JP5193432B2 - Method for producing string-like carbon and method for using the same - Google Patents

Method for producing string-like carbon and method for using the same Download PDF

Info

Publication number
JP5193432B2
JP5193432B2 JP2006122740A JP2006122740A JP5193432B2 JP 5193432 B2 JP5193432 B2 JP 5193432B2 JP 2006122740 A JP2006122740 A JP 2006122740A JP 2006122740 A JP2006122740 A JP 2006122740A JP 5193432 B2 JP5193432 B2 JP 5193432B2
Authority
JP
Japan
Prior art keywords
carbon
string
limonite
temperature
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006122740A
Other languages
Japanese (ja)
Other versions
JP2007290928A (en
Inventor
敏樹 坪田
知子 末永
厚一 蔵本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Kumamoto Prefecture
Original Assignee
Kyushu Institute of Technology NUC
Kumamoto Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Kumamoto Prefecture filed Critical Kyushu Institute of Technology NUC
Priority to JP2006122740A priority Critical patent/JP5193432B2/en
Publication of JP2007290928A publication Critical patent/JP2007290928A/en
Application granted granted Critical
Publication of JP5193432B2 publication Critical patent/JP5193432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Description

本発明は、紐状炭素の製造方法及びその利用方法に関し、特に、メタンを含むガスを原料とし、化学的気相成長法により得られる紐状炭素の製造方法及びその利用方法に関する。 The present invention relates to a manufacturing method and use thereof how the string-like carbon, in particular, a gas containing methane as a raw material, relates to the preparation and use thereof how the resulting string-like carbon by chemical vapor deposition .

近年、カーボンナノチューブなどの紐状炭素が新素材として注目されている。カーボンナノチューブなどの紐状炭素の合成方法としては、アーク放電法、レーザー蒸着法、化学的気相成長法(CVD法)などが提案されている。   In recent years, string-like carbon such as carbon nanotubes has attracted attention as a new material. As methods for synthesizing string-like carbon such as carbon nanotubes, arc discharge methods, laser vapor deposition methods, chemical vapor deposition methods (CVD methods), and the like have been proposed.

アーク放電法では、2本の炭素電極に高電圧をかけアーク放電を起こすことにより、陰極側の堆積物(スス)に多層なのチューブが生成する。またレーザー蒸着法では、触媒を混ぜた炭素に強いレーザー光を照射すると、気化した炭素と触媒が反応し単層ナノチューブが得られる。さらに、CVD法では、炭素を含むガスであるアセチレンやメタンなどと金属触媒とを高温状態で化学反応を起こし、カーボンナノチューブを製造するものである。
なお、CVD法によるカーボンナノチューブの製造方法としては、以下の特許文献1にも、基板に絶縁層を形成し選択的に配置された触媒金属を利用してカーボンナノチューブを製造する方法が開示されている。
特開2006−62899号公報
In the arc discharge method, a high voltage is applied to two carbon electrodes to cause an arc discharge, thereby generating a multi-layer tube on the deposit (soot) on the cathode side. In the laser deposition method, when carbon mixed with a catalyst is irradiated with strong laser light, the vaporized carbon reacts with the catalyst to obtain single-walled nanotubes. Furthermore, in the CVD method, acetylene or methane, which is a gas containing carbon, and a metal catalyst are chemically reacted at a high temperature to produce carbon nanotubes.
As a method for producing carbon nanotubes by the CVD method, the following Patent Document 1 also discloses a method for producing carbon nanotubes using a catalytic metal selectively formed by forming an insulating layer on a substrate. Yes.
JP 2006-62899 A

カーボンナノチューブなどの紐状炭素の応用分野としては、耐摩耗性・軽量高強度性、高熱伝導性などの特性を利用した高強度材料や伝導性樹脂などへの応用や、CO固定やナノフィルターなどの環境面への応用、燃料電池や二次電池などのエネルギー分野への応用、バイオセンサーなどのバイオ・医療分野への応用、ディスプレイや10nmトランジスタなどエレクトロニクス分野への応用など、多様な分野への広がりを見せている。 Applications of string-like carbon such as carbon nanotubes include application to high-strength materials and conductive resins that utilize properties such as wear resistance, light weight, high strength, and high thermal conductivity, CO 2 fixation, and nanofilters. To various fields, such as environmental applications such as fuel cells and secondary batteries, biosensors such as biosensors, and electronics such as displays and 10 nm transistors. Is spreading.

しかしながら、上述した合成方法では、カーボンナノチューブなどの紐状炭素を、多量かつ安定的に、さらには安価に製造することができず、多様な用途に使用することが困難であった。   However, in the synthesis method described above, string-like carbon such as carbon nanotubes cannot be produced in a large amount, stably and at low cost, and it has been difficult to use for various purposes.

他方、下水汚泥などの有機物を含む廃棄物処理においては、多量のメタンガスが発生し、エネルギーの利用効率を高めるため、ガス発電や自動車燃料として再利用されているが、その多くは燃焼され大気中に排出されるため、地球温暖化への影響が懸念されている。   On the other hand, in the disposal of waste containing organic matter such as sewage sludge, a large amount of methane gas is generated and reused as gas power generation and automobile fuel in order to increase the energy utilization efficiency. As a result, there are concerns about the impact on global warming.

