JP5195714B2 - Inter-cylinder air-fuel ratio variation detection device - Google Patents

Inter-cylinder air-fuel ratio variation detection device Download PDF

Info

Publication number
JP5195714B2
JP5195714B2 JP2009242356A JP2009242356A JP5195714B2 JP 5195714 B2 JP5195714 B2 JP 5195714B2 JP 2009242356 A JP2009242356 A JP 2009242356A JP 2009242356 A JP2009242356 A JP 2009242356A JP 5195714 B2 JP5195714 B2 JP 5195714B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
cylinder
cylinders
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009242356A
Other languages
Japanese (ja)
Other versions
JP2011089443A (en
Inventor
憲彦 生駒
克則 上田
敏行 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2009242356A priority Critical patent/JP5195714B2/en
Publication of JP2011089443A publication Critical patent/JP2011089443A/en
Application granted granted Critical
Publication of JP5195714B2 publication Critical patent/JP5195714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、複数の気筒を有する内燃機関における気筒間の空燃比のばらつき異常を検出する気筒間空燃比ばらつき検出装置に関する。   The present invention relates to an inter-cylinder air-fuel ratio variation detecting device that detects an abnormality in variation in air-fuel ratio between cylinders in an internal combustion engine having a plurality of cylinders.

複数の気筒を有する内燃機関における各気筒の排気空燃比を、各気筒の排気通路の合流部に配置された単一の空燃比センサにより測定し、測定値から気筒間の排気空燃比のばらつきを演算し、そして、演算結果に基づいて各気筒の運転空燃比のばらつきを低減させる空燃比制御が知られている(例えば、特許文献1参照)。   In an internal combustion engine having a plurality of cylinders, the exhaust air-fuel ratio of each cylinder is measured by a single air-fuel ratio sensor arranged at the junction of the exhaust passage of each cylinder, and the variation in the exhaust air-fuel ratio between the cylinders is measured from the measured value. There is known air-fuel ratio control for calculating and reducing variation in the operating air-fuel ratio of each cylinder based on the calculation result (see, for example, Patent Document 1).

特開2004−11435号公報JP 2004-11435 A

ところで、複数の気筒の中の1気筒のみ相対的に、空燃比がリッチ又はリーンに変化した場合、上記単一の空燃比センサにより測定される排気空燃比が変動する。そして、この排気空燃比の変動は、例えば4気筒内燃機関の場合、720°のクランク角度の周期で起こり、その波形は正弦波に近い。
ここで、直列4気筒内燃機関における外側の2気筒及び内側の2気筒等の対をなす気筒では、一方の空燃比がリーンで他方の空燃比がリッチの時に、空燃比の変動の波形が近似する場合がある。このため、対をなす気筒の何れが排気空燃比を変動させる要因となっている気筒であるかを識別することは困難である。
By the way, when the air-fuel ratio changes relative to only one cylinder among a plurality of cylinders, the exhaust air-fuel ratio measured by the single air-fuel ratio sensor fluctuates. For example, in the case of a four-cylinder internal combustion engine, the fluctuation of the exhaust air-fuel ratio occurs at a cycle of a crank angle of 720 °, and the waveform is close to a sine wave.
Here, in a pair of cylinders such as the outer two cylinders and the inner two cylinders in an in-line four-cylinder internal combustion engine, when one air-fuel ratio is lean and the other air-fuel ratio is rich, the waveform of the air-fuel ratio fluctuation is approximate. There is a case. For this reason, it is difficult to identify which of the paired cylinders is the cylinder that causes the exhaust air-fuel ratio to fluctuate.

本発明は、上記事情に鑑み、単一の空燃比センサを用いて気筒間の排気空燃比のバラツキを判定するのみならず、排気空燃比を変動させる要因となっている気筒を特定することをも可能とする気筒間空燃比ばらつき検出装置を提供することを課題とする。   In view of the above circumstances, the present invention not only determines the variation of the exhaust air-fuel ratio between cylinders using a single air-fuel ratio sensor, but also identifies the cylinder that causes the exhaust air-fuel ratio to fluctuate. It is another object of the present invention to provide an inter-cylinder air-fuel ratio variation detecting device that can also be used.

上記課題を達成するため、本発明に係る気筒間空燃比ばらつき検出装置は、複数の気筒を有する内燃機関の排気合流部に設けられた空燃比検出手段と、前記空燃比検出手段で検出された検出値の基準値からの偏差に基づき、空燃比の変化度合を演算する空燃比変化度合演算手段と、前記空燃比変化度合演算手段で演算された変化度合に基づき、前記複数の気筒間の空燃比ばらつき異常を検出するばらつき異常検出手段と、を備え、前記ばらつき異常検出手段は、前記空燃比変化度合演算手段で演算された変化度合の絶対値の最大値が検出された720°CA間の位相に基づき、前記複数の気筒のうち前記空燃比ばらつき異常の要因となっている気筒を識別する。   In order to achieve the above object, an inter-cylinder air-fuel ratio variation detecting apparatus according to the present invention is detected by an air-fuel ratio detecting means provided at an exhaust gas merging portion of an internal combustion engine having a plurality of cylinders, and the air-fuel ratio detecting means. Based on the deviation of the detected value from the reference value, air-fuel ratio change degree calculating means for calculating the change degree of the air-fuel ratio, and based on the change degree calculated by the air-fuel ratio change degree calculating means, A variation abnormality detecting means for detecting an abnormality in fuel ratio variation, wherein the variation abnormality detecting means is between 720 ° CA in which the maximum absolute value of the degree of change calculated by the air-fuel ratio change degree calculating means is detected. Based on the phase, the cylinder that causes the air-fuel ratio variation abnormality among the plurality of cylinders is identified.

上記気筒間空燃比ばらつき検出装置において、前記ばらつき異常検出手段は、前記空燃比変化度合演算手段で演算された変化度合の絶対値の最大値の正負に基づき、前記空燃比ばらつき異常の要因となっている気筒について空燃比がリッチ側にずれているのか又はリーン側にずれているのかを決定してもよい。
上記気筒間空燃比ばらつき検出装置において、前記ばらつき異常検出手段は、前記空燃比変化度合演算手段で演算された変化度合が所定の閾値を超えたか否かを判定する判定手段を有し、前記判定手段により前記変化度合が前記所定の閾値を超えたと判定された場合に、前記複数の気筒間で空燃比がばらついていると判定してもよい。
In the above-described inter-cylinder air-fuel ratio variation detecting device, the variation abnormality detecting means causes the air-fuel ratio variation abnormality based on the positive or negative of the maximum value of the absolute value of the degree of change calculated by the air-fuel ratio change degree calculating means. It may be determined whether the air-fuel ratio is deviated to the rich side or the lean side for the cylinder in question.
In the above-described inter-cylinder air-fuel ratio variation detecting device, the variation abnormality detecting unit includes a determining unit that determines whether or not the degree of change calculated by the air-fuel ratio change degree calculating unit exceeds a predetermined threshold. When it is determined by the means that the degree of change has exceeded the predetermined threshold, it may be determined that the air-fuel ratio varies among the plurality of cylinders.

本願のもう一つの発明に係る気筒間空燃比ばらつき検出装置において、複数の気筒を有する内燃機関の排気合流部に設けられた空燃比検出手段と、前記空燃比検出手段で検出された検出値の基準値からの偏差に基づき、空燃比の変化度合を演算する空燃比変化度合演算手段と、前記空燃比変化度合演算手段で演算された変化度合に基づき、前記複数の気筒間の空燃比ばらつき異常を検出するばらつき異常検出手段と、を備え、前記ばらつき異常検出手段は、前記空燃比変化度合演算手段で演算された変化度合の絶対値の最大値が検出された位相、及び、前記変化度合の絶対値の最大値の正負に基づき、前記空燃比ばらつき異常の要因となっている気筒を判定する一次判定を行った後に、前記空燃比検出手段で検出された検出値の基準値からの偏差の絶対値の最大値が検出された位相、及び、前記偏差の絶対値の最大値の正負に基づき、前記空燃比ばらつき異常の要因となっている気筒を判定する二次判定を行い、これら一次及び二次判定判定結果の組み合わせに基づき、前記複数の気筒のうち前記空燃比ばらつき異常の要因となっている気筒を決定する。 In the inter-cylinder air-fuel ratio variation detecting device according to another invention of the present application, an air-fuel ratio detecting means provided in an exhaust gas merging portion of an internal combustion engine having a plurality of cylinders, and a detection value detected by the air-fuel ratio detecting means Based on the deviation from the reference value, the air-fuel ratio change degree calculating means for calculating the air-fuel ratio change degree, and the air-fuel ratio variation abnormality among the plurality of cylinders based on the change degree calculated by the air-fuel ratio change degree calculating means Variation abnormality detecting means for detecting the variation abnormality detecting means, wherein the variation abnormality detecting means detects the phase at which the maximum absolute value of the degree of change calculated by the air-fuel ratio change degree calculating means is detected, and the degree of change. based on the positive or negative maximum value of the absolute value, the air-fuel ratio after the variation was primary determining determine an abnormality factors and going on the cylinder, from the reference value of the detected value detected by the air-fuel ratio detecting means The absolute value of the maximum value is detected phase difference and, on the basis of the sign of the maximum absolute value of the deviation, performs secondary determination to determine the cylinder that is a cause of the abnormal air-fuel ratio variation, these Based on the combination of the determination results of the primary and secondary determinations , the cylinder that causes the air-fuel ratio variation abnormality among the plurality of cylinders is determined.

