JP5194122B2 - Heat exchanger for heat supply - Google Patents

Heat exchanger for heat supply Download PDF

Info

Publication number
JP5194122B2
JP5194122B2 JP2010520406A JP2010520406A JP5194122B2 JP 5194122 B2 JP5194122 B2 JP 5194122B2 JP 2010520406 A JP2010520406 A JP 2010520406A JP 2010520406 A JP2010520406 A JP 2010520406A JP 5194122 B2 JP5194122 B2 JP 5194122B2
Authority
JP
Japan
Prior art keywords
water
heat
hot water
supply network
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010520406A
Other languages
Japanese (ja)
Other versions
JP2010536008A (en
Inventor
リン フー、
イ ジァン、
シガン チャン、
チャンレイ シャオ、
ペン フー、
ホンファ ディ、
ヨンガン ハオ、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Publication of JP2010536008A publication Critical patent/JP2010536008A/en
Application granted granted Critical
Publication of JP5194122B2 publication Critical patent/JP5194122B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は熱供給用熱交換装置の一種に言及する。   The present invention refers to a kind of heat exchange device for supplying heat.

都市部の熱供給規模が急速に発達するにつれ、中心の熱源から熱供給の使用者まで温水を送るのに通常は長い距離が必要である。同一の熱供給負荷では、供給水と返流水の温度差を大きくすることで温水の流量が減り、パイプラインへの投資が低減される。他の利点は、循環ポンプの消費電力と熱供給のコストの低減である。現在、一次熱供給ネットワークの供給水/返流水の設計温度は通常130℃/60℃である。実際は、消費者の熱供給ニーズによって制限されるため、返流水の温度は従来の熱交換器で更に低くされることはできない。よって、返流水の温度を更に下げることは、中心熱源の熱供給半径の拡大、エネルギー消費量の減少、そして熱供給コストの低下にとって大きな意味を持つであろう。   As urban heat supply scales develop rapidly, longer distances are usually required to send hot water from the central heat source to the user of the heat supply. With the same heat supply load, increasing the temperature difference between the supply water and the return water reduces the flow rate of hot water and reduces the investment in the pipeline. Another advantage is a reduction in the power consumption and heat supply costs of the circulation pump. Currently, the design temperature of the supply / return water of the primary heat supply network is usually 130 ° C / 60 ° C. In fact, the temperature of the return water cannot be further reduced with conventional heat exchangers, as it is limited by the consumer's heat supply needs. Therefore, further lowering the temperature of the return water will have great significance for increasing the heat supply radius of the central heat source, reducing energy consumption, and lowering heat supply costs.

本発明の目的は、熱供給用の熱交換装置の一種を提供することである。   An object of the present invention is to provide a kind of heat exchange device for supplying heat.

熱交換装置は、少なくとも1つの温水用吸収式ヒートポンプ1と、少なくとも1つの水−水熱交換器2と、一次熱供給ネットワーク管路3と、二次熱供給ネットワーク管路4とを含む。温水用吸収式ヒートポンプ1は発生器、蒸発器、凝縮器及び吸収器を含む。   The heat exchange device includes at least one hot water absorption heat pump 1, at least one water-water heat exchanger 2, a primary heat supply network line 3, and a secondary heat supply network line 4. The hot water absorption heat pump 1 includes a generator, an evaporator, a condenser, and an absorber.

管路3は、温水用吸収式ヒートポンプ1の発生器、水−水熱交換器2及び温水用吸収式ヒートポンプ1の蒸発器を順次に通過して一次熱供給ネットワークシステムを形成する。管路4は、温水用吸収式ヒートポンプ1の吸収器、温水用吸収式ヒートポンプ1の凝縮器及び水−水熱交換器2を順次に通過して二次熱供給ネットワークシステムを形成する。   The pipeline 3 sequentially passes through the generator of the hot water absorption heat pump 1, the water-water heat exchanger 2 and the evaporator of the hot water absorption heat pump 1 to form a primary heat supply network system. The pipeline 4 sequentially passes through the absorber of the hot water absorption heat pump 1, the condenser of the hot water absorption heat pump 1, and the water-water heat exchanger 2 to form a secondary heat supply network system.

温水用吸収式ヒートポンプ1は下記の条件を満たすべきである。即ち、一次熱供給ネットワークの供給水の温度は温水用吸収式ヒートポンプ1の発生器を通過した後に10〜40℃下がらなくてはならない。水−水熱交換器2からの温水の温度は、温水用吸収式ヒートポンプ1の蒸発器を通過した後に20〜40℃下がらなくてはならない。二次熱供給ネットワークの返流水の温度は、温水用吸収式ヒートポンプ1の吸収器及び凝縮器を通過した後に10〜30℃上がらなくてはならない。   The absorption heat pump 1 for hot water should satisfy the following conditions. That is, the temperature of the supply water of the primary heat supply network must drop by 10 to 40 ° C. after passing through the generator of the hot water absorption heat pump 1. The temperature of the hot water from the water-water heat exchanger 2 must drop by 20-40 ° C. after passing through the evaporator of the hot water absorption heat pump 1. The temperature of the return water of the secondary heat supply network must increase by 10 to 30 ° C. after passing through the absorber and condenser of the hot water absorption heat pump 1.

一次熱供給ネットワーク内の供給水の温度は通常80℃から130℃の間である。   The temperature of the feed water in the primary heat supply network is usually between 80 ° C and 130 ° C.

前述の熱交換装置が少なくとも2つの温水用吸収式ヒートポンプ1を含む場合、一次熱供給ネットワーク管路3は温水用吸収式ヒートポンプ1を連続的に通過することができる(直列接続)。また、一次熱供給ネットワーク管3は各温水用吸収式ヒートポンプを個々に通過することもできる(並列接続)。二次熱供給ネットワーク管路4は、直列接続又は並列接続で温水用吸収式ヒートポンプ1を通過することができる。   When the above-mentioned heat exchange device includes at least two hot water absorption heat pumps 1, the primary heat supply network line 3 can pass through the hot water absorption heat pump 1 continuously (series connection). Moreover, the primary heat supply network pipe | tube 3 can also each pass through each absorption heat pump for warm water (parallel connection). The secondary heat supply network pipeline 4 can pass through the hot water absorption heat pump 1 in series connection or parallel connection.

