2 on the intake side (opposite side of the exhaust rocker shaft 12) of the frame. Further, the camshaft 17 is rotatably assembled to the lower part of the holder member 2 with a cam cap 15. For each cylinder, a double-head intake rocker arm 22 (corresponding to the valve drive member of the present application) that drives an intake valve (not shown) is rotatably mounted on the control shaft 13. Further, as shown in FIG. 3, the valve characteristics of the intake cam 17a can be varied between the intake rocker arm 22 and the intake cam 17a of the camshaft 17 for each cylinder. Here, the valve lift amount, the opening / closing timing, and the opening / closing period are controlled. A variable valve mechanism 19 that is variable according to the rotational displacement of the shaft 13 is assembled. The variable valve mechanism 19 has an inter-cylinder variation adjusting screw 35 that adjusts the variation between cylinders. That is, the camshaft 17, the intake rocker arm 22, and the variable valve mechanism 19 with a variation adjusting function are integrated. The exhaust rocker shaft 12 is assembled with an exhaust rocker arm 20 (not shown) for uniquely opening and closing an exhaust valve (not shown), and an input for inputting a valve lift is provided at one end of the control shaft 13. Part, for example, a worm-type speed reducer part 4 (consisting of a worm wheel 4a and a worm shaft 4b) is assembled. Reference numeral 4c denotes a fixing bolt for fixing the worm wheel 4a to the end of the control shaft 13. Further, for example, the worm wheel 4 a is assembled with a stopper portion 7 that defines the minimum valve lift position of the control shaft 13. Further, a control shaft displacement detection sensor 6 (illustrated in FIG. 2: corresponding to the displacement detection sensor of the present application) for detecting the rotational displacement of the control shaft 13 is assembled to the other end portion of the control shaft 13.

さらに可変動弁アッセンブリ1を述べると、可変動弁機構19には、いずれも図3に示されるように一端部が支持シャフト10に揺動可能に支持された揺動カム25と、揺動カム25の下部と吸気カム17aとの間に介在されるL形のセンタロッカアーム27とを組み合わせた構造が用いてある。なお、制御シャフト13とセンタロッカアーム27とは本願の制御部材に相当する。   Further, the variable valve assembly 1 will be described. The variable valve mechanism 19 includes a swing cam 25 having one end swingably supported by the support shaft 10 as shown in FIG. A structure in which an L-shaped center rocker arm 27 interposed between a lower portion of 25 and an intake cam 17a is combined is used. The control shaft 13 and the center rocker arm 27 correspond to the control member of the present application.

すなわち、図3に示されるように揺動カム25は、他端部に揺動方向に延びるカム面25aを有し、下部にローラ25bを有する。このうちカム面25aが、吸気ロッカアーム22の基端部に組み付いているローラ22aと転接する。
センタロッカアーム27は、図3に示されるように上方へ向かうアーム部27aの先端面に斜面28を有し、制御シャフト13へ向かうアーム部27bの先端部に屈曲自在なピン部材29を有し、アーム部27a,27bが交わる部分に回転自在なローラ30を有する。このうち斜面28が、揺動カム25のローラ25bと転接し、ローラ30が、吸気カム17aのカム面と転接する。ピン部材29は、制御シャフト28に形成されている通孔に進退自在に差し込まれる。この差込みにより、センタロッカアーム27は、ピン部材29の屈曲部を支点に揺動自在に支持され、制御シャフト13を回動変位すると、センタロッカアーム27全体が、吸気カム17aとの転接位置を変更しながら、吸気カム17aのカム面を進角方向や遅角方向へ変位する。この変位で揺動カム25の姿勢が変化して、ローラ22aが転動するカム面25aの領域を変化させ、吸気カム17aから出力されるバルブ駆動出力(カム変位)、例えば吸気バルブ17aのバルブリフト量や開閉タイミングや開閉期間が、連続的(低バルブリフト位相から高バルブリフト位相まで)に可変される。この可変したバルブ駆動出力が、吸気ロッカアーム22に伝わり、同吸気ロッカアーム22の各先端部に有るアジャストスクリュ部22b(バルブと当接する部分)から、吸気バルブ(図示しない)に付与される。またピン部材29が挿入された通孔には、反対の上方側から先に述べた気筒間ばらつき調整ねじ35(調整部)が進退可能に螺挿され、同調整ねじ35を進退すると、ピン部材29の突出し量が変化して、バルブリフト量の調整が行なえる(気筒毎)。
That is, as shown in FIG. 3, the rocking cam 25 has a cam surface 25a extending in the rocking direction at the other end and a roller 25b at the bottom. Of these, the cam surface 25 a is in rolling contact with the roller 22 a assembled to the proximal end portion of the intake rocker arm 22.
As shown in FIG. 3, the center rocker arm 27 has a slope 28 on the tip surface of the arm portion 27 a going upward, and a bendable pin member 29 on the tip portion of the arm portion 27 b going to the control shaft 13, A rotatable roller 30 is provided at a portion where the arm portions 27a and 27b intersect. Of these, the slope 28 is in rolling contact with the roller 25b of the swing cam 25, and the roller 30 is in rolling contact with the cam surface of the intake cam 17a. The pin member 29 is inserted into a through hole formed in the control shaft 28 so as to freely advance and retract. By this insertion, the center rocker arm 27 is swingably supported with the bent portion of the pin member 29 as a fulcrum, and when the control shaft 13 is rotationally displaced, the center rocker arm 27 as a whole changes the rolling contact position with the intake cam 17a. However, the cam surface of the intake cam 17a is displaced in the advance direction or the retard direction. This displacement changes the posture of the swing cam 25 to change the region of the cam surface 25a on which the roller 22a rolls, and the valve drive output (cam displacement) output from the intake cam 17a, for example, the valve of the intake valve 17a. The lift amount, opening / closing timing, and opening / closing period are continuously varied (from the low valve lift phase to the high valve lift phase). This variable valve drive output is transmitted to the intake rocker arm 22 and is applied to an intake valve (not shown) from an adjustment screw portion 22b (a portion in contact with the valve) at each tip of the intake rocker arm 22. In addition, the cylinder-to-cylinder variation adjusting screw 35 (adjusting portion) described above is screwed into the through hole into which the pin member 29 is inserted from the upper side opposite thereto so that the cylinder member can be advanced and retracted. The amount of protrusion 29 changes and the valve lift can be adjusted (for each cylinder).