上記気筒間空燃比ばらつき検出装置において、前記空燃比変化度合演算手段は、前記内燃機関の吸気から排気までの間に前記空燃比検出手段で検出された検出値の平均値を演算し、この平均値を前記基準値としてもよい。   In the inter-cylinder air-fuel ratio variation detecting device, the air-fuel ratio change degree calculating means calculates an average value of the detected values detected by the air-fuel ratio detecting means between intake and exhaust of the internal combustion engine. The value may be the reference value.

上記気筒間空燃比ばらつき検出装置によれば、単一の空燃比センサを用いて気筒間の排気空燃比のバラツキを検出できるのみならず、排気空燃比を変動させる要因となっている気筒を特定することもできる。   According to the above-described inter-cylinder air-fuel ratio variation detection device, not only the variation in the exhaust air-fuel ratio among cylinders can be detected using a single air-fuel ratio sensor, but also the cylinder that causes the exhaust air-fuel ratio to fluctuate is specified. You can also

一実施形態に係る気筒間空燃比ばらつき検出装置を適用した4サイクル直列4気筒のエンジンを示す概略図である。1 is a schematic diagram showing a four-cycle in-line four-cylinder engine to which an inter-cylinder air-fuel ratio variation detecting device according to an embodiment is applied. 気筒間空燃比ばらつき検出装置における、気筒間の排気空燃比のばらつきの有無、及び対象気筒の判定処理を説明するためのフローチャートである。5 is a flowchart for explaining the presence / absence of variation in exhaust air-fuel ratio between cylinders and the process of determining a target cylinder in the inter-cylinder air-fuel ratio variation detection device. 空燃比センサにより検出された排気空燃比の波形を示すグラフである。It is a graph which shows the waveform of the exhaust air-fuel ratio detected by the air-fuel ratio sensor. 空燃比センサにより検出された排気空燃比の波形を示すグラフである。It is a graph which shows the waveform of the exhaust air-fuel ratio detected by the air-fuel ratio sensor. 空燃比センサにより検出された排気空燃比の波形を示すグラフである。It is a graph which shows the waveform of the exhaust air-fuel ratio detected by the air-fuel ratio sensor. (A)〜(E)は、空燃比センサにより検出された排気空燃比の波形を示すグラフである。(A)-(E) is a graph which shows the waveform of the exhaust air-fuel ratio detected by the air-fuel ratio sensor. (A)、(B)は、排気空燃比の偏差の変化度合を示すグラフである。(A), (B) is a graph which shows the change degree of the deviation of an exhaust air fuel ratio.

以下、本発明の実施の形態について説明する。
図1は、一実施形態に係る気筒間空燃比ばらつき検出装置10を適用した4サイクル直列4気筒のエンジン(内燃機関)100を示す概略図である。この図に示すように、エンジン100では、一列に配列された4個の気筒102A(♯1)、102B(♯2)、102C(♯3)、102D(♯4)と、吸気通路104と、排気通路106と、触媒108と、ECU(Electronic Control Unit)110とを備えている。
Embodiments of the present invention will be described below.
FIG. 1 is a schematic diagram showing a four-cycle in-line four-cylinder engine (internal combustion engine) 100 to which an inter-cylinder air-fuel ratio variation detecting device 10 according to an embodiment is applied. As shown in this figure, in engine 100, four cylinders 102A (# 1), 102B (# 2), 102C (# 3), 102D (# 4) arranged in a row, intake passage 104, An exhaust passage 106, a catalyst 108, and an ECU (Electronic Control Unit) 110 are provided.

吸気通路104は、吸気マニホールド112と、吸気マニホールド112から分岐した4本の吸気ポート114A、114B、114C、114Dとを備えている。吸気通路104における吸気マニホールド112より上流側には、エアフローメータ115が配設されている。また、各吸気ポート114A〜Dは、それぞれ各気筒102A〜D(♯1〜4)に接続されており、各吸気ポート114A〜Dには、燃料噴射弁116A、116B、116C、116Dがそれぞれ配設されている。燃料噴射弁116A〜116Dは、エアフローメータ115で測定された空気量に基づき、ECU110によって演算された量の燃料を各気筒102A〜D(♯1〜4)へ噴射する。   The intake passage 104 includes an intake manifold 112 and four intake ports 114A, 114B, 114C, 114D branched from the intake manifold 112. An air flow meter 115 is disposed upstream of the intake manifold 112 in the intake passage 104. The intake ports 114A to 114D are connected to the cylinders 102A to 102D (# 1 to 4), respectively, and the fuel injection valves 116A, 116B, 116C, and 116D are arranged in the intake ports 114A to 114D, respectively. It is installed. Fuel injection valves 116 </ b> A to 116 </ b> D inject an amount of fuel calculated by ECU 110 to each cylinder 102 </ b> A to D (# 1 to 4) based on the amount of air measured by air flow meter 115.

排気通路106は、それぞれ各気筒102A〜D(♯1〜4)に接続された4本の排気ポート118A、118B、118C、118Dと、当該4本の排気ポート118A〜Dが合流する排気マニホールド120とを備えている。4本の排気ポート118A〜Dの合流点には、空燃比センサ122が配設されている。当該空燃比センサ122は、排気中酸素濃度に基づいて、排気空燃比を連続的に変化する物理量として検出し、ECU110へ送信する。   The exhaust passage 106 includes four exhaust ports 118A, 118B, 118C, and 118D connected to the cylinders 102A to 102D (# 1 to 4), respectively, and an exhaust manifold 120 where the four exhaust ports 118A to 118D join. And. An air-fuel ratio sensor 122 is disposed at the junction of the four exhaust ports 118A to 118D. The air-fuel ratio sensor 122 detects the exhaust air-fuel ratio as a continuously changing physical quantity based on the oxygen concentration in the exhaust, and transmits it to the ECU 110.

ここで、4サイクル4気筒機関であるエンジン100では、1工程はクランク角720°(720°CA)であり、各気筒の排気工程はクランク角180°(180°CA)ずつずれている。
気筒間空燃比ばらつき検出装置10は、上述のECU110と、空燃比センサ122とを備えている。ECU110は、ECU110の制御を司る制御回路130と、空燃比センサ122により測定された排気空燃比A/Fの値等を記憶するRAM(記憶部)124と、RAM124に記憶した排気空燃比A/Fの値に基づき、種々の演算を行う演算回路126と、演算回路126の演算結果に基づき、気筒102A〜D(♯1〜4)間の排気空燃比のばらつきの有無を判定すると共に、排気空燃比のばらつきを生じさせる要因となっている気筒(以下、対象気筒という)を判定する判定回路128とを備えている。
Here, in engine 100 that is a four-cycle four-cylinder engine, one process has a crank angle of 720 ° (720 ° CA), and the exhaust process of each cylinder is shifted by a crank angle of 180 ° (180 ° CA).
The inter-cylinder air-fuel ratio variation detection device 10 includes the ECU 110 and the air-fuel ratio sensor 122 described above. The ECU 110 includes a control circuit 130 that controls the ECU 110, a RAM (storage unit) 124 that stores the value of the exhaust air / fuel ratio A / F measured by the air / fuel ratio sensor 122, and the exhaust air / fuel ratio A / F stored in the RAM 124. Based on the value of F, the arithmetic circuit 126 that performs various arithmetic operations, and based on the arithmetic results of the arithmetic circuit 126, it is determined whether or not the exhaust air-fuel ratio varies among the cylinders 102A to D (# 1 to 4), and the exhaust gas And a determination circuit 128 that determines a cylinder (hereinafter referred to as a target cylinder) that causes a variation in the air-fuel ratio.

以下、気筒間空燃比ばらつき検出装置10における、気筒102A〜D(♯1〜4)間の排気空燃比のばらつきの有無、及び対象気筒の判定処理について図2のフローチャートや、空燃比センサ122により測定された排気空燃比の波形を示す図3のグラフ等を参照して説明する。
図2のフローチャートに示すように、まず、ステップ100において、制御回路130は、所定のクランク角度CAn(例えば、図3のグラフに示すように30°CA)毎に、空燃比センサ122により測定された排気空燃比A/F(図3のグラフに白抜きのドットで図示)を、RAM124に記憶させる。
Hereinafter, in the inter-cylinder air-fuel ratio variation detection device 10, the presence or absence of variation in the exhaust air-fuel ratio between the cylinders 102A to D (# 1 to 4) and the determination processing of the target cylinder are determined by the flowchart of FIG. This will be described with reference to the graph of FIG. 3 showing the waveform of the measured exhaust air-fuel ratio.
As shown in the flowchart of FIG. 2, first, at step 100, the control circuit 130 is measured by the air-fuel ratio sensor 122 at every predetermined crank angle CAn (for example, 30 ° CA as shown in the graph of FIG. 3). The exhaust air-fuel ratio A / F (indicated by white dots in the graph of FIG. 3) is stored in the RAM 124.