このような熱交換装置は、弁のような温度制御用器具を含むこともできる。   Such a heat exchange device may also include a temperature control device such as a valve.

本発明では、実際の適用に従ってあらゆる実現可能な方法で二次熱供給ネットワーク管路4を接続することができる。温水用吸収式ヒートポンプ1が装置に1つだけ含まれる場合、二次熱供給ネットワーク管路を以下の6つの方法で接続することができる。   In the present invention, the secondary heat supply network line 4 can be connected in any feasible manner according to the actual application. When only one hot water absorption heat pump 1 is included in the apparatus, the secondary heat supply network line can be connected by the following six methods.

第1の方法:二次熱供給ネットワーク管路4が、温水用吸収式ヒートポンプ1の吸収器及び凝縮器、ならびに水−水熱交換器2を連続して通過する。   First method: The secondary heat supply network line 4 passes continuously through the absorber and condenser of the hot water absorption heat pump 1 and the water-water heat exchanger 2.

熱交換装置が水−水熱交換器2を1つ含む場合の熱交換装置の概略図を図1に示す。一次熱供給ネットワークの供給水は先ず温水用吸収式ヒートポンプ1の発生器に流れ込み、駆動熱源として臭化リチウム溶液を加熱し、これを濃縮させる。次に温水は水−水熱交換器2の高温側に流れ込み、低温側の返流水を加熱する。この温水は次に低温熱源として吸収式ヒートポンプ1の蒸発器に流れ込む。最後に、温水は、熱を放出して温度が下がった後に中心熱源に流れ込む。一方、二次熱供給ネットワークの返流水は吸収式ヒートポンプの吸収器及び凝縮器に流れ込み、加熱される。次に、返流水は水−水熱交換器に流れ込み、ここで加熱される。最後に、返流水は末端の使用者に戻る。   FIG. 1 shows a schematic diagram of a heat exchange device when the heat exchange device includes one water-water heat exchanger 2. The supply water of the primary heat supply network first flows into the generator of the hot water absorption heat pump 1 to heat and concentrate the lithium bromide solution as a driving heat source. Next, warm water flows into the high temperature side of the water-water heat exchanger 2 and heats the return water on the low temperature side. This hot water then flows into the evaporator of the absorption heat pump 1 as a low temperature heat source. Finally, the hot water flows into the central heat source after the heat has been released and the temperature has dropped. On the other hand, the return water of the secondary heat supply network flows into the absorber and condenser of the absorption heat pump and is heated. The return water then flows into the water-water heat exchanger where it is heated. Finally, the return water returns to the end user.

第2の方法:二次熱供給ネットワーク管路4は少なくとも2つの独立した管路を含むべきである。独立した管路は温水式吸収ヒートポンプ1の吸収器及び凝縮器へ順に達する。一方で、他の全ての独立した管路はそれぞれ水−水熱交換器2に達する。   Second method: the secondary heat supply network line 4 should contain at least two independent lines. The independent pipe reaches the absorber and the condenser of the hot water absorption heat pump 1 in order. On the other hand, all other independent lines reach the water-water heat exchanger 2 respectively.

前述の熱交換装置が水−水熱交換器2を1つ含む場合の熱交換装置の概略図を図2に示す。二次ネットワーク管路4は2つの独立した管路(4−A及び4−B)からなる。独立管路(4−A)は温水用吸収式ヒートポンプ1の吸収器及び凝縮器へ順に達する。独立管路(4−B)は水−水熱交換器2に達する。   FIG. 2 shows a schematic diagram of the heat exchange device in the case where the aforementioned heat exchange device includes one water-water heat exchanger 2. The secondary network line 4 consists of two independent lines (4-A and 4-B). The independent pipe (4-A) reaches the absorber and the condenser of the hot water absorption heat pump 1 in order. The independent line (4-B) reaches the water-water heat exchanger 2.

一次熱供給ネットワークの供給水は温水用吸収式ヒートポンプ1の発生器に流れ込み、駆動熱源として臭化リチウム溶液を加熱し、これを濃縮させる。次に温水は水−水熱交換器2の高温側に流れ込み、低温側の返流水を加熱する。この温水は次に低温熱源として吸収式ヒートポンプ1の蒸発器に流れ込む。最後に、温水は、熱を放出して温度が下がった後に中心熱源に流れ込む。末端使用者Aからの二次熱供給ネットワークの返流水は吸収式ヒートポンプの吸収器及び凝縮器に流れ込み、加熱される。末端使用者Bからの二次熱供給ネットワークの返流水は水−水熱交換器に流れ込み、加熱される。二次熱供給ネットワークのこれら二種の返流水のパラメータは異なっていてもよい。そして、返流水をそれぞれの二次熱供給ネットワークシステムに通して異なる熱供給使用者に送ることができる。   The water supplied from the primary heat supply network flows into the generator of the hot water absorption heat pump 1 to heat and concentrate the lithium bromide solution as a driving heat source. Next, warm water flows into the high temperature side of the water-water heat exchanger 2 and heats the return water on the low temperature side. This hot water then flows into the evaporator of the absorption heat pump 1 as a low temperature heat source. Finally, the hot water flows into the central heat source after the heat has been released and the temperature has dropped. The return water of the secondary heat supply network from the end user A flows into the absorber and condenser of the absorption heat pump and is heated. The return water of the secondary heat supply network from end user B flows into the water-water heat exchanger and is heated. The parameters of these two types of return water in the secondary heat supply network may be different. The return water can then be routed through different secondary heat supply network systems to different heat supply users.

第3の方法:前述の熱交換装置が水−水熱交換器2を1つ含む場合、二次熱供給ネットワーク管路4は1つの主管路及び2つの分岐管路からなる。主管路はまず2つの分岐管路に分かれる。分岐管路4−1は吸収式ヒートポンプ1の吸収器及び凝縮器へ順に達し、一方で分岐管路4−2は水−水熱交換器2に達し、次にこれら2つの分岐管路は合流する。   Third method: When the above-described heat exchange device includes one water-water heat exchanger 2, the secondary heat supply network line 4 is composed of one main line and two branch lines. The main pipeline is first divided into two branch pipelines. The branch line 4-1 reaches the absorber and the condenser of the absorption heat pump 1 in turn, while the branch line 4-2 reaches the water-water heat exchanger 2, and these two branch lines then merge. To do.