本発明が解決しようとする課題は、上述した問題を解決し、カーボンナノチューブなどの紐状炭素を大量かつ安価に提供することであり、その紐状炭素の特性を利用した紐状炭素の利用方法を提供すること、さらには、安定した紐状炭素の製造方法を提供することである。
また、下水汚泥などの有機廃棄物処理施設より排出されるメタンガスが、地球温暖化に与える影響を最小限に抑制可能な、紐状炭素の製造方法を提供することである。
The problem to be solved by the present invention is to solve the above-mentioned problems and to provide a large amount and a low amount of string-like carbon such as carbon nanotubes, and a method of using the string-like carbon using the characteristics of the string-like carbon Furthermore, it is providing the manufacturing method of the stable string-like carbon.
Also, methane gas discharged from an organic waste treatment facilities such as sewage sludge, which can minimize the impact on global warming, is to provide a method for producing a string-like-carbon.

上記課題を解決するため、請求項1に係る発明は、メタンを含むガスを原料とし、リモナイトを触媒として、850℃以上の温度で化学的気相成長させることを特徴とする紐状炭素の製造方法である。
本発明における「紐状炭素」とは、カーボンナノチューブなどのように、炭素が立体的な結晶構造を有し、紐状あるいはチューブ状に成長した炭素組成物を意味し、該組成物の形状を大きく壊さない範囲で、炭素以外の元素を該組成物の中に含むものをも意味する。
また、本発明における「リモナイト」とは、褐鉄鉱や沼鉄鉱などと呼ばれ、沼地や浅い海などの鉄分を多く含む水の沈殿作用により生成されたものを意味し、特に、熊本県阿蘇山の火口湖で採取されるリモナイト鉱(通称「阿蘇黄土」ともいう。)が好ましいものとして列挙される。
In order to solve the above-mentioned problem, the invention according to claim 1 is a method for producing string-like carbon, characterized in that chemical vapor deposition is performed at a temperature of 850 ° C. or higher using a gas containing methane as a raw material and limonite as a catalyst. Is the method.
The “string carbon” in the present invention means a carbon composition in which carbon has a three-dimensional crystal structure, such as carbon nanotubes, and grows in a string shape or a tube shape. It means that the composition contains an element other than carbon as long as it does not break down significantly.
In addition, the term “limonite” in the present invention is called limonite or marsh iron ore, which means that produced by the precipitation of water containing a lot of iron such as marshes and shallow seas. Limonite ore (also known as “Aso loess”) collected from the crater lake is listed as preferred.

請求項2に係る発明では、請求項1に記載の紐状炭素の製造方法において、該紐状炭素の製造方法は、有機廃棄物処理施設から排出されるメタンガスを炭素固化する工程に、組み込まれていることを特徴とする。 In the invention which concerns on Claim 2, in the manufacturing method of string-like carbon of Claim 1, this manufacturing method of string-like carbon is integrated in the process of solidifying the methane gas discharged | emitted from an organic waste disposal facility. It is characterized by.

請求項に係る発明では、請求項1又は2に記載の紐状炭素の製造方法により製造した、紐状炭素の利用方法において、該紐状炭素を電磁波シールド材、建材、紙、吸着剤のすくなくともいずれかの原料の一つとして使用することを特徴とする。 In the invention according to claim 3, produced by the production method of the string-like carbon according to claim 1 or 2, in usage of the string-like carbon, an electromagnetic wave shielding material of the string-like carbon, building materials, paper, adsorbents It is characterized by being used as at least one of the raw materials.

請求項に係る発明では、請求項に記載の紐状炭素の利用方法において、該吸着剤は、有機廃棄物処理施設で使用される活性炭であることを特徴とする。 The invention according to claim 4 is the method for using string-like carbon according to claim 3 , wherein the adsorbent is activated carbon used in an organic waste treatment facility.

請求項1に係る発明により、請求項1に係る発明により、メタンを含むガスを原料とし、リモナイトを触媒として、850℃以上の温度で化学的気相成長させることにより得られる紐状炭素の製造方法であるため、特許文献1のような絶縁層上に選択的に配置された触媒金属などを使用する必要が無く、大量かつ安価に、さらには安定的にカーボンナノチューブなどの紐状炭素を製造することが可能となる。 According to the first aspect of the invention, according to the first aspect of the invention, the production of string-like carbon obtained by chemical vapor deposition at a temperature of 850 ° C. or higher using a gas containing methane as a raw material and using limonite as a catalyst. Because it is a method, there is no need to use a catalytic metal or the like selectively disposed on an insulating layer as in Patent Document 1, and a string-like carbon such as a carbon nanotube is produced stably in large quantities and at a low cost. It becomes possible to do.