次に、ステップ102において、演算回路126は、各気筒102A(♯1)、102B(♯2)、102C(♯3)、102D(♯4)の特定のクランク角CAtdc(例えば、各気筒の圧縮上死点の5°CA前)毎に、その時点より360°CA前の720°CA間における全ての気筒の排気空燃比A/Fの平均値A/Fave(図3のグラフに白抜きの三角で図示)を演算する。そして、制御回路130は、演算した排気空燃比A/Fの平均値A/Faveを、その時点における全ての気筒の排気空燃比A/Fの平均値A/FaveとしてRAM124に記憶させる。   Next, at step 102, the arithmetic circuit 126 determines a specific crank angle CAtdc (for example, compression of each cylinder) of each cylinder 102A (# 1), 102B (# 2), 102C (# 3), 102D (# 4). Every time the top dead center is 5 ° CA), the average value A / Fave of the exhaust air-fuel ratio A / F of all the cylinders between 720 ° CA 360 ° CA before that time (the white graph in FIG. 3) (Shown with triangles). Then, the control circuit 130 stores the calculated average value A / Fave of the exhaust air / fuel ratio A / F in the RAM 124 as the average value A / Fave of the exhaust air / fuel ratio A / F of all the cylinders at that time.

ここで、判定時点(CAtdc)より前の720CA間(判定対象期間)の上記平均値A/Faveを結んだ直線(図3のグラフに破線で図示)は、判定対象期間における上記平均値A/Faveの軌跡である。ステップ104において、制御回路130は、上記平均値A/Faveの軌跡を表す1次関数を演算してRAM124に記憶させる。
次に、図4のグラフに示すように、ステップ106において、演算回路126は、クランク角CAtdc毎に、各その時点(図4のグラフに白抜き星印で図示)より360°CA前の時点以前の180°CA間における、排気空燃比A/Fと平均値A/Faveとの偏差ΔA/Fを演算し、演算結果をRAM124に記憶させる。ここで、偏差ΔA/Fは、クランク角CAn毎に平均値A/Faveの軌跡を表す1次関数から求められる平均値A/Faveと、同位相の排気空燃比A/Fとの偏差である。
Here, a straight line (shown by a broken line in the graph of FIG. 3) connecting the average value A / Fave between 720 CAs (determination target period) before the determination time point (CAtdc) is the average value A / F in the determination target period. It is the trajectory of Fave. In step 104, the control circuit 130 calculates a linear function representing the locus of the average value A / Fave and stores it in the RAM 124.
Next, as shown in the graph of FIG. 4, in step 106, the arithmetic circuit 126, for each crank angle CAtdc, is 360 ° CA before each time point (shown by a white star in the graph of FIG. 4). A deviation ΔA / F between the exhaust air-fuel ratio A / F and the average value A / Fave between the previous 180 ° CA is calculated, and the calculation result is stored in the RAM 124. Here, the deviation ΔA / F is a deviation between the average value A / Fave obtained from a linear function representing the locus of the average value A / Fave for each crank angle CAn and the exhaust air / fuel ratio A / F having the same phase. .

次に、図5のグラフに示すように、ステップ108において、演算回路126は、クランク角CAtdc毎に、その時点(図5のグラフに白抜き星印で図示)より360°CA前の時点以前の180CA間における偏差ΔA/Fの変化度合dA/Fを演算し、RAM124に記憶させる。ここで、偏差ΔA/Fの変化度合は、偏差ΔA/Fの時間微分値である。   Next, as shown in the graph of FIG. 5, in step 108, the arithmetic circuit 126, for each crank angle CAtdc, before the time 360 ° CA before the time (indicated by a white star in the graph of FIG. 5). The degree of change dA / F of the deviation ΔA / F between 180 CA is calculated and stored in the RAM 124. Here, the degree of change of the deviation ΔA / F is a time differential value of the deviation ΔA / F.

ここで、図6(A)〜(D)は、気筒102A〜D(♯1〜♯4)の何れか1つの気筒の空燃比が相対的にリーン又はリッチになった場合の、720°CA間における偏差ΔA/Fの特性を示すグラフである。また、図6(E)は、気筒102A〜D(♯1〜4)の空燃比がストイキ(理論空燃比)状態である場合の、720CA間における偏差ΔA/Fの特性を示すグラフである。   Here, FIGS. 6A to 6D show 720 ° CA when the air-fuel ratio of any one of the cylinders 102A to 102D (# 1 to # 4) becomes relatively lean or rich. It is a graph which shows the characteristic of deviation (DELTA) A / F in between. FIG. 6E is a graph showing the characteristic of the deviation ΔA / F between 720CA when the air-fuel ratio of the cylinders 102A to 102D (# 1 to 4) is in the stoichiometric (theoretical air-fuel ratio) state.

図6(A)の左側のグラフは、気筒102A(♯1)の空燃比がリーンになった場合、図6(A)の右側のグラフは、気筒102A(♯1)の空燃比がリッチになった場合の、720°CA間における偏差ΔA/Fの特性を示している。同様に、図6(B)〜(D)の左側のグラフは、それぞれ、気筒102C(♯3)、102D(♯4)、102B(♯2)の空燃比がリーンになった場合、図6(B)〜(D)の右側のグラフは、それぞれ、気筒102C(♯3)、102D(♯4)、102B(♯2)の空燃比がリッチになった場合の、720°CA間における偏差ΔA/Fの特性を示している。   The graph on the left side of FIG. 6A shows that the air-fuel ratio of the cylinder 102A (# 1) becomes lean, and the graph on the right side of FIG. 6A shows that the air-fuel ratio of the cylinder 102A (# 1) becomes rich. The characteristic of deviation ΔA / F between 720 ° CA is shown. Similarly, the graphs on the left side of FIGS. 6B to 6D show the case where the air-fuel ratio of the cylinders 102C (# 3), 102D (# 4), and 102B (# 2) becomes lean, respectively. The graphs on the right side of (B) to (D) show deviations between 720 ° CA when the air-fuel ratios of the cylinders 102C (# 3), 102D (# 4), and 102B (# 2) become rich. The characteristic of ΔA / F is shown.

図6(A)〜(D)のグラフに示すように、ΔA/Fの変動は、720°CAの周期で発生し、その波形は、正弦波に近似している。また、左右のグラフを比較してわかるように、ΔA/Fの変動の波形は、各気筒102A〜D(♯1〜4)の空燃比がリーンの場合とリッチの場合とで、正負が逆になる。また、ΔA/Fの変動は、気筒102A(♯1)の空燃比がリーンの場合と気筒102C(♯3)の空燃比がリーンの場合、気筒102C(♯3)の空燃比がリーンの場合と気筒102D(♯4)の空燃比がリーンの場合、及び気筒102D(♯4)の空燃比がリーンの場合と気筒102B(♯2)の空燃比がリーンの場合でそれぞれ、180°CA分の位相差を有する。同様に、ΔA/Fの変動は、気筒102A(♯1)の空燃比がリッチの場合と気筒102C(♯3)の空燃比がリッチの場合、気筒102C(♯3)の空燃比がリッチの場合と気筒102D(♯4)の空燃比がリッチの場合、及び気筒102D(♯4)の空燃比がリッチの場合と気筒102B(♯2)の空燃比がリッチの場合でそれぞれ、180°CA分の位相差を有する。   As shown in the graphs of FIGS. 6A to 6D, the variation of ΔA / F occurs at a period of 720 ° CA, and the waveform approximates a sine wave. Further, as can be seen by comparing the left and right graphs, the ΔA / F fluctuation waveform is reversed between positive and negative when the air-fuel ratio of each cylinder 102A to 102D (# 1 to 4) is lean and rich. become. Further, ΔA / F varies when the air-fuel ratio of the cylinder 102A (# 1) is lean, when the air-fuel ratio of the cylinder 102C (# 3) is lean, and when the air-fuel ratio of the cylinder 102C (# 3) is lean. And when the air-fuel ratio of the cylinder 102D (# 4) is lean, and when the air-fuel ratio of the cylinder 102D (# 4) is lean and when the air-fuel ratio of the cylinder 102B (# 2) is lean, respectively. The phase difference is as follows. Similarly, the change in ΔA / F is caused when the air-fuel ratio of the cylinder 102C (# 3) is rich and when the air-fuel ratio of the cylinder 102C (# 3) is rich, the air-fuel ratio of the cylinder 102C (# 3) is rich. When the air-fuel ratio of the cylinder 102D (# 4) is rich, and when the air-fuel ratio of the cylinder 102D (# 4) is rich and when the air-fuel ratio of the cylinder 102B (# 2) is rich, 180 ° CA With a phase difference of minutes.

ここで、直列に並べられた4個の気筒102A〜D(♯1〜4)のうちの外側の2気筒102A(♯1)、102D(♯4)の空燃比がリッチ又はリーンになった場合の、720CA間における偏差ΔA/Fについて検討する。図6(A)の左側のグラフに示すように、気筒102A(♯1)の空燃比がリーンになった場合と、図6(C)の右側のグラフに示すように、気筒102D(♯4)の空燃比がリッチになった場合とでは、同位相において偏差ΔA/Fの差異が少なく、また、偏差ΔA/Fの波形が近似している。また、図6(A)の右側のグラフに示すように、気筒102A(♯1)の空燃比がリッチになった場合と、図6(C)の左側のグラフに示すように、気筒102D(♯4)の空燃比がリーンになった場合とでは、同位相において偏差ΔA/Fの差異が少なく、また、偏差ΔA/Fの波形が近似している。   Here, when the air-fuel ratio of the outer two cylinders 102A (# 1) and 102D (# 4) out of the four cylinders 102A to D (# 1 to 4) arranged in series becomes rich or lean The deviation ΔA / F between 720CA is examined. As shown in the left graph of FIG. 6A, when the air-fuel ratio of the cylinder 102A (# 1) becomes lean, and as shown in the right graph of FIG. 6C, cylinder 102D (# 4). ) In which the air-fuel ratio becomes rich, the difference ΔA / F is small in the same phase, and the waveform of the deviation ΔA / F is approximate. Further, as shown in the graph on the right side of FIG. 6A, when the air-fuel ratio of the cylinder 102A (# 1) becomes rich, and as shown in the graph on the left side of FIG. 6C, the cylinder 102D ( When the air-fuel ratio of # 4) becomes lean, the difference ΔA / F is small in the same phase, and the waveform of the deviation ΔA / F is approximate.