熱交換装置の概略図を図3に示す。一次熱供給ネットワークの供給水は温水用吸収式ヒートポンプ1の発生器に流れ込み、駆動熱源として臭化リチウム溶液を加熱し、これを濃縮させる。次に温水は水−水熱交換器2の高温側に流れ込み、低温側の返流水を加熱する。この温水は次に低温熱源として吸収式ヒートポンプ1の蒸発器に流れ込む。最後に、温水は、熱を放出して温度が下がった後に中心熱源に流れ込む。   A schematic diagram of the heat exchange device is shown in FIG. The water supplied from the primary heat supply network flows into the generator of the hot water absorption heat pump 1 to heat and concentrate the lithium bromide solution as a driving heat source. Next, warm water flows into the high temperature side of the water-water heat exchanger 2 and heats the return water on the low temperature side. This hot water then flows into the evaporator of the absorption heat pump 1 as a low temperature heat source. Finally, the hot water flows into the central heat source after the heat has been released and the temperature has dropped.

熱供給使用者からの二次熱供給ネットワークの返流水は2つの支流に分かれる。一方の支流は吸収式ヒートポンプ1の吸収器及び凝縮器に連続して流れ込み、加熱される。もう一方の支流は水−水熱交換器2に流れ込み、加熱される。最後に、これら2つの支流は合流し、熱供給使用者に戻る。   The return water of the secondary heat supply network from the heat supply user is divided into two tributaries. One tributary flows continuously into the absorber and condenser of the absorption heat pump 1 and is heated. The other tributary flows into the water-water heat exchanger 2 and is heated. Finally, these two tributaries merge and return to the heat supply user.

第4の方法:前述の熱交換装置は、2つの水−水熱交換器2(2a及び2b)を含む。二次熱供給ネットワーク管路4は主管路及び3つの分岐管路からなる。主管路はまず3つの分岐管路に分かれる。第1の分岐管路は温水用吸収式ヒートポンプ1の吸収器及び凝縮器へ順に達する。第2の分岐管路は水−水熱交換器2aに達する。第3の分岐管路は水−水熱交換器2bに達する。最後に、これら3つの分岐管路が合流する。   Fourth method: The aforementioned heat exchange device includes two water-water heat exchangers 2 (2a and 2b). The secondary heat supply network line 4 includes a main line and three branch lines. The main pipeline is first divided into three branch pipelines. The first branch pipe reaches the absorber and the condenser of the hot water absorption heat pump 1 in order. The second branch pipe reaches the water-water heat exchanger 2a. The third branch pipe reaches the water-water heat exchanger 2b. Finally, these three branch pipes merge.

第5の方法:前述の熱交換装置は、2つの水−水熱交換器2(2a及び2b)を含む。二次熱供給ネットワーク管路4は主管路及び2つの分岐管路からなる。主管路はまず2つの分岐管路に分かれる。第1の分岐管路は温水用吸収式ヒートポンプ1の吸収器及び凝縮器へ順に達する。これに対し、もう一方の分岐管路は水−水熱交換器2aに達する。次に2つの分岐管路が合流し、最後に水−水熱交換器2bを通過する。   Fifth method: The aforementioned heat exchange apparatus includes two water-water heat exchangers 2 (2a and 2b). The secondary heat supply network line 4 includes a main line and two branch lines. The main pipeline is first divided into two branch pipelines. The first branch pipe reaches the absorber and the condenser of the hot water absorption heat pump 1 in order. On the other hand, the other branch pipe reaches the water-water heat exchanger 2a. Next, the two branch pipes merge and finally pass through the water-water heat exchanger 2b.

第6の方法:前述の熱交換装置は、2つの水−水熱交換器2(2a及び2b)を含む。二次熱供給ネットワーク管路4は主管路及び2つの分岐管路からなる。主管路は温水用吸収式ヒートポンプ1の吸収器及び凝縮器へ順に達する。次に、主管路は2つの分岐管路に分かれる。第1の分岐管路は水−水熱交換器2aに達する。第2の分岐管路は水−水熱交換器2bに達する。最後に、これら2つの管路が合流する。   Sixth method: The aforementioned heat exchange device includes two water-water heat exchangers 2 (2a and 2b). The secondary heat supply network line 4 includes a main line and two branch lines. The main line reaches the absorber and the condenser of the hot water absorption heat pump 1 in order. Next, the main pipeline is divided into two branch pipelines. The first branch pipe reaches the water-water heat exchanger 2a. The second branch pipe reaches the water-water heat exchanger 2b. Finally, these two pipes merge.

前述した種の新しいタイプの熱交換装置を含む熱供給システムも保護範囲内にある。例えば、他の加熱装置を含む一次熱供給ネットワークと、熱供給使用者を含む二次熱供給ネットワークに接続された熱交換装置を備えた循環熱供給システムが挙げられる。   Heat supply systems including new types of heat exchange devices of the kind described above are also within the scope of protection. For example, the circulating heat supply system provided with the heat exchange apparatus connected to the primary heat supply network containing another heating apparatus and the secondary heat supply network containing a heat supply user is mentioned.

前述の熱交換装置及び熱供給システムを地域熱供給に適用することができる。   The aforementioned heat exchange device and heat supply system can be applied to district heat supply.

本発明の熱交換装置の第1の接続モードのフロー図である。It is a flowchart of the 1st connection mode of the heat exchange apparatus of this invention. 本発明の熱交換装置の第2の接続モードのフロー図である。It is a flowchart of the 2nd connection mode of the heat exchange apparatus of this invention. 本発明の熱交換装置の第3の接続モードのフロー図である。It is a flowchart of the 3rd connection mode of the heat exchange apparatus of this invention. 実施例1の図である。1 is a diagram of Example 1. FIG. 実施例2の図である。2 is a diagram of Example 2. FIG. 実施例に適用される温水用吸収式ヒートポンプの図である。It is a figure of the absorption heat pump for hot water applied to an Example.