こうした可変動弁アッセンブリ1(含むカムシャフト17)は、シリンダヘッドを組み立てるラインとは別な場所で組み上げてアッセンブリ化されるが、組み上げただけなので、気筒間でのバルブリフト特性は一様でなく、ばらついている。ばらついていると、エンジンの燃焼が気筒間でばらつく。そこで、組み上げた可変動弁アッセンブリ1は、気筒間のばらつきを是正するよう、シリンダヘッドに組み付ける前、気筒間のばらつきを調整することが求められる(組立調整)。   Such a variable valve assembly 1 (including the camshaft 17) is assembled and assembled at a location different from the line for assembling the cylinder head. However, since it is only assembled, the valve lift characteristics between the cylinders are not uniform. , It is scattered. If it varies, the engine combustion varies between cylinders. Therefore, the assembled variable valve assembly 1 is required to adjust the variation between the cylinders before assembling to the cylinder head so as to correct the variation among the cylinders (assembly adjustment).

調整治具40は、この気筒間ばらつき調整のために用いる。この調整治具40には、例えば図1ないし図3に示されるようなエンジンのシリンダヘッドに相当する外形をもつリフトセンサ付の箱形治具が用いられる。
ここで、箱形治具を説明すると、同治具は、図1に示されるようにエンジンの気筒数に合わせたシリンダヘッド相当の細長形状の本体40aを有していて、当該本体40aの上部中央には、可変動弁アッセンブリ1を配置するためのアッセンブリ配置部41が形成されている。このアッセンブリ配置部41の両側には、可変動弁アッセンブリ1のホルダ部材2の両側部に有る脚部2aを載せるための受座42が複数形成されている。これら受座42には、脚部2aの端部に形成されているボルト孔2bと嵌挿可能なノックピン43が形成されている。これら受座42およびノックピン43は、各ホルダ部材2や吸気ロッカアーム22を定位置に位置決めるための部分で、これらにより、可変動弁アッセンブリ1が、シリンダヘッドに搭載したときと同じ姿勢で、調整治具40の上部に組み付けられるようにしている。またアッセンブリ配置部41のうち吸気バルブが配置される各地点には、それぞれ吸気バルブのバルブリフト量を検出するリフトセンサ45が埋め込まれている。これらリフトセンサ45は、いずれも図3に示されるように吸気バルブの如く変位する有底筒形の進退部材46を進退可能に組み込んだ構造が用いられている。すなわち、進退部材46には、上方へ突き出る方向へ付勢するばね部材47を組み付けられ、バルブリフト零で予荷重が発生する設定にしている。さらに進退部材46には、同進退部材46の変位量を検知する検知素子48が組み付けられていて、進退部材46の変位から、吸気ロッカアーム20端から出力されるバルブリフト量が検出されるようにしている。このリフトセンサ45は、他の構造でも構わない。
The adjusting jig 40 is used for adjusting the variation between cylinders. As the adjusting jig 40, for example, a box-shaped jig with a lift sensor having an outer shape corresponding to the cylinder head of the engine as shown in FIGS. 1 to 3 is used.
Here, the box-shaped jig will be described. The jig has an elongated main body 40a corresponding to the cylinder head corresponding to the number of cylinders of the engine as shown in FIG. 1, and the upper center of the main body 40a. The assembly arrangement | positioning part 41 for arrange | positioning the variable valve assembly 1 is formed. On both sides of the assembly arrangement portion 41, a plurality of seats 42 for mounting the leg portions 2a on both sides of the holder member 2 of the variable valve assembly 1 are formed. These receiving seats 42 are formed with knock pins 43 that can be inserted into the bolt holes 2b formed at the ends of the leg portions 2a. The receiving seat 42 and the knock pin 43 are portions for positioning the holder members 2 and the intake rocker arm 22 at fixed positions, thereby adjusting the variable valve assembly 1 in the same posture as when it is mounted on the cylinder head. It can be assembled to the upper part of the jig 40. A lift sensor 45 for detecting the valve lift amount of the intake valve is embedded at each position where the intake valve is arranged in the assembly arrangement portion 41. As shown in FIG. 3, each of these lift sensors 45 has a structure in which a bottomed cylindrical advance / retreat member 46 that is displaced like an intake valve is incorporated so as to be able to advance and retract. That is, the advancing / retreating member 46 is assembled with a spring member 47 that urges in a direction protruding upward, and is set to generate a preload with zero valve lift. Further, the advance / retreat member 46 is assembled with a detection element 48 for detecting the displacement amount of the advance / retreat member 46 so that the valve lift amount output from the end of the intake rocker arm 20 is detected from the displacement of the advance / retreat member 46. ing. The lift sensor 45 may have another structure.