このような傾向は、気筒102C(♯3)の空燃比がリーンになった場合と気筒102B(♯2)の空燃比がリッチになった場合(図6(B)の左側のグラフ及び図6(D)の右側のグラフ参照)、及び、気筒102C(♯3)の空燃比がリッチになった場合と気筒102B(♯2)の空燃比がリーンになった場合(図6(B)の右側のグラフ及び図6(D)の左側のグラフ参照)においても共通する。   Such a tendency is caused when the air-fuel ratio of the cylinder 102C (# 3) becomes lean and when the air-fuel ratio of the cylinder 102B (# 2) becomes rich (the graph on the left side of FIG. 6B and FIG. 6). (See the graph on the right side of (D)), and when the air-fuel ratio of the cylinder 102C (# 3) becomes rich and when the air-fuel ratio of the cylinder 102B (# 2) becomes lean (FIG. 6B). The same applies to the graph on the right side and the graph on the left side of FIG.

このため、外側の2気筒102A(♯1)、102D(♯4)の何れの気筒が排気空燃比を変動させる要因となっているのか、あるいは、内側の2気筒102B(♯2)、102C(♯3)の何れの気筒が排気空燃比を変動させる要因となっているのかを、偏差ΔA/Fのみに基づいて識別するのは困難である。
ここで、直列に並べられた4個の気筒102A〜D(♯1〜♯4)のうちの外側の2気筒102A(♯1)、102D(♯4)の空燃比がリッチ又はリーンになった場合の、720CA間における偏差ΔA/Fの変化度合dA/Fについて検討する。図6(A)の左側のグラフに示すように、気筒102A(♯1)の空燃比がリーンになった場合において、偏差ΔA/Fが負の最大値から正の最大値に変動する際の偏差ΔA/Fの変化度合dA/Fは、偏差ΔA/Fが正の最大値から負の最大値に変動する際の偏差ΔA/Fの変化度合dA/Fより大きい。一方、図6(C)の右側のグラフに示すように、気筒102D(♯4)の空燃比がリッチになった場合において、ΔA/Fが負の最大値から正の最大値に変動する際の偏差ΔA/Fの変化度合は、偏差ΔA/Fが正の最大値から負の最大値に変動する際の偏差ΔA/Fの変化度合dA/Fより小さい。
For this reason, which of the outer two cylinders 102A (# 1) and 102D (# 4) causes the exhaust air-fuel ratio to fluctuate, or the inner two cylinders 102B (# 2) and 102C ( It is difficult to identify which cylinder of # 3) is a factor that fluctuates the exhaust air-fuel ratio based only on the deviation ΔA / F.
Here, the air-fuel ratio of the outer two cylinders 102A (# 1) and 102D (# 4) out of the four cylinders 102A to D (# 1 to # 4) arranged in series becomes rich or lean. In this case, the degree of change dA / F of the deviation ΔA / F between 720CA is examined. As shown in the graph on the left side of FIG. 6A, when the air-fuel ratio of the cylinder 102A (# 1) becomes lean, the deviation ΔA / F changes from the negative maximum value to the positive maximum value. The change degree dA / F of the deviation ΔA / F is larger than the change degree dA / F of the deviation ΔA / F when the deviation ΔA / F changes from the positive maximum value to the negative maximum value. On the other hand, as shown in the graph on the right side of FIG. 6C, when the air-fuel ratio of the cylinder 102D (# 4) becomes rich, ΔA / F changes from the negative maximum value to the positive maximum value. The degree of change of the deviation ΔA / F is smaller than the degree of change dA / F of the deviation ΔA / F when the deviation ΔA / F changes from the positive maximum value to the negative maximum value.

そして、図6(A)の左側のグラフ及び図6(C)の右側のグラフに示すように、偏差ΔA/Fが負の最大値から正の最大値に変動する際の偏差ΔA/Fの変化度合dA/Fは、気筒102A(♯1)の空燃比がリーンになった場合に、気筒102D(♯4)の空燃比がリッチになった場合よりも大きくなる。一方、偏差ΔA/Fが正の最大値から負の最大値に変動する際の偏差ΔA/Fの変化度合dA/Fは、気筒102D(♯4)の空燃比がリッチになった場合に、気筒102A(♯1)の空燃比がリーンになった場合よりも大きくなる。   Then, as shown in the graph on the left side of FIG. 6A and the graph on the right side of FIG. 6C, the deviation ΔA / F when the deviation ΔA / F changes from the negative maximum value to the positive maximum value. The degree of change dA / F is greater when the air-fuel ratio of the cylinder 102A (# 1) becomes lean than when the air-fuel ratio of the cylinder 102D (# 4) becomes rich. On the other hand, the change degree dA / F of the deviation ΔA / F when the deviation ΔA / F changes from the positive maximum value to the negative maximum value is obtained when the air-fuel ratio of the cylinder 102D (# 4) becomes rich. The air-fuel ratio of the cylinder 102A (# 1) becomes larger than when lean.

なお、図6(A)の右側のグラフ及び図6(C)の左側のグラフに示すように、気筒102A(♯1)の空燃比がリッチになった場合と、気筒102D(♯4)の空燃比がリーンになった場合とも、同様に、偏差ΔA/Fが負の最大値から正の最大値に変動する際の偏差ΔA/Fの変化度合dA/Fは、前者の方が大きくなり、偏差ΔA/Fが正の最大値から負の最大値に変動する際の偏差ΔA/Fの変化度合dA/Fは、後者の方が大きくなる。   As shown in the graph on the right side of FIG. 6A and the graph on the left side of FIG. 6C, when the air-fuel ratio of the cylinder 102A (# 1) becomes rich and when the cylinder 102D (# 4) Similarly, even when the air-fuel ratio becomes lean, the change rate dA / F of the deviation ΔA / F when the deviation ΔA / F changes from the negative maximum value to the positive maximum value is larger in the former case. The change degree dA / F of the deviation ΔA / F when the deviation ΔA / F changes from the positive maximum value to the negative maximum value is larger in the latter case.

また、図6(B)の側のグラフ及び図6(D)の側のグラフに示すように、偏差ΔA/Fが負の最大値から正の最大値に変動する際の偏差ΔA/Fの変化度合dA/Fは、気筒102B(♯2)の空燃比がリーンになった場合に、気筒102C(♯3)の空燃比がリッチになった場合よりも大きくなる。一方、偏差ΔA/Fが正の最大値から負の最大値に変動する際の偏差ΔA/Fの変化度合dA/Fは、気筒102C(♯3)の空燃比がリッチになった場合に、気筒102B(♯2)の空燃比がリーンになった場合よりも大きくなる。 Further, as shown in the left side graph of shown in FIG. 6 (B) right side of the graph and FIG 6 (D) of the deviation when the deviation .DELTA.A / F varies from a maximum negative value to a positive maximum value .DELTA.A / The change degree dA / F of F becomes larger when the air-fuel ratio of the cylinder 102B (# 2) becomes lean than when the air-fuel ratio of the cylinder 102C (# 3) becomes rich. On the other hand, the change degree dA / F of the deviation ΔA / F when the deviation ΔA / F changes from the positive maximum value to the negative maximum value is obtained when the air-fuel ratio of the cylinder 102C (# 3) becomes rich. The air-fuel ratio of the cylinder 102B (# 2) becomes larger than when lean.

なお、図6(B)の側のグラフ及び図6(D)の側のグラフに示すように、気筒102B(♯2)の空燃比がリッチになった場合と、気筒102C(♯3)の空燃比がリーンになった場合とも、同様に、偏差ΔA/Fが負の最大値から正の最大値に変動する際の偏差ΔA/Fの変化度合dA/Fは、前者の方が大きくなり、偏差ΔA/Fが正の最大値から負の最大値に変動する際の偏差ΔA/Fの変化度合dA/Fは、後者の方が大きくなる。 Incidentally, as shown in the right side graph on the left side of the graph and FIG 6 (D) of FIG. 6 (B), and when the air-fuel ratio of the cylinder 102B (# 2) becomes rich, the cylinder 102C (# 3 ), When the deviation ΔA / F changes from the negative maximum value to the positive maximum value, the change degree dA / F of the deviation ΔA / F is the same for the former. The latter becomes larger in the degree of change dA / F of the deviation ΔA / F when the deviation ΔA / F changes from the positive maximum value to the negative maximum value.