以下の部分では、地域熱供給システムにおける実際の熱供給パラメータに従い、実施例を用いて本発明の実施方法を説明する。   In the following part, the implementation method of this invention is demonstrated using an Example according to the actual heat supply parameter in a district heat supply system.

下記の実施例の温水用吸収式ヒートポンプ5が図5及び図6に示されており、これは、発生器1−1、凝縮器1−2、吸収器1−3、蒸発器1−4、溶液熱交換器1−5、スロットル装置1−6、溶液ポンプ1−7、低温流体ポンプ1−8及びあらゆる種類の接続管からなる。   An absorption heat pump 5 for hot water according to the following embodiment is shown in FIGS. 5 and 6, and includes a generator 1-1, a condenser 1-2, an absorber 1-3, an evaporator 1-4, It consists of a solution heat exchanger 1-5, a throttle device 1-6, a solution pump 1-7, a cryogenic fluid pump 1-8 and all kinds of connecting pipes.

温水用吸収式ヒートポンプの作動の際、希薄溶液(臭化リチウムなど)が温水によって発生器内で沸騰され、低温蒸気及び濃縮液が生じる。   During operation of the hot water absorption heat pump, a dilute solution (such as lithium bromide) is boiled in the generator by hot water, producing low temperature steam and concentrate.

濃縮液は、溶液熱交換器を通って冷却された後に吸収器に入る。濃縮液は低温蒸気を吸収して希薄溶液になる。これは、溶液ポンプによって駆動され、溶液熱交換器内で加熱された後に最終的に発生器に入り、溶液サイクルが完了する。   The concentrate enters the absorber after being cooled through a solution heat exchanger. The concentrate absorbs the low temperature vapor and becomes a dilute solution. It is driven by a solution pump and eventually enters the generator after being heated in the solution heat exchanger, completing the solution cycle.

低温蒸気は凝縮器に入り、ここで低温蒸気は凝縮熱を放出して低温液体になる。この液体は蒸発器に入り、ここで液体はスロットル弁の通過後に熱を吸収して蒸気になる。次に蒸気は吸収器内の溶液によって吸収され、低温サイクルが完了する。   The low temperature vapor enters the condenser, where the low temperature vapor releases heat of condensation into a low temperature liquid. This liquid enters the evaporator, where it absorbs heat and becomes vapor after passing through the throttle valve. The vapor is then absorbed by the solution in the absorber, completing the cold cycle.

実施例1:本発明の熱交換装置の適用
1:組立品
温水用吸収式ヒートポンプ1及び水−水熱交換器2を含む大温度差熱交換アセンブリ:AHE8000A型、北京HNRT技術開発株式会社(Beijing HNRT Technology Development Co.Ltd)
Example 1: Application of heat exchange apparatus of the present invention 1: Assembly Large temperature difference heat exchange assembly including hot water absorption heat pump 1 and water-water heat exchanger 2: AHE8000A type, Beijing HNRT Technology Development Co., Ltd. (Beijing) HNRT Technology Development Co. Ltd)

接続の概略図を図4に示す。一次熱供給ネットワークは温水用吸収式ヒートポンプ1の発生器、水−水熱交換器2及び温水用吸収式ヒートポンプ1の蒸発器へ順に達する。二次熱供給ネットワーク管路は主管路及び2つの分岐管路からなる。主管路はまず2つの分岐管路に分かれる。一方の分岐管路は温水用吸収式ヒートポンプ1の吸収器及び凝縮器へ順に達する。これに対し、もう一方の分岐管路は水−水熱交換器2に達する。次にこれら2つの支流が合流する。   A schematic diagram of the connection is shown in FIG. The primary heat supply network reaches the generator of the hot water absorption heat pump 1, the water-water heat exchanger 2 and the evaporator of the hot water absorption heat pump 1 in order. The secondary heat supply network line consists of a main line and two branch lines. The main pipeline is first divided into two branch pipelines. One branch line reaches the absorber and the condenser of the hot water absorption heat pump 1 in order. On the other hand, the other branch pipe reaches the water-water heat exchanger 2. These two tributaries then merge.

2:適用
一次熱供給ネットワーク:一次熱供給ネットワークの温水は、臭化リチウムを濃縮するための駆動エネルギー源としてまず温水用吸収式ヒートポンプの発生器に流れ込む。温水の温度は、温水用吸収式ヒートポンプ1内で130℃から90℃に変わる。次に、温水は二次熱供給ネットワークの返流水を加熱するための加熱源として水−水熱交換器2に流れ込む。水−水熱交換器2から放出された後、温水の温度は50℃まで下がる。次に、温水は低位熱源として温水用吸収式ヒートポンプ1の蒸発器に流れ込む。温水の温度は20℃まで下がり、中心熱源に戻る。そして、このサイクルを再度繰り返す。
2: Application Primary heat supply network: Hot water from the primary heat supply network first flows into the generator of the hot water absorption heat pump as a driving energy source for concentrating lithium bromide. The temperature of the hot water changes from 130 ° C. to 90 ° C. in the hot water absorption heat pump 1. Next, the hot water flows into the water-water heat exchanger 2 as a heating source for heating the return water of the secondary heat supply network. After being discharged from the water-water heat exchanger 2, the temperature of the hot water drops to 50 ° C. Next, the warm water flows into the evaporator of the warm water absorption heat pump 1 as a lower heat source. The temperature of the hot water drops to 20 ° C and returns to the central heat source. Then, this cycle is repeated again.

二次熱供給ネットワーク:45℃である二次熱供給ネットワークの返流水が2つの支流に分かれる。一方の支流は温水用吸収式ヒートポンプ1の吸収器及び凝縮器に流れ込み、57℃に加熱される。もう一方の支流は水−水熱交換器2に流れ込んで85℃に加熱され、一次熱供給ネットワークと熱交換する。2つの支流の温水は60℃で合流し、熱供給使用者に送達される。   Secondary heat supply network: The return water of the secondary heat supply network at 45 ° C. is divided into two tributaries. One tributary flows into the absorber and condenser of the hot water absorption heat pump 1 and is heated to 57 ° C. The other tributary flows into the water-water heat exchanger 2 and is heated to 85 ° C. to exchange heat with the primary heat supply network. The two tributaries of hot water merge at 60 ° C. and are delivered to the heat supply user.