なお、アッセンブリ配置部41の排気バルブが配置される地点には(排気側)、それぞれ排気ロッカアーム20端を受ける伸縮式の保持具49が埋め込んである。
つぎに、この調整治具40を用いて、可変動弁アッセンブリ1の気筒間ばらつき調整の仕方を説明する。
前工程で組み上がった可変動弁アッセンブリ1(ここでは、制御シャフト変位検出センサ6は組み付いていない)は、組み上がっただけなので、気筒間のバルブリフト特性は一様でない。
In addition, at the point where the exhaust valve of the assembly disposing portion 41 is disposed (exhaust side), an extendable holder 49 for receiving the end of the exhaust rocker arm 20 is embedded.
Next, a method of adjusting the variation between cylinders of the variable valve assembly 1 using the adjusting jig 40 will be described.
Since the variable valve assembly 1 assembled in the previous process (here, the control shaft displacement detection sensor 6 is not assembled) is only assembled, the valve lift characteristics between the cylinders are not uniform.

そこで、まず、気筒間ばらつきの調整を行なうに際し、仮に仕様を、気筒毎、一定に合わせておく。このために、各変動弁機構19の気筒間ばらつき調整ねじ35の突き出し量、各吸気ロッカアーム22のアジャストスクリュ部22bの突き出し量を一様に合わせる。そして、これらばらつき調整ねじ35、アジャストスクリュ部22bを仮止めしておく。   Therefore, first, when adjusting the variation between cylinders, the specifications are set to be constant for each cylinder. For this purpose, the protruding amount of the inter-cylinder variation adjusting screw 35 of each variable valve mechanism 19 and the protruding amount of the adjusting screw portion 22b of each intake rocker arm 22 are uniformly matched. And these dispersion | variation adjustment screws 35 and adjustment screw part 22b are temporarily fixed.

同作業を終えたら、可変動弁アッセンブリ1を調整治具40に組み付ける。この組み付け作業は、例えば図1〜図3に示されるように、まず、各ホルダ部材2のボルト孔2bをノックピン43に嵌めながら、ボルト孔2bの有る脚部2a端を受座42に載せる。これにより、各吸気ロッカアーム22のアジャストスクリュ部22bは、図3に示されるようにそれぞれ気筒毎、リフトセンサ45の突き出た先端部(進退部材46端)に位置決められる。これで、各リフトセンサ45は、各アジャストスクリュ部22bの先端部と当接した状態となり、吸気ロッカアーム22からの出力を受ける体制が整う。続いて可変動弁アッセンブリ1を固定する。これには、例えば支持シャフト10の固定に用いるボルト部材37(図1に図示)や排気ロッカシャフト12の固定に用いるボルト部材38(図3に一部しか図示せず)で固定する手法を用いる。具体的には、図1に示されるようにホルダ部材2に形成されているロッカシャフト用固定孔2c(ボルト部材37用しか図示せず)から、ボルト部材37,38を挿入して、アッセンブリ配置部41に形成されているねじ孔41a(図1に図示)へねじ込み、規定トルクで締め付けることで行なう。   When the operation is completed, the variable valve assembly 1 is assembled to the adjustment jig 40. For example, as shown in FIG. 1 to FIG. 3, first, the end of the leg portion 2 a having the bolt hole 2 b is placed on the seat 42 while fitting the bolt hole 2 b of each holder member 2 to the knock pin 43. As a result, the adjustment screw portion 22b of each intake rocker arm 22 is positioned at the tip end portion (the end of the advancing / retreating member 46) protruding from the lift sensor 45 for each cylinder as shown in FIG. Thus, each lift sensor 45 comes into contact with the tip of each adjustment screw 22b, and a system for receiving the output from the intake rocker arm 22 is prepared. Subsequently, the variable valve assembly 1 is fixed. For this, for example, a bolt member 37 (shown in FIG. 1) used for fixing the support shaft 10 or a bolt member 38 (only a part of which is shown in FIG. 3) used for fixing the exhaust rocker shaft 12 is used. . Specifically, as shown in FIG. 1, bolt members 37 and 38 are inserted from the rocker shaft fixing hole 2c (only the bolt member 37 is shown) formed in the holder member 2, and the assembly is arranged. This is performed by screwing into a screw hole 41a (shown in FIG. 1) formed in the portion 41 and tightening with a specified torque.