請求項2に係る発明により、紐状炭素の製造方法は、有機廃棄物処理施設から排出されるメタンガスを炭素固化する工程に、組み込まれているため、有機廃棄物処理施設から排出されるメタンガスを紐状炭素に変換でき、地球温暖化を抑制すると共に、利用性の高い紐状炭素を大量かつ安価に生産することが可能となる。 According to the invention according to claim 2, since the method for producing string-like carbon is incorporated in the step of solidifying methane gas discharged from the organic waste treatment facility, the methane gas discharged from the organic waste treatment facility is It can be converted into string-like carbon, and global warming can be suppressed, and highly usable string-like carbon can be produced in large quantities and at low cost.

請求項に係る発明により、紐状炭素を電磁波シールド材、建材、紙、吸着剤のすくなくともいずれかの原料の一つとして使用するため、本発明で製造される紐状炭素の磁性体としての特性や気体・液体などの吸着性能を生かした紐状炭素の利用方法が提供可能となる。 According to the invention according to claim 3 , since the string-like carbon is used as at least one of the raw materials of the electromagnetic shielding material, the building material, the paper, and the adsorbent, the string-like carbon produced in the present invention is used as a magnetic body. It is possible to provide a method of using string-like carbon that takes advantage of the properties and adsorption performance of gas and liquid.

請求項に係る発明により、吸着剤は、有機廃棄物処理施設で使用される活性炭であるため、本発明で製造される紐状炭素の優れた吸着性を有効活用することが可能となると共に、さらには、本発明に係る紐状炭素は有機廃棄物処理施設で発生するメタンガスを利用しても製造可能であるため、より廃棄物を輩出しない循環型の有機廃棄物処理施設を提供することも可能となる。 According to the invention of claim 4 , since the adsorbent is activated carbon used in an organic waste treatment facility, it is possible to effectively utilize the excellent adsorptivity of string-like carbon produced in the present invention. Furthermore, since the string-like carbon according to the present invention can be produced even by using methane gas generated in an organic waste treatment facility, a recycling-type organic waste treatment facility that does not produce more waste is provided. Is also possible.

以下、本発明について好適例を用いて詳細に説明する。
本発明に係る紐状炭素の製造方法は、メタンを含むガスを原料とし、リモナイトを触媒として、850℃以上の温度で化学的気相成長法(CVD法)させることを特徴とする。特に、使用するメタンを含むガスは、メタンを含み、紐状炭素の生成を阻害するガス成分を含まないガスであれば、任意のものを用いることができるが、特に、廃ガス有効利用等の点から、有機物廃棄処理施設から排出されるガスを有効に用いることができる。
Hereinafter, the present invention will be described in detail using preferred examples.
The method for producing string-like carbon according to the present invention is characterized by performing chemical vapor deposition (CVD) at a temperature of 850 ° C. or higher using a gas containing methane as a raw material and using limonite as a catalyst. In particular, the gas containing methane to be used can be any gas as long as it contains methane and does not contain a gas component that inhibits the production of string-like carbon. In view of this, the gas discharged from the organic waste disposal facility can be used effectively.

CVD法を行う際の温度条件は、上述のように850℃以上の温度とすることが必要であり、好ましくは1100℃以下、より好ましくは900℃以上1000℃以下である。
800℃以下の場合には、紐状炭素の成長が殆ど見られず、1100℃を超えると、加熱に要するエネルギー消費が甚大なものとなり経済的ではなく、CVD法に使用する容器の内壁に多くの炭素が付着する場合があり好ましくない。
また、850℃以上1100℃以下では、紐状炭素の成長が良好となり、容器内壁への炭素の付着も殆どなく、更に900℃以上1000℃以下とすることで、紐状炭素の成長が極めて良好で、容器内壁への炭素の付着が殆ど観られなくなる。
Temperature conditions for performing the CVD method, it is necessary to a temperature above 850 ° C. As mentioned above, preferably 1100 ° C. or less, more preferably 9 00 ° C. or higher 1000 ° C. or less.
When the temperature is 800 ° C. or lower, almost no growth of the string-like carbon is observed, and when it exceeds 1100 ° C., energy consumption required for heating becomes enormous, which is not economical and much on the inner wall of the container used for the CVD method. Of carbon may adhere, which is not preferable.
Further, when the temperature is 850 ° C. or higher and 1100 ° C. or lower, the growth of string-like carbon is good, and there is almost no adhesion of carbon to the inner wall of the container. Thus, almost no carbon adheres to the inner wall of the container.

紐状炭素は、合成時間に比例して成長量が増大することが確認されている。このため、紐状炭素の長さを調整するためには、合成時間を調整するだけで容易に制御することが可能である。
また、有機廃棄物処理施設から排出されるメタンガスを連続的に処理する上でも、CVD法に使用する容器内にメタンガスを供給し続けるだけで、該メタンガスを連続的に炭素固化することが可能となる。
It has been confirmed that the amount of growth of string-like carbon increases in proportion to the synthesis time. For this reason, in order to adjust the length of the string-like carbon, it can be easily controlled only by adjusting the synthesis time.
In addition, even when continuously processing methane gas discharged from an organic waste treatment facility, it is possible to continuously solidify the methane gas by simply supplying methane gas into a container used for the CVD method. Become.