この装置はヒートポンプと熱交換器を組み合わせている。この装置は、高温の温水のカスケード利用を効果的に行うことができる。この装置は、供給水と返流水との間に110℃の温度差を実現することができる。また、この装置は、ビルの熱供給又は家庭用温水のニーズに応えた温水を生じることができる。通常、これらの装置は大規模な地域熱供給システムの各熱交換ステーションに設置される。   This device combines a heat pump and a heat exchanger. This apparatus can effectively perform cascade use of high-temperature hot water. This device can achieve a temperature difference of 110 ° C. between the feed water and the return water. This device can also produce hot water that meets the needs of building heat supply or domestic hot water. Typically, these devices are installed at each heat exchange station of a large district heat supply system.

実施例2:本発明の熱交換装置の適用
1:組立品
温水用吸収式ヒートポンプ1及び水−水熱交換器2を含む大温度差熱交換装置:AHE8000A型、北京HNRT技術開発株式会社
Example 2: Application of Heat Exchanger of the Present Invention 1: Assembly Large temperature difference heat exchanger including hot water absorption heat pump 1 and water-water heat exchanger 2: AHE8000A type, Beijing HNRT Technology Development Co., Ltd.

接続の概略図を図5に示す。   A schematic diagram of the connection is shown in FIG.

一次熱供給ネットワークは温水用吸収式ヒートポンプ1の発生器、水−水熱交換器2及び温水用吸収式ヒートポンプ1の蒸発器へ順に達する。二次熱供給ネットワーク管路は主管路及び2つの分岐管路からなる。主管路はまず2つの分岐管路に分かれる。一方の分岐管路は温水用吸収式ヒートポンプ1の吸収器及び凝縮器へ順に達する。これに対し、もう一方の分岐管路は水−水熱交換器2aに達する。次にこれら2つの支流が合流し、水−水熱交換器2bに流れ込む。   The primary heat supply network reaches the generator of the hot water absorption heat pump 1, the water-water heat exchanger 2 and the evaporator of the hot water absorption heat pump 1 in order. The secondary heat supply network line consists of a main line and two branch lines. The main pipeline is first divided into two branch pipelines. One branch line reaches the absorber and the condenser of the hot water absorption heat pump 1 in order. On the other hand, the other branch pipe reaches the water-water heat exchanger 2a. Next, these two tributaries merge and flow into the water-water heat exchanger 2b.

2:適用
一次熱供給ネットワーク:130℃である一次熱供給ネットワークの温水は、臭化リチウムを濃縮するための駆動エネルギー源としてまず温水用吸収式ヒートポンプの発生器に流れ込む。温水用吸収式ヒートポンプから放出された後、温水の温度は90℃まで下がる。次に、温水は二次熱供給ネットワークの温水を加熱するための加熱源として第二段の水−水熱交換器2bに流れ込む。温水の温度は65℃まで下がる。次に、温水は二次熱供給ネットワークの温水を加熱するための加熱源として第一段の水−水熱交換器2aに流れ込む。第一段水−水熱交換器から流れ出た後の温水の温度は50℃まで下がる。次に、温水は低位熱源として温水用吸収式ヒートポンプ1の蒸発器に流れ込む。一次熱供給ネットワーク内の温水の温度は20℃まで下がり、中心熱源に戻る。そして、このサイクルを再度繰り返す。
2: Application Primary heat supply network: Hot water of the primary heat supply network at 130 ° C. first flows into the generator of the hot water absorption heat pump as a driving energy source for concentrating lithium bromide. After being discharged from the hot water absorption heat pump, the temperature of the hot water drops to 90 ° C. Next, the hot water flows into the second-stage water-water heat exchanger 2b as a heating source for heating the hot water in the secondary heat supply network. The temperature of the hot water drops to 65 ° C. Next, the hot water flows into the first-stage water-water heat exchanger 2a as a heating source for heating the hot water in the secondary heat supply network. The temperature of the hot water after flowing out of the first stage water-water heat exchanger is lowered to 50 ° C. Next, the warm water flows into the evaporator of the warm water absorption heat pump 1 as a lower heat source. The temperature of the hot water in the primary heat supply network drops to 20 ° C. and returns to the central heat source. Then, this cycle is repeated again.

二次熱供給ネットワーク:45℃である二次熱供給ネットワークの返流水が2つの支流に分かれて装置へ流れ込む。一方の支流は温水用吸収式ヒートポンプ1の吸収器及び凝縮器に流れ込み、60℃に加熱される。もう一方の支流は水−水熱交換器2aに流れ込んで60℃に加熱され、一次熱供給ネットワークと熱交換する。2つの支流の温水は合流し、第二段熱交換器2bに60℃で流れ込む。そして、熱供給使用者に67℃で送達される。   Secondary heat supply network: The return water of the secondary heat supply network at 45 ° C. is divided into two branches and flows into the apparatus. One tributary flows into the absorber and condenser of the hot water absorption heat pump 1 and is heated to 60 ° C. The other tributary flows into the water-water heat exchanger 2a and is heated to 60 ° C. to exchange heat with the primary heat supply network. The hot water of the two tributaries merges and flows into the second stage heat exchanger 2b at 60 ° C. It is then delivered to the heat supply user at 67 ° C.

この装置はヒートポンプと二段の熱交換器を組み合わせている。この装置は、高温の温水のカスケード利用を効果的に行うことができる。この装置は、供給水と返流水との間に110℃の温度差を実現することができる。また、この装置は、ビルの熱供給又は家庭用温水のニーズに応えた温水を生じることができる。通常、これらの装置は、末端の熱供給装置としてラジエータを用いる大規模な地域熱供給システムの各熱交換ステーションに設置される。   This device combines a heat pump and a two-stage heat exchanger. This apparatus can effectively perform cascade use of high-temperature hot water. This device can achieve a temperature difference of 110 ° C. between the feed water and the return water. This device can also produce hot water that meets the needs of building heat supply or domestic hot water. Typically, these devices are installed at each heat exchange station of a large district heat supply system that uses a radiator as the end heat supply device.