可変動弁アッセンブリ1の組み付みを終えたら、高バルブリフト側の任意のリフト位置でのバルブリフト高の調整に入る。これには、まず、減速機部4のウォームシャフト4bを操作して、制御シャフト13を回動変位させ、例えば図3に示されるように制御シャフト13の姿勢を、高バルブリフト側の任意角度である高バルブリフト側の任意のリフト位置にセットする。そして、この任意角度のリフト位置において、カムシャフト17を回転させて、リフトセンサ40で、吸気ロッカアーム22から出力されるバルブリフト高を計測する。すなわち、カムシャフト17が回転すると、吸気カム17aのカム変位は、センタロッカアーム27を介して揺動カム25に伝わり、吸気ロッカアーム22を揺動させる。リフトセンサ40は、この吸気ロッカアーム22の揺動変位に追従して上下方向(往復方向)へ変位し、各吸気ロッカアーム22から出力される図8に示すバルブリフト高さをカム回転角基準で計測し、記録する。ここでは、把握しやすい最大バルブリフト高を計測する(破線)。計測を終えたら、計測した気筒間の最大バルブリフト高の平均が、所定の公差以内に収まるよう、各気筒の気筒間ばらつき調整ねじ35を操作する。これで、高バルブリフト側のバルブリフト高の調整を終える(実線)。   When the assembly of the variable valve assembly 1 is completed, the valve lift height is adjusted at an arbitrary lift position on the high valve lift side. For this, first, the worm shaft 4b of the speed reducer section 4 is operated to rotationally displace the control shaft 13, and for example, as shown in FIG. 3, the attitude of the control shaft 13 is changed to an arbitrary angle on the high valve lift side. Set to an arbitrary lift position on the high valve lift side. The camshaft 17 is rotated at the lift position at an arbitrary angle, and the valve lift height output from the intake rocker arm 22 is measured by the lift sensor 40. That is, when the camshaft 17 rotates, the cam displacement of the intake cam 17a is transmitted to the swing cam 25 via the center rocker arm 27 and swings the intake rocker arm 22. The lift sensor 40 follows the oscillating displacement of the intake rocker arm 22 and moves in the vertical direction (reciprocating direction), and measures the valve lift height shown in FIG. 8 output from each intake rocker arm 22 based on the cam rotation angle. And record. Here, the maximum valve lift height that is easy to grasp is measured (broken line). When the measurement is finished, the inter-cylinder variation adjusting screw 35 of each cylinder is operated so that the average of the maximum valve lift height between the cylinders is within a predetermined tolerance. This completes the adjustment of the valve lift height on the high valve lift side (solid line).

このバルブリフト高の調整を終えたら、今度は図3中の矢印α方向のように制御シャフト13を反対側の低バルブリフト方向へ回動変位させ、図4に示されるように制御シャフト13を、所定の低バルブリフト量をもたらす角度の地点に位置決めて保持する。具体的には、最大バルブリフト高の平均が、一定の低バルブリフト量となる角度に制御シャフト13を位置決める。   When the adjustment of the valve lift height is completed, the control shaft 13 is then rotated and displaced in the opposite low valve lift direction as shown by the arrow α in FIG. 3, and the control shaft 13 is moved as shown in FIG. , Positioned and held at an angle that provides a predetermined low valve lift. Specifically, the control shaft 13 is positioned at an angle at which the average of the maximum valve lift height is a constant low valve lift amount.

この後、カムシャフト17を回転させてリフトセンサ40から、同リフト位置(低バルブリフト量)で各吸気ロッカアーム22から出力される最大バルブリフト高を計測する。計測した各最大バルブリフト高の差が、予め規定されている当該低バルブリフト位置の公差内に収まるか否かを確認する。
このとき、図9の実線に示されるように規定公差内に収まると、可変動弁アッセンブリ1は、気筒間のばらつきが調整されたと判断される。
Thereafter, the camshaft 17 is rotated, and the maximum valve lift height output from each intake rocker arm 22 is measured from the lift sensor 40 at the same lift position (low valve lift amount). It is confirmed whether or not the difference between the measured maximum valve lift heights falls within the predetermined tolerance of the low valve lift position.
At this time, as shown by the solid line in FIG. 9, the variable valve assembly 1 is determined that the variation among the cylinders has been adjusted if it falls within the specified tolerance.