本発明の紐状炭素の製造に用いる酸化鉄を含有する鉱石としては、酸化鉄を含有するものであれば任意の鉱石を用いることができるが、特に、鉱石の表面に酸化鉄が分布しているものが、紐状炭素を有効に成長させることができる点から好ましく、紐状炭素は該鉱石の表面で成長する。鉱石の表面とは、外表面のみならず、例えば、ポーラス状のような開孔を有するものであっても、メタンガスと直接接触できる全ての表面を含むものである。例えば、リモナイトが好適に利用可能である。阿蘇山で産出されるリモナイトには、Feが約70質量%と、極めて多くの酸化鉄を含有している。
リモナイト等の酸化鉄を含有する鉱石は、粉状、顆粒状、ペレット状、ポーラス状など種々の形態で使用することが可能である。
As the ore containing iron oxide used for the production of the string-like carbon of the present invention, any ore can be used as long as it contains iron oxide. In particular, iron oxide is distributed on the surface of the ore. It is preferable from the point that the string-like carbon can be effectively grown, and the string-like carbon grows on the surface of the ore. The surface of the ore includes not only the outer surface but also all surfaces that can be in direct contact with methane gas, for example, those having a porous opening. For example, limonite can be suitably used. The limonite produced at Mt. Aso contains about 70% by mass of Fe 2 O 3 and contains an extremely large amount of iron oxide.
Ore containing iron oxide such as limonite can be used in various forms such as powder, granule, pellet, and porous.

鉱石に成長した紐状炭素は、成長した状態で使用することも可能であるが、紐状炭素を鉱石から分離し使用することも可能である。
紐状炭素を鉱石から分離するには、酸溶液で処理することにより鉱石成分を溶解させて、その後にろ過する方法や、適当な大きさに砕いた後、磁石により分別する方法などが利用できる。
The string-like carbon grown on the ore can be used in the grown state, but the string-like carbon can be separated from the ore and used.
In order to separate the string-like carbon from the ore, a method of dissolving the ore component by treating with an acid solution and then filtering, or a method of separating by a magnet after being crushed to an appropriate size can be used. .

本発明で製造される紐状炭素は、リモナイトに付着した状態で、磁石に対して反応する磁性を備えており、しかも、気体や液体の吸着性が高く活性炭としても機能するものである。
紐状炭素の用途としては、従来よりカーボンナノチューブの用途として例示されている高機能性材料分野、環境・エネルギー分野、バイオ・医療分野や、エレクトロニクス分野などにも応用が可能であることは言うまでもない。
The string-like carbon produced in the present invention has magnetism that reacts with a magnet while attached to limonite, and has high gas and liquid adsorptivity and functions as activated carbon.
Needless to say, the string-like carbon can be applied to the fields of high-functional materials, the environment / energy field, the bio / medical field, the electronics field, etc. that have been exemplified as carbon nanotubes. .

この他にも、紐状炭素の導電性及び磁性を利用し、膜体又は板状体に紐状炭素を混入することで、電磁波シールド材として利用することが可能となる。
また、紐状炭素の持つ高い吸着性を利用し、吸着剤として用いる他に、建材や紙などの材料に混入させたり、表面に塗付することにより、吸着性を有する付加価値の高い建材や紙を提供することも可能なる。
In addition to this, by using the conductivity and magnetism of string-like carbon and mixing the string-like carbon into the film body or plate-like body, it can be used as an electromagnetic wave shielding material.
In addition to using the high adsorptive properties of string-like carbon, in addition to using it as an adsorbent, it can be mixed into materials such as building materials and paper, or applied to the surface to create high added value building materials that have adsorptive properties. It is also possible to provide paper.

次に、下水処理場などの有機廃棄物処理施設において、本発明の紐状炭素の製造方法を組み込む技術について、具体例を挙げて説明する。
図1は、下水処理場の処理フローを模式的に記載した図である。
下水は、最初の沈殿池1に蓄積され、沈殿したヘドロ状の廃棄物をポンプPにて濃縮槽2に導入する。濃縮槽2では、重力を利用してさらに下層に堆積した廃棄物をポンプpにて汚泥貯留槽3に導入する。
また、重力濃縮槽2では、活性炭を配置した脱臭塔が接続され、廃棄物から発生する悪臭性のガスを濾過して外部に排出するよう構成されている。
Next, a technique for incorporating the method for producing string-like carbon of the present invention in an organic waste treatment facility such as a sewage treatment plant will be described with a specific example.
FIG. 1 is a diagram schematically illustrating a treatment flow of a sewage treatment plant.
The sewage is accumulated in the first settling basin 1 and the precipitated sludge-like waste is introduced into the concentration tank 2 by the pump P. In the concentration tank 2, the waste accumulated in the lower layer using gravity is introduced into the sludge storage tank 3 by the pump p.
Moreover, in the gravity concentration tank 2, the deodorizing tower which has arrange | positioned activated carbon is connected, and it is comprised so that the malodorous gas which generate | occur | produces from waste may be filtered and discharged | emitted outside.