即ち、気筒102A(♯1)がリッチになった場合と気筒102D(♯4)がリーンになった場合、及び、気筒102A(♯1)がリーンになった場合と気筒102D(♯4)がリッチになった場合とでは、それぞれ、偏差ΔA/Fの変化度合dA/Fの絶対値|dA/F|が最大になる位相と、当該最大値|dA/Fmax|の正負とが異なる。従って、気筒102A(♯1)がリッチになった状況と気筒102D(♯4)がリーンになった状況との識別、及び、気筒102A(♯1)がリーンになった状況と気筒102D(♯4)がリッチになった状況との識別は、それぞれ、偏差ΔA/Fの変化度合dA/Fの絶対値|dA/F|が最大になる位相と、当該最大値|dA/Fmax|の正負とに基づいてすることができる。   That is, when the cylinder 102A (# 1) becomes rich, when the cylinder 102D (# 4) becomes lean, and when the cylinder 102A (# 1) becomes lean, the cylinder 102D (# 4) In the case of being rich, the phase at which the absolute value | dA / F | of the change degree dA / F of the deviation ΔA / F is maximized is different from the sign of the maximum value | dA / Fmax |. Accordingly, the situation where the cylinder 102A (# 1) becomes rich and the situation where the cylinder 102D (# 4) becomes lean, and the situation where the cylinder 102A (# 1) becomes lean and the cylinder 102D (#) are identified. 4) is distinguished from the situation in which the richness has occurred. The phase where the absolute value | dA / F | of the change degree dA / F of the deviation ΔA / F is maximized and the sign of the maximum value | dA / Fmax | And can be based on.

なお、気筒102B(♯2)がリッチになった状況と気筒102C(♯3)がリーンになった状況との識別、及び、気筒102B(♯2)がリーンになった状況と気筒102C(♯3)がリッチになった状況との識別についても、それぞれ、同様の手法によりすることができる。
そこで、本実施形態に係る気筒間空燃比ばらつき検出装置10では、偏差ΔA/Fの変化度合dA/Fの絶対値|dA/F|が最大になる位相と、当該絶対値の最大値|dA/Fmax|の正負とに基づいて、対象気筒の特定と空燃比のリーン/リッチ判定を行う。
It should be noted that the situation where the cylinder 102B (# 2) becomes rich and the situation where the cylinder 102C (# 3) becomes lean, and the situation where the cylinder 102B (# 2) becomes lean and the cylinder 102C (# The identification of the situation in which 3) is rich can also be performed in the same manner.
Therefore, in the inter-cylinder air-fuel ratio variation detecting apparatus 10 according to the present embodiment, the phase at which the absolute value | dA / F | of the change degree dA / F of the deviation ΔA / F is maximized and the maximum value | dA of the absolute value | Based on the sign of / Fmax |, the target cylinder is specified and the air / fuel ratio is lean / rich.

まず、ステップ110において、判定回路128は、偏差ΔA/Fの変化度合dA/Fの絶対値|dA/F|が、予め定められた閾値dA/Fdb(不感帯域)を超えたか否かを判定する。判定が肯定された場合にはステップ112へ移行する一方、判定が否定された場合にはステップ126へ移行する。
ステップ112では、判定回路128が、偏差ΔA/Fの変化度合dA/Fの絶対値|dA/F|の最大値|dA/Fmax|が検出された720°CA間の位相を判定する。ここで、例えば、0°CAから180°CAまでの間に検出された場合は、気筒102A(♯1)が、180°CAから360°CAまでの間に検出された場合は、気筒102C(♯3)が、360°CAから540°CAまでの間に検出された場合は、気筒102D(♯4)が、540°CAから720°CAまでの間に検出された場合は、気筒102B(♯2)が、それぞれ、対象気筒に該当する。このような相関関係は予め実験により確認されたものであり、当該相関関係を示す情報がマップやパラメータテーブルとしてRAM124に記憶されている。
First, in step 110, the determination circuit 128 determines whether or not the absolute value | dA / F | of the variation degree dA / F of the deviation ΔA / F exceeds a predetermined threshold value dA / Fdb (dead band). To do. If the determination is affirmative, the routine proceeds to step 112, while if the determination is negative, the routine proceeds to step 126.
In step 112, the determination circuit 128 determines the phase between 720 ° CA where the maximum value | dA / Fmax | of the absolute value | dA / F | of the change degree dA / F of the deviation ΔA / F is detected. Here, for example, when the cylinder 102A (# 1) is detected between 0 ° CA and 180 ° CA, the cylinder 102C (# 1) is detected when it is detected between 180 ° CA and 360 ° CA. When # 3) is detected between 360 ° CA and 540 ° CA, cylinder 102D (# 4) is detected between 540 ° CA and 720 ° CA, and cylinder 102B ( # 2) corresponds to the target cylinder. Such correlation has been confirmed in advance by experiments, and information indicating the correlation is stored in the RAM 124 as a map or a parameter table.

そして、例えば、判定回路128は、偏差ΔA/Fの変化度合dA/Fの絶対値|dA/F|の最大値が、0°CAから180°CAまでの間に検出された場合には、気筒102A(♯1)が対象気筒であると判定(1次判定)する(図7(A)(B)のグラフ参照)。また、判定回路128は、当該最大値|dA/Fmax|が、180°CAから360°CAまでの間に検出された場合、当該最大値|dA/Fmax|が、360°CAから540°CAまでの間に検出された場合、当該最大値|dA/Fmax|が、540°CAから720°CAまでの間に検出された場合、それぞれ、気筒102C(♯3)、102D(♯4)、102B(♯2)が、対象気筒であると判定(1次判定)する。   For example, when the maximum value of the absolute value | dA / F | of the change degree dA / F of the deviation ΔA / F is detected between 0 ° CA and 180 ° CA, the determination circuit 128 It is determined (primary determination) that cylinder 102A (# 1) is the target cylinder (see the graphs of FIGS. 7A and 7B). When the maximum value | dA / Fmax | is detected between 180 ° CA and 360 ° CA, the determination circuit 128 changes the maximum value | dA / Fmax | from 360 ° CA to 540 ° CA. If the maximum value | dA / Fmax | is detected between 540 ° CA and 720 ° CA, the cylinders 102C (# 3), 102D (# 4), 102B (# 2) is determined to be the target cylinder (primary determination).

次に、ステップ114では、判定回路128が、検出された上記最大値|dA/Fmax|が、正の値であるか負の値であるかを判定する。ここで、例えば、0°CAから180°CAまでの間に正の最大値+dA/Fmaxが検出された場合は、気筒102A(♯1)の空燃比がリーンであり、当該期間に負の最大値−dA/Fmaxが検出された場合は、気筒102A(♯1)の空燃比がリッチであることが、予め実験により確認されており、このような相関関係を示す情報がマップやパラメータテーブルとしてRAM124に記憶されている。また、180°CAから360°CAまでの間に正の最大値+dA/Fmaxが検出された場合は、気筒102C(♯3)の空燃比がリーンであり、当該期間に負の最大値−dA/Fmaxが検出された場合は、気筒102C(♯3)の空燃比がリッチであること、360°CAから540°CAまでの期間に正の最大値+dA/Fmaxが検出された場合は、気筒102D(♯4)の空燃比がリーンであり、当該期間に負の最大値−dA/Fmaxが検出された場合は、気筒102D(♯4)の空燃比がリッチであることが、予め実験により確認されており、このような相関関係を示す情報がマップやパラメータテーブルとしてRAM124に記憶されている。さらには、540°CAから720°CAまでの期間に正の最大値+dA/Fmaxが検出された場合は、気筒102B(♯2)の空燃比がリーンであり、当該期間に負の最大値−dA/Fmaxが検出された場合は、気筒102B(♯2)の空燃比がリッチであることが、予め実験により確認されており、このような相関関係を示す情報がマップやパラメータテーブルとしてRAM124に記憶されている。   Next, in step 114, the determination circuit 128 determines whether the detected maximum value | dA / Fmax | is a positive value or a negative value. Here, for example, when a positive maximum value + dA / Fmax is detected between 0 ° CA and 180 ° CA, the air-fuel ratio of the cylinder 102A (# 1) is lean, and the negative maximum value during this period When the value -dA / Fmax is detected, it is confirmed beforehand by experiments that the air-fuel ratio of the cylinder 102A (# 1) is rich, and information indicating such correlation is obtained as a map or a parameter table. Stored in the RAM 124. Further, when the positive maximum value + dA / Fmax is detected between 180 ° CA and 360 ° CA, the air-fuel ratio of the cylinder 102C (# 3) is lean, and the negative maximum value −dA during this period. When / Fmax is detected, the air-fuel ratio of the cylinder 102C (# 3) is rich. When the positive maximum value + dA / Fmax is detected during the period from 360 ° CA to 540 ° CA, the cylinder If the air-fuel ratio of 102D (# 4) is lean and the negative maximum value −dA / Fmax is detected during this period, it is experimentally determined that the air-fuel ratio of the cylinder 102D (# 4) is rich. Information indicating such correlation is stored in the RAM 124 as a map or a parameter table. Further, when a positive maximum value + dA / Fmax is detected in a period from 540 ° CA to 720 ° CA, the air-fuel ratio of the cylinder 102B (# 2) is lean, and a negative maximum value − When dA / Fmax is detected, it is confirmed beforehand by experiments that the air-fuel ratio of the cylinder 102B (# 2) is rich, and information indicating such correlation is stored in the RAM 124 as a map or parameter table. It is remembered.