すなわち、可変動弁系アッセンブリ1は、エンジンに吸入される空気量差がエンジン特性差として大きく現われるため、高バルブリフト位置よりも低バルブリフト位置のほうが高い精度を要求される。揺動カム25を利用した可変動弁機構19では、低バルブリフト位置で揺動カム25はベース円区間からわずかにリフト区間に入ったところをバルブリフトとして使うため、該リフト区間はリフト変位量が小さい。すなわち、調整ねじ35により揺動カム25の位置を調整してリフト変化を加えてもリフト変位量が僅かなため、調整感度が低い。しかし、高バルブリフト位置では揺動カムはベース円区間から大きくリフト区間に入ったところをバルブリフトとして使うため、該リフト区間はリフト変位量が大きく、調整ねじ35により揺動カム25の位置を調整してリフト変化を加えるとリフト変位量が大きくなり、調整感度が高いという特性がある。そこで、この特性を考慮して、調整感度が高い高バルブリフト側の地点でバルブリフト高を調整してから、精度が要求される一定の低バルブリフト量のリフト位置に代えて、図9の実線に示されるようにそのリフト位置の各バルブリフト高が、予め定められた同リフト位置における規定の公差内に収まることを確認すれば、高バルブリフトという精度が要求されない地点でのバルブリフト高のばらつきが、調整精度が要求される一定の低バルブリフト量の地点に代えても微小な公差内に収まる。これにより、複数のリフト位置で公差内であるか否かを判定するという面倒な作業を必要とせず、気筒間ばらつきの調整が行なえる。調整が確定すれば、調整を終えた各気筒間ばらつき調整ねじ35を、同調整ねじ35にねじ込まれている固定ナット35aで固定する。また図9の破線に示されるように規定の公差を超えるのであれば、再び高バルブリフト側の任意位置でセットする作業に戻り、気筒間ばらつきの調整をやり直す。または、低リフト側で微少調整を加えれば良い。   That is, the variable valve system assembly 1 requires a higher accuracy at the low valve lift position than at the high valve lift position because the difference in the amount of air drawn into the engine appears as a difference in engine characteristics. In the variable valve mechanism 19 using the swing cam 25, the swing cam 25 is used as a valve lift when the swing cam 25 slightly enters the lift section from the base circle section at the low valve lift position. Is small. That is, even if the position of the swing cam 25 is adjusted by the adjusting screw 35 and a lift change is applied, the lift displacement amount is small, and the adjustment sensitivity is low. However, at the high valve lift position, the swing cam is used as a valve lift when it enters the lift section largely from the base circle section. Therefore, the lift section has a large lift displacement, and the position of the swing cam 25 is adjusted by the adjusting screw 35. When a lift change is applied after adjustment, the amount of lift displacement increases and adjustment sensitivity is high. Therefore, in consideration of this characteristic, after adjusting the valve lift height at a point on the high valve lift side where the adjustment sensitivity is high, the lift position in FIG. As shown by the solid line, if it is confirmed that each valve lift height at the lift position is within the specified tolerance at the predetermined lift position, the valve lift height at a point where high valve lift accuracy is not required. Even if it is replaced with a fixed low valve lift point where adjustment accuracy is required, the variation in the range is within a minute tolerance. Thereby, it is possible to adjust the variation between cylinders without requiring a troublesome operation of determining whether or not a plurality of lift positions are within tolerance. If the adjustment is finalized, the cylinder-to-cylinder variation adjusting screw 35 that has been adjusted is fixed by a fixing nut 35 a that is screwed into the adjusting screw 35. If the specified tolerance is exceeded as shown by the broken line in FIG. 9, the process returns to the operation for setting at an arbitrary position on the high valve lift side again, and adjustment of the variation between cylinders is performed again. Alternatively, fine adjustment may be made on the low lift side.

したがって、可変動弁アッセンブリ1は、高バルブリフトの任意位置での調整作業、その後の一定低バルブリフト位置での公差の確認作業という工程だけで容易に気筒間のばらつき調整が行なえる。しかも、高バルブリフト位置よりも低バルブリフト位置のほうが高い精度が要求されるという特性を用いているために、容易な作業ながら、高い調整精度が期待できる。特に高バルブリフト側での作業は、精密さが求められないので、簡便であり、熟練した作業者でなくとも、気筒間ばらつきの調整ができる。   Therefore, the variable valve assembly 1 can easily adjust the variation between the cylinders only by the process of adjusting the high valve lift at an arbitrary position and then checking the tolerance at the constant low valve lift position. In addition, since high accuracy is required at the low valve lift position rather than the high valve lift position, high adjustment accuracy can be expected while performing easy work. In particular, since the work on the high valve lift side does not require precision, it is simple, and even if it is not a skilled worker, the variation between cylinders can be adjusted.