汚泥貯留槽3には、他の処理施設又は他の工程から排出される余剰濃縮汚泥も、必要に応じて混入される。汚泥貯留槽3から排出されるガス(CH、CO、HSなど)は、脱硫塔5に導入され、硫黄成分が分離される。また、汚泥貯留槽3に溜まった有機分解済みの固形分については、ポンプPにより汚泥脱水槽4に送られ、水分と分離されて廃棄される。 In the sludge storage tank 3, surplus concentrated sludge discharged from other processing facilities or other processes is also mixed as necessary. Gases (CH 4 , CO 2 , H 2 S, etc.) discharged from the sludge storage tank 3 are introduced into the desulfurization tower 5 and sulfur components are separated. Further, the organically decomposed solid content collected in the sludge storage tank 3 is sent to the sludge dewatering tank 4 by the pump P, separated from water and discarded.

脱硫塔5から排出されるガス(CH、COなど)は、紐状炭素を合成する炭化物作成路6に導入されると共に、該炭化物作成炉6を所定の温度に維持するためのボイラー7の燃料としても使用される。
また、脱硫塔5から余剰ガスは、一旦、貯留ガスタンクに導入し、蓄積することも可能である。
Gases (CH 4 , CO 2, etc.) discharged from the desulfurization tower 5 are introduced into a carbide production path 6 for synthesizing string-like carbon, and a boiler 7 for maintaining the carbide production furnace 6 at a predetermined temperature. It is also used as a fuel.
Further, surplus gas from the desulfurization tower 5 can be once introduced into a stored gas tank and accumulated.

炭化物作成炉6には、リモナイトなどの酸化物を有する鉱物8が配置されており、ボイラー7により炉内の温度が800℃を超える温度、例えば900℃に維持されている。脱硫塔5からのガス、特にメタンが炉内に導入され、CVD法により紐状炭素9が鉱物8の表面に徐々に生成されて行く。これにより、メタンガスの炭素は固化されることとなる。
炉内で反応に関わらないガスは、パラフィン液11を有する濾過フィルター10により清浄なガス12となって、外部に排出される。
The carbide producing furnace 6 is provided with a mineral 8 having an oxide such as limonite, and the temperature inside the furnace is maintained at a temperature exceeding 800 ° C., for example, 900 ° C. by the boiler 7. Gas from the desulfurization tower 5, particularly methane, is introduced into the furnace, and string-like carbon 9 is gradually generated on the surface of the mineral 8 by the CVD method. Thereby, carbon of methane gas will be solidified.
The gas not involved in the reaction in the furnace becomes a clean gas 12 by the filtration filter 10 having the paraffin liquid 11 and is discharged to the outside.

炭化物作成炉6で合成された紐状炭素9は、必要に応じて鉱物8から分離され、上述したような多様な部材の原料として使用される。また、有機廃棄物処理施設内においても、例えば、紐状炭素あるいは鉱物に付着した紐状炭素を、重力濃縮槽2に組み込まれた脱臭塔内の活性炭として使用することも可能である。このような構成によれば、より廃棄物の少ない有機廃棄物処理施設を構成することができる。   The string-like carbon 9 synthesized in the carbide making furnace 6 is separated from the mineral 8 as necessary and used as a raw material for various members as described above. Also, in the organic waste treatment facility, for example, string-like carbon or string-like carbon attached to a mineral can be used as activated carbon in a deodorization tower incorporated in the gravity concentration tank 2. According to such a configuration, an organic waste treatment facility with less waste can be configured.

次に、本発明の紐状炭素の具体的な実施例について説明する。
(実施例1)
酸化鉄を含む鉱物としてリモナイト(商品名:阿蘇黄土,株式会社日本リモナイト製)の粉体(50メッシュ篩を通過した粉体を更に乳鉢等を用いて粉砕したものを使用)0.1gを、反応炉(容量589cm,直径5.0cm×長さ30cm)内に配置し、炉内の温度を900℃に保つと共に、メタンガスを流量30ml/分で導入し、1時間反応させて、リモナイト上に紐状炭素を化学的気相成長させて、実施例1の紐状の炭化物を得た。
ただし、リモナイトをCVD法による処理を行う前に、大気中600℃で5時間に渡り加熱処理を行ったが、このような加熱処理を行わない場合でも、同様に紐状の炭化物が得られることを確認している。
Next, specific examples of the string-like carbon of the present invention will be described.
Example 1
As a mineral containing iron oxide, 0.1 g of limonite (trade name: Aso Kochi Co., Ltd., manufactured by Nihon Limonite Co., Ltd.) (using a powder that has passed through a 50 mesh sieve and further pulverized with a mortar, etc.) Placed in a reaction furnace (capacity: 589 cm 3 , diameter: 5.0 cm × length: 30 cm), maintaining the temperature in the furnace at 900 ° C., introducing methane gas at a flow rate of 30 ml / min, and reacting for 1 hour, on limonite The string-like carbon of Example 1 was obtained by chemical vapor deposition of string-like carbon.
However, the limonite was heat-treated at 600 ° C. for 5 hours in the atmosphere before being treated by the CVD method. Even when such heat-treatment is not carried out, a string-like carbide can be obtained similarly. Have confirmed.