そして、例えば、判定回路128は、ステップ114において対象気筒を気筒102A(♯1)と判定すると共に、上記最大値|dA/Fmax|を正と判定した場合は、気筒102A(♯1)の空燃比をリーンと判定(1次判定)する。一方、判定回路128は、ステップ112において対象気筒を気筒102A(♯1)と判定すると共に、上記最大値|dA/Fmax|を負と判定した場合は、気筒102A(♯1)の空燃比をリッチと判定(1次判定)する。また、ステップ112において判定回路128が対象気筒を気筒102B(♯2)、102C(♯3)、102D(♯4)と判定した場合も同様で、判定回路128は、上記最大値|dA/Fmax|を正と判定した場合は、当該気筒102B(♯2)、102C(♯3)、102D(♯4)の空燃比をリーンと判定(1次判定)する一方、上記最大値|dA/Fmax|を負と判定した場合は、当該気筒102B(♯2)、102C(♯3)、102D(♯4)の空燃比をリッチと判定(1次判定)する。   For example, when the determination circuit 128 determines that the target cylinder is the cylinder 102A (# 1) in step 114 and the maximum value | dA / Fmax | is determined to be positive, the cylinder 102A (# 1) is empty. The fuel ratio is determined to be lean (primary determination). On the other hand, when the determination circuit 128 determines that the target cylinder is the cylinder 102A (# 1) in step 112 and determines that the maximum value | dA / Fmax | is negative, the determination circuit 128 determines the air-fuel ratio of the cylinder 102A (# 1). It is determined to be rich (primary determination). The same applies when the determination circuit 128 determines that the target cylinder is the cylinder 102B (# 2), 102C (# 3), or 102D (# 4) in step 112. The determination circuit 128 determines that the maximum value | dA / Fmax If | is determined to be positive, the air-fuel ratio of the cylinders 102B (# 2), 102C (# 3), and 102D (# 4) is determined to be lean (primary determination), while the maximum value | dA / Fmax When | is determined to be negative, the air-fuel ratio of the cylinders 102B (# 2), 102C (# 3), and 102D (# 4) is determined to be rich (primary determination).

次に、ステップ116において、判定回路128は、偏差ΔA/Fの絶対値|ΔA/F|が、予め定められた閾値(不感帯域)ΔA/Fdbを超えたか否かを判定する。判定が肯定された場合にはステップ118へ移行する一方、判定が否定された場合にはステップ126へ移行する。
ステップ118では、ECU110が、偏差ΔA/Fの絶対値|ΔA/F|の最大値|ΔA/Fmax|が検出された720°CA間の位相を判定する。ここで、例えば、0°CAから180°CAまでの間及び360°CAから540°CAまでの間に検出された場合は、気筒102A(♯1)又は気筒102D(♯4)が、180°CAから360°CAまでの間及び540°CAから720°CAまでの間に検出された場合は、気筒102B(♯2)又は気筒102C(♯3)が、それぞれ、対象気筒に該当することが、予め実験により確認されており、このような相関関係を示す情報がマップやパラメータテーブルとしてRAM124に記憶されている。
Next, at step 116, the determination circuit 128 determines whether or not the absolute value | ΔA / F | of the deviation ΔA / F exceeds a predetermined threshold (dead zone) ΔA / Fdb. If the determination is affirmative, the process proceeds to step 118, whereas if the determination is negative, the process proceeds to step 126.
In step 118, ECU 110 determines the phase between 720 ° CA where the maximum value | ΔA / Fmax | of the absolute value | ΔA / F | of deviation ΔA / F is detected. Here, for example, when detected between 0 ° CA and 180 ° CA and between 360 ° CA and 540 ° CA, the cylinder 102A (# 1) or the cylinder 102D (# 4) is 180 °. When detected between CA and 360 ° CA and between 540 ° CA and 720 ° CA, the cylinder 102B (# 2) or the cylinder 102C (# 3) may correspond to the target cylinder. The information indicating such a correlation is stored in the RAM 124 as a map or a parameter table.

そして、例えば、判定回路128は、上記最大値|ΔA/Fmax|が、0°CAから180°CAまでの間及び360°CAから540°CAまでの間に検出された場合には、気筒102A(♯1)又は気筒102D(♯4)が対象気筒であると判定(2次判定)する。また、判定回路128は、上記最大値|ΔA/Fmax|が、180°CAから360°CAまでの間及び540°CAから720°CAまでの間に検出された場合、気筒102B(♯2)又は気筒102C(♯3)が、対象気筒であると判定(2次判定)する。   For example, when the maximum value | ΔA / Fmax | is detected between 0 ° CA and 180 ° CA and between 360 ° CA and 540 ° CA, the determination circuit 128 detects the cylinder 102A. (# 1) or cylinder 102D (# 4) is determined to be the target cylinder (secondary determination). Further, when the maximum value | ΔA / Fmax | is detected between 180 ° CA and 360 ° CA and between 540 ° CA and 720 ° CA, the determination circuit 128 determines the cylinder 102B (# 2). Alternatively, it is determined (secondary determination) that the cylinder 102C (# 3) is the target cylinder.

次に、ステップ120では、判定回路128が、上記最大値|ΔA/Fmax|が、正の値であるか負の値であるかを判定する。ここで、例えば、0°CAから180°CAまでの間に正の最大値+ΔA/Fmaxが検出された場合、及び、360°CAから540°CAまでの間に負の最大値−ΔA/Fmaxが検出された場合は、気筒102A(♯1)の空燃比がリーンであるか、あるいは、気筒102D(♯4)の空燃比がリッチである。一方、0°CAから180°CAまでの間に負の最大値−ΔA/Fmaxが検出された場合、及び、360°CAから540°CAまでの間に正の最大値+ΔA/Fmaxが検出された場合は、気筒102A(♯1)の空燃比がリッチであるか、あるいは、気筒102D(♯4)の空燃比がリーンである。このような相関関係が、予め実験により確認されており、当該相関関係を示す情報がマップやパラメータテーブルとしてRAM124に記憶されている。   Next, in step 120, the determination circuit 128 determines whether the maximum value | ΔA / Fmax | is a positive value or a negative value. Here, for example, when a positive maximum value + ΔA / Fmax is detected between 0 ° CA and 180 ° CA, and a negative maximum value −ΔA / Fmax between 360 ° CA and 540 ° CA is detected. Is detected, the air-fuel ratio of the cylinder 102A (# 1) is lean, or the air-fuel ratio of the cylinder 102D (# 4) is rich. On the other hand, when a negative maximum value −ΔA / Fmax is detected between 0 ° CA and 180 ° CA, and a positive maximum value + ΔA / Fmax is detected between 360 ° CA and 540 ° CA. In this case, the air-fuel ratio of the cylinder 102A (# 1) is rich, or the air-fuel ratio of the cylinder 102D (# 4) is lean. Such correlation is confirmed in advance by experiments, and information indicating the correlation is stored in the RAM 124 as a map or a parameter table.

また、180°CAから360°CAまでの間に正の最大値+ΔA/Fmaxが検出された場合、及び、540°CAから720°CAまでの間に負の最大値−ΔA/Fmaxが検出された場合は、気筒102C(♯3)の空燃比がリーンであるか、あるいは、気筒102B(♯2)の空燃比がリッチである。一方、180°CAから360°CAまでの間に負の最大値−ΔA/Fmaxが検出された場合、及び、540°CAから720°CAまでの間に正の最大値+ΔA/Fmaxが検出された場合は、気筒102C(♯3)の空燃比がリッチであるか、あるいは、気筒102B(♯2)の空燃比がリーンである。このような相関関係が、予め実験により確認されており、当該相関関係を示す情報がマップやパラメータテーブルとしてRAM124に記憶されている。   Further, when a positive maximum value + ΔA / Fmax is detected between 180 ° CA and 360 ° CA, and a negative maximum value −ΔA / Fmax is detected between 540 ° CA and 720 ° CA. In this case, the air-fuel ratio of the cylinder 102C (# 3) is lean, or the air-fuel ratio of the cylinder 102B (# 2) is rich. On the other hand, when a negative maximum value −ΔA / Fmax is detected between 180 ° CA and 360 ° CA, and a positive maximum value + ΔA / Fmax is detected between 540 ° CA and 720 ° CA. In this case, the air-fuel ratio of the cylinder 102C (# 3) is rich, or the air-fuel ratio of the cylinder 102B (# 2) is lean. Such correlation is confirmed in advance by experiments, and information indicating the correlation is stored in the RAM 124 as a map or a parameter table.

そして、例えば、判定回路128は、ステップ118において対象気筒を気筒102A(♯1)又は気筒102D(♯4)と判定すると共に、上記最大値|ΔA/Fmax|を正と判定した場合は、気筒102A(♯1)の空燃比をリーン、及び、気筒102D(♯4)の空燃比をリッチと判定する。一方、判定回路128は、ステップ118において対象気筒を気筒102A(♯1)又は気筒102D(♯4)と判定すると共に、上記最大値|ΔA/Fmax|を負と判定した場合は、気筒102A(♯1)の空燃比をリッチ、及び、気筒102D(♯4)の空燃比をリーンと判定する。   For example, when the determination circuit 128 determines that the target cylinder is the cylinder 102A (# 1) or the cylinder 102D (# 4) in step 118 and determines that the maximum value | ΔA / Fmax | is positive, the cylinder It is determined that the air-fuel ratio of 102A (# 1) is lean and the air-fuel ratio of cylinder 102D (# 4) is rich. On the other hand, if the determination circuit 128 determines that the target cylinder is the cylinder 102A (# 1) or the cylinder 102D (# 4) in step 118 and the maximum value | ΔA / Fmax | It is determined that the air-fuel ratio of # 1) is rich and the air-fuel ratio of cylinder 102D (# 4) is lean.