本発明は、熱供給用の熱交換装置の一種を提供する。本発明を使用することで、地域熱供給用の温水のエネルギーのカスケード利用を実現することができる。この装置は、熱供給使用者の温度に対する要求に応えることができるのみならず、一次熱供給ネットワークの返流水の温度を大幅に下げることもできる。一次熱供給ネットワークにおける返流水の温度は、二次熱供給ネットワークの流入水よりもかなり低い。よって、この装置は、一次熱供給ネットワークの供給水と返流水との温度差を大幅に広げる。この大きな温度差での送出により、管路の初期投資及び循環ポンプの消費電力が大幅に低減される。また、この装置は、低位熱源や、廃熱さえをも利用する機会を作る。この装置の利点は、地域熱供給システムの総合的なエネルギー効率を改善でき、熱供給のコストを低減できることにある。本発明の装置をビルの熱供給又は家庭用温水に適用することができる。   The present invention provides a kind of heat exchange device for supplying heat. By using the present invention, it is possible to realize cascade use of energy of hot water for district heat supply. This device can not only meet the temperature requirements of the heat supply user, but can also significantly reduce the temperature of the return water of the primary heat supply network. The temperature of the return water in the primary heat supply network is considerably lower than the inflow water of the secondary heat supply network. Thus, this device greatly widens the temperature difference between the supply water and return water of the primary heat supply network. This delivery with a large temperature difference greatly reduces the initial investment in the pipeline and the power consumption of the circulation pump. This device also creates the opportunity to use lower heat sources and even waste heat. The advantage of this device is that it can improve the overall energy efficiency of the district heat supply system and reduce the cost of heat supply. The apparatus of the present invention can be applied to building heat supply or domestic hot water.

Claims (7)

地域熱供給用の熱交換装置の一種であって、1つの温水用吸収式ヒートポンプ(1)と、少なくとも1つの水−水熱交換器(2)と、一次熱供給ネットワーク管路(3)と、二次熱供給ネットワーク管路(4)とを含み、
前記温水用吸収式ヒートポンプが発生器、蒸発器、凝縮器及び吸収器からなり、
前記一次熱供給ネットワーク管路(3)は前記温水用吸収式ヒートポンプ(1)の前記発生器、前記水−水熱交換器(2)及び前記温水用吸収式ヒートポンプ(1)の前記蒸発器を順に通過し、これにより、一次熱供給ネットワークシステムを形成し、
前記二次熱供給ネットワーク管路(4)は前記温水用吸収式ヒートポンプ(1)の前記吸収器及び前記凝縮器ならびに前記水−水熱交換器(2)を通過し、これにより、二次熱供給ネットワークシステムを形成し、
前記二次熱供給ネットワーク管路(4)が少なくとも2つの独立した管路を含み、前記管路のうちの1つが温水用吸収式ヒートポンプ(1)の前記吸収器及び前記凝縮器を順に通過し、前記管路のうちの残りはそれぞれ前記水−水熱交換器(2)を通過する、
地域熱供給用熱交換装置
A type of heat exchange device for district heat supply, comprising one hot water absorption heat pump (1), at least one water-water heat exchanger (2), and a primary heat supply network line (3) A secondary heat supply network line (4),
The hot water absorption heat pump comprises a generator, an evaporator, a condenser and an absorber,
The primary heat supply network line (3) connects the generator of the hot water absorption heat pump (1), the water-water heat exchanger (2) and the evaporator of the hot water absorption heat pump (1). Passing in sequence, thereby forming a primary heat supply network system,
The secondary heat supply network line (4) passes through the absorber and condenser of the hot water absorption heat pump (1) and the water-water heat exchanger (2), thereby providing secondary heat. Forming a supply network system ,
The secondary heat supply network line (4) includes at least two independent lines, and one of the lines passes sequentially through the absorber and the condenser of the hot water absorption heat pump (1). , The rest of the pipelines each pass through the water-water heat exchanger (2),
Heat exchanger for district heat supply .
つの水−水熱交換器(2)を含み、前記二次熱供給ネットワーク管路(4)は主管路及び2つの分岐管路からなり、前記主管路は2つの分岐管路に分かれ、分岐管路(4−1)は前記温水用吸収式ヒートポンプ(1)の前記吸収器及び前記温水用吸収式ヒートポンプ(1)の前記凝縮器を通過し、分岐管路(4−2)は水−水熱交換器(2)を通過し、次にこれら2つの前記分岐管路が合流する、請求項に記載の熱交換装置 It includes one water-water heat exchanger (2), the secondary heat supply network line (4) is composed of a main line and two branch lines, and the main line is divided into two branch lines. The pipe (4-1) passes through the absorber of the hot water absorption heat pump (1) and the condenser of the hot water absorption heat pump (1), and the branch pipe (4-2) is water- passing the water heat exchanger (2), then the branch conduit of the two are merged, the heat exchange apparatus according to claim 1. つの水−水熱交換器(2a、2b)を含み、前記二次熱供給ネットワーク管路(4)は主管路及び3つの分岐管路からなり、前記主管路はまず3つの分岐管路に分かれ、第1の分岐管路は前記温水用吸収式ヒートポンプ(1)の前記吸収器及び前記凝縮器を順に通過し、第2の分岐管路は水−水熱交換器(2a)を通過し、第3の分岐管路は水−水熱交換器(2b)を通過し、最後にこれら3つの前記分岐管路が合流する、請求項に記載の熱交換装置 It includes two water-water heat exchangers (2a, 2b), the secondary heat supply network line (4) is composed of a main line and three branch lines, and the main line is first divided into three branch lines. The first branch pipe passes through the absorber and the condenser of the hot water absorption heat pump (1) in turn, and the second branch pipe passes through the water-water heat exchanger (2a). , the third branch conduit water - through water heat exchanger (2b), these three the branch pipe joins the last heat exchange apparatus according to claim 1. つの水−水熱交換器(2a及び2b)を含み、前記二次熱供給ネットワーク管路4は主管路及び2つの分岐管路からなり、前記主管路はまず2つの分岐管路に分かれ、第1の分岐管路は前記温水用吸収式ヒートポンプ(1)の前記吸収器及び前記凝縮器を順に通過し、これに対してもう一方の分岐管路は水−水熱交換器(2a)を通過し、次にこれら2つの前記分岐管路が合流した後に水−水熱交換器(2b)を通過する、請求項に記載の熱交換装置 Including two water-water heat exchangers (2a and 2b), the secondary heat supply network line 4 consists of a main line and two branch lines, the main line is first divided into two branch lines, The first branch pipe sequentially passes through the absorber and the condenser of the hot water absorption heat pump (1), while the other branch pipe passes through the water-water heat exchanger (2a). The heat exchange device according to claim 1 , wherein the heat exchange device passes through and then passes through a water-water heat exchanger (2b) after the two branch lines have joined . つの水−水熱交換器(2a、2b)を含み、前記二次熱供給ネットワーク管路(4)は主管路及び2つの分岐管路からなり、前記主管路は前記温水用吸収式ヒートポンプ(1)の前記吸収器及び前記凝縮器を順に通過し、次に前記主管路は2つの分岐管路に分かれ、一方の分岐管路は水−水熱交換器(2a)を通過し、もう一方の分岐管路は水−水熱交換器(2b)を通過し、最後にこれら2つの前記分岐管路が合流する、請求項に記載の熱交換装置 It includes two water-water heat exchangers (2a, 2b), the secondary heat supply network line (4) is composed of a main line and two branch lines, and the main line is the hot water absorption heat pump ( 1) through the absorber and the condenser in turn, then the main line is divided into two branch lines, one branch line passes through the water-water heat exchanger (2a) and the other the branch pipe water - through water heat exchanger (2b), these two said branch conduit joins the last heat exchange apparatus according to claim 1. 請求項1に記載の熱交換装置を含む熱供給システム。A heat supply system including the heat exchange device according to claim 1 . 前記二次熱供給ネットワーク管路(4)が前記温水用吸収式ヒートポンプ(1)の前記吸収器及び前記凝縮器ならびに前記水−水熱交換器(2)を順に通過する、請求項1に記載の熱交換装置。The said secondary heat supply network pipe line (4) passes the said absorber of the said hot water absorption heat pump (1), the said condenser, and the said water-water heat exchanger (2) in order. Heat exchange equipment.
JP2010520406A 2008-02-28 2008-09-11 Heat exchanger for heat supply Expired - Fee Related JP5194122B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200810101064.5 2008-02-28
CNB2008101010645A CN100470167C (en) 2008-02-28 2008-02-28 Heat pump type heat exchanging unit
PCT/CN2008/001604 WO2009105929A1 (en) 2008-02-28 2008-09-11 Heat exchanging device for heat supply