(実施例2)
炉内の温度を1000℃に設定した以外は、実施例1と同様に実施例2の紐状の炭化物を得た。
(比較例1)
炉内の温度を800℃に設定した以外は、実施例1と同様に処理を行い比較例1を得た。
(比較例2)
炉内の温度を700℃に設定した以外は、実施例1と同様に処理を行い比較例2を得た。
(比較例3)
炉内の温度を600℃に設定した以外は、実施例1と同様に処理を行い比較例3を得た。
(Example 2)
A string-like carbide of Example 2 was obtained in the same manner as in Example 1 except that the temperature in the furnace was set to 1000 ° C.
(Comparative Example 1)
The process was performed in the same manner as in Example 1 except that the temperature in the furnace was set to 800 ° C., and Comparative Example 1 was obtained.
(Comparative Example 2)
A treatment was performed in the same manner as in Example 1 except that the temperature in the furnace was set to 700 ° C., and Comparative Example 2 was obtained.
(Comparative Example 3)
The process was performed in the same manner as in Example 1 except that the temperature in the furnace was set to 600 ° C., and Comparative Example 3 was obtained.

実施例1及び2、並びに比較例1乃至3について、電子顕微鏡(製品名:S−4000,株式会社日立製作所製)により観察した。観察結果を図2乃至6に示す。図2は実施例1の顕微鏡写真(倍率10,000倍)、図3は実施例2の顕微鏡写真(倍率10,000倍)、図4は比較例1の顕微鏡写真(倍率10,000倍)、図5は比較例2の顕微鏡写真(倍率10,000倍)、及び図6は比較例3の顕微鏡写真(倍率10,000倍)を各々示す。   Examples 1 and 2 and Comparative Examples 1 to 3 were observed with an electron microscope (product name: S-4000, manufactured by Hitachi, Ltd.). The observation results are shown in FIGS. 2 is a micrograph of Example 1 (magnification 10,000 times), FIG. 3 is a micrograph of Example 2 (magnification 10,000 times), and FIG. 4 is a micrograph of Comparative Example 1 (magnification 10,000 times). FIG. 5 shows a micrograph of Comparative Example 2 (magnification 10,000 times), and FIG. 6 shows a micrograph of Comparative Example 3 (magnification 10,000 times).

図2乃至6の顕微鏡写真からも容易に理解できるように、炉内の温度を900℃、1000℃に設定した場合には、紐状炭素が合成されている。また、800℃では、紐状炭素の生成は確認できなかったが、炉内の温度を850℃に設定し、実施例1と同様に処理したものを電子顕微鏡で観察したところ、炭素の析出が観測された。このことから、炭素は反応温度が800℃を超える温度で析出成長し、しかも、後述するように合成時間が長くなるに従い、炭素の析出がより進むことから、CVD実施温度は、800℃を超える温度とすることが必要である。   As can be easily understood from the micrographs of FIGS. 2 to 6, string-like carbon is synthesized when the temperature in the furnace is set to 900 ° C. and 1000 ° C. Moreover, although the production | generation of string-like carbon was not able to be confirmed at 800 degreeC, when the temperature in a furnace was set to 850 degreeC and what was processed similarly to Example 1 was observed with the electron microscope, precipitation of carbon was carried out. Observed. From this, carbon precipitates and grows at a temperature where the reaction temperature exceeds 800 ° C., and further, as the synthesis time becomes longer, as described later, the deposition of carbon further proceeds, so the CVD execution temperature exceeds 800 ° C. It is necessary to set the temperature.

次に、紐状炭素の生成における合成時間の影響を調べるため、実施例1の合成時間を1時間から9時間の間で変化させた場合の炭化物の重量変化を測定した。
測定結果として、元の鉱物の重量を1に規格化した場合の増加量を図7のグラフに示す。
Next, in order to examine the influence of the synthesis time on the formation of the string-like carbon, the change in the weight of the carbide when the synthesis time of Example 1 was changed between 1 hour and 9 hours was measured.
As a measurement result, the amount of increase when the weight of the original mineral is normalized to 1 is shown in the graph of FIG.

図7のグラフにより、合成開始から1時間経過した後は、合成時間に比例して炭化物の重量が増加していることから、紐状炭素は、合成時間を増加させるだけで、より多くのメタンを炭素固化可能であることが、容易に理解される。
しかも、6時間以上経過後には、鉱物として使用したリモナイトの重量の3倍以上に達し、リモナイトが炭素固化に適した素材であり、極めて効率良く炭素固化を進行させることが可能であることが理解される。
According to the graph of FIG. 7, after 1 hour has elapsed from the start of synthesis, the weight of the carbide increases in proportion to the synthesis time. It is easily understood that carbon can be solidified.
In addition, after 6 hours or more, the weight of limonite used as a mineral reaches 3 times or more, and it is understood that limonite is a material suitable for carbonization and can promote carbonization very efficiently. Is done.