しかも、気筒間ばらつきの調整を終えた後、図5(a),(b)に示されるように制御シャフト13の端に、センサ出力が設定値となる角度になるよう、制御シャフト変位検出センサ6の入力部6aをセットしてから、同センサ6のボディ6bをホルダ部材2にねじ止めで固定すると、容易に制御シャフト変位センサ6の調整も行なえる。
そのうえ、気筒間ばらつきの調整を終えた後、図6および図7に示されるようにストッパ部7の位置を調整すると、制御シャフト13の可変範囲端の規制も容易に行なえる。すなわち、ここではストッパ部7は、例えば図6および図7に示されるように最小バルブリフト位置(可変範囲端)の付近の地点から、ボルト部材7bを、ウォームホイール4aに形成した弧形に延びる長孔7a内を通してホルダ部材2へ進退可能にねじ込み、ボルト部材7bの周りに短筒形のウォームストッパ7cを遊挿した構造が用いられていて、ボルト部材7bをホルダ部材2にねじ込むと、ウォームストッパ7cが長孔7内に挿通されたまま固定され、ボルト部材7bを緩めると、ウォームストッパ7cが自在に変位できるようにしてある。当初はボルト部材7bは緩めてある。このため、同ストッパ部7では、ばらつきの調整を終えた後、図7に示されるようにウォームストッパ7cを長孔7aの低バルブリフト方向の端に押し当て、同状態のまま、ボルト部材7bをホルダ部材2にねじ込み、ウォームストッパ7cをボルト部材7bの頭部とホルダ部材2間に締結すると、制御シャフト13の可変範囲端、ここでは最小バルブリフト位置が位置決められ、同位置で制御シャフト13の動きが規制される。つまり、ストッパ部7の調整も容易に行なえる。
In addition, after the adjustment of the variation between the cylinders is completed, the control shaft displacement detection sensor is arranged so that the sensor output becomes an angle at which the sensor output becomes a set value at the end of the control shaft 13 as shown in FIGS. If the body 6b of the sensor 6 is fixed to the holder member 2 with screws after the input portion 6a of 6 is set, the control shaft displacement sensor 6 can be easily adjusted.
In addition, when the position of the stopper portion 7 is adjusted as shown in FIGS. 6 and 7 after the adjustment of the variation between the cylinders, the control of the variable range end of the control shaft 13 can be easily performed. That is, here, the stopper portion 7 extends from the point near the minimum valve lift position (variable range end) to an arc shape formed on the worm wheel 4a, as shown in FIGS. 6 and 7, for example. A structure is used in which the screw member is screwed so as to be able to advance and retract through the long hole 7a, and a short cylindrical worm stopper 7c is loosely inserted around the bolt member 7b. When the bolt member 7b is screwed into the holder member 2, the worm When the stopper 7c is fixed while being inserted into the long hole 7, and the bolt member 7b is loosened, the worm stopper 7c can be freely displaced. Initially, the bolt member 7b is loosened. For this reason, in the stopper portion 7, after adjusting the variation, as shown in FIG. 7, the worm stopper 7 c is pressed against the end of the long hole 7 a in the low valve lift direction, and the bolt member 7 b remains in the same state. Is screwed into the holder member 2 and the worm stopper 7c is fastened between the head of the bolt member 7b and the holder member 2, the variable range end of the control shaft 13, here, the minimum valve lift position is positioned. Movement is regulated. That is, the stopper portion 7 can be easily adjusted.

なお、必要であれば、この後、制御シャフト13を高バルブリフト方向へ回動して、最も高バルブリフト位置で、同リフト位置に対応する最大バルブリフト高をリフトセンサ45で計測して規定のバルブリフト高であることを確認したり、制御シャフト13を低バルブリフト〜高バルブリフト範囲で回転して、制御シャフト変位センサ6が規定のセンサ出力が出力されることを確認したりすると、確かである。そして、設定された各種データをQRコードなどのマーキング部で、ホルダ部材2などにマーキングを施せば、その後のシリンダヘッドに搭載して行なうバルブクリアランス調整も容易になる。   If necessary, after that, the control shaft 13 is rotated in the high valve lift direction, and the maximum valve lift height corresponding to the lift position is measured by the lift sensor 45 at the highest valve lift position. If the control shaft displacement sensor 6 is rotated within the range of low valve lift to high valve lift and the control shaft displacement sensor 6 confirms that the specified sensor output is output, Certainly. Then, if the set various data is marked on the holder member 2 or the like with a marking portion such as a QR code, valve clearance adjustment performed by mounting on the cylinder head after that becomes easy.

なお、カム回転角のリフト計測をすることで、計測基準を最大リフト量とするだけでなく、規定のカム回転角でのバルブリフトやバルブリフトの積分値など全体で比較して、調整を可能とすると、より気筒ばらつき調整精度を高めることができる。
また、バルブ毎に可変機構19が設けられている場合に同一気筒内のバルブリフトに差があれば、気筒間ばらつき調整と同様の調整をすることとなる。
In addition, by measuring the lift of the cam rotation angle, it is possible not only to set the measurement standard as the maximum lift amount but also to make adjustments by comparing the valve lift at the specified cam rotation angle and the integrated value of the valve lift as a whole. Then, the cylinder variation adjustment accuracy can be further increased.
Further, when the variable mechanism 19 is provided for each valve, if there is a difference in the valve lift in the same cylinder, the same adjustment as the inter-cylinder variation adjustment is performed.

加えて、調整可能な幅を大きく超える場合は、構成部品の不良を容易に判定することができ、調整時の計測値のずれ方によって、不良部品を特定することも可能となり、計測値を管理することで製品不良を容易に特定することができ、生産性が高まる。さらにはその情報を子部品製造時の補正へフィードバックすることで生産性がさらに向上する。
なお、本発明は一実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々可変して実施しても構わない。例えば一実施形態では、調整治具を用いて、可変動弁アッセンブリの気筒間ばらつき調整を行なう例を挙げたが、これに限らず、シリンダヘッドに、直接、可変動弁アッセンブリを搭載して、その状態まま、気筒間ばらつき調整を行なってもよい。また一実施形態では、揺動カムを用いてバルブリフトを可変する可変動弁機構を用いたが、他の構造でバルブリフトを可変する可変動弁機構でも構わない。
In addition, if the adjustable width is greatly exceeded, it is possible to easily determine the defect of the component part, and it is also possible to identify the defective part according to the deviation of the measured value during adjustment, and manage the measured value By doing so, product defects can be easily identified, and productivity is increased. Furthermore, productivity is further improved by feeding back the information to correction at the time of manufacturing the child parts.
Note that the present invention is not limited to one embodiment, and various modifications may be made without departing from the spirit of the present invention. For example, in one embodiment, the adjustment jig is used to adjust the variation among cylinders of the variable valve assembly, but this is not limiting, and the variable valve assembly is directly mounted on the cylinder head. In this state, the variation between cylinders may be adjusted. In one embodiment, a variable valve mechanism that varies the valve lift using a swing cam is used. However, a variable valve mechanism that varies the valve lift using another structure may be used.