また、判定回路128は、ステップ118において対象気筒を気筒102B(♯2)又は気筒102C(♯3)と判定すると共に、上記最大値|ΔA/Fmax|を正と判定した場合は、気筒102C(♯3)の空燃比をリーン、及び、気筒102B(♯2)の空燃比をリッチと判定する。一方、判定回路128は、ステップ118において対象気筒を気筒102B(♯2)又は気筒102C(♯3)と判定すると共に、上記最大値|ΔA/Fmax|を負と判定した場合は、気筒102C(♯3)の空燃比をリッチ、及び、気筒102B(♯2)の空燃比をリーンと判定する。   The determination circuit 128 determines that the target cylinder is the cylinder 102B (# 2) or the cylinder 102C (# 3) in step 118 and determines that the maximum value | ΔA / Fmax | is positive, the cylinder 102C ( It is determined that the air-fuel ratio of # 3) is lean and the air-fuel ratio of cylinder 102B (# 2) is rich. On the other hand, if the determination circuit 128 determines in step 118 that the target cylinder is the cylinder 102B (# 2) or the cylinder 102C (# 3) and determines that the maximum value | ΔA / Fmax | It is determined that the air-fuel ratio of # 3) is rich and the air-fuel ratio of cylinder 102B (# 2) is lean.

次に、ステップ122において、判定回路128は、ステップ112、114における1次判定の結果と、ステップ118、120における2次判定の結果との組み合わせが、所定の組み合わせになっているか否かを判定する。判定が肯定された場合には、ステップ124へ移行する一方、判定が否定された場合には、ステップ126へ移行する。
ここで、所定の組み合わせの1組は、ステップ112、118において判定された対象気筒が一致し、かつ、ステップ114、120における当該対象気筒の空燃比のリーン、リッチの判定結果が一致している組み合わせである。また、所定の組み合わせの他の1組は、ステップ112、118において判定された対象気筒が、気筒102A(♯1)と気筒102D(♯4)又は気筒102B(♯2)と気筒102C(♯3)等、対をなす関係にあり、かつ、ステップ114、120における当該対象気筒の空燃比のリーン、リッチの判定結果が逆である組み合わせである。
Next, in step 122, the determination circuit 128 determines whether or not the combination of the primary determination result in steps 112 and 114 and the secondary determination result in steps 118 and 120 is a predetermined combination. To do. If the determination is affirmative, the routine proceeds to step 124, while if the determination is negative, the routine proceeds to step 126.
Here, in one set of the predetermined combinations, the target cylinders determined in steps 112 and 118 match, and the air-fuel ratio lean and rich determination results of the target cylinders in steps 114 and 120 match. It is a combination. Another set of predetermined combinations includes cylinders 102A (# 1) and cylinders 102D (# 4) or cylinders 102B (# 2) and cylinders 102C (# 3) determined in steps 112 and 118. ) And the like, and the air / fuel ratio lean and rich determination results of the target cylinder in steps 114 and 120 are reversed.

次に、ステップ124において、制御回路130は、ステップ112において判定された対象気筒のナンバー(♯1〜4)と、ステップ114における当該気筒の空燃比のリーン、リッチの判定結果とを、RAM124に累積記憶させる。即ち、1次判定の結果と2次判定の結果とが所定の組み合わせに該当する場合には1次判定の結果を維持し、1次判定の結果と2次判定の結果とが所定の組み合わせに該当しない場合には1次判定の結果を解除する。   Next, at step 124, the control circuit 130 stores the number (# 1 to 4) of the target cylinder determined at step 112 and the air / fuel ratio lean / rich determination result of the cylinder at step 114 in the RAM 124. Accumulate memorize. That is, when the result of the primary determination and the result of the secondary determination correspond to a predetermined combination, the result of the primary determination is maintained, and the result of the primary determination and the result of the secondary determination become a predetermined combination. If not applicable, the primary determination result is canceled.

次に、ステップ126において、ECU110は、判定回数が所定回数に到達したか否かを判定する。判定が否定された場合には、ステップ100へ移行してステップ100〜126の処理が繰り返される。一方、判定が肯定された場合には、制御回路130が、判定結果の積算値を保持する。以上で処理ルーチンを終了する。
以上、説明したように、本実施形態に係る気筒間空燃比ばらつき検出装置10によれば、相対的に空燃比がリッチ又はリーンに変動した対象気筒と、当該対象気筒と空燃比の波形が近似する気筒とを識別できるため、単一の空燃比センサを用いて、気筒間の排気空燃比のばらつきを判定するのみならず、対象気筒の特定をすることができ、さらには、当該対象気筒の空燃比のリーン/リッチを判定することができる。従って、当該気筒間空燃比ばらつき検出装置10の判定結果に基づいて、多気筒内燃機関における気筒毎の運転空燃比の制御を高精度に行うことができ、多気筒内燃機関における気筒間の運転空燃比のばらつきを効果的に抑制できる。
Next, in step 126, ECU 110 determines whether or not the number of determinations has reached a predetermined number. When determination is denied, it transfers to step 100 and the process of steps 100-126 is repeated. On the other hand, if the determination is positive, the control circuit 130 holds the integrated value of the determination result. Thus, the processing routine is finished.
As described above, according to the inter-cylinder air-fuel ratio variation detecting apparatus 10 according to the present embodiment, the target cylinder in which the air-fuel ratio fluctuates relatively rich or lean, and the target cylinder and the air-fuel ratio waveform are approximated. Since a single air-fuel ratio sensor can be used to determine the variation of the exhaust air-fuel ratio between cylinders, the target cylinder can be specified, and further, the target cylinder can be identified. The lean / rich air / fuel ratio can be determined. Therefore, based on the determination result of the inter-cylinder air-fuel ratio variation detection device 10, the operating air-fuel ratio for each cylinder in the multi-cylinder internal combustion engine can be controlled with high accuracy, and the operating air between the cylinders in the multi-cylinder internal combustion engine can be controlled. Variation in the fuel ratio can be effectively suppressed.

また、気筒間空燃比ばらつき検出装置10では、排気空燃比の偏差の変化度合に基づいて、上記対象気筒及び当該対象気筒の空燃比のリッチ/リーンを1次判定した後、排気空燃比の偏差に基づいて、上記対象気筒及び当該対象気筒の空燃比のリッチ/リーンを2次判定し、1次判定の結果と2次判定の結果とが所定の組み合わせに該当するか否かで、1次判定の結果を採用するか否かを判定している。即ち、気筒間空燃比ばらつき検出装置10では、上記対象気筒及び当該対象気筒の空燃比のリッチ/リーンを二重に判定することにより、上記対象気筒及び当該対象気筒の空燃比のリッチ/リーンの誤判定を抑制している。   Further, the inter-cylinder air-fuel ratio variation detection device 10 performs primary determination of the target cylinder and the rich / lean of the air-fuel ratio of the target cylinder based on the degree of change in the deviation of the exhaust air-fuel ratio, and then the deviation of the exhaust air-fuel ratio. Based on the above, the target cylinder and the rich / lean of the air-fuel ratio of the target cylinder are subjected to secondary determination, and whether the primary determination result and the secondary determination result correspond to a predetermined combination or not It is determined whether or not to adopt the determination result. That is, the inter-cylinder air-fuel ratio variation detection device 10 determines the air / fuel ratio rich / lean of the target cylinder and the target cylinder by double determination of the air / fuel ratio rich / lean of the target cylinder and the target cylinder. Incorrect determination is suppressed.

以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、4サイクル直列4気筒のエンジンを例に採って本発明の実施形態について説明したが、水平対向6気筒のエンジン等の他の多気筒内燃機関も採用し得る実施形態である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, although an embodiment of the present invention has been described by taking a four-cycle in-line four-cylinder engine as an example, another multi-cylinder internal combustion engine such as a horizontally opposed six-cylinder engine can also be employed.

10 気筒間空燃比ばらつき検出装置
100 エンジン
102A〜D(♯1〜4) 気筒
104 吸気通路
106 排気通路
108 触媒
110 ECU(リッチ/リーン気筒判定部)
112 吸気マニホールド
114A〜D 吸気ポート
115 エアフローメータ
116A〜D 燃料噴射弁
118A〜D 排気ポート
120 排気マニホールド
122 空燃比センサ
124 RAM(記憶部、第2記憶部)
126 演算回路(演算部、第2演算部)
128 判定回路(判定部、第2判定部)
130 制御回路
10 Inter-cylinder air-fuel ratio variation detection device 100 Engines 102A to D (# 1 to 4) Cylinder 104 Intake passage 106 Exhaust passage 108 Catalyst 110 ECU (Rich / lean cylinder determination unit)
112 Intake manifolds 114A-D Intake port 115 Air flow meters 116A-D Fuel injection valves 118A-D Exhaust port 120 Exhaust manifold 122 Air-fuel ratio sensor 124 RAM (storage unit, second storage unit)
126 arithmetic circuit (arithmetic unit, second arithmetic unit)
128 determination circuit (determination unit, second determination unit)
130 Control circuit

Claims (5)