また、実施例1で作成した、リモナイトに付着した紐状炭素に対し、磁石を近づけたところ、磁石に引き寄せられた。このことから、本発明に係るリモナイトに付着した紐状炭素は、磁性を有していることが理解される。これは、紐状炭素自体に磁性があるというよりは、リモナイトがCVD法の過程で特性が変化し、磁性を有するように変化したと考えられる。   Moreover, when the magnet was brought close to the string-like carbon attached to limonite prepared in Example 1, it was attracted to the magnet. From this, it is understood that the string-like carbon attached to the limonite according to the present invention has magnetism. This is considered that the properties of limonite changed to have magnetism in the course of the CVD method rather than the string-like carbon itself having magnetism.

以上説明したように、本発明によれば、カーボンナノチューブなどの紐状炭素を大量かつ安価に提供することができ、その紐状炭素の特性を利用した紐状炭素の利用方法を提供すること、さらには、安定した紐状炭素の製造方法を提供することが可能となる。
また、下水汚泥などの有機廃棄物処理施設より排出されるメタンガスが、地球温暖化に与える影響を最小限に抑制可能な、紐状炭素の製造方法を提供することができる。
As described above, according to the present invention, it is possible to provide a large amount and a low amount of string-like carbon such as carbon nanotubes, and to provide a method of using the string-like carbon using the characteristics of the string-like carbon, Furthermore, it is possible to provide a stable method for producing string-like carbon.
Also, methane gas discharged from an organic waste treatment facilities such as sewage sludge, which can minimize the impact on global warming, it is possible to provide a manufacturing method of the cord-like-carbon.

本発明の紐状炭素の製造方法を有機廃棄物処理施設に組み込む場合の処理フローを説明する図である。It is a figure explaining the processing flow in the case of incorporating the manufacturing method of the string-like carbon of the present invention in an organic waste processing facility. 実施例1(反応温度900℃)の電子顕微鏡写真を示す。The electron micrograph of Example 1 (reaction temperature 900 degreeC) is shown. 実施例2(反応温度1000℃)の電子顕微鏡写真を示す。The electron micrograph of Example 2 (reaction temperature 1000 degreeC) is shown. 比較例1(反応温度800℃)の電子顕微鏡写真を示す。The electron micrograph of the comparative example 1 (reaction temperature 800 degreeC) is shown. 比較例2(反応温度700℃)の電子顕微鏡写真を示す。The electron micrograph of the comparative example 2 (reaction temperature 700 degreeC) is shown. 比較例3(反応温度600℃)の電子顕微鏡写真を示す。The electron micrograph of the comparative example 3 (reaction temperature 600 degreeC) is shown. 炭素固化に係る重量変化の合成時間依存性を示すグラフである。It is a graph which shows the synthesis time dependence of the weight change which concerns on carbon solidification.

1 沈殿池
2 重力濃縮槽
3 汚泥貯留槽
4 汚泥脱水槽
5 脱硫塔
6 炭化物作製炉
7 ボイラー
8 鉱物
9 紐状炭素
10 濾過フィルター
11 パラフィン液
12 排出ガス
DESCRIPTION OF SYMBOLS 1 Sedimentation basin 2 Gravity concentration tank 3 Sludge storage tank 4 Sludge dewatering tank 5 Desulfurization tower 6 Carbide preparation furnace 7 Boiler 8 Mineral 9 String carbon 10 Filtration filter 11 Paraffin liquid 12 Exhaust gas

Claims (4)

メタンを含むガスを原料とし、リモナイトを触媒として、850℃以上の温度で化学的気相成長させることを特徴とする紐状炭素の製造方法。 A method for producing string-like carbon, characterized in that chemical vapor deposition is performed at a temperature of 850 ° C. or more using a gas containing methane as a raw material and limonite as a catalyst. 請求項1に記載の紐状炭素の製造方法において、該紐状炭素の製造方法は、有機廃棄物処理施設から排出されるメタンガスを炭素固化する工程に、組み込まれていることを特徴とする紐状炭素の製造方法。   The string-like carbon production method according to claim 1, wherein the string-like carbon production method is incorporated in a step of solidifying methane gas discharged from an organic waste treatment facility. A method for producing carbon. 請求項1又は2に記載の紐状炭素の製造方法により製造した、紐状炭素の利用方法において、該紐状炭素を電磁波シールド材、建材、紙、吸着剤のすくなくともいずれかの原料の一つとして使用することを特徴とする紐状炭素の利用方法。   The method for using string-like carbon produced by the method for producing string-like carbon according to claim 1 or 2, wherein the string-like carbon is one of at least one of raw materials for electromagnetic shielding material, building material, paper, and adsorbent. A method of using string-like carbon, characterized in that it is used as: 請求項3に記載の紐状炭素の利用方法において、該吸着剤は、有機廃棄物処理施設で使用される活性炭であることを特徴とする紐状炭素の利用方法。   4. The method for using string-like carbon according to claim 3, wherein the adsorbent is activated carbon used in an organic waste treatment facility.
JP2006122740A 2006-04-26 2006-04-26 Method for producing string-like carbon and method for using the same Active JP5193432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122740A JP5193432B2 (en) 2006-04-26 2006-04-26 Method for producing string-like carbon and method for using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122740A JP5193432B2 (en) 2006-04-26 2006-04-26 Method for producing string-like carbon and method for using the same