1 可変動弁アッセンブリ
6 制御シャフト変位検出センサ(変位検出センサ)
7 ストッパ部
13 制御シャフト(制御部材)
17 カムシャフト
19 可変動弁機構
22 吸気ロッカアーム(バルブ駆動部材)
27 センタロッカアーム(制御部材)
1 Variable valve assembly 6 Control shaft displacement detection sensor (displacement detection sensor)
7 Stopper 13 Control shaft (control member)
17 Camshaft 19 Variable valve mechanism 22 Intake rocker arm (valve drive member)
27 Center rocker arm (control member)

Claims (4)

カムを備えるカムシャフトと、バルブを駆動する気筒毎のバルブ駆動部材と、バルブリフトを入力する制御部材とを有して、前記カムのカム変位を前記制御部材の変位にしたがい低バルブリフトと高バルブリフトとの間で可変し前記バルブ駆動部材に伝える可変動弁機構を組み上げてなる可変動弁アッセンブリで、同アッセンブリの気筒間ばらつきを調整する可変動弁アッセンブリ調整方法であって、
前記可変動弁アッセンブリの気筒間ばらつき調整は、前記制御部材を高バルブリフト方向へ変位させて任意のリフト位置にセットし、同リフト位置で各バルブ駆動部材から出力されるバルブリフト高の差を所定の公差内に調整してから、前記制御部材を高バルブリフト方向と反対側の低バルブリフト方向へ変位させて、所定の低バルブリフト量となるリフト位置に位置決め、そのリフト位置において各バルブ駆動部材から出力されるバルブリフト高の差が、同リフト位置における規定の公差内に収まるかを確認し、規定の公差を超えているのであれば、再び高バルブリフト側の任意位置で調整を行うか、もしくは低リフト側で微小調整を加えることにより行う
ことを特徴とする可変動弁アッセンブリ調整方法。
A camshaft including a cam; a valve driving member for each cylinder that drives the valve; and a control member that inputs a valve lift. The cam displacement of the cam depends on the displacement of the control member. A variable valve assembly comprising a variable valve mechanism that is variable between a valve lift and transmitted to the valve drive member, and a variable valve assembly adjustment method that adjusts variation among cylinders in the assembly,
To adjust the variation among cylinders of the variable valve assembly, the control member is displaced in the high valve lift direction and set at an arbitrary lift position, and the difference in valve lift height output from each valve drive member at the lift position is set. After adjusting within a predetermined tolerance, the control member is displaced in a low valve lift direction opposite to the high valve lift direction and positioned at a lift position where a predetermined low valve lift amount is obtained. Check if the difference in the valve lift height output from the drive member is within the specified tolerance at the lift position.If the difference exceeds the specified tolerance, adjust again at an arbitrary position on the high valve lift side. A variable valve assembly adjustment method, characterized in that it is performed by performing fine adjustment on the low lift side .
前記可変動弁アッセンブリは、前記制御部材の変位を検出する変位検出センサを含み、
前記低バルブリフト量となるリフト位置で、各バルブ駆動部材から出力されるバルブリフト高さの差が規定の公差内に収まることが確認されたら、所期のセンサ出力となるように前記変位検出センサを調整する
ことを特徴とする請求項1に記載の可変動弁アッセンブリ調整方法。
The variable valve assembly includes a displacement detection sensor for detecting a displacement of the control member,
When it is confirmed that the difference in valve lift height output from each valve drive member is within the specified tolerance at the lift position where the low valve lift amount is obtained, the displacement detection is performed so that the desired sensor output is obtained. The variable valve assembly adjusting method according to claim 1, wherein the sensor is adjusted.
前記可変動弁アッセンブリは、前記制御部材のバルブリフトの可変範囲を規定するストッパ部を含み、
前記低バルブリフト量となるリフト位置で、各バルブ駆動部材から出力されるバルブリフト高さの差が規定の公差内に収まることが確認されたら、前記可変範囲の端で前記制御部材の動きが規制されるように前記ストッパ部の位置を調整する
ことを特徴とする請求項1または請求項2に記載の可変動弁アッセンブリ調整方法。
The variable valve assembly includes a stopper portion that defines a variable range of a valve lift of the control member,
When it is confirmed that the difference in valve lift height output from each valve drive member is within a specified tolerance at the lift position at which the low valve lift amount is achieved, the control member moves at the end of the variable range. The variable valve assembly adjustment method according to claim 1, wherein the position of the stopper portion is adjusted so as to be regulated.
前記制御部材は、前記カムシャフトと平行に配置される制御シャフトを備え、The control member includes a control shaft disposed in parallel with the camshaft,
前記可変動弁機構は、前記制御シャフトを回動変位させることで前記カムのカム変位を低バルブリフトと高バルブリフトとの間で可変するものであって、The variable valve mechanism is configured to vary the cam displacement of the cam between a low valve lift and a high valve lift by rotationally displacing the control shaft,
前記気筒間ばらつき調整は、前記制御シャフトの軸心に垂直な方向に形成される通孔に螺挿された気筒間ばらつき調整ねじを進退させることにより行うThe cylinder-to-cylinder variation adjustment is performed by advancing and retracting a cylinder-to-cylinder variation adjusting screw screwed into a through hole formed in a direction perpendicular to the axis of the control shaft.
ことを特徴とする請求項1に記載の可変動弁アッセンブリ調整方法。The variable valve assembly adjusting method according to claim 1, wherein:
JP2009000755A 2009-01-06 2009-01-06 Variable valve assembly adjustment method Active JP5196176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000755A JP5196176B2 (en) 2009-01-06 2009-01-06 Variable valve assembly adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009000755A JP5196176B2 (en) 2009-01-06 2009-01-06 Variable valve assembly adjustment method