複数の気筒を有する内燃機関の排気合流部に設けられた空燃比検出手段と、
前記空燃比検出手段で検出された検出値の基準値からの偏差に基づき、空燃比の変化度合を演算する空燃比変化度合演算手段と、
前記空燃比変化度合演算手段で演算された変化度合に基づき、前記複数の気筒間の空燃比ばらつき異常を検出するばらつき異常検出手段と、
を備え、
前記ばらつき異常検出手段は、
前記空燃比変化度合演算手段で演算された変化度合の絶対値の最大値が検出された位相に基づき、前記複数の気筒のうち前記空燃比ばらつき異常の要因となっている気筒を識別する気筒間空燃比ばらつき検出装置。
An air-fuel ratio detecting means provided in an exhaust gas merging portion of an internal combustion engine having a plurality of cylinders;
An air-fuel ratio change degree calculating means for calculating a change degree of the air-fuel ratio based on a deviation from a reference value of the detected value detected by the air-fuel ratio detecting means;
A variation abnormality detecting means for detecting an air-fuel ratio variation abnormality among the plurality of cylinders based on the degree of change calculated by the air-fuel ratio change degree calculating means;
With
The variation abnormality detecting means includes
Based on the phase in which the maximum absolute value of the degree of change calculated by the air-fuel ratio change degree calculating means is detected, among the cylinders, the cylinders that identify the cylinder that causes the air-fuel ratio variation abnormality are identified. Air-fuel ratio variation detector.
前記ばらつき異常検出手段は、
前記空燃比変化度合演算手段で演算された変化度合の正負に基づき、前記空燃比ばらつき異常の要因となっている気筒について空燃比がリッチ側にずれているのか又はリーン側にずれているのかを決定する請求項1に記載の気筒間空燃比ばらつき検出装置。
The variation abnormality detecting means includes
Based on the sign of the degree of change calculated by the air-fuel ratio change degree calculating means, it is determined whether the air-fuel ratio has shifted to the rich side or to the lean side for the cylinder that is causing the air-fuel ratio variation abnormality. The inter-cylinder air-fuel ratio variation detection device according to claim 1, which is determined.
前記ばらつき異常検出手段は、
前記空燃比変化度合演算手段で演算された変化度合が所定の閾値を超えたか否かを判定する判定手段を有し、
前記判定手段により前記変化度合が前記所定の閾値を超えたと判定された場合に、前記複数の気筒間で空燃比がばらついていると判定する請求項2に記載の気筒間空燃比ばらつき検出装置。
The variation abnormality detecting means includes
Determining means for determining whether or not the degree of change calculated by the air-fuel ratio change degree calculating means exceeds a predetermined threshold;
The inter-cylinder air-fuel ratio variation detection device according to claim 2, wherein when the determination means determines that the degree of change has exceeded the predetermined threshold, it is determined that the air-fuel ratio varies between the plurality of cylinders.
複数の気筒を有する内燃機関の排気合流部に設けられた空燃比検出手段と、
前記空燃比検出手段で検出された検出値の基準値からの偏差に基づき、空燃比の変化度合を演算する空燃比変化度合演算手段と、
前記空燃比変化度合演算手段で演算された変化度合に基づき、前記複数の気筒間の空燃比ばらつき異常を検出するばらつき異常検出手段と、
を備え、
前記ばらつき異常検出手段は、
前記空燃比変化度合演算手段で演算された変化度合の絶対値の最大値が検出された位相、及び、前記変化度合の絶対値の最大値の正負に基づき、前記空燃比ばらつき異常の要因となっている気筒を判定する一次判定を行った後に、前記空燃比検出手段で検出された検出値の基準値からの偏差の絶対値の最大値が検出された位相、及び、前記偏差の絶対値の最大値の正負に基づき、前記空燃比ばらつき異常の要因となっている気筒を判定する二次判定を行い、これら一次及び二次判定判定結果の組み合わせに基づき、前記複数の気筒のうち前記空燃比ばらつき異常の要因となっている気筒を決定する筒間空燃比ばらつき検出装置。
An air-fuel ratio detecting means provided in an exhaust gas merging portion of an internal combustion engine having a plurality of cylinders;
An air-fuel ratio change degree calculating means for calculating a change degree of the air-fuel ratio based on a deviation from a reference value of the detected value detected by the air-fuel ratio detecting means;
A variation abnormality detecting means for detecting an air-fuel ratio variation abnormality among the plurality of cylinders based on the degree of change calculated by the air-fuel ratio change degree calculating means;
With
The variation abnormality detecting means includes
Based on the phase at which the maximum value of the absolute value of the degree of change calculated by the air-fuel ratio change degree calculating means is detected, and the positive / negative of the maximum value of the absolute value of the degree of change , it becomes a factor of the air-fuel ratio variation abnormality. the in and cylinder after the primary determination for determining the air-fuel ratio maximum value of the absolute values of deviations from a reference value of the detected detection value detected by the detection means the phase, and, the absolute value of the deviation based on the positive or negative maximum value, the air-fuel ratio variation performs secondary judgment to decide which interrupt the going on cylinders of abnormality, based on a combination of these primary and secondary determination of the determination result, the air among the plurality of cylinders ratio variation - cylinder air-fuel ratio variation among the detection device for determining the causes and going on cylinder abnormalities.
前記空燃比変化度合演算手段は、
前記内燃機関の吸気から排気までの間に前記空燃比検出手段で検出された検出値の平均値を演算し、この平均値を前記基準値とする請求項1から請求項4までの何れか1項に記載の気筒間空燃比ばらつき検出装置。
The air-fuel ratio change degree calculating means is:
The average value of the detected values detected by the air-fuel ratio detecting means between the intake and exhaust of the internal combustion engine is calculated, and this average value is used as the reference value. The inter-cylinder air-fuel ratio variation detecting device according to the item.
JP2009242356A 2009-10-21 2009-10-21 Inter-cylinder air-fuel ratio variation detection device Active JP5195714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009242356A JP5195714B2 (en) 2009-10-21 2009-10-21 Inter-cylinder air-fuel ratio variation detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009242356A JP5195714B2 (en) 2009-10-21 2009-10-21 Inter-cylinder air-fuel ratio variation detection device

Publications (2)

Publication Number Publication Date
JP2011089443A JP2011089443A (en) 2011-05-06
JP5195714B2 true JP5195714B2 (en) 2013-05-15

Family

ID=44107912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009242356A Active JP5195714B2 (en) 2009-10-21 2009-10-21 Inter-cylinder air-fuel ratio variation detection device

Country Status (1)

Country Link
JP (1) JP5195714B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252093B2 (en) * 2013-10-17 2017-12-27 トヨタ自動車株式会社 Cylinder air-fuel ratio variation abnormality detection device
JP6102885B2 (en) * 2013-10-29 2017-03-29 トヨタ自動車株式会社 Cylinder air-fuel ratio variation abnormality detection device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3859789B2 (en) * 1997-01-30 2006-12-20 富士重工業株式会社 Engine misfire diagnostic device
JP4454180B2 (en) * 2001-05-11 2010-04-21 三菱電機株式会社 Air-fuel ratio control device for internal combustion engine
JP4126963B2 (en) * 2002-06-03 2008-07-30 トヨタ自動車株式会社 Air-fuel ratio control device for multi-cylinder internal combustion engine
JP2007113515A (en) * 2005-10-21 2007-05-10 Nissan Motor Co Ltd Device for estimating individual cylinder air fuel ratio distribution for engine
JP2008064078A (en) * 2006-09-11 2008-03-21 Denso Corp Control device of internal combustion engine
JP2008121533A (en) * 2006-11-10 2008-05-29 Denso Corp Control device of internal combustion engine
JP2008121632A (en) * 2006-11-15 2008-05-29 Denso Corp Each cylinder abnormal diagnosis device of internal combustion engine
JP5333058B2 (en) * 2009-08-27 2013-11-06 トヨタ自動車株式会社 Device for determining an imbalance between air-fuel ratios of an internal combustion engine

Also Published As

Publication number Publication date
JP2011089443A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP4363398B2 (en) Air-fuel ratio control device for internal combustion engine
US8805609B2 (en) Apparatus and method for detecting abnormal air-fuel ratio variation
US8548718B2 (en) Air/fuel ratio variation abnormality detection apparatus, and abnormality detection method
US8407983B2 (en) Abnormality diagnosis device of internal combustion engine
US8521405B2 (en) Air-fuel ratio diagnostic device for internal combustion engine
JP4736058B2 (en) Air-fuel ratio control device for internal combustion engine
JP5780257B2 (en) Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
JP6130124B2 (en) Multi-cylinder engine controller
US8620564B2 (en) Abnormality detection apparatus and abnormality detection method for multi-cylinder internal combustion engine
US20140290622A1 (en) Air-fuel ratio imbalance detection device for internal combustion engine
US20120109497A1 (en) Abnormal inter-cylinder air-fuel ratio imbalance detection apparatus for multi-cylinder internal combustion engine
WO2012077164A1 (en) Device for detecting inter-cylinder air-fuel ratio variation error in multicylinder internal combustion engine
JP2014013032A (en) Detection device for abnormality of variation in air-fuel ratio between cylinder
JP6020474B2 (en) Cylinder air-fuel ratio variation abnormality detection device
US8725389B2 (en) Control device for multi-cylinder internal combustion engine
JP5195714B2 (en) Inter-cylinder air-fuel ratio variation detection device
US20150114376A1 (en) Inter-cylinder air-fuel ratio variation abnormality detection apparatus
JP2011226363A (en) Abnormality diagnosis apparatus of internal combustion engine
JP5796592B2 (en) Cylinder air-fuel ratio variation abnormality detection device
US9506416B2 (en) Inter-cylinder air-fuel ratio variation abnormality detection apparatus for multicylinder internal combustion engine
JP5461373B2 (en) Cylinder air-fuel ratio variation abnormality detection device
JP2012145054A (en) Apparatus for detecting fluctuation abnormality of air-fuel ratios among cylinders of multi-cylinder internal combustion engine
JP5045942B2 (en) Air-fuel ratio abnormality monitoring device
JP2013024040A (en) Device for detecting abnormal air-fuel ratio variation
US20120116644A1 (en) Inter-cylinder air-fuel ratio imbalance abnormality detection apparatus for multi-cylinder internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5195714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350