Publications (2)

Publication Number Publication Date
JP2007290928A JP2007290928A (en) 2007-11-08
JP5193432B2 true JP5193432B2 (en) 2013-05-08

Family

ID=38761935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122740A Active JP5193432B2 (en) 2006-04-26 2006-04-26 Method for producing string-like carbon and method for using the same

Country Status (1)

Country Link
JP (1) JP5193432B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4516091B2 (en) * 2007-04-23 2010-08-04 株式会社東芝 Nanocarbon generator
JP4660705B2 (en) * 2007-05-25 2011-03-30 国立大学法人信州大学 Method for producing multi-walled carbon nanotube
JP6174358B2 (en) * 2013-04-10 2017-08-02 Jsr株式会社 Carbon material manufacturing method
EP3837214A4 (en) * 2018-08-16 2022-04-27 NGEE Ann Polytechnic Process and apparatus for synthesizing multiwall carbon nanotubes from high molecular polymeric wastes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164263A (en) * 1999-12-08 2001-06-19 Kobe Steel Ltd Method for liquefying coal
JP4852787B2 (en) * 2001-01-12 2012-01-11 三菱化学株式会社 Carbon production equipment
US6706402B2 (en) * 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
JP2003313017A (en) * 2002-04-19 2003-11-06 Petroleum Energy Center Method for producing carbon nanotube
JP2004224651A (en) * 2003-01-24 2004-08-12 Hisanori Shinohara Method of producing double layer carbon nanotube, double layer carbon nanotube, double layer carbon nanotube composition, and electron emission material

Also Published As

Publication number Publication date
JP2007290928A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
Lim et al. Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals—A review
Wang et al. Biomass-derived porous carbon highly efficient for removal of Pb (II) and Cd (II)
Fu et al. Recent progresses, challenges, and opportunities of carbon-based materials applied in heavy metal polluted soil remediation
Peng et al. Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb (II) and Cu (II) from water
US7494639B2 (en) Purification of carbon nanotubes based on the chemistry of fenton's reagent
Xing et al. Facile synthesis of hierarchical porous TiO2 ceramics with enhanced photocatalytic performance for micropolluted pesticide degradation
Zhai et al. In situ loading metal oxide particles on bio-chars: Reusable materials for efficient removal of methylene blue from wastewater
Ai et al. Ball milling sulfur-doped nano zero-valent iron@ biochar composite for the efficient removal of phosphorus from water: Performance and mechanisms
Zhang et al. Removal of phosphate from water by paper mill sludge biochar
CN104271498A (en) Methods and structures for reducing carbon oxides with non-ferrous catalysts
JP5193432B2 (en) Method for producing string-like carbon and method for using the same
Aliyu et al. Effects of aspect ratio of multi-walled carbon nanotubes on coal washery waste water treatment
Hamzat et al. Adsorption studies on the treatment of battery wastewater by purified carbon nanotubes (P-CNTs) and polyethylene glycol carbon nanotubes (PEG-CNTs)
Guo et al. Dredged-sediment-promoted synthesis of boron-nitride-based floating photocatalyst with photodegradation of neutral red under ultraviolet-light irradiation
Wei et al. Synthesis of 3D lotus biochar/reduced graphene oxide aerogel as a green adsorbent for Cr (VI)
Zhang et al. Defect-rich 2D reticulated MoS2 monolayers: Facile hydrothermal preparation and marvellous photoelectric properties
Wei et al. Trifunctional mesoporous magnetic adsorbent-photocatalyst nanocomposite for efficient removal of potassium ethyl xanthate from mining wastewater
Xu et al. Removal of nitrogen and phosphorus from water by sludge-based biochar modified by montmorillonite coupled with nano zero-valent iron
Liang et al. Low-temperature conversion of Fe-rich sludge to KFeS 2 whisker: a new flocculant synthesis from laboratory scale to pilot scale
Hu et al. Synthesis of X@ DRHC (X= Co, Ni, Mn) catalyst from comprehensive utilization of waste rice husk and spent lithium-ion batteries for efficient peroxymonosulfate (PMS) activation
Xie et al. Synchronous decomplexation and mineralization of copper complexes by activating peroxymonosulfate with magnetic bimetallic biochar derived from municipal sludge
ElKhouly et al. A review on nano-carbon materials for pollution remediation
Yang et al. Application of anodic driven and bimetallic doping strategies in peroxymonosulfate-based fenton-like reactions
Shen et al. Preparation of spherical flower-like Mg (OH) 2 from waste magnesite and its immobilization performance for Cu2+, Zn2+ and Pb2+
Ndlwana et al. Sustainable Hydrothermal and Solvothermal Synthetic Approaches for Advanced Carbon Materials in Multidimensional Applications: A Review

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

R150 Certificate of patent or registration of utility model

Ref document number: 5193432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250