Publications (2)

Publication Number Publication Date
JP2010159640A JP2010159640A (en) 2010-07-22
JP5196176B2 true JP5196176B2 (en) 2013-05-15

Family

ID=42576994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000755A Active JP5196176B2 (en) 2009-01-06 2009-01-06 Variable valve assembly adjustment method

Country Status (1)

Country Link
JP (1) JP5196176B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4157783B2 (en) * 2003-03-11 2008-10-01 株式会社日立製作所 Multi-cylinder internal combustion engine and lift adjustment method thereof.
JP4176563B2 (en) * 2003-06-20 2008-11-05 トヨタ自動車株式会社 Variable valve mechanism
JP4136824B2 (en) * 2003-08-05 2008-08-20 株式会社日立製作所 Valve operating device for internal combustion engine and lift adjusting method for the valve operating device
JP2005188285A (en) * 2003-12-24 2005-07-14 Nissan Motor Co Ltd Variable valve system of internal combustion engine, its lift adjusting device and lift adjusting method
JP2006002607A (en) * 2004-06-16 2006-01-05 Hitachi Ltd Variable valve system for internal combustion engine and method for assembling the variable valve system
JP4096938B2 (en) * 2004-11-17 2008-06-04 日産自動車株式会社 Lift adjustment device and lift adjustment method for valve operating mechanism
JP2008095600A (en) * 2006-10-12 2008-04-24 Hitachi Ltd Valve gear for multiple cylinder internal combustion engine, and assembling method thereof
JP2008115703A (en) * 2006-10-31 2008-05-22 Mitsubishi Motors Corp Valve unit for internal combustion engine
JP4773383B2 (en) * 2007-02-14 2011-09-14 日立オートモティブシステムズ株式会社 Engine control device and external device for engine adjustment

Also Published As

Publication number Publication date
JP2010159640A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
US8316699B2 (en) Method and device for measuring and adjusting valve clearance
JP4096938B2 (en) Lift adjustment device and lift adjustment method for valve operating mechanism
US6546347B2 (en) Method and apparatus for automatically setting rocker arm clearances in an internal combustion engine
US20190101030A1 (en) Valve clearance adjusting method
JP5196176B2 (en) Variable valve assembly adjustment method
JP5465885B2 (en) Cylinder variation adjustment jig
JP4157783B2 (en) Multi-cylinder internal combustion engine and lift adjustment method thereof.
US7055477B2 (en) Valve actuation apparatus for internal combustion engine and method of adjusting lift thereof
JP2006029246A (en) Valve system of internal combustion engine
US7305952B2 (en) Engine valve clearance adjusting method
US7556005B2 (en) Automatic tappet clearance adjusting device and method
JP2006250150A (en) Operating angle detection system for variable valve gear of internal combustion engine
JP2006118404A (en) Variable valve train for internal combustion engine
CA3091123C (en) Method of setting tappet clearance and device therefor
JP2009074519A (en) Adjusting method for variable valve gear
JP4518055B2 (en) Method and apparatus for measuring valve lift amount of internal combustion engine
JP4269924B2 (en) Valve lift amount adjusting method and adjusting mechanism for internal combustion engine
CN105180880B (en) A kind of conjugate cam pitch curve test device
JP2010144556A (en) Method for regulating phase shifting of supply/exhaust valve opening/closing timing by supply/exhaust valve opening/closing cam, and camshaft unit with phase shifting regulated by the method
JP2004293408A (en) Valve system of internal combustion engine and engine valve position adjusting method of this valve system
KR102543132B1 (en) Guide shaft assembly method in CVVD manufacturing process
JP5444766B2 (en) Stem end position measuring apparatus and method
JP2005188285A (en) Variable valve system of internal combustion engine, its lift adjusting device and lift adjusting method
JP4255426B2 (en) Valve clearance adjusting device and adjusting method
JP2008045440A (en) Control device for variable valve gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120727

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5196176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350