Publications (2)

Publication Number Publication Date
JP2010536008A JP2010536008A (en) 2010-11-25
JP5194122B2 true JP5194122B2 (en) 2013-05-08

Family

ID=39919820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010520406A Expired - Fee Related JP5194122B2 (en) 2008-02-28 2008-09-11 Heat exchanger for heat supply

Country Status (3)

Country Link
JP (1) JP5194122B2 (en)
CN (1) CN100470167C (en)
WO (1) WO2009105929A1 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100470167C (en) * 2008-02-28 2009-03-18 清华大学 Heat pump type heat exchanging unit
CN101929759B (en) * 2009-06-25 2013-08-21 清华大学 Absorption heating and refrigerating all-in-one machine taking high-temperature gas as heat source
CN101943470B (en) * 2009-07-09 2013-12-04 清华大学 Novel absorption gas-water heat exchange unit
CN101799189A (en) * 2010-04-06 2010-08-11 天津艾耐尔热能设备有限公司 Water-mixing regulating method and device of secondary network system of heat exchange unit
CN102022145B (en) * 2010-11-18 2014-03-05 清华大学 Steam exhaust waste heat recovery unit
CN102297467A (en) * 2011-08-19 2011-12-28 清华大学 Centralized heat supply system for low-temperature backwater
CN102519163B (en) * 2011-10-28 2014-03-12 李华玉 Third-class absorption type heat pump with afterheat double-effect driving
CN103090441A (en) * 2011-11-02 2013-05-08 同方节能工程技术有限公司 Low vacuum heating supply system of thermoelectric plant
CN103512075B (en) * 2013-09-25 2016-06-15 清华大学 A kind of absorption heat exchange unit being combined with boiler
CN103673035A (en) * 2013-11-08 2014-03-26 清华大学 Combined type heat exchange unit
CN103673059A (en) * 2013-11-08 2014-03-26 清华大学 Compression-type heat exchanger unit
WO2015066831A1 (en) * 2013-11-08 2015-05-14 清华大学 Combined heat exchanger set
CN103836699A (en) * 2014-02-28 2014-06-04 烟台荏原空调设备有限公司 Absorptive heat exchanger unit
CN103822284A (en) * 2014-02-28 2014-05-28 烟台荏原空调设备有限公司 Adsorption type heat exchanger unit
CN103868129B (en) * 2014-03-01 2016-06-29 双良节能系统股份有限公司 The suction-type lithium bromide heat-exchange system of two-way hot water is provided simultaneously
CN104833133B (en) * 2015-04-24 2018-02-09 珠海格力电器股份有限公司 composite heat pump unit
CN105180501B (en) * 2015-09-07 2019-03-12 哈尔滨工业大学 A kind of suction-type lithium bromide heat-exchange unit that solution outside is cooling
CN105276653B (en) * 2015-11-25 2018-01-05 北京市煤气热力工程设计院有限公司 A kind of heat-exchange unit and method of integrated absorption heat pump and electric heat pump
CN105953290A (en) * 2016-05-13 2016-09-21 湖南同为节能科技有限公司 First-network water large-temperature-difference heat supplying system and method
CN105805946B (en) * 2016-05-13 2019-03-08 湖南同为节能科技有限公司 A kind of big temperature difference heat-exchange system of pump type heat and method
CN106765448A (en) * 2016-12-29 2017-05-31 大连葆光节能空调设备厂 A kind of energy-saving heating system for reducing heat supply return water temperature
CN106765533A (en) * 2016-12-29 2017-05-31 大连葆光节能空调设备厂 A kind of absorption heat exchange unit highly effective heating control system
CN106705185A (en) * 2016-12-29 2017-05-24 大连葆光节能空调设备厂 Energy-saving heat supply system with function of reducing temperature of heat supply return water
CN108507220A (en) * 2017-02-28 2018-09-07 远大空调有限公司 A kind of lithium bromide absorption cold but unit and its type of cooling
CN108534208A (en) * 2018-05-15 2018-09-14 济南金孚瑞供热工程技术有限公司 A kind of big temperature difference heat-exchange system
CN108534570B (en) * 2018-05-28 2024-04-09 同方节能工程技术有限公司 Absorption type large-temperature-difference heat exchanger unit
CN109579107B (en) * 2018-11-20 2020-12-15 中国联合网络通信集团有限公司 Waste heat supply system for data center
CN109579108B (en) * 2018-12-04 2023-08-29 华电电力科学研究院有限公司 High-backpressure coupling large-temperature-difference heating system for air cooling unit and operation method
CN110754268A (en) * 2019-10-31 2020-02-07 常州顶点温室工程有限公司 Greenhouse heating system and method using waste hot water of power plant
CN111780201A (en) * 2020-07-01 2020-10-16 双良节能系统股份有限公司 Lithium bromide absorption type heat exchange system with three paths of water supplying heat simultaneously
CN111964301B (en) * 2020-08-17 2022-06-21 清华大学 Absorption heat exchanger capable of realizing multi-zone independent heat supply
CN112555960B (en) * 2020-11-27 2022-07-08 清华大学 Double-water-outlet temperature heating station
CN113465242A (en) * 2021-06-17 2021-10-01 青岛海尔空调电子有限公司 Defrosting control method of air source heat pump unit
CN113340016A (en) * 2021-06-23 2021-09-03 双良节能系统股份有限公司 After-burning type lithium bromide absorption heat exchange system with three paths of water supplying heat simultaneously
CN113757763B (en) * 2021-08-17 2022-09-13 北京清建能源技术有限公司 Multi-energy combined type heating system
CN113654270A (en) * 2021-08-18 2021-11-16 山东联盟化工股份有限公司 Efficient urea hot water waste heat recovery process
CN114278978B (en) * 2021-12-28 2023-08-15 北京华源泰盟节能设备有限公司 Gas afterburning type large-temperature-difference heat exchanger unit and operation method thereof
CN114251708B (en) * 2021-12-28 2023-09-22 北京华源泰盟节能设备有限公司 Adjusting method of large-temperature-difference adjusting system based on absorption heat exchange
CN114251709B (en) * 2021-12-29 2023-04-25 北京华源泰盟节能设备有限公司 Medium-temperature waste heat long-distance heat supply system and heat supply method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195765A (en) * 1982-05-12 1983-11-15 株式会社日立製作所 Solar heat utilizing absorption type cold and hot water machine
US5271235A (en) * 1991-03-12 1993-12-21 Phillips Engineering Company High efficiency absorption cycle of the gax type
DE4443204C2 (en) * 1994-12-05 2000-06-08 Zae Bayern Bayerisches Zentrum Fuer Angewandte Energieforschung Ev Heat transfer system
JP3905986B2 (en) * 1998-10-19 2007-04-18 三洋電機株式会社 Waste heat utilization air conditioning system
CN1196900C (en) * 2001-10-22 2005-04-13 清华同方股份有限公司 Heating apparatus utilizing aqueous vapour latent heat in fuel gas, fuel oil boiler exhaust gas
JP2007120811A (en) * 2005-10-26 2007-05-17 Tokyo Gas Co Ltd Absorption heat pump
CN100470167C (en) * 2008-02-28 2009-03-18 清华大学 Heat pump type heat exchanging unit

Also Published As

Publication number Publication date
CN101236032A (en) 2008-08-06
WO2009105929A1 (en) 2009-09-03
CN100470167C (en) 2009-03-18
JP2010536008A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5194122B2 (en) Heat exchanger for heat supply
WO2009105930A1 (en) A kind of concentrated heat-supply system
CN105841396B (en) A kind of cold, heat and electricity triple supply composite energy supply system based on the recovery of waste heat depth
CN101619662A (en) Method for recovering waste heat of thermal power plant and heating and supplying heat to hot water in a stepping way
CN109489101B (en) Central heating system and central heating method thereof
CN203190489U (en) Efficient lithium bromide absorption heat pump heat exchanger unit
CN108167915B (en) A kind of great temperature difference heat supply system and method in conjunction with peaking boiler
WO2015066831A1 (en) Combined heat exchanger set
CN201964501U (en) Thermal pump heating system utilizing latent heat progressively
CN205156103U (en) Heat transfer unit of integrated absorption heat pump and electronic heat pump
WO2015014098A1 (en) Combined heating/power system, combined cooling/power system, and dual-use combined heating/power and cooling/power system
CN201163126Y (en) Heat pump type heat-exchanging device
CN206803293U (en) A kind of heating plant that net backwater heat is extracted once using heat pump
CN111189099B (en) Efficient heating system for ground heating engineering for developing and utilizing pumping and filling type geothermal water
CN211739241U (en) Three-stage tandem type heating system for hot water gradient utilization
CN104848330B (en) heating system
CN107270373A (en) One kind is classified cascade utilization heating system of drawing gas
CN204962942U (en) Carbon dioxide heat pump heating device
CN204757083U (en) Heating system
CN103868126B (en) The fuel supplementing type suction-type lithium bromide heat-exchange system of two-way hot water is provided simultaneously
CN205536656U (en) Ladder heat supply heat pump set of multiple heat supply operating mode
CN101526076A (en) Waste heat recycling system of air compressor
CN108534570A (en) A kind of absorption big temperature difference heat-exchange unit
CN103868124A (en) Supplementary-fired lithium bromide absorption type heat exchange system with two routes of water simultaneously supplying heat
CN104848331B (en) heating system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

R150 Certificate of patent or registration of utility model

Ref document number: 5194122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees