JP5190915B2 - Protein-encapsulating spherical transition metal complex and method for producing the same - Google Patents

Protein-encapsulating spherical transition metal complex and method for producing the same Download PDF

Info

Publication number
JP5190915B2
JP5190915B2 JP2007040808A JP2007040808A JP5190915B2 JP 5190915 B2 JP5190915 B2 JP 5190915B2 JP 2007040808 A JP2007040808 A JP 2007040808A JP 2007040808 A JP2007040808 A JP 2007040808A JP 5190915 B2 JP5190915 B2 JP 5190915B2
Authority
JP
Japan
Prior art keywords
group
integer
transition metal
formula
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007040808A
Other languages
Japanese (ja)
Other versions
JP2008201734A (en
Inventor
誠 藤田
宗太 佐藤
康介 鈴木
晃一 加藤
芳樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2007040808A priority Critical patent/JP5190915B2/en
Publication of JP2008201734A publication Critical patent/JP2008201734A/en
Application granted granted Critical
Publication of JP5190915B2 publication Critical patent/JP5190915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、遷移金属原子と二座有機配位子とから形成される中空の殻を有し、前記二座有機配位子の一つが連結基を介して蛋白質が結合してなるものであり、前記蛋白質が中空の殻内部に配向するように形成されている蛋白質内包球状遷移金属錯体、及びその製造方法に関する。   The present invention has a hollow shell formed from a transition metal atom and a bidentate organic ligand, and one of the bidentate organic ligands is formed by binding a protein via a linking group. The present invention relates to a protein-encapsulated spherical transition metal complex formed so that the protein is oriented inside a hollow shell, and a method for producing the same.

本発明者らは、有機配位子と遷移金属イオンとの配位結合を利用した自己組織化を検討している。配位結合は適度な結合力があり方向性が明確に規定されているため、精密に構造が制御された分子集合体を自発的かつ定量的に構築することが可能である。また、金属の種類や酸化数に応じて配位数や結合角を制御することができるため、多様な配位結合性の構造体を得ることができる(非特許文献3〜5)。   The present inventors are examining self-organization utilizing a coordinate bond between an organic ligand and a transition metal ion. Since the coordinate bond has an appropriate binding force and the directionality is clearly defined, it is possible to spontaneously and quantitatively construct a molecular assembly whose structure is precisely controlled. In addition, since the coordination number and the bond angle can be controlled in accordance with the type of metal and the oxidation number, various coordination-bonding structures can be obtained (Non-Patent Documents 3 to 5).

例えば、平面四配位性のPd(II)イオンを用いた場合には、配位結合の方向を90度に規定でき、パネル状の有機配位子(L)を用いることにより、配位子に応じた様々な大きさの中空構造を有する球状パラジウム錯体を得ることができる(非特許文献6〜11)。   For example, when planar four-coordinate Pd (II) ions are used, the direction of coordination bond can be defined as 90 degrees, and by using the panel-like organic ligand (L), the ligand It is possible to obtain spherical palladium complexes having hollow structures of various sizes according to (Non-Patent Documents 6 to 11).

このような精密に制御された大きさの中空の殻内に、蛋白質を内包することが可能となれば、蛋白質の安定化だけでなく、蛋白構造の新たな情報取得手法の開発への利用が期待できる。   If it becomes possible to encapsulate a protein in such a precisely controlled hollow shell, it will not only be used for protein stabilization but also for the development of new information acquisition methods for protein structure. I can expect.

R.M.Kramer,C.Li,D.C.Carter,M.O.Stone,R.R.Naik,J.Am.Chem.Soc.,2004,126,13283R. M.M. Kramer, C.I. Li, D.D. C. Carter, M.M. O. Stone, R.M. R. Naik, J .; Am. Chem. Soc. , 2004, 126, 13283 T.Douglas,E.Strable,D.Willits,A.Aitouchen,M.Libera,M.Young,Adv.Mater.,2002,14,415T.A. Douglas, E .; Strable, D.M. Willits, A.D. Aitouchen, M.A. Libera, M .; Young, Adv. Mater. , 2002, 14, 415 P.J.Stang,B.Olenyuk,Acc.Chem.Res.1997,30,507P. J. et al. Stang, B.M. Olynuk, Acc. Chem. Res. 1997, 30, 507 M.Fujita,Chem.Soc.Rev.,1998,27,417M.M. Fujita, Chem. Soc. Rev. 1998, 27, 417 B.Olenyuk,A.Fechtenkotter,P.J.Stang,J.Chem.Soc.Dalton Trans.1998,1707B. Olynuk, A .; Fechtencotter, P.M. J. et al. Stang, J. et al. Chem. Soc. Dalton Trans. 1998, 1707 M.Fujita,K.Umemoto,M.Yoshizawa,N.Fujita,T.Kusukawa,K.Biradha,Chem.Commun.,2001,509M.M. Fujita, K .; Umemoto, M.M. Yoshizawa, N .; Fujita, T .; Kusukawa, K. et al. Biradha, Chem. Commun. , 2001, 509 M.Fujita,D.Oguro,M.Miyazawa,H.Oka,K.yamaguchi,K.Ogura,Nature,1995,378,469M.M. Fujita, D .; Oguro, M .; Miyazawa, H .; Oka, K .; Yamaguchi, K .; Ogura, Nature, 1995, 378, 469 N.Takeda,K.Umemoto,K.Yamaguchi,M.Fujita,Nature,1999,398,794N. Takeda, K .; Umemoto, K.M. Yamaguchi, M .; Fujita, Nature, 1999, 398, 794 K.Umemoto,H.Tsukui,T.Kusukawa,K.Biradha,M.Fujita,Angew.Chem.Int.Ed.,2001,40,2620K. Umemoto, H.M. Tsukui, T .; Kusukawa, K. et al. Biradha, M .; Fujita, Angew. Chem. Int. Ed. , 2001, 40, 2620 M.Aoyagi,S.Tashiro,M.Tominaga,K.Biradha,M.Fujita,Chem.Commun.,2002,2036M.M. Aoyagi, S .; Tashiro, M .; Tominaga, K .; Biradha, M .; Fujita, Chem. Commun. , 2002, 2036 T.Yamaguchi,S.Tashiro,M.Tominaga,M.Kawano,T.Ozeki,M.Fujita,J.Am.Chem.Soc.,2004,126,10818T.A. Yamaguchi, S .; Tashiro, M .; Tominaga, M .; Kawano, T .; Ozeki, M .; Fujita, J .; Am. Chem. Soc. , 2004, 126, 10818

本発明は、このような本発明者らの研究開発の一環としてなされたものであり、遷移金属原子と二座有機配位子とから形成される中空の殻を有し、前記二座有機配位子の一つが、連結基を介して蛋白質が結合してなるものであり、前記蛋白質が中空の殻内部に配向するように形成されている蛋白質内包球状遷移金属錯体、前記二座有機配位子、及びその製造方法を提供することを課題とする。   The present invention has been made as part of such research and development by the present inventors, and has a hollow shell formed of a transition metal atom and a bidentate organic ligand, One of the ligands is formed by binding a protein via a linking group, and the protein-encapsulating spherical transition metal complex formed so that the protein is oriented inside the hollow shell, the bidentate organic coordination It is an object to provide a child and a manufacturing method thereof.

本発明者らは、精密に制御された大きさの中空の殻を有するM1224球状錯体の内部空間(中空の殻)を利用して、蛋白質の一種であるユビキチンの内包を試みた。その結果、1−(2−{2,6−ビス[4−(ピリジル)フェニルエチニル]フェノキシ}エチル)ピロール−2,5−ジオンにユビキチンを連結させた配位子、トリメチル{4−メチル−3,5−ビス[4−(4−ピリジル)フェニルエチニル]ベンジル}アンモニウムニトレイト、及びPd(II)イオンを1:23:12のモル比で混合したところ、ユビキチンが錯体の中空の殻内部に配置された球状遷移金属錯体を効率よく得ることができることを見出し、この知見を一般化することで、本発明を完成するに至った。 The present inventors tried to encapsulate ubiquitin, which is a kind of protein, using the internal space (hollow shell) of the M 12 L 24 spherical complex having a hollow shell of precisely controlled size. As a result, 1- (2- {2,6-bis [4- (pyridyl) phenylethynyl] phenoxy} ethyl) pyrrole-2,5-dione linked to ubiquitin, trimethyl {4-methyl- When 3,5-bis [4- (4-pyridyl) phenylethynyl] benzyl} ammonium nitrate and Pd (II) ions were mixed at a molar ratio of 1:23:12, ubiquitin was found inside the hollow shell of the complex. The present inventors have found that a spherical transition metal complex arranged in can be efficiently obtained, and generalizing this finding has led to the completion of the present invention.

かくして本発明の第1によれば、下記(1)〜(6)のいずれかに記載の蛋白質内包球状遷移金属錯体が提供される。
(1)中空の殻を有する球状遷移金属錯体であって、前記中空の殻が、n個(nは、6〜60の整数を表す。)の遷移金属原子と、2n個の二座有機配位子とから形成されてなり、前記二座有機配位子の一つが、連結基を介して蛋白質が結合してなるものであり、かつ、前記蛋白質が中空の殻内部に配向するように形成されていることを特徴とする蛋白質内包球状遷移金属錯体。
(2)前記nが、6、12、24、30または60であることを特徴とする(1)に記載の蛋白質内包球状遷移金属錯体。
Thus, according to the first aspect of the present invention, the protein-encapsulated globular transition metal complex according to any one of the following (1) to (6) is provided.
(1) A spherical transition metal complex having a hollow shell, wherein the hollow shell has n transition metal atoms (n represents an integer of 6 to 60) and 2n bidentate organic arrangement. Formed from a ligand, and one of the bidentate organic ligands is formed by binding a protein through a linking group, and the protein is oriented in a hollow shell. A protein-encapsulated globular transition metal complex characterized in that
(2) The protein-encapsulated globular transition metal complex according to (1), wherein n is 6, 12, 24, 30 or 60.

(3)遷移金属化合物(M)、連結基を介して蛋白質が結合してなる二座有機配位子(L1)、および二座有機配位子(L2)とから、前記蛋白質が中空の殻内部に配向するように自己組織的に形成された、式:ML2(2n-1)L1(nは前記と同じ意味を表し、複数のM同士、L2同士は、それぞれ同一であっても、相異なっていても良い。)で表される化合物であることを特徴とする(1)または(2)に記載の蛋白質内包球状遷移金属錯体。
(4)前記遷移金属錯体を構成する遷移金属原子が、Ti、Fe、Co、Ni、Cu、Zn、Ru、Rh、Pd、Cd、Os、Ir及びPtからなる群から選ばれる一種であることを特徴とする(1)〜(3)のいずれかに記載の蛋白質内包球状遷移金属錯体。
(5)前記二座有機配位子(L1)が、式(I)
(3) From the transition metal compound (M), the bidentate organic ligand (L1) formed by binding the protein via a linking group, and the bidentate organic ligand (L2), the protein has a hollow shell. Formula: M n L2 (2n-1) L1 (n represents the same meaning as described above, and a plurality of Ms and L2s may be the same as each other. The protein-encapsulated globular transition metal complex according to (1) or (2), which may be different from each other.
(4) The transition metal atom constituting the transition metal complex is a kind selected from the group consisting of Ti, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Cd, Os, Ir, and Pt. The protein-encapsulated globular transition metal complex according to any one of (1) to (3).
(5) The bidentate organic ligand (L1) is represented by the formula (I)

Figure 0005190915
Figure 0005190915

{式中、Xは、エチニレン基またはp−フェニレン基を表し、
tは2〜6の整数を表し、複数のX同士は同一であっても相異なっていてもよい。
、Rはそれぞれ独立して、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基またはニトロ基を表す。
m1、m2はそれぞれ独立して、0〜4の整数を表す。m1、m2が2以上のとき、複数のR同士、R同士はそれぞれ同一であっても、相異なっていても良い。
は、下記式(a−1)〜(a−4)
{Wherein X represents an ethynylene group or a p-phenylene group;
t represents an integer of 2 to 6, and a plurality of Xs may be the same or different.
R 1 and R 2 each independently represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group or a nitro group.
m1 and m2 each independently represents an integer of 0 to 4. When m1 and m2 are 2 or more, a plurality of R 1 s and R 2 s may be the same or different.
A 1 represents the following formulas (a-1) to (a-4):

Figure 0005190915
Figure 0005190915

〔式中、Rは、式:−Y−D−Pro(式中、Yは、単結合または2価の連結基を表し、Dは、O、S、NH、又はO−(C=O)を表し、D−Proは、Pro−DHで表される蛋白質のHを除いた部分を表す。)で表される基を表す。
は、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基、ニトロ基、ヒドロキシル基、ヒドロキシアルキル基、カルボキシル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミノアルキル基、または4級化アミノアルキル基を表す。
m3は0〜3の整数を表し、m4は0〜2の整数を表す。m3が2以上のとき、またはm4が2のとき、複数個のR同士は同一であっても、相異なっていても良い。
Qは、−Nr1−(r1は、水素原子、アルキル基、アリール基若しくはアシル基を表す。)、−O−、−C(=O)−、−S−、または−SO−を表す。〕で表される基の一種を示す。}で示される化合物であり、前記二座有機配位子(L2)が、式(II)
[In the formula, R 3 represents a formula: —YD-Pro (wherein Y represents a single bond or a divalent linking group, and D represents O, S, NH, or O— (C═O D-Pro represents a portion of the protein represented by Pro-DH excluding H.
R 4 may have a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group, a nitro group, a hydroxyl group, a hydroxyalkyl group, a carboxyl group, or a substituent. An amino group, an aminoalkyl group which may have a substituent, or a quaternized aminoalkyl group is represented.
m3 represents an integer of 0 to 3, and m4 represents an integer of 0 to 2. When m3 is 2 or more, or when m4 is 2, even a plurality of R 4 with each other are the same, may be different from each other.
Q is, -Nr1- (r1 represents a hydrogen atom, an alkyl group, an aryl group or an acyl group.), - O -, - C (= O) -, - S-, or -SO 2 - represents a. ] The kind of group represented by this is shown. }, Wherein the bidentate organic ligand (L2) is represented by the formula (II)

Figure 0005190915
Figure 0005190915

{式中、Xおよびnは前記と同じ意味を表す。
、Rはそれぞれ独立して、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基またはニトロ基を表す。
m5、m6はそれぞれ独立して、0〜4の整数を表す。m5、m6が2以上のとき、複数のR同士、R同士はそれぞれ同一であっても、相異なっていても良い。
は、下記式(a−5)〜(a−8)
{Wherein X and n represent the same meaning as described above.
R 5 and R 6 each independently represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group or a nitro group.
m5 and m6 each independently represents an integer of 0 to 4. m5, when m6 is 2 or more, plural R 5 together, even R 6 together are each identical or may be different phases.
A 2 represents the following formulas (a-5) to (a-8)

Figure 0005190915
Figure 0005190915

(式中、Qは前記と同じ意味を表す。
は、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基、ニトロ基、ヒドロキシル基、ヒドロキシアルキル基、カルボキシル基、カルボキシアルキル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミノアルキル基、または4級化アミノアルキル基を表す。
は、水素原子、ハロゲン原子、アルキル基、またはハロアルキル基を表す。
m7は0〜3の整数を表し、m8は0〜2の整数を表す。m7が2以上のとき、またはm8が2のとき、複数個のR同士は同一であっても、相異なっていても良い。)で表される基の一種を示す。}で示される化合物であることを特徴とする、(1)〜(4)のいずれかに記載の蛋白質内包球状遷移金属錯体。
(6)前記Yが、下記式
(In the formula, Q represents the same meaning as described above.
R 7 has a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group, a nitro group, a hydroxyl group, a hydroxyalkyl group, a carboxyl group, a carboxyalkyl group, and a substituent. An amino group that may be substituted, an aminoalkyl group that may have a substituent, or a quaternized aminoalkyl group.
R 8 represents a hydrogen atom, a halogen atom, an alkyl group, or a haloalkyl group.
m7 represents an integer of 0 to 3, and m8 represents an integer of 0 to 2. When m7 is 2 or more, or when m8 is 2, a plurality of R 7 may be the same or different. ). } The protein-encapsulated globular transition metal complex according to any one of (1) to (4), which is a compound represented by
(6) Y is the following formula

Figure 0005190915
Figure 0005190915

(式中、m9は1〜10の整数を表す。)で表される基であることを特徴とする(5)に記載の蛋白質内包球状遷移金属錯体。 (Wherein m9 represents an integer of 1 to 10), and the protein-encapsulated globular transition metal complex according to (5),

本発明の第2によれば、下記(7)の蛋白質内包球状遷移金属錯体の製造方法が提供される。
(7)遷移金属化合物(M)と、前記式(I)で表される二座有機配位子(L1)および式(II)で表される二座有機配位子(L2)とを、遷移金属化合物(M)nモル(nは6〜60の整数を表す)に対し、二座有機配位子(L1)を1モル、二座有機配位子(L2)を(2n−1)モルの割合で反応させることを特徴とする(1)〜(6)のいずれかに記載の蛋白質内包球状遷移金属錯体の製造方法。
According to the second aspect of the present invention, there is provided the following method (7) for producing a protein-encapsulating globular transition metal complex.
(7) A transition metal compound (M), a bidentate organic ligand (L1) represented by the formula (I) and a bidentate organic ligand (L2) represented by the formula (II), 1 mol of bidentate organic ligand (L1) and bidentate organic ligand (L2) (2n-1) per n mol of transition metal compound (M) (n represents an integer of 6 to 60) The method for producing a protein-encapsulated globular transition metal complex according to any one of (1) to (6), wherein the reaction is performed in a molar ratio.

本発明の第3によれば、下記(8)、(9)の化合物が提供される。
(8)式(I)
According to the third aspect of the present invention, the following compounds (8) and (9) are provided.
(8) Formula (I)

Figure 0005190915
Figure 0005190915

{式中、Xは、エチニレン基またはp−フェニレン基を表し、
n1は1〜6の整数を表し、n1が2以上のとき、複数のX同士は同一であっても相異なっていてもよい。
、Rはそれぞれ独立して、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基またはニトロ基を表す。
m1、m2はそれぞれ独立して、0〜4の整数を表す。m1、m2が2以上のとき、複数のR同士、R同士はそれぞれ同一であっても、相異なっていても良い。
は、下記式(a−1)〜(a−4)
{Wherein X represents an ethynylene group or a p-phenylene group;
n1 represents an integer of 1 to 6, and when n1 is 2 or more, a plurality of Xs may be the same or different.
R 1 and R 2 each independently represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group or a nitro group.
m1 and m2 each independently represents an integer of 0 to 4. When m1 and m2 are 2 or more, a plurality of R 1 s and R 2 s may be the same or different.
A 1 represents the following formulas (a-1) to (a-4):

Figure 0005190915
Figure 0005190915

〔式中、Rは、式:−Y−D−Pro(式中、Yは、単結合または2価の連結基を表し、Dは、O、S、NH、またはO−(C=O)を表し、D−Proは、Pro−DHで表される蛋白質のHを除いた部分を表す。)で表される基を表す。
は、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基、ニトロ基、ヒドロキシル基、ヒドロキシアルキル基、カルボキシル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミノアルキル基、または4級化アミノアルキル基を表す。
m3は0〜3の整数を表し、m4は0〜2の整数を表す。m3が2以上のとき、またはm4が2のとき、複数個のR同士は同一であっても、相異なっていても良い。
Qは、−Nr1−(r1は、水素原子、アルキル基、アリール基若しくはアシル基を表す。)、−O−、−C(=O)−、−S−、または−SO−を表す。〕で表される基の一種を示す。}で示される化合物。
[In the formula, R 3 represents a formula: —YD-Pro (wherein Y represents a single bond or a divalent linking group, and D represents O, S, NH, or O— (C═O D-Pro represents a portion of the protein represented by Pro-DH excluding H.
R 4 may have a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group, a nitro group, a hydroxyl group, a hydroxyalkyl group, a carboxyl group, or a substituent. An amino group, an aminoalkyl group which may have a substituent, or a quaternized aminoalkyl group is represented.
m3 represents an integer of 0 to 3, and m4 represents an integer of 0 to 2. When m3 is 2 or more, or when m4 is 2, even a plurality of R 4 with each other are the same, may be different from each other.
Q is, -Nr1- (r1 represents a hydrogen atom, an alkyl group, an aryl group or an acyl group.), - O -, - C (= O) -, - S-, or -SO 2 - represents a. ] The kind of group represented by this is shown. } The compound shown.

(9)前記Yが、下記式 (9) Y is the following formula

Figure 0005190915
(式中、m9は1〜10の整数を表す。)で表される基であることを特徴とする(8)に記載の化合物。
Figure 0005190915
(Wherein, m9 represents an integer of 1 to 10), and the compound according to (8),

本発明の第4によれば、下記(10)の化合物が提供される。
(10)式(II)
According to the fourth aspect of the present invention, the following compound (10) is provided.
(10) Formula (II)

Figure 0005190915
Figure 0005190915

{式中、Xは、エチニレン基またはp−フェニレン基を表し、
n1は1〜6の整数を表し、n1が2以上のとき、複数のX同士は同一であっても相異なっていてもよい。
、Rはそれぞれ独立して、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基またはニトロ基を表す。
m5、m6はそれぞれ独立して、0〜4の整数を表す。m5、m6が2以上のとき、複数のR同士、R同士はそれぞれ同一であっても、相異なっていても良い。
は、下記式(a−5)〜(a−8)
{Wherein X represents an ethynylene group or a p-phenylene group;
n1 represents an integer of 1 to 6, and when n1 is 2 or more, a plurality of Xs may be the same or different.
R 5 and R 6 each independently represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group or a nitro group.
m5 and m6 each independently represents an integer of 0 to 4. m5, when m6 is 2 or more, plural R 5 together, even R 6 together are each identical or may be different phases.
A 2 represents the following formulas (a-5) to (a-8)

Figure 0005190915
Figure 0005190915

(式中、Qは前記と同じ意味を表す。
は、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基、ニトロ基、ヒドロキシル基、ヒドロキシアルキル基、カルボキシル基、カルボキシアルキル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミノアルキル基、または4級化アミノアルキル基を表す。
は、水素原子、ハロゲン原子、アルキル基、またはハロアルキル基を表す。
m10は1〜3の整数を表し、m11は1〜2の整数を表す。m10が2以上のとき、またはm11が2のとき、複数個のR同士は同一であっても、相異なっていても良い。)で表される基の一種を示す。}で示される化合物。
(In the formula, Q represents the same meaning as described above.
R 7 has a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group, a nitro group, a hydroxyl group, a hydroxyalkyl group, a carboxyl group, a carboxyalkyl group, and a substituent. An amino group that may be substituted, an aminoalkyl group that may have a substituent, or a quaternized aminoalkyl group.
R 8 represents a hydrogen atom, a halogen atom, an alkyl group, or a haloalkyl group.
m10 represents an integer of 1 to 3, and m11 represents an integer of 1 to 2. When m10 is 2 or more, or when m11 is 2, a plurality of R 7 may be the same or different. ). } The compound shown.

本発明の第1によれば、精密に制御された大きさの中空の殻を有し、該殻を形成する二座有機配位子の1つに連結基を介して蛋白質が結合し、該蛋白質が前記中空の殻内部に配向した特殊な構造を有する蛋白質内包球状遷移金属錯体が提供される。
本発明によれば、精密に制御された大きさの中空内に蛋白質を内包することができるため、蛋白質の安定化だけでなく、蛋白構造の新たな情報取得手法の開発への利用が期待できる。
According to the first aspect of the present invention, a protein has a hollow shell with a precisely controlled size, and a protein binds to one of the bidentate organic ligands forming the shell via a linking group, A protein-encapsulated globular transition metal complex having a special structure in which a protein is oriented inside the hollow shell is provided.
According to the present invention, since a protein can be encapsulated in a precisely controlled hollow, it can be used not only for protein stabilization but also for development of a new information acquisition method for protein structure. .

本発明の第2によれば、複雑なステップを要することなく、球状構造内部に蛋白質を含有するナノメートルスケールの球状遷移金属錯体(本発明の球状遷移金属錯体)を効率よく製造できる球状遷移金属錯体の製造方法が提供される。
本発明の第3、第4によれば、新規な二座有機配位子が提供される。これらの一部は、本発明の球状遷移金属錯体の製造原料として用いることができる。
According to the second aspect of the present invention, a spherical transition metal capable of efficiently producing a nanometer-scale spherical transition metal complex containing the protein inside the spherical structure (the spherical transition metal complex of the present invention) without requiring a complicated step. A method for producing the complex is provided.
According to the third and fourth aspects of the present invention, a novel bidentate organic ligand is provided. Some of these can be used as a raw material for producing the spherical transition metal complex of the present invention.

以下、本発明を、1)蛋白質内包球状遷移金属錯体、2)蛋白質内包球状遷移金属錯体の製造方法、及び、3)二座有機配位子に項分けして詳細に説明する。   Hereinafter, the present invention will be described in detail by dividing into 1) a protein-encapsulated spherical transition metal complex, 2) a method for producing a protein-encapsulated spherical transition metal complex, and 3) a bidentate organic ligand.

1)蛋白質内包球状遷移金属錯体
本発明の蛋白質内包球状遷移金属錯体(以下、単に「球状遷移金属錯体」ということがある。)は、中空の殻を有する球状遷移金属錯体であって、前記中空の殻がn個の遷移金属原子と、2n個の二座有機配位子とから形成されてなり、前記二座有機配位子の一つが、連結基を介して蛋白質が結合してなるものであり、かつ、前記蛋白質が中空の殻内部に配向するように形成されていることを特徴とする。
1) Protein-encapsulated spherical transition metal complex The protein-encapsulated spherical transition metal complex of the present invention (hereinafter sometimes simply referred to as “spherical transition metal complex”) is a spherical transition metal complex having a hollow shell, The shell is formed of n transition metal atoms and 2n bidentate organic ligands, and one of the bidentate organic ligands is formed by binding a protein via a linking group. And the protein is formed so as to be oriented inside the hollow shell.

ここで、nは、6〜60の整数である。
本発明の球状遷移金属錯体においては、自己組織化が容易に進行することから、前記nが、6、12、24、30または60であるのが好ましく、6または12であるのがより好ましく、12であるのが特に好ましい。
Here, n is an integer of 6 to 60.
In the spherical transition metal complex of the present invention, since the self-assembly easily proceeds, the n is preferably 6, 12, 24, 30 or 60, more preferably 6 or 12. 12 is particularly preferred.

本発明の球状遷移金属錯体は、遷移金属イオンと二座有機配位子との配位結合を利用した自己組織化により形成されるものである。配位結合は適度な結合力があり方向性が明確に規定されているため、精密に構造が制御された分子集合体を自発的かつ定量的に構築することが可能である。また、金属の種類や酸化数に応じて配位数や結合角を制御することができるため、多様な配位結合性の構造体とすることができる。   The spherical transition metal complex of the present invention is formed by self-organization utilizing a coordinate bond between a transition metal ion and a bidentate organic ligand. Since the coordinate bond has an appropriate binding force and the directionality is clearly defined, it is possible to spontaneously and quantitatively construct a molecular assembly whose structure is precisely controlled. In addition, since the coordination number and the bond angle can be controlled in accordance with the type of metal and the oxidation number, various coordination bond structures can be obtained.

本発明の球状遷移金属錯体としては、遷移金属化合物(M):2n個、連結基を介して蛋白質が結合してなる二座有機配位子(L1):1個、および二座有機配位子(L2):2n−1個により、前記蛋白質が中空の殻内部に配向するように自己組織的に形成された、式:ML2(2n-1)L1で表されるものが好ましい。ここで、nは前記と同じ意味を表す。複数のM同士、L2同士は、それぞれ同一であっても、相異なっていても良いが、同一であるのが好ましい。 As the spherical transition metal complex of the present invention, there are 2n transition metal compounds (M), 1 bidentate organic ligand (L1) formed by binding a protein via a linking group, and bidentate organic coordination. A compound represented by the formula: M n L2 (2n−1) L1 formed by self-organization so that the protein is oriented inside the hollow shell by 2n−1 children (L2) is preferable. Here, n represents the same meaning as described above. The plurality of Ms and L2s may be the same or different from each other, but are preferably the same.

本発明の球状遷移金属錯体の中空の殻の大きさは、蛋白質が内包されるため、直径が5〜15nmであるのが好ましい。   The size of the hollow shell of the spherical transition metal complex of the present invention is preferably 5 to 15 nm in diameter because the protein is encapsulated.

(1)遷移金属原子
本発明の球状遷移金属錯体を構成する遷移金属原子としては、特に制限されないが、Ti、Fe、Co、Ni、Cu、Zn、Ru、Rh、Pd、Cd、Os、Ir及びPtからなる群から選ばれる一種であることが好ましく、平面4配位の錯体を容易に形成し得ることから、Ru、Rh、Pd、Os、Ir、Pt等の白金族原子が好ましく、Ru、Pd、Ptがより好ましく、Pdが特に好ましい。
遷移金属原子の価数は、通常0〜4価、好ましくは2価であり、配位数は、通常4〜6、好ましくは4である。
(1) Transition metal atom Although it does not restrict | limit especially as a transition metal atom which comprises the spherical transition metal complex of this invention, Ti, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Cd, Os, Ir And a platinum group atom such as Ru, Rh, Pd, Os, Ir, and Pt is preferable because Ru can be easily formed as a four-coordinated complex. , Pd, and Pt are more preferable, and Pd is particularly preferable.
The valence of the transition metal atom is usually 0 to 4, preferably 2. The coordination number is usually 4 to 6, preferably 4.

(2)二座有機配位子
本発明の球状遷移金属錯体を構成する二座有機配位子は、二座有機配位子(L1)と二座有機配位子(L2)である。
すなわち、遷移金属原子と自己組織的に二座有機配位子を反応させて球状遷移金属錯体を形成させる際、蛋白質を内包させるため、用いる二座有機配位子のうちの一つに蛋白質を連結基を介して結合させた二座有機配位子(二座有機配位子(L1))を用いる。
(2) Bidentate organic ligands The bidentate organic ligands constituting the spherical transition metal complex of the present invention are a bidentate organic ligand (L1) and a bidentate organic ligand (L2).
That is, when a bidentate organic ligand is reacted with a transition metal atom in a self-organizing manner to form a spherical transition metal complex, the protein is encapsulated in one of the bidentate organic ligands used. A bidentate organic ligand (bidentate organic ligand (L1)) bonded through a linking group is used.

(i)二座有機配位子(L1)
二座有機配位子(L1)は、連結基を介して蛋白質が結合してなる二座有機配位子であり、形成される球状遷移金属錯体において、前記蛋白質が中空の殻内部に配向することができるものであれば特に制限されないが、下記式(I)で表される化合物が好ましい。
(I) Bidentate organic ligand (L1)
The bidentate organic ligand (L1) is a bidentate organic ligand formed by binding a protein through a linking group. In the formed spherical transition metal complex, the protein is oriented inside the hollow shell. The compound represented by the following formula (I) is preferable as long as it can be used.

Figure 0005190915
Figure 0005190915

式(I)で表される化合物は、ピリジル基の隣にブリッジ部を有し、平面性を保ちつつ、両端のピリジル基の間に広い空間を形成し、この空間に連結基を介して結合された蛋白質が位置する構造を有する。
式(I)中、Xは、エチニレン基またはp−フェニレン基を表す。
tは2〜6の整数を表し、複数のX同士は同一であっても相異なっていてもよい。
式:−(X)t−で表される基の具体例を下記に示す。
The compound represented by the formula (I) has a bridge portion next to the pyridyl group, forms a wide space between the pyridyl groups at both ends while maintaining planarity, and is bonded to this space via a linking group. The structure in which the formed protein is located.
In formula (I), X represents an ethynylene group or a p-phenylene group.
t represents an integer of 2 to 6, and a plurality of Xs may be the same or different.
Specific examples of the group represented by the formula:-(X) t- are shown below.

Figure 0005190915
Figure 0005190915

、Rはそれぞれ独立して、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基またはニトロ基を表す。 R 1 and R 2 each independently represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group or a nitro group.

、Rのハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられる。
置換されていても良いアルキル基のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−オクチル基、n−ノニル基、n−デシル基等の炭素数1〜10のアルキル基が挙げられる。置換されていても良いアルキル基の置換基としては、ハロゲン原子、アルコキシル基、置換基を有していても良いフェニル基などが挙げられる。
Examples of the halogen atom for R 1 and R 2 include a fluorine atom, a chlorine atom, and a bromine atom.
As the alkyl group of the alkyl group which may be substituted, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-octyl group , N-nonyl group, n-decyl group and the like, and an alkyl group having 1 to 10 carbon atoms. Examples of the substituent of the alkyl group which may be substituted include a halogen atom, an alkoxyl group, and a phenyl group which may have a substituent.

置換されていても良いアルコキシル基のアルコキシル基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等の炭素数1〜10のアルコキシル基が挙げられる。また、置換されていても良いアルコキシル基の置換基としては、ハロゲン原子、置換基を有していても良いフェニル基などが挙げられる。   The alkoxyl group of the optionally substituted alkoxyl group has 1 to 10 carbon atoms such as methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, t-butoxy group, pentyloxy group, hexyloxy group and the like. An alkoxyl group is mentioned. Examples of the substituent of the alkoxyl group which may be substituted include a halogen atom and a phenyl group which may have a substituent.

m1、m2はそれぞれ独立して、0〜4の整数を表す。m1、m2が2以上のとき、複数のR同士、R同士はそれぞれ同一であっても、相異なっていても良い。 m1 and m2 each independently represents an integer of 0 to 4. When m1 and m2 are 2 or more, a plurality of R 1 s and R 2 s may be the same or different.

は、下記式(a−1)〜(a−4)で示される基の一種を表す。 A 1 represents one type of groups represented by the following formulas (a-1) to (a-4).

Figure 0005190915
Figure 0005190915

式(a−1)〜(a−4)中、Rは、式:−Y−D−Proで表される基を表す。
式中、Yは単結合又は2価の連結基を表す。2価の連結基としては、前記Dと結合できるものであれば特に制約はない。例えば、−O−(CH)a−(aは1〜8の整数を表す。以下にて同じ)、−O−(CH)a−C(=O)−、−C(=O)−、−O−(CH)a−NH−、−NH−、及び式(y)
In formulas (a-1) to (a-4), R 3 represents a group represented by the formula: —YD-Pro.
In the formula, Y represents a single bond or a divalent linking group. The divalent linking group is not particularly limited as long as it can bind to D. For example, -O- (CH 2) a- ( a is the same in the following represents an integer of 1~8.), - O- (CH 2) a-C (= O) -, - C (= O) -, - O- (CH 2) a-NH -, - NH-, and wherein (y)

Figure 0005190915
Figure 0005190915

で表される基等が挙げられる。式(y)中、m9は1〜10の整数を表し、1〜3であるのが好ましい。
これらの中でも、蛋白質の結合、脱離が容易で、蛋白質と結合する際、蛋白質の変性、分解が起こりにくい、式(y)で表される基が好ましい。
The group etc. which are represented by these are mentioned. In formula (y), m9 represents an integer of 1 to 10, preferably 1 to 3.
Among these, the group represented by the formula (y) is preferable because the protein can be easily bound and detached, and hardly denatured or decomposed when bound to the protein.

Dは、O、S、NH、又はO−(C=O)を表し、D−ProはPro−DHで表される蛋白質のHを除いた部分を表す。   D represents O, S, NH, or O— (C═O), and D-Pro represents a portion excluding H of the protein represented by Pro-DH.

Pro−DHの具体例としては、Pro−OH、Pro−NH、Pro−COOH、Pro−SH等が挙げられる。
例えば、Pro−SHは、C末端がメチオニンである蛋白質や、C末端がグリシンである蛋白質を、該グリシンをシステインへと変異させることによって得られる蛋白質である。なお、Pro−SHは、S−S結合を形成して2量体となっている場合がある。その場合は還元して単量体としてから用いる。
Specific examples of the Pro-DH is, Pro-OH, Pro-NH 2, Pro-COOH, Pro-SH , and the like.
For example, Pro-SH is a protein obtained by mutating a protein having C-terminal methionine or a protein having C-terminal glycine into cysteine. Note that Pro-SH may form a dimer by forming an S—S bond. In that case, it reduces and uses it as a monomer.

蛋白質は、一般的には、L−α−アミノ酸のカルボキシル基とアミノ基との間で脱水することにより重縮合したもの(ポリペプチド)のうち、その分子量が4,000以上のものである。本発明に用いる蛋白質としては、球状遷移金属錯体が形成する中空の殻内に収まる大きさを有する、アミノ酸残基が50〜500のものであって、その構造につき新たな情報取得を望むものであるのが好ましい。   Proteins generally have a molecular weight of 4,000 or more among those polycondensated (polypeptide) by dehydration between the carboxyl group and amino group of the L-α-amino acid. The protein used in the present invention has a size that fits in the hollow shell formed by the spherical transition metal complex and has 50 to 500 amino acid residues, and it is desired to obtain new information on its structure. Is preferred.

そのような蛋白質の具体例としては、例えばユビキチンが挙げられる。
ユビキチンは、アミノ酸76残基からなり、外径3nm強の小さな蛋白質であり、有機溶媒や酵素、熱などに対して安定であることが知られており、扱いも比較的容易であると考えられる。ユビキチンは生体内で他の蛋白質の修飾に用いられており、蛋白質分解・細胞周期・シグナル伝達・DNA修復・転写調節・代謝制御など数多くの生命現象を制御する重要な蛋白質である。2004年に「ユビキチンを介した蛋白質分解の発見」に対してノーベル化学賞が授与され、その構造に注目が集められている。
Specific examples of such proteins include ubiquitin, for example.
Ubiquitin consists of 76 amino acids and is a small protein with an outer diameter of slightly over 3 nm. It is known to be stable against organic solvents, enzymes, heat, etc., and is considered to be relatively easy to handle. . Ubiquitin is used for the modification of other proteins in vivo and is an important protein that controls many life phenomena such as proteolysis, cell cycle, signal transduction, DNA repair, transcriptional regulation, and metabolic control. In 2004, the Nobel Prize in Chemistry was awarded for “Discovery of Proteolysis via Ubiquitin”, and the structure has attracted attention.

は、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基、ニトロ基、ヒドロキシル基、ヒドロキシアルキル基、カルボキシル基、カルボキシアルキル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミノアルキル基、または4級化アミノアルキル基を表す。 R 4 has a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group, a nitro group, a hydroxyl group, a hydroxyalkyl group, a carboxyl group, a carboxyalkyl group, and a substituent. An amino group that may be substituted, an aminoalkyl group that may have a substituent, or a quaternized aminoalkyl group.

の、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基としては、Rで例示したものと同様のものが挙げられる。
ヒドロキシアルキル基、カルボキシルアルキル基、置換基を有していてもよいアミノアルキル基、4級化アミノアルキル基のアルキル基としては、メチル基、エチル基、プロピル基等の炭素数1〜6のアルキル基が挙げられる。
Of R 4, halogen atom, optionally substituted alkyl groups, as good alkoxyl group which may be substituted include the same ones as exemplified for R 1.
Examples of the alkyl group of the hydroxyalkyl group, carboxylalkyl group, optionally substituted aminoalkyl group, and quaternized aminoalkyl group include alkyl groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group. Groups.

すなわち、ヒドロキシアルキル基としては、ヒドロキシメチル基、2−ヒドロキシエチル基、3−ヒドロキシ−n−プロピル基等が挙げられる。
カルボキシアルキル基としては、カルボキシルメチル基、2−カルボキシルエチル基、3−カルボキシ−n−プロピル基等が挙げられる。
That is, examples of the hydroxyalkyl group include a hydroxymethyl group, a 2-hydroxyethyl group, and a 3-hydroxy-n-propyl group.
Examples of the carboxyalkyl group include a carboxymethyl group, a 2-carboxylethyl group, and a 3-carboxy-n-propyl group.

置換基を有していてもよいアミノアルキル基としては、アミノメチル基、メチルアミノメチル基、ジメチルアミノメチル基等が挙げられる。   Examples of the aminoalkyl group which may have a substituent include an aminomethyl group, a methylaminomethyl group, and a dimethylaminomethyl group.

4級化アミノアルキル基としては、−CH−NMe、−CH−NEt、−CHCH−NMe、−CHCH−NEt等が挙げられる(Meはメチル基、Etはエチル基を表す。)。 The quaternized aminoalkyl group, -CH 2 -N + Me 3, -CH 2 -N + Et 3, -CH 2 CH 2 -N + Me 3, like -CH 2 CH 2 -N + Et 3 is (Me represents a methyl group, Et represents an ethyl group).

置換基を有していてもよいアミノ基としては、アミノ基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、メチルエチルアミノ基、アセチルアミノ基、ベンゾイルアミノ基、メシルアミノ基、トシルアミノ基等が挙げられる。   Examples of the amino group which may have a substituent include an amino group, a methylamino group, a dimethylamino group, an ethylamino group, a methylethylamino group, an acetylamino group, a benzoylamino group, a mesylamino group, and a tosylamino group. It is done.

m3は0〜3の整数を表し、m4は0〜2の整数を表す。m3が2以上のとき、またはm4が2のとき、複数個のR同士は同一であっても、相異なっていても良い。 m3 represents an integer of 0 to 3, and m4 represents an integer of 0 to 2. When m3 is 2 or more, or when m4 is 2, even a plurality of R 4 with each other are the same, may be different from each other.

Qは、−Nr1−、−O−、−C(=O)−、−S−、または−SO−を表す。
式:−Nr1−で表される基において、r1は、水素原子、アルキル基、アリール基又はアシル基を表す。
前記r1のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基等が挙げられる。アリール基としては、フェニル基、p−メチルフェニル基等が挙げられる。アシル基としては、アセチル基、プロピオニル基、ベンゾイル基等が挙げられる。
Q is, -Nr1 -, - O -, - C (= O) -, - S-, or -SO 2 - represents a.
In the group represented by the formula: -Nr1-, r1 represents a hydrogen atom, an alkyl group, an aryl group or an acyl group.
Examples of the alkyl group for r1 include a methyl group, an ethyl group, a propyl group, and an isopropyl group. Examples of the aryl group include a phenyl group and a p-methylphenyl group. Examples of the acyl group include an acetyl group, a propionyl group, and a benzoyl group.

本発明に用いる二座有機配位子(L1)としては、蛋白質を内包するのに好ましい大きさの球状遷移金属錯体が得られること、取り扱いが容易であること等から、下記式(I−1)、(I−2)で表される化合物であるのが好ましく、式(I−1a)、(I−2a)で表される化合物であるのが特に好ましい。   As the bidentate organic ligand (L1) used in the present invention, since a spherical transition metal complex having a size preferable for encapsulating a protein is obtained, and handling is easy, the following formula (I-1) ) And (I-2) are preferred, and compounds represented by formulas (I-1a) and (I-2a) are particularly preferred.

Figure 0005190915
Figure 0005190915

Figure 0005190915
Figure 0005190915

式中、D−Pro及びRは前記と同じ意味を表す。
二座有機配位子(L1)は、公知の合成法を適用することにより製造することができる。例えば、前記式(I)で表される化合物のうち、下記式(I−3)で表される化合物は、下記式に示すように、式(III)で表される化合物に、式:Pro−DHで表される蛋白質を反応させて製造することができる。
In the formula, D-Pro and R 3 represent the same meaning as described above.
The bidentate organic ligand (L1) can be produced by applying a known synthesis method. For example, among the compounds represented by the formula (I), the compound represented by the following formula (I-3) is converted into a compound represented by the formula: Pro as shown in the following formula: It can be produced by reacting a protein represented by -DH.

Figure 0005190915
Figure 0005190915

式中、R、m1、X、t、Pro−D、及びYは前記と同じ意味を表す。
’は、A’−R=Aを成立させる基である。
Y’は、Pro−DHと反応してPro−D−Yとなる、連結基Yの前駆体を表す。
具体的には、−OH、−O−(CH)a−OH(aは1〜8の整数を表す。以下にて同じ)、−O−(CH)a−COOH、−COOH、−O−(CH)a−NH、−NH、及び式(y’)
In the formula, R 1 , m 1, X, t, Pro-D, and Y represent the same meaning as described above.
A 1 ′ is a group that satisfies A 1 ′ −R 3 = A 1 .
Y ′ represents a precursor of the linking group Y, which reacts with Pro-DH to become Pro-DY.
Specifically, -OH, -O- (CH 2) a-OH (a is hereinafter the same represents an integer of 1~8.), - O- (CH 2) a-COOH, -COOH, - O- (CH 2) a-NH 2, -NH 2, and the formula (y ')

Figure 0005190915
Figure 0005190915

(式中、m9は前記と同じ意味を表す。)で表される基等が挙げられる。
式(III)で表される化合物にPro−DHを反応させて、前記式(I−3)で表される化合物を得る反応としては、公知のエステル化反応、脱水反応、マイケル付加反応等が挙げられる。
(Wherein, m9 represents the same meaning as described above).
Examples of the reaction for obtaining the compound represented by the formula (I-3) by reacting the compound represented by the formula (III) with Pro-DH include known esterification reaction, dehydration reaction, Michael addition reaction and the like. Can be mentioned.

例えば、
(a)用いる蛋白質がPro−OHで表されるものである場合には、末端部にCOOH基を有するY’と反応させて、Pro−O−C(=O)−を形成させることで、式(I−3)で表される化合物を得ることができる。
(b)用いる蛋白質がPro−NHで表されるものである場合には、末端部にCOOH基を有するY’と反応させて、Pro−NH−C(=O)−を形成させることで、式(I−3)で表される化合物を得ることができる。
(c)用いる蛋白質がPro−COOHで表されるものである場合には、末端部にOH基を有するY’と反応させて、Pro−C(=O)−O−を形成させることで、式(I−3)で表される化合物を得ることができる。
(d)また、用いる蛋白質がPro−SHで表されるものである場合には、末端部に−CH=CH−を有するY’と反応させて(マイケル付加反応)、式
For example,
(A) When the protein to be used is represented by Pro-OH, it is reacted with Y ′ having a COOH group at the terminal portion to form Pro-O—C (═O) — A compound represented by the formula (I-3) can be obtained.
(B) When the protein to be used is represented by Pro-NH 2 , it is reacted with Y ′ having a COOH group at the end to form Pro-NH—C (═O) — A compound represented by formula (I-3) can be obtained.
(C) When the protein to be used is represented by Pro-COOH, it is reacted with Y ′ having an OH group at the terminal portion to form Pro-C (═O) —O— A compound represented by the formula (I-3) can be obtained.
(D) When the protein to be used is represented by Pro-SH, it is reacted with Y ′ having —CH═CH— at the terminal portion (Michael addition reaction),

Figure 0005190915
Figure 0005190915

で表される部分構造を形成させることで、式(I−3)で表される化合物を得ることができる。
これらの中でも、本発明においては、上記(d)の、蛋白質としてPro−SHで表されるものを用い、マイケル付加反応させる方法が、簡便性等の観点から好ましい。
The compound represented by the formula (I-3) can be obtained by forming the partial structure represented by
Among these, in the present invention, the method of Michael addition reaction using the protein represented by Pro-SH as the protein in the above (d) is preferable from the viewpoint of simplicity and the like.

前記式(III)で表される化合物は、以下に示すように、文献公知の方法(K.Sonogashira,Y.Tohda,N.Hagihara,Tetrahedron Lett.,1975,4467;J.F.Nguefack,V.Bolitt,D.Sinou,Tetrahedron Lett.,1996,31,5527)に従い製造することができる。   The compound represented by the formula (III) can be prepared by a known method (K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett., 1975, 4467; J. F. Nguefack, V Bolitt, D. Sinou, Tetrahedron Lett., 1996, 31, 5527).

Figure 0005190915
Figure 0005190915

式中、R、m1、X、t、A’及びY’は前記と同じ意味を表す。Y”は、Y’又はY’の前駆体(Y’を保護基で保護した基を含む)を表す。Zは塩素原子、臭素原子、ヨウ素原子等のハロゲン原子を表す。 In the formula, R 1 , m 1, X, t, A 1 ′ and Y ′ represent the same meaning as described above. Y ″ represents Y ′ or a precursor of Y ′ (including a group in which Y ′ is protected with a protecting group). Z represents a halogen atom such as a chlorine atom, a bromine atom, or an iodine atom.

すなわち、先ず、式(IV)で表される化合物と式(V)で表される化合物との薗頭クロスカップリング反応により、式(VI)で表される二座有機配位子を得る。Y”がY’を保護基で保護した基である場合には、適宜保護基を脱保護して、式(III)で表される化合物を合成することができる。   That is, first, the bidentate organic ligand represented by the formula (VI) is obtained by the Sonogashira cross-coupling reaction between the compound represented by the formula (IV) and the compound represented by the formula (V). In the case where Y ″ is a group obtained by protecting Y ′ with a protecting group, the protecting group can be appropriately deprotected to synthesize a compound represented by the formula (III).

式(VI)で表される化合物は、適当な溶媒中、塩基、Pd(PhCN)Cl/P(t−Bu)、Pd(PPh等のパラジウム触媒、及びヨウ化第1銅等の銅塩の存在下に、式(III)で示される4−(4−ピリジル)フェニルアセチレン類(又はその塩)と、式(IV)で表される化合物とを反応させることにより得ることができる。 The compound represented by the formula (VI) is prepared by using a base, a palladium catalyst such as Pd (PhCN) 2 Cl 2 / P (t-Bu) 3 , Pd (PPh 3 ) 4 , and the first iodide in a suitable solvent. Obtained by reacting 4- (4-pyridyl) phenylacetylenes represented by formula (III) (or a salt thereof) with a compound represented by formula (IV) in the presence of a copper salt such as copper. be able to.

なお、上記反応は、2つの式(IV)で表される化合物を一挙に反応させて、同じブリッジ部を有する化合物を製造する例である。相異なる置換基で置換された相異なる2つのブリッジ部を有する化合物は、対応する式(IV)で表される化合物を、同様な反応条件で、段階的に反応させることにより得ることができる。   The above reaction is an example in which two compounds represented by the formula (IV) are reacted at once to produce a compound having the same bridge portion. A compound having two different bridge portions substituted with different substituents can be obtained by reacting the corresponding compound represented by the formula (IV) stepwise under similar reaction conditions.

ここで用いる塩基としては、ジメチルアミン、ジエチルアミン、ジイソプロピルアミン、トリエチルアミン、ジイソプロピルエチルアミン等のアミン類が挙げられる。   Examples of the base used here include amines such as dimethylamine, diethylamine, diisopropylamine, triethylamine, and diisopropylethylamine.

用いる溶媒としては、1,4−ジオキサン、ジイソプロピルエーテル、テトラヒドロフラン、1,2−ジメトキシエタン等のエーテル類;ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;アセトニトリル等のニトリル類;等が挙げられる。   Examples of the solvent to be used include ethers such as 1,4-dioxane, diisopropyl ether, tetrahydrofuran and 1,2-dimethoxyethane; amides such as dimethylformamide; sulfoxides such as dimethyl sulfoxide; nitriles such as acetonitrile; It is done.

反応温度は、通常、0℃から用いる溶媒の沸点までの温度範囲、好ましくは10℃〜70℃であり、反応時間は、反応規模等にもよるが、通常、数分から数十時間である。   The reaction temperature is usually in the temperature range from 0 ° C. to the boiling point of the solvent used, preferably 10 ° C. to 70 ° C., and the reaction time is usually from several minutes to several tens of hours depending on the reaction scale and the like.

Y’’がY’を保護基で保護した基である場合、該保護基を公知の方法により適宜脱保護することにより、またY’’がY’の前駆体である場合、置換反応等により所望の変形を行うことにより、式(III)で表される化合物を得ることができる。   When Y ″ is a group obtained by protecting Y ′ with a protecting group, the protecting group is appropriately deprotected by a known method, and when Y ″ is a precursor of Y ′, a substitution reaction or the like. By performing the desired deformation, the compound represented by the formula (III) can be obtained.

式(IV)で表される化合物、及び式(V)で表される化合物は、公知の方法で製造することができる。また、市販品を用いることもできる。   The compound represented by the formula (IV) and the compound represented by the formula (V) can be produced by a known method. Commercial products can also be used.

(ii)二座有機配位子(L2)
二座有機配位子(L2)は、前記遷移金属原子と自己組織的に球状遷移金属錯体を形成できるものであり、蛋白質が結合していないものであれば特に制限されないが、前記式(I)で表される化合物と配位子の大きさがほぼ同じである下記式(II)で表される化合物が好ましい。
(Ii) bidentate organic ligand (L2)
The bidentate organic ligand (L2) is capable of forming a spherical transition metal complex in a self-organizing manner with the transition metal atom and is not particularly limited as long as no protein is bound thereto. ) And a compound represented by the following formula (II) in which the size of the ligand is substantially the same.

Figure 0005190915
Figure 0005190915

式(II)で表される化合物は、ピリジル基の隣に、複数の、エチニレン基及び/又はp−フェニレン基からなるブリッジ部を有し、平面性を保ちつつ、両端のピリジル基の間に広い空間をもった構造を有する。すなわち、前記式(I)で表される化合物であって、蛋白質を結合していない化合物である。   The compound represented by the formula (II) has a plurality of ethynylene groups and / or p-phenylene groups next to the pyridyl group, and maintains planarity between the pyridyl groups at both ends. It has a structure with a wide space. That is, the compound represented by the formula (I) is a compound not bound with a protein.

式(II)中、Xおよびtは前記と同じ意味を表す。
、Rはそれぞれ独立して、前記R、Rと同様の、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基またはニトロ基を表す。
m5、m6はそれぞれ独立して、0〜4の整数を表す。m5、m6が2以上のとき、複数のR同士、R同士はそれぞれ同一であっても、相異なっていても良い。
In formula (II), X and t represent the same meaning as described above.
R 5 and R 6 each independently represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group, or a nitro group, similar to R 1 and R 2 .
m5 and m6 each independently represents an integer of 0 to 4. m5, when m6 is 2 or more, plural R 5 together, even R 6 together are each identical or may be different phases.

は、下記式(a−5)〜(a−8)で表される基の一種を表す。 A 2 represents one type of group represented by the following formulas (a-5) to (a-8).

Figure 0005190915
Figure 0005190915

式(a−5)〜(a−8)中、Qは前記と同じ意味を表す。
は、前記Rと同様の、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基、ニトロ基、ヒドロキシル基、ヒドロキシアルキル基、カルボキシル基、カルボキシルアルキル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミノアルキル基、または4級化アミノアルキル基を表す。
In formulas (a-5) to (a-8), Q represents the same meaning as described above.
R 7 is the same as the above R 4 , halogen atom, optionally substituted alkyl group, optionally substituted alkoxyl group, cyano group, nitro group, hydroxyl group, hydroxyalkyl group, carboxyl group, carboxylalkyl A group, an amino group which may have a substituent, an aminoalkyl group which may have a substituent, or a quaternized aminoalkyl group;

後述するように、球状遷移金属錯体の形成反応においては、蛋白質が変性することがないよう、水、又は水と有機溶媒との混合溶媒を反応溶媒として用いるのが好ましい。そのため、これらの溶媒への二座有機配位子(L2)の溶解性を向上させるべく、Rの少なくとも1つは、ヒドロキシル基、ヒドロキシアルキル基、カルボキシル基、カルボキシルアルキル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミノアルキル基、または4級化アミノアルキル基等の親水性の基であるのが好ましく、4級化アミノアルキル基であるのがより好ましい。
なお、4級化アミノアルキル基の対イオンとしては、後述するように、球状遷移金属錯体の製造原料となる遷移金属族化合物のアニオンと同じものであるのが好ましい。
As will be described later, in the reaction for forming the spherical transition metal complex, it is preferable to use water or a mixed solvent of water and an organic solvent as a reaction solvent so that the protein is not denatured. Therefore, in order to improve the solubility of the bidentate organic ligand (L2) in these solvents, at least one of R 7 has a hydroxyl group, a hydroxyalkyl group, a carboxyl group, a carboxylalkyl group, and a substituent. It is preferably a hydrophilic group such as an optionally substituted amino group, an optionally substituted aminoalkyl group, or a quaternized aminoalkyl group, and is preferably a quaternized aminoalkyl group. More preferred.
The counter ion of the quaternized aminoalkyl group is preferably the same as the anion of the transition metal group compound that is a raw material for producing the spherical transition metal complex, as will be described later.

m7は0〜3の整数を表し、m8は0〜2の整数を表す。m7が2以上のとき、またはm8が2のとき、複数個のR同士は同一であっても、相異なっていても良い。 m7 represents an integer of 0 to 3, and m8 represents an integer of 0 to 2. When m7 is 2 or more, or when m8 is 2, a plurality of R 7 may be the same or different.

は、水素原子、ハロゲン原子、アルキル基、またはハロアルキル基を表す。
のハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられる。
アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−オクチル基、n−ノニル基、n−デシル基等の炭素数1〜20のアルキル基等が挙げられる。
ハロアルキル基としては、クロロメチル基、ジクロロメチル基、ブロモメチル基、トリフルオロメチル基等が挙げられる。
R 8 represents a hydrogen atom, a halogen atom, an alkyl group, or a haloalkyl group.
Examples of the halogen atom for R 8 include a fluorine atom, a chlorine atom, and a bromine atom.
As the alkyl group, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-octyl group, n-nonyl group, n-decyl C1-C20 alkyl groups, such as group, etc. are mentioned.
Examples of the haloalkyl group include a chloromethyl group, a dichloromethyl group, a bromomethyl group, and a trifluoromethyl group.

これらの中でも、二座有機配位子(L2)としては、下記式(II−1)、(II−2)で表される化合物であるのが好ましい。   Among these, the bidentate organic ligand (L2) is preferably a compound represented by the following formulas (II-1) and (II-2).

Figure 0005190915
Figure 0005190915

式中、rはメチル基、エチル基、プロピル基等の炭素数1〜6のアルキル基;フェニル基、4−メチルフェニル基等の置換基を有していてもよいフェニル基;を表す。rとしては、炭素数1〜6のアルキル基が好ましい。   In the formula, r represents an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group or a propyl group; a phenyl group which may have a substituent such as a phenyl group or a 4-methylphenyl group. r is preferably an alkyl group having 1 to 6 carbon atoms.

は、Br、Cl、NO 、ClO 、BF 、SbF 、PF 、AsF 、SiF 2−、CHCO 等の対イオンを表す。 G represents a counter ion such as Br , Cl , NO 3 , ClO 4 , BF 4 , SbF 4 , PF 6 , AsF 6 , SiF 6 2− , and CH 3 CO 2 −. .

二座有機配位子(L2)は、前記式(III)で表される化合物と同様の方法で製造することができる。例えば、Rが親水性のトリアルキルアンモニウムカチオンを有する基である式(II−3)で表される化合物は、例えば、下記に示す反応式に従って製造することができる。 The bidentate organic ligand (L2) can be produced by the same method as the compound represented by the formula (III). For example, the compound represented by the formula (II-3) in which R 7 is a group having a hydrophilic trialkylammonium cation can be produced, for example, according to the reaction formula shown below.

Figure 0005190915
Figure 0005190915

(式中、r、X、t、Rは前記と同じ意味を表す。)
すなわち、式(VII)で表される化合物を、トリフェニルホスフィンと四臭化炭素を用いてベンジルブロマイド誘導体とした後、単離することなくトリアルキルアミン水溶液(Nraq.)を加えて、トリアルキルアンモニウムカチオン基を有する式(II−3)で表される化合物を合成することができる。
(Wherein r, X, t and R 8 have the same meaning as described above.)
That is, the compound represented by the formula (VII) is converted into a benzyl bromide derivative using triphenylphosphine and carbon tetrabromide, and then an aqueous trialkylamine solution (Nr 3 aq.) Is added without isolation. A compound represented by the formula (II-3) having a trialkylammonium cation group can be synthesized.

なお、式(II−3)で表される化合物の対イオンは臭素イオンであるが、必要に応じ、公知の方法により対イオンを交換してもよい。   In addition, although the counter ion of the compound represented by the formula (II-3) is a bromine ion, the counter ion may be exchanged by a known method if necessary.

2)球状遷移金属錯体の製造方法
本発明の球状遷移金属錯体の製造方法は、遷移金属化合物(M)と、前記式(I)で表される二座有機配位子(L1)および式(II)で表される二座有機配位子(L2)とを、遷移金属化合物(M)nモル(nは6〜60の整数を表す)に対し、二座有機配位子(L1)を1モル、二座有機配位子(L2)を(2n−1)モルの割合で反応させることを特徴とする。
2) Method for Producing Spherical Transition Metal Complex The method for producing the spherical transition metal complex of the present invention comprises a transition metal compound (M), a bidentate organic ligand (L1) represented by the formula (I) and a formula (I II) the bidentate organic ligand (L2) and the transition metal compound (M) n mol (n represents an integer of 6 to 60), and the bidentate organic ligand (L1). 1 mol of bidentate organic ligand (L2) is reacted at a ratio of (2n-1) mol.

本発明に用いる遷移金属化合物(M)は、二座有機配位子(L1)、(L2)と自己組織的に球状遷移金属錯体を形成できるものであれば特に制限されないが、二価の遷移金属化合物が好ましい。   The transition metal compound (M) used in the present invention is not particularly limited as long as it can form a spherical transition metal complex in a self-organizing manner with the bidentate organic ligands (L1) and (L2). Metal compounds are preferred.

遷移金属化合物(M)を構成する遷移金属原子としては、前記本発明の球状遷移金属錯体の遷移金属原子として例示したものと同様のものが挙げられる。   As a transition metal atom which comprises a transition metal compound (M), the thing similar to what was illustrated as a transition metal atom of the spherical transition metal complex of the said this invention is mentioned.

遷移金属化合物(M)として具体的には、遷移金属の、ハロゲン化物、硝酸塩、塩酸塩、硫酸塩、酢酸塩、メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、p−トルエンスルホン酸塩などが挙げられる。これらの中でも、効率よく、目的とする中空遷移金属錯体が得られることから、遷移金属の、硝酸塩、トリフルオロメタンスルホン酸塩が好ましい。   Specific examples of the transition metal compound (M) include transition metal halides, nitrates, hydrochlorides, sulfates, acetates, methanesulfonates, trifluoromethanesulfonates, p-toluenesulfonates, and the like. It is done. Among these, nitrates and trifluoromethanesulfonates of transition metals are preferred because the desired hollow transition metal complex can be obtained efficiently.

遷移金属化合物(M)と二座有機配位子(L1)、(L2)の使用割合は、目的とする球状遷移金属錯体の組成などに応じて適宜設定することができる。例えば、式:M12(L1)(L2)23の組成をもつ蛋白質内包球状遷移金属錯体を得たい場合には、遷移金属化合物(M)12モルに対し、二座有機配位子(L1)を1モル、二座有機配位子(L2)を23モルの割合で反応させればよい。 The ratio of the transition metal compound (M) to the bidentate organic ligands (L1) and (L2) can be appropriately set according to the composition of the target spherical transition metal complex. For example, when it is desired to obtain a protein-encapsulating spherical transition metal complex having the composition of the formula: M 12 (L1) (L2) 23 , bidentate organic ligand (L1) with respect to 12 mol of the transition metal compound (M) 1 mol and bidentate organic ligand (L2) may be reacted at a ratio of 23 mol.

遷移金属化合物(M)と二座有機配位子(L1)、(L2)との反応は、適当な溶媒中で行うことができる。溶媒としては、蛋白質が変性しないものが好ましい。具体的には、、水、又は水と極性有機溶媒との混合溶媒が好ましい。   The reaction of the transition metal compound (M) with the bidentate organic ligands (L1) and (L2) can be carried out in a suitable solvent. As the solvent, those which do not denature the protein are preferable. Specifically, water or a mixed solvent of water and a polar organic solvent is preferable.

用いる極性有機溶媒としては、アセトニトリル等のニトリル類;ジメチルスルホキシド(DMSO)等のスルホキシド類;N,N−ジメチルホルムアミド等のアミド類;テトラヒドロフラン、1,2−ジメトキシエタン、1,4−ジオキサン等のエーテル類;メタノール、エタノール、イソプロピルアルコール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;エチルセロソルブ等のセロソルブ類;等が挙げられる。これらの溶媒は一種単独で、あるいは二種以上を組み合わせて用いることができる。   Examples of polar organic solvents to be used include nitriles such as acetonitrile; sulfoxides such as dimethyl sulfoxide (DMSO); amides such as N, N-dimethylformamide; tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, and the like. Ethers; alcohols such as methanol, ethanol and isopropyl alcohol; ketones such as acetone and methyl ethyl ketone; cellosolves such as ethyl cellosolve; These solvents can be used alone or in combination of two or more.

遷移金属化合物(M)と二座有機配位子(L1)、(L2)との反応は、0℃から用いる溶媒の沸点までの温度範囲で円滑に進行する。
反応時間は、数分から数日間である。
The reaction between the transition metal compound (M) and the bidentate organic ligands (L1) and (L2) proceeds smoothly in a temperature range from 0 ° C. to the boiling point of the solvent used.
The reaction time is several minutes to several days.

反応終了後は、有機合成化学における通常の後処理操作を行い、所望によりイオン交換樹脂等によるカラム精製、蒸留、再結晶等の公知の分離精製手段により精製を行うことによって、目的とする球状遷移金属錯体を単離することができる。   After completion of the reaction, normal post-treatment operations in synthetic organic chemistry are performed, and if desired, purification by known separation and purification means such as column purification by ion exchange resin, distillation, recrystallization, etc., the desired spherical transition Metal complexes can be isolated.

なお、得られる球状遷移金属錯体の対イオンは、通常、用いる遷移金属化合物(M)の陰イオンであるが、結晶性を向上させたり、球状遷移金属錯体の安定性を向上させる目的で対イオンを交換してもよい。かかる対イオンとしては、PF 、ClO 、SbF 、AsF 、BF 、SiF 2−等が挙げられる。 The counter ion of the obtained spherical transition metal complex is usually an anion of the transition metal compound (M) to be used, but the counter ion is used for the purpose of improving crystallinity or improving the stability of the spherical transition metal complex. May be replaced. Examples of such counter ions include PF 6 , ClO 4 , SbF 4 , AsF 6 , BF 4 , SiF 6 2− and the like.

得られた球状遷移金属錯体の構造は、H−NMR、DOSY NMR、13C−NMR、IRスペクトル、マススペクトル、可視光線吸収スペクトル、UV吸収スペクトル、反射スペクトル、X線結晶構造解析、元素分析等の公知の分析手段により確認することができる。 The structure of the obtained spherical transition metal complex is as follows: 1 H-NMR, DOSY NMR, 13 C-NMR, IR spectrum, mass spectrum, visible light absorption spectrum, UV absorption spectrum, reflection spectrum, X-ray crystal structure analysis, elemental analysis It can confirm by well-known analysis means, such as.

DOSY NMRはシグナルを拡散係数によって分離する手法であり、構造の大きさによってシグナルを分離することが可能である。すなわち、形成した球状遷移金属錯体と内包された蛋白質が同一の拡散係数で運動しているか確かめることにより、蛋白質が球状遷移金属錯体内へ内包されていることを確認することができると考えられる。
以上のようにして、極めて簡便な操作により、本発明の球状遷移金属錯体を効率よく製造することができる。そのため、グラムスケールでの大量合成も可能である。
DOSY NMR is a technique for separating signals by a diffusion coefficient, and signals can be separated by the size of the structure. That is, it is considered that it can be confirmed that the protein is encapsulated in the spherical transition metal complex by confirming whether the formed spherical transition metal complex and the encapsulated protein are moving with the same diffusion coefficient.
As described above, the spherical transition metal complex of the present invention can be efficiently produced by an extremely simple operation. Therefore, mass synthesis on a gram scale is also possible.

本発明の球状遷移金属錯体は、ナノメートルスケールの一定の大きさを有し、二座有機配位子(L1)に結合した蛋白質が錯体の球状構造の内部に配向した、精密に制御された特殊な構造を有する。   The spherical transition metal complex of the present invention has a certain size on the nanometer scale, and the protein bound to the bidentate organic ligand (L1) is oriented precisely inside the complex spherical structure. Has a special structure.

このように、本発明の球状遷移金属錯体は、精密に制御された大きさの中空の殻内に蛋白質が内包されたものであるため、蛋白質の安定化だけでなく、蛋白構造の新たな情報取得手法への開発に貢献が期待できる。   As described above, since the spherical transition metal complex of the present invention is a protein in which a hollow shell having a precisely controlled size is encapsulated, not only protein stabilization but also new information on protein structure is provided. Expected to contribute to the development of acquisition methods.

3)二座有機配位子
本発明の二座有機配位子は、前記式(I’)で表される化合物(以下、「化合物(I’)」という。)及び前記(II’)で表される化合物(以下、「化合物(II’)」という。)である。
化合物(I’)は、前記式(I)で表される化合物において、tがn1(n1は1〜6の整数を表す。)の化合物である。化合物(II’)は、前記式(II)で表される化合物において、tがn1(n1は1〜6の整数を表す。)の化合物である。
本発明の二座有機配位子は新規化合物であり、二座有機配位子(L1)、(L2)と同様に製造することができる。
3) Bidentate organic ligand The bidentate organic ligand of the present invention is a compound represented by the above formula (I ′) (hereinafter referred to as “compound (I ′)”) and the above (II ′). Compound (hereinafter referred to as “compound (II ′)”).
Compound (I ′) is a compound represented by formula (I) wherein t is n1 (n1 represents an integer of 1 to 6). Compound (II ′) is a compound in which t is n1 (n1 represents an integer of 1 to 6) in the compound represented by the formula (II).
The bidentate organic ligand of the present invention is a novel compound and can be produced in the same manner as the bidentate organic ligands (L1) and (L2).

次に、実施例により、本発明をさらに詳細に説明する。但し、本発明は、実施例により何ら限定されるものではない。   Next, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the examples.

(機器類)
(1)H−NMRスペクトルの測定
H−NMRスペクトルは、Bruker DRX 500(500MHz)NMR spectrometerにより測定した。なお、テトラメチルシラン(TMS)を内部標準とした)。
(Equipment)
(1) Measurement of 1 H-NMR spectrum
1 H-NMR spectrum was measured with a Bruker DRX 500 (500 MHz) NMR spectrometer. Tetramethylsilane (TMS) was used as an internal standard).

(2)13C−NMRスペクトルの測定
13C−NMRスペクトルは、Bruker DRX 500(125MHz)NMR spectrometerを用いて測定した。
(2) Measurement of 13 C-NMR spectrum
The 13 C-NMR spectrum was measured using a Bruker DRX 500 (125 MHz) NMR spectrometer.

(3)マススペクトルの測定
CSI−MSスペクトル(コールドスプレーイオン化質量分析)は、JEOL、JMS−700C(4−セクター(BE/BE)−タンデム質量分析計)を用いて測定した。
(3) Measurement of mass spectrum The CSI-MS spectrum (cold spray ionization mass spectrometry) was measured using JEOL, JMS-700C (4-sector (BE / BE) -tandem mass spectrometer).

(4)MALDI−TOF MS
MALDI−TOF MSは、質量分析装置(Applied Biosystem Voyager DE−STR)を用いて測定した。
(4) MALDI-TOF MS
MALDI-TOF MS was measured using a mass spectrometer (Applied Biosystem Voyager DE-STR).

(5)融点
融点は、融点測定器:Yanaco MP−500Vを用いて測定した。
(4)元素分析
炭素、水素、及び窒素の元素分析は、Yanaco MT−6を用いて行った。
(5) Melting | fusing point Melting | fusing point was measured using melting | fusing point measuring device: Yanaco MP-500V.
(4) Elemental analysis Elemental analysis of carbon, hydrogen, and nitrogen was performed using Yanaco MT-6.

(5)IRスペクトル
IRスペクトルは、DIGILAB Scimitar FTS−2000(KBr)を用いて測定した。
(5) IR spectrum The IR spectrum was measured using DIGILAB Scientific FTS-2000 (KBr).

(試薬類)
溶媒及び試薬は、特に記載のないものは、東京化成工業株式会社、和光純薬工業株式会社、又は、Sigma−Aldrich Co.の市販品を使用した。
(Reagents)
Unless otherwise specified, solvents and reagents include Tokyo Chemical Industry Co., Ltd., Wako Pure Chemical Industries, Ltd., or Sigma-Aldrich Co. The commercial product of was used.

(実施例1)配位子4aの合成
(1)N−(2−ヒドロキシエチル)マレイミドの合成
(i)N−メトキシカルボニルマレイミドの合成
Example 1 Synthesis of Ligand 4a (1) Synthesis of N- (2-hydroxyethyl) maleimide (i) Synthesis of N-methoxycarbonylmaleimide

Figure 0005190915
Figure 0005190915

マレイミド(3.88g,40.0mmol)及びN−メチルモルフォリン(4.82mL,44.0mmol)の酢酸エチル(240mL)溶液中に、0℃にて、クロロギ酸メチル(3.40mL,44.0mmol)を加えて1時間撹拌した。沈殿物をろ別し、ろ液を減圧濃縮した。得られた残渣をクロロホルムとn−ヘキサンの混合溶媒から再結晶することにより、標記化合物を白色固体(6.10g,39.3mmol)として得た。収率98%。   Methyl chloroformate (3.40 mL, 44. mmol) in a solution of maleimide (3.88 g, 40.0 mmol) and N-methylmorpholine (4.82 mL, 44.0 mmol) in ethyl acetate (240 mL) at 0 ° C. 0 mmol) was added and stirred for 1 hour. The precipitate was filtered off and the filtrate was concentrated under reduced pressure. The obtained residue was recrystallized from a mixed solvent of chloroform and n-hexane to obtain the title compound as a white solid (6.10 g, 39.3 mmol). Yield 98%.

H−NMR(500MHz,CDCl,27℃)δppm:6.84(s,2H),3.99(s,3H) 1 H-NMR (500 MHz, CDCl 3 , 27 ° C.) δ ppm: 6.84 (s, 2H), 3.99 (s, 3H)

13C−NMR(125MHz,CDCl,27℃)δppm:165.6(C),148.1(C),135.3(CH),54.3(CH 13 C-NMR (125 MHz, CDCl 3 , 27 ° C.) δ ppm: 165.6 (C), 148.1 (C), 135.3 (CH), 54.3 (CH 3 )

IR(KBr,cm−1)3093,2972,1764,1713,1442,1337,1265,1139,1036,921,842,769,696,641,595 IR (KBr, cm −1 ) 3093, 2972, 1764, 1713, 1442, 1337, 1265, 1139, 1036, 921, 842, 769, 696, 641, 595

<参考文献>
Helvetica Chimica Acta,第58巻,536頁,1975年
<References>
Helvetica Chimica Acta, 58, 536, 1975

(ii)N−(2−ヒドロキシエチル)マレイミドの合成
N−メトキシカルボニルマレイミド(3.10g,20.0mmol)及び2−アミノエタノール(1.25g,20.5mmol)を炭酸水素ナトリウム(2.52g,30.0mmol)の水溶液(150mL)に加え、全容を室温で30分撹拌した。反応液をクロロホルム(200mL×6)で抽出した。有機層を濃縮して得られた残渣をクロロホルムとn−ヘキサンの混合溶媒から再結晶することにより、標記化合物を白色固体(1.45g,10.3mmol)として得た。収率52%。
(Ii) Synthesis of N- (2-hydroxyethyl) maleimide N-methoxycarbonylmaleimide (3.10 g, 20.0 mmol) and 2-aminoethanol (1.25 g, 20.5 mmol) were added to sodium bicarbonate (2.52 g). , 30.0 mmol) in water (150 mL) and the whole volume was stirred at room temperature for 30 minutes. The reaction solution was extracted with chloroform (200 mL × 6). The residue obtained by concentrating the organic layer was recrystallized from a mixed solvent of chloroform and n-hexane to obtain the title compound as a white solid (1.45 g, 10.3 mmol). Yield 52%.

H−NMR(500MHz,CDCl,27℃)δppm:6.70(s,2H), 3.82−3.77(m,2H),3.76−3.72(m,2H),2.04(t,J=5.8Hz,1H) 1 H-NMR (500 MHz, CDCl 3 , 27 ° C.) δ ppm: 6.70 (s, 2H), 3.82-3.77 (m, 2H), 3.76-3.72 (m, 2H), 2.04 (t, J = 5.8Hz, 1H)

13C−NMR(125MHz,CDCl,27℃)δppm:171.1(C),134.3(CH),61.0(CH),40.7(CH 13 C-NMR (125 MHz, CDCl 3 , 27 ° C.) δ ppm: 171.1 (C), 134.3 (CH), 61.0 (CH 2 ), 40.7 (CH 2 )

IR(KBr,cm−1)3260,3114,2961,1712,1444,1407,1363,1322,1160,1068,973,853,833,695. IR (KBr, cm −1 ) 3260, 3114, 2961, 1712, 1444, 1407, 1363, 1322, 1160, 1068, 973, 853, 833, 695.

(2)化合物4aの合成 (2) Synthesis of compound 4a

Figure 0005190915
Figure 0005190915

(i)酢酸2,6−ビス[4−(4−ピリジル)フェニルエチニル]フェニルエステルの合成
トリt−ブチルホスフィン(0.462mL,0.184mmol;10重量%n−ヘキサン溶液)と、ジイソプロピルアミン(2.0mL,14mmol)を、1−アセトキシ−2,6−ジブロモベンゼン(441mg,1.50mmol)、4−(4−ピリジル)フェニルアセチレン(716mg,4.00mmol)、Pd(PhCN)Cl(34.5mg,0.090mmol)、及びヨウ化銅(I)(11.5mg,0.0060mmol)の1,4−ジオキサン(25mL)溶液に加え、全容を、アルゴン雰囲気下、45℃で12時間攪拌した。反応混合物に酢酸エチル(40mL)を加え、不溶物をろ別した。ろ液に水(100mL)及びエチレンジアミン(2mL)を加え、酢酸エチル層を分取した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。
得られた残渣をシリカゲルカラムクロマトグラフィー(CHCl:メタノール=50:1(体積比))で精製することにより、標記化合物を白色固体(650mg,1.33mmol)として得た。収率88%。
(I) Synthesis of acetic acid 2,6-bis [4- (4-pyridyl) phenylethynyl] phenyl ester Tri-t-butylphosphine (0.462 mL, 0.184 mmol; 10 wt% n-hexane solution) and diisopropylamine (2.0 mL, 14 mmol), 1-acetoxy-2,6-dibromobenzene (441 mg, 1.50 mmol), 4- (4-pyridyl) phenylacetylene (716 mg, 4.00 mmol), Pd (PhCN) 2 Cl 2 (34.5 mg, 0.090 mmol) and a solution of copper (I) iodide (11.5 mg, 0.0060 mmol) in 1,4-dioxane (25 mL) and the whole volume was added at 45 ° C. under an argon atmosphere. Stir for 12 hours. Ethyl acetate (40 mL) was added to the reaction mixture, and the insoluble material was filtered off. Water (100 mL) and ethylenediamine (2 mL) were added to the filtrate, and the ethyl acetate layer was separated. After drying the organic layer with anhydrous sodium sulfate, the solvent was distilled off under reduced pressure.
The obtained residue was purified by silica gel column chromatography (CHCl 3 : methanol = 50: 1 (volume ratio)) to obtain the title compound as a white solid (650 mg, 1.33 mmol). Yield 88%.

H−NMR(500MHz,CDCl,27℃)δppm:8.69(d,J=5.3Hz,4H),7.67−7.61(m,8H),7.59(d,J=7.7Hz,2H),7.51(d,J=5.9Hz,4H),7.27(t,J=7.9Hz,1H),2.47(s,3H) 1 H-NMR (500 MHz, CDCl 3 , 27 ° C.) δ ppm: 8.69 (d, J = 5.3 Hz, 4H), 7.67-7.61 (m, 8H), 7.59 (d, J = 7.7 Hz, 2H), 7.51 (d, J = 5.9 Hz, 4H), 7.27 (t, J = 7.9 Hz, 1H), 2.47 (s, 3H)

13C−NMR(125MHz,CDCl,27℃)δppm:168.1(C),152.4(C),150.4(CH),147.3(C),138.4(C),133.0(CH),132.4(CH),127.1(CH),126.1(CH),123.6(C),121.5(CH),118.2(C),94.0(C),85.3(C),20.7(CH 13 C-NMR (125 MHz, CDCl 3 , 27 ° C.) δ ppm: 168.1 (C), 152.4 (C), 150.4 (CH), 147.3 (C), 138.4 (C), 133.0 (CH), 132.4 (CH), 127.1 (CH), 126.1 (CH), 123.6 (C), 121.5 (CH), 118.2 (C), 94 0.0 (C), 85.3 (C), 20.7 (CH 3 )

IR(KBr,cm−1)3032,2215,1171,1594,1516,1488,1438,1402,1369,1181,1151,1072,902,811,682,530 IR (KBr, cm −1 ) 3032, 2215, 1171, 1594, 1516, 1488, 1438, 1402, 1369, 1181, 1151, 1072, 902, 811, 682, 530

(ii)1−(2−{2,6−ビス[4−(ピリジル)フェニルエチニル]フェノキシ}エチル)ピロール−2,5−ジオン(4a)の合成
ジイソプロピルアゾジカルボキシレート(0.089mL,0.45mmol)を、2,6−ビス[4−(4−ピリジル)フェニルエチニル]フェノール(168mg,0.375mmol)、及びトリフェニルホスフィン(110mg,0.42mmol)のTHF(20mL)溶液に加え、混合物をアルゴン雰囲気下、室温で30分間攪拌した。次いで、この溶液に、N−(2−ヒドロキシエチル)マレイミド(59.2mg,0.42mmol)を加え、全容を室温で17時間攪拌した。反応混合物を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(CHCl:MeOH=50:1(体積比))により精製して、標記化合物を白色固体(42.9mg,0.0750mmol)として得た。収率20%。
(Ii) Synthesis of 1- (2- {2,6-bis [4- (pyridyl) phenylethynyl] phenoxy} ethyl) pyrrole-2,5-dione (4a) Diisopropyl azodicarboxylate (0.089 mL, 0 .45 mmol) is added to a solution of 2,6-bis [4- (4-pyridyl) phenylethynyl] phenol (168 mg, 0.375 mmol) and triphenylphosphine (110 mg, 0.42 mmol) in THF (20 mL), The mixture was stirred at room temperature for 30 minutes under an argon atmosphere. Then, N- (2-hydroxyethyl) maleimide (59.2 mg, 0.42 mmol) was added to this solution, and the whole volume was stirred at room temperature for 17 hours. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (CHCl 3 : MeOH = 50: 1 (volume ratio)) to obtain the title compound as a white solid (42.9 mg, 0.0750 mmol). Yield 20%.

H−NMR(500MHz,CDCl,27℃)δppm:8.69(d,J=6.1Hz,4H),7.737.67(m,8H),7.54(d,J=6.2Hz,4H),7.50(d,J=7.7Hz,2H),7.11(t,J=7.7Hz,1H),6.53(s,2H),4.54(d,J=6.2Hz,2H),4.07(d,J=6.2Hz,2H) 1 H-NMR (500 MHz, CDCl 3 , 27 ° C.) δ ppm: 8.69 (d, J = 6.1 Hz, 4H), 7.737.67 (m, 8H), 7.54 (d, J = 6 .2 Hz, 4H), 7.50 (d, J = 7.7 Hz, 2H), 7.11 (t, J = 7.7 Hz, 1H), 6.53 (s, 2H), 4.54 (d , J = 6.2 Hz, 2H), 4.07 (d, J = 6.2 Hz, 2H)

13C−NMR(125MHz,CDCl,27℃)δppm:170.5(C),160.0(C),150.5(CH),147.4(C),138.1(C),134.0(CH),133.9(CH),132.5(CH),127.0(CH),124.0(CH),123.9(C),121.4(CH),117.5(C),93.6(C),86.5(C),69.8(CH),37.9(CH 13 C-NMR (125 MHz, CDCl 3 , 27 ° C.) δ ppm: 170.5 (C), 160.0 (C), 150.5 (CH), 147.4 (C), 138.1 (C), 134.0 (CH), 133.9 (CH), 132.5 (CH), 127.0 (CH), 124.0 (CH), 123.9 (C), 121.4 (CH), 117 .5 (C), 93.6 (C), 86.5 (C), 69.8 (CH 2 ), 37.9 (CH 2 )

IR(KBr,cm−1)3029,2211,1711,1596,1489,1439,1408,1325,1227,1169,1102,1070,1020,812,696 IR (KBr, cm −1 ) 3029, 2211, 1711, 1596, 1489, 1439, 1408, 1325, 1227, 1169, 1102, 1070, 1020, 812, 696

(3)配位子2aの合成 (3) Synthesis of ligand 2a

Figure 0005190915
Figure 0005190915

先ず、球状遷移金属錯体に内包させる蛋白質として用いるユビキチン(Ubiquitin−SH)を準備した。ユビキチンは76残基からなる蛋白質であるが、今回はC末端のグリシンをシステインへと変異させたものを利用した。   First, ubiquitin (Ubiquitin-SH) used as a protein to be encapsulated in a spherical transition metal complex was prepared. Ubiquitin is a protein consisting of 76 residues, but this time a mutated C-terminal glycine to cysteine was used.

まず、目的の蛋白質をコードするcDNAを、GSTを除去したベクター(pGEX−6P−1:GEヘルスケアバイオサイエンス)のマルチクローニングサイトに組み込みこんだものを発現ベクターとして用い、これを宿主大腸菌に導入した。大腸菌の培養はアンピシリンを入れたLB培地を用いて行ない、IPTGを添加することにより蛋白質の発現を行った。培養後に大腸菌を粉砕し、陰イオン交換カラム、陽イオン交換カラム、透析の順で生成を行うことにより、目的とするC末端にシステイン残基を有するユビキチンを得ることができた。   First, cDNA that encodes the protein of interest is introduced into the host E. coli using an expression vector that has been incorporated into the multicloning site of a vector from which GST has been removed (pGEX-6P-1: GE Healthcare Bioscience). did. Escherichia coli was cultured using LB medium containing ampicillin, and protein was expressed by adding IPTG. After culturing, Escherichia coli was pulverized and produced in the order of an anion exchange column, a cation exchange column, and dialysis, thereby obtaining a target ubiquitin having a cysteine residue at the C-terminus.

得られた変異ユビキチンのアミノ酸配列は下記のとおりである。
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGC
The amino acid sequence of the obtained mutant ubiquitin is as follows.
MQIFVKTLGKTITLEVEPSTDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTSDYNIQKESTLHLVLLRRGC

培養したユビキチンはユビキチン同士のS−S結合を形成していたため、まず5mMのトリス(2−カルボキシエチル)ホスフィン(TCEP)を用いてS−S結合を還元することにより単量体とした。すなわち、トリス(2−カルボキシエチル)ホスフィン(TCEP)を、変異させたユビキチン(mutated ubiquitin)(22.4mg,2.60μmol)の20mMトリスバッファー溶液(15mL)に加え、全容を37℃で2時間ゆっくりと攪拌した。その溶液中には、モノマー化したユビキチンが含まれていることを、MALDI−TOF MSにより確認した。1M水酸化ナトリウム水溶液により、溶液のpHを8.0に調整したのち、化合物4a(22.8mg,39.9μmol)のTHF(10mL)溶液を添加し、37℃で2時間、室温で12時間攪拌した。   Since the cultured ubiquitin formed an S—S bond between ubiquitins, a monomer was first prepared by reducing the S—S bond using 5 mM tris (2-carboxyethyl) phosphine (TCEP). That is, tris (2-carboxyethyl) phosphine (TCEP) was added to a 20 mM Tris buffer solution (15 mL) of mutated ubiquitin (22.4 mg, 2.60 μmol) at 37 ° C. for 2 hours. Stir slowly. It was confirmed by MALDI-TOF MS that the solution contained monomerized ubiquitin. After adjusting the pH of the solution to 8.0 with 1 M aqueous sodium hydroxide solution, a solution of compound 4a (22.8 mg, 39.9 μmol) in THF (10 mL) was added, and the mixture was added at 37 ° C. for 2 hours and at room temperature for 12 hours. Stir.

反応混合物を逆相(reversedphase)HPLC〔on an Inertsil Peptide C18 semi−preparative column(20mm×250mm)、溶離液:0.1%トリフルオロ酢酸(TFA)水溶液とアセトニトリル〕で精製後、凍結乾燥し、標記化合物を白色粉末(15mg,1.6μmol)として得た。収率63%。   The reaction mixture was purified by reversed phase HPLC (on an Inertsil Peptide C18 semi-preparative column (20 mm × 250 mm), eluent: 0.1% trifluoroacetic acid (TFA) aqueous solution and acetonitrile), lyophilized, The title compound was obtained as a white powder (15 mg, 1.6 μmol). Yield 63%.

MALDI−TOF−MS:calcd for[M+Na]9205.4,found 9203.7 MALDI-TOF-MS: calcd for [M + Na] + 9205.4, found 9203.7

(実施例2)配位子1aの合成 Example 2 Synthesis of Ligand 1a

Figure 0005190915
Figure 0005190915

(1)3,5−ジブロモ−4−メチルフェニル)メタノールの合成
3,5−ジブロモ−4−メチル安息香酸(2.35g,8.00mmol)のTHF(20mL)様液を、1.0M(BH−THF)THF溶液(18.0mmol,18.0mL)に30分かけて滴下した。反応液を飽和炭酸水素ナトリウム水溶液にゆっくりと注いだ。反応混合物を酢酸エチル(200mL×3)で抽出した。有機層を集め溶媒を減圧留去した。得られた残渣をクロロホルムとn−ヘキサンの混合溶媒から再結晶して、標記化合物を白色固体(1.95g,6.97mmol)として得た。収率87%。
(1) Synthesis of 3,5-dibromo-4-methylphenyl) methanol A THF-like (20 mL) -like solution of 3,5-dibromo-4-methylbenzoic acid (2.35 g, 8.00 mmol) was added to 1.0 M ( BH 3 -THF) THF solution (18.0 mmol, was added dropwise over 30 minutes 18.0 mL). The reaction solution was slowly poured into a saturated aqueous sodium hydrogen carbonate solution. The reaction mixture was extracted with ethyl acetate (200 mL × 3). The organic layer was collected and the solvent was distilled off under reduced pressure. The obtained residue was recrystallized from a mixed solvent of chloroform and n-hexane to obtain the title compound as a white solid (1.95 g, 6.97 mmol). Yield 87%.

H−NMR(500MHz,CDCl,27℃)δppm:7.52(s,2H),4.62(d,J=5.8Hz,2H),2.56(s,3H),1.70(t,J=6.0Hz,1H) 1 H-NMR (500 MHz, CDCl 3 , 27 ° C.) δ ppm: 7.52 (s, 2H), 4.62 (d, J = 5.8 Hz, 2H), 2.56 (s, 3H), 1. 70 (t, J = 6.0 Hz, 1H)

13C−NMR(125MHz,CDCl,27℃)δppm:141.2(C),136.5(C),130.1(CH),125.3(C),63.6(CH),23.4(CH 13 C-NMR (125 MHz, CDCl 3 , 27 ° C.) δ ppm: 141.2 (C), 136.5 (C), 130.1 (CH), 125.3 (C), 63.6 (CH 2 ) , 23.4 (CH 3 )

IR(KBr,cm−1)3314,3202,2928,1745,1594,1541,1431,1391,126,1216,1195,1064,1031,992,866,730,687,652 IR (KBr, cm −1 ) 3314, 3202, 2928, 1745, 1594, 1541, 1431, 1391, 126, 1216, 1195, 1064, 1031, 992, 866, 730, 687, 652

(2){4−メチル−3,5−ビス[4−(4−ピリジル)フェニルエチニル]フェニル}メタノールの合成
トリt−ブチルホスフィン(0.462mL,0.186mmol;10重量%n−ヘキサン溶液)、及びジイソプロピルアミン(1.5mL,10.7mmol)を、(3,5−ジブロモ−4メチルフェニル)メタノール(420mg,1.50mmol),4−(4−エチニルフェニル)ピリジン(716mg,4.00mmol),Pd(PhCN)Cl(34.5mg,0.090mmol)、及びヨウ化銅(I)(11.5mg,0.060mmol)の1,4−ジオキサン(25mL)溶液に添加し、全容を、アルゴン雰囲気下、45℃で16時間攪拌した。反応液に酢酸エチル(30mL)を加え、不溶物をろ別した。ろ液に水(80mL)及びエチレンジアミン(1mL)を加え、酢酸エチル層を分取した。有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(CHCl:MeOH=40:1(体積比))で精製し、標記化合物を白色固体(634mg,1.33mmol)として得た。収率89%。
(2) Synthesis of {4-methyl-3,5-bis [4- (4-pyridyl) phenylethynyl] phenyl} methanol Tri-t-butylphosphine (0.462 mL, 0.186 mmol; 10 wt% n-hexane solution ), And diisopropylamine (1.5 mL, 10.7 mmol) to (3,5-dibromo-4methylphenyl) methanol (420 mg, 1.50 mmol), 4- (4-ethynylphenyl) pyridine (716 mg, 4. 00 mmol), Pd (PhCN) 2 Cl 2 (34.5 mg, 0.090 mmol), and copper iodide (I) (11.5 mg, 0.060 mmol) in 1,4-dioxane (25 mL) solution, The whole volume was stirred at 45 ° C. for 16 hours under an argon atmosphere. Ethyl acetate (30 mL) was added to the reaction solution, and the insoluble material was filtered off. Water (80 mL) and ethylenediamine (1 mL) were added to the filtrate, and the ethyl acetate layer was separated. The organic layer was dried over anhydrous sodium sulfate and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (CHCl 3 : MeOH = 40: 1 (volume ratio)) to obtain the title compound as a white solid (634 mg, 1.33 mmol). Yield 89%.

H−NMR(500MHz,CDCl,27℃)δppm:8.68(d,J=6.2Hz,4H),7.677.65(m,8H),7.55(s,2H),7.53(d,J=6.2Hz,4H),4.71(d,J=5.5Hz,2H),2.74(s,3H),1.94(d,J=5.9Hz,1H) 1 H-NMR (500 MHz, CDCl 3 , 27 ° C.) δ ppm: 8.68 (d, J = 6.2 Hz, 4H), 7.677.65 (m, 8H), 7.55 (s, 2H), 7.53 (d, J = 6.2 Hz, 4H), 4.71 (d, J = 5.5 Hz, 2H), 2.74 (s, 3H), 1.94 (d, J = 5.9 Hz) , 1H)

13C−NMR(125MHz,CDCl,27℃)δppm:150.4(CH),147.4(C),141.4(C),138.5(C),138.0(C),132.3(CH),130.7(CH),127.0(CH),124.1(C),123.7(C),121.4(CH),93.1(C),89.5(C),64.3(CH),19.1(CH 13 C-NMR (125 MHz, CDCl 3 , 27 ° C.) δ ppm: 150.4 (CH), 147.4 (C), 141.4 (C), 138.5 (C), 138.0 (C), 132.3 (CH), 130.7 (CH), 127.0 (CH), 124.1 (C), 123.7 (C), 121.4 (CH), 93.1 (C), 89 .5 (C), 64.3 (CH 2 ), 19.1 (CH 3 )

IR(KBr,cm−1)3273,3039,2203,1597,1566,1489,1403,1329,1290,1226,1112,1064,997,81,686,566 IR (KBr, cm −1 ) 3273, 3039, 2203, 1597, 1566, 1489, 1403, 1329, 1290, 1226, 1112, 1064, 997, 81, 686, 566

(3)トリメチル{4−メチル−3,5−ビス[4−(4−ピリジル)フェニルエチニル]ベンジル}アンモニウムブロマイドの合成
トリフェニルホスフィン(367mg,1.40mmol)、及び四臭化炭素(663mg,3.00mmol)を、アルゴン雰囲気下、室温で、{4−メチル−3,5−ビス[4−(4−ピリジル)フェニルエチニル]フェニル}メタノール(238mg,0.500mmol)の乾燥THF(150mL)溶液に順次添加した。全容を3時間攪拌することにより、4−メチル−3,5−ビス[4−(4−ピリジル)フェニルエチニル]ベンジルブロマイドが定量的に生成していることを、MALDI−TOF MSにより確認した(単離せず)。
(3) Synthesis of trimethyl {4-methyl-3,5-bis [4- (4-pyridyl) phenylethynyl] benzyl} ammonium bromide Triphenylphosphine (367 mg, 1.40 mmol) and carbon tetrabromide (663 mg, 3.00 mmol) in dry THF (150 mL) of {4-methyl-3,5-bis [4- (4-pyridyl) phenylethynyl] phenyl} methanol (238 mg, 0.500 mmol) at room temperature under an argon atmosphere. Sequentially added to the solution. By stirring the whole volume for 3 hours, it was confirmed by MALDI-TOF MS that 4-methyl-3,5-bis [4- (4-pyridyl) phenylethynyl] benzyl bromide was quantitatively formed ( Not isolated).

この溶液に、トリメチルアミン(7.0mL,30mmol;4.3M水溶液)を添加して、全容を室温で20時間攪拌した。反応液を減圧濃縮し、得られた残渣を酢酸エチル及び水で洗浄した後、真空乾燥することにより、標記化合物を白色固体(207mg,0.345mmol)として得た。収率69%   To this solution, trimethylamine (7.0 mL, 30 mmol; 4.3 M aqueous solution) was added, and the whole volume was stirred at room temperature for 20 hours. The reaction mixture was concentrated under reduced pressure, and the resulting residue was washed with ethyl acetate and water, and then dried in vacuo to give the title compound as a white solid (207 mg, 0.345 mmol). Yield 69%

H−NMR(500MHz,DMSO−d,27℃)δppm:8.75(d,J=5.3Hz,4H),7.98(d,J=8.3Hz,2H),7.91(d,J=4.8Hz,4H),7.83(s,2H),7.78(d,J=8.2Hz,2H),4.56(s,2H),3.09(s,9H),2.77(s,3H) 1 H-NMR (500 MHz, DMSO-d 6 , 27 ° C.) δ ppm: 8.75 (d, J = 5.3 Hz, 4H), 7.98 (d, J = 8.3 Hz, 2H), 7.91 (D, J = 4.8 Hz, 4H), 7.83 (s, 2H), 7.78 (d, J = 8.2 Hz, 2H), 4.56 (s, 2H), 3.09 (s , 9H), 2.77 (s, 3H)

13C−NMR(125MHz,DMSO−d,27℃)δppm:148.8(CH),147.3(C),143.5(C),137.0(C),136.1(CH),132.2(CH),127.4(CH),126.8(C),123.3(C),123.0(C),121.6(CH),93.9(C),88.5(C),66.5(CH),52.0(CH),18.9(CH 13 C-NMR (125 MHz, DMSO-d 6 , 27 ° C.) δ ppm: 148.8 (CH), 147.3 (C), 143.5 (C), 137.0 (C), 136.1 (CH ), 132.2 (CH), 127.4 (CH), 126.8 (C), 123.3 (C), 123.0 (C), 121.6 (CH), 93.9 (C) , 88.5 (C), 66.5 (CH 2 ), 52.0 (CH 3 ), 18.9 (CH 3 )

IR(KBr,cm−1)3429,2361,2206,1632,1599,1490,1401,1289,1214,1069,1004,878,812,685 IR (KBr, cm −1 ) 3429, 2361, 2206, 1632, 1599, 1490, 1401, 1289, 1214, 1069, 1004, 878, 812, 685

(4)トリメチル{4−メチル−3,5−ビス[4−(4−ピリジル)フェニルエチニル]ベンジル}アンンモニウムニトレイト(1a)の合成
トリメチル{4−メチル−3,5−ビス[4−(4−ピリジル)フェニルエチニル]ベンジル}アンモニウムブロマイド(77.5mg,0.130mmol)、及び、亜硝酸銀(22.8mg,0.133mmol)の、アセトニトリル(10mL)及び水(40mL)溶液に加え、全容を、アルゴン雰囲気下、40℃で3時間攪拌した。
反応液をろ過し、ろ液を減圧下に濃縮して、標記化合物を白色固体(47mg,0.081mmol)として得た。収率62%。
(4) Synthesis of trimethyl {4-methyl-3,5-bis [4- (4-pyridyl) phenylethynyl] benzyl} ammonium nitrate (1a) Trimethyl {4-methyl-3,5-bis [4- To a solution of (4-pyridyl) phenylethynyl] benzyl} ammonium bromide (77.5 mg, 0.130 mmol) and silver nitrite (22.8 mg, 0.133 mmol) in acetonitrile (10 mL) and water (40 mL), The whole volume was stirred at 40 ° C. for 3 hours under an argon atmosphere.
The reaction solution was filtered, and the filtrate was concentrated under reduced pressure to obtain the title compound as a white solid (47 mg, 0.081 mmol). Yield 62%.

H−NMR(500MHz,DMSO−d,27℃)δppm:8.69(d,J=4.7Hz,4H),7.94(d,J=8.3Hz,2H),7.82(s,2H),7.79(d,J=4.6Hz,4H),7.76(d,J=8.4Hz,2H),4.53(s,2H),3.09(s,9H),2.77(s,3H) 1 H-NMR (500 MHz, DMSO-d 6 , 27 ° C.) δ ppm: 8.69 (d, J = 4.7 Hz, 4H), 7.94 (d, J = 8.3 Hz, 2H), 7.82 (S, 2H), 7.79 (d, J = 4.6 Hz, 4H), 7.76 (d, J = 8.4 Hz, 2H), 4.53 (s, 2H), 3.09 (s , 9H), 2.77 (s, 3H)

13C−NMR(125MHz,DMSO−d,27℃)δppm:150.2(CH),145.8(C),143.5(C),137.5(C),136.0(CH),132.1(CH),127.2(CH),126.8(C),123.3(C),122.5(C),121.1(CH),94.0(C),88.3(C),66.6(CH),52.0(CH),18.9(CH 13 C-NMR (125 MHz, DMSO-d 6 , 27 ° C.) δ ppm: 150.2 (CH), 145.8 (C), 143.5 (C), 137.5 (C), 136.0 (CH ), 132.1 (CH), 127.2 (CH), 126.8 (C), 123.3 (C), 122.5 (C), 121.1 (CH), 94.0 (C) , 88.3 (C), 66.6 (CH 2 ), 52.0 (CH 3 ), 18.9 (CH 3 )

IR(KBr,cm−1)3032,2929,2208,1633,1597,1539,1490,1343,1215,1113,993,880,812,723,684 IR (KBr, cm −1 ) 3032, 2929, 2208, 1633, 1597, 1539, 1490, 1343, 1215, 1113, 993, 880, 812, 723, 684

(実施例3)配位子2bの合成 Example 3 Synthesis of Ligand 2b

Figure 0005190915
Figure 0005190915

(1)2,6−ビス[4−(4−ピリジルエチニル)フェニルエチニル]フェニルアセテートの合成
トリt−ブチルホスフィン(0.062mL,0.025mmol;10%n−ヘキサン溶液)、及びジイソプロピルアミン(0.20mL,1.4mmol)を、1−アセトキシ−2,6−ジブロモベンゼン(58.8mg,0.200mmol),1−エチニル−4−(ピリジルエチニル)ベンゼン(101.6mg,0.500mmol),Pd(PhCN)Cl(4.60mg,0.012mmol)、及びヨウ化銅(I)(1.52mg,0.0080mmol)の1,4−ジオキサン(1.5mL)溶液に加え、全容を、アルゴン雰囲気下、45℃で12時間攪拌した。
(1) Synthesis of 2,6-bis [4- (4-pyridylethynyl) phenylethynyl] phenylacetate Tri-t-butylphosphine (0.062 mL, 0.025 mmol; 10% n-hexane solution) and diisopropylamine ( 0.20 mL, 1.4 mmol), 1-acetoxy-2,6-dibromobenzene (58.8 mg, 0.200 mmol), 1-ethynyl-4- (pyridylethynyl) benzene (101.6 mg, 0.500 mmol) , Pd (PhCN) 2 Cl 2 (4.60 mg, 0.012 mmol), and copper (I) iodide (1.52 mg, 0.0080 mmol) in 1,4-dioxane (1.5 mL) Was stirred at 45 ° C. for 12 hours under an argon atmosphere.

反応液に酢酸エチル(10mL)を加え、不溶物をろ別し、ろ液に水(30mL)を加え、エチレンジアミン(1mL)で洗浄し、酢酸エチルで抽出した。有機層を集め、無水硫酸酸ナトリウムで乾燥し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(CHCl:メタノール=50:1(体積比))で精製して、標記化合物を白色固体(86.1mg,0.160mmol)として得た。収率80%。 Ethyl acetate (10 mL) was added to the reaction mixture, the insoluble material was filtered off, water (30 mL) was added to the filtrate, washed with ethylenediamine (1 mL), and extracted with ethyl acetate. The organic layer was collected and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (CHCl 3 : methanol = 50: 1 (volume ratio)) to obtain the title compound as a white solid (86.1 mg, 0.160 mmol). Yield 80%.

H−NMR(500MHz,CDCl,27℃)δppm:8.62(d,J=5.3Hz,4H),7.57(d,J=7.9Hz,2H),7.56−7.49(m,8H),7.39(d,J=5.7Hz,4H),7.26(t,J=7.7Hz,1H),2.45(s,3H) 1 H-NMR (500 MHz, CDCl 3 , 27 ° C.) δ ppm: 8.62 (d, J = 5.3 Hz, 4H), 7.57 (d, J = 7.9 Hz, 2H), 7.56-7 .49 (m, 8H), 7.39 (d, J = 5.7 Hz, 4H), 7.26 (t, J = 7.7 Hz, 1H), 2.45 (s, 3H)

13C−NMR(125MHz,CDCl,27℃)δppm:168.1(C),152.4(C),149.9(CH),133.1(CH),131.9(CH),131.7(CH),131.1(C),126.1(CH),125.5(CH),123.5(C),122.4(C),118.1(C),94.0(C),93.3(C),88.6(C),86.0(C),20.7(CH 13 C-NMR (125 MHz, CDCl 3 , 27 ° C.) δ ppm: 168.1 (C), 152.4 (C), 149.9 (CH), 133.1 (CH), 131.9 (CH), 131.7 (CH), 131.1 (C), 126.1 (CH), 125.5 (CH), 123.5 (C), 122.4 (C), 118.1 (C), 94 0.0 (C), 93.3 (C), 88.6 (C), 86.0 (C), 20.7 (CH 3 )

IR(KBr,cm−1)3038,2217,1768,1590,1509,1430,1406,1368,1187,1077,1011,904,837,820,789,547 IR (KBr, cm −1 ) 3038, 2217, 1768, 1590, 1509, 1430, 1406, 1368, 1187, 1077, 1011, 904, 837, 820, 789, 547

(2)1−(2−{2,6−ビス[4−(4−ピリジルエチニル)フェニルエチニル]フェノキシ}エチル)ピロール−2,5−ジオン(4b)の合成
ジイソプロピルアゾジカルボキシレート(0.032mL,0.16mmol)を、2,6−ビス[4−(4−ピリジルエチニル)フェニルエチニル]フェノール(69mg,0.14mmol)、トリフェニルホスフィン(36.7mg,0.14mmol)のTHF(10mL)溶液に添加し、全容を、アルゴン雰囲気下、室温で30分間攪拌した。
(2) Synthesis of 1- (2- {2,6-bis [4- (4-pyridylethynyl) phenylethynyl] phenoxy} ethyl) pyrrole-2,5-dione (4b) diisopropyl azodicarboxylate (0. 032 mL, 0.16 mmol), 2,6-bis [4- (4-pyridylethynyl) phenylethynyl] phenol (69 mg, 0.14 mmol), triphenylphosphine (36.7 mg, 0.14 mmol) in THF (10 mL) ) Was added to the solution and the whole volume was stirred at room temperature for 30 minutes under an argon atmosphere.

次いで、この溶液に、N−(2−ヒドロキシエチル)マレイミド(19.8mg,0.14mmol)を添加し、アルゴン雰囲気下、室温で10時間攪拌した。
反応混合物を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(CHCl:MeOH=50:1(体積比))で精製することにより、標記化合物を白色固体(46.5mg,0.075mmol)として得た。収率54%。
Next, N- (2-hydroxyethyl) maleimide (19.8 mg, 0.14 mmol) was added to the solution, and the mixture was stirred at room temperature for 10 hours under an argon atmosphere.
The reaction mixture was concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (CHCl 3 : MeOH = 50: 1 (volume ratio)) to give the title compound as a white solid (46.5 mg, 0.075 mmol). Got as. Yield 54%.

H−NMR(500MHz,CDCl,27℃)δppm:8.63(d,J=5.5Hz,4H),7.61−7.55(m,8H),7.48(d,J=7.7Hz,2H),7.39(d,J=5.6Hz,4H),7.10(t,J=7.7Hz,1H),6.51(s,2H),4.51(d,J=6.0Hz,2H),4.04(d,J=6.1Hz,2H) 1 H-NMR (500 MHz, CDCl 3 , 27 ° C.) δ ppm: 8.63 (d, J = 5.5 Hz, 4H), 7.61-7.55 (m, 8H), 7.48 (d, J = 7.7 Hz, 2H), 7.39 (d, J = 5.6 Hz, 4H), 7.10 (t, J = 7.7 Hz, 1H), 6.51 (s, 2H), 4.51 (D, J = 6.0 Hz, 2H), 4.04 (d, J = 6.1 Hz, 2H)

13C−NMR(125MHz,CDCl,27℃)δppm:170.5(C),160.0(C),149.9(CH),134.0(CH),133.9(CH),131.9(CH),131.8(CH),131.2(C),125.6(CH),124.0(CH),123.9(C),122.2(C),117.4(C),93.7(C),93.5(C),88.5(C),87.3(C),69.9(CH),37.9(CH 13 C-NMR (125 MHz, CDCl 3 , 27 ° C.) δ ppm: 170.5 (C), 160.0 (C), 149.9 (CH), 134.0 (CH), 133.9 (CH), 131.9 (CH), 131.8 (CH), 131.2 (C), 125.6 (CH), 124.0 (CH), 123.9 (C), 122.2 (C), 117 .4 (C), 93.7 (C), 93.5 (C), 88.5 (C), 87.3 (C), 69.9 (CH 2 ), 37.9 (CH 2 )

IR(KBr,cm−1)3038,2217,1711,1589,1509,1439,1406,1230,1168,1102,1017,969,823,696,546
(3)配位子2bの合成
IR (KBr, cm −1 ) 3038, 2217, 1711, 1589, 1509, 1439, 1406, 1230, 1168, 1102, 1017, 969, 823, 696, 546
(3) Synthesis of ligand 2b

Figure 0005190915
Figure 0005190915

トリス(2−カルボキシエチル)ホスフィンを、変異ユビキチン(mutated ubiquitin)(22.4mg,2.60μmol)の、20mMトリスバッファー溶液(15mL)に添加した。全容を37℃で2時間ゆっくりと攪拌することにより、溶液中でモノマー化したユビキチンの生成を、MALDI−TOF MSにより確認した。   Tris (2-carboxyethyl) phosphine was added to a 20 mM Tris buffer solution (15 mL) of mutated ubiquitin (22.4 mg, 2.60 μmol). By slowly stirring the whole volume at 37 ° C. for 2 hours, the formation of monomerized ubiquitin in the solution was confirmed by MALDI-TOF MS.

この溶液を0.1M水酸化ナトリウム水溶液でpH8.0に調整し、そこへ、化合物4b(25.0mg,39.9μmol)のTHF(10mL)溶液を添加し、37℃で2時間、室温で12時間攪拌した。
反応混合物を逆相(reversedphase)HPLC〔on an Inertsil Peptide C18 semi−preparative column(20mm×250mm)、溶離液:0.1重量%トリフルオロ酢酸(TFA)水溶液とアセトニトリル〕で精製後、凍結乾燥し、標記化合物を白色粉末(14mg,1.5μmol)として得た。収率57%。
The solution was adjusted to pH 8.0 with 0.1 M aqueous sodium hydroxide solution, and a solution of compound 4b (25.0 mg, 39.9 μmol) in THF (10 mL) was added thereto, and the mixture was stirred at 37 ° C. for 2 hours at room temperature. Stir for 12 hours.
The reaction mixture was purified by reverse phase HPLC (on an Inertsil Peptide C18 semi-preparative column (20 mm × 250 mm), eluent: 0.1 wt% trifluoroacetic acid (TFA) aqueous solution and acetonitrile), and then lyophilized. The title compound was obtained as a white powder (14 mg, 1.5 μmol). Yield 57%.

MALDI−TOF−MS calcd for [M+Na]9253.4,found 9248.9. MALDI-TOF-MS calcd for [M + Na] + 9253.4, found 9248.9.

(実施例5)配位子1bの合成 Example 5 Synthesis of Ligand 1b

Figure 0005190915
Figure 0005190915

(1){4−、メチル−3,5−ビス[4−(4−ピリジルエチニル)フェニルエチニル]フェニル}メタノールの合成
トリt−ブチルホスフィン(0.462mL,0.0186mmol;10重量%n−ヘキサン溶液)、及びジイソプロピルアミン(1.5mL,11mmol)を、(3,5−ジブロモ−4−メチルフェニル)メタノール(420mg,1.50mmol),4−(4−エチニルフェニルエチニル)ピリジン(762mg,3.75mmol),Pd(PhCN)Cl(35mg,0.090mmol)、及びヨウ化銅(I)(11mg,0.060mmol)の1,4−ジオキサン(15ml)溶液に添加し、全容を、アルゴン雰囲気下、50℃で14時間攪拌した。反応混合物に酢酸エチル(30mL)を加え、不溶物をろ別した。ろ液に水(50mL)を加え、エチレンジアミン(1mL)で洗浄し、酢酸エチルで抽出した。有機層を集め、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(CHCl:MeOH=40:1(体積比))により、精製して、標記化合物を白色固体(703mg,1.34mmol)として得た。収率89%。
(1) Synthesis of {4-, methyl-3,5-bis [4- (4-pyridylethynyl) phenylethynyl] phenyl} methanol Tri-t-butylphosphine (0.462 mL, 0.0186 mmol; 10 wt% n- Hexane solution), and diisopropylamine (1.5 mL, 11 mmol) to (3,5-dibromo-4-methylphenyl) methanol (420 mg, 1.50 mmol), 4- (4-ethynylphenylethynyl) pyridine (762 mg, 3.75 mmol), Pd (PhCN) 2 Cl 2 (35 mg, 0.090 mmol), and copper iodide (I) (11 mg, 0.060 mmol) in 1,4-dioxane (15 ml) solution. The mixture was stirred at 50 ° C. for 14 hours under an argon atmosphere. Ethyl acetate (30 mL) was added to the reaction mixture, and the insoluble material was filtered off. Water (50 mL) was added to the filtrate, washed with ethylenediamine (1 mL), and extracted with ethyl acetate. The organic layer was collected and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (CHCl 3 : MeOH = 40: 1 (volume ratio)) to obtain the title compound as a white solid (703 mg, 1.34 mmol). Yield 89%.

H−NMR(500MHz,CDCl,27℃)δppm:8.61(d,J=5.6Hz,4H),7.55(s,8H),7.53(s,2H),7.39(d,J=5.6Hz,4H),4.69(s,2H),2.71(s,3H),1.94(s,1H) 1 H-NMR (500 MHz, CDCl 3 , 27 ° C.) δ ppm: 8.61 (d, J = 5.6 Hz, 4H), 7.55 (s, 8H), 7.53 (s, 2H), 7. 39 (d, J = 5.6 Hz, 4H), 4.69 (s, 2H), 2.71 (s, 3H), 1.94 (s, 1H)

13C−NMR(125MHz,CDCl,27℃)δppm:149.8(CH),141.4(C),138.6(C),131.9(CH),131.6(CH),131.2(C),130.7(CH),125.5(CH),124.1(C),123.6(C),122.1(C),93.5(C),93.2(C),90.2(C),88.5(C),64.3(CH),19.0(CH 13 C-NMR (125 MHz, CDCl 3 , 27 ° C.) δ ppm: 149.8 (CH), 141.4 (C), 138.6 (C), 131.9 (CH), 131.6 (CH), 131.2 (C), 130.7 (CH), 125.5 (CH), 124.1 (C), 123.6 (C), 122.1 (C), 93.5 (C), 93 .2 (C), 90.2 (C), 88.5 (C), 64.3 (CH 2 ), 19.0 (CH 3 )

IR(KBr,cm−1)3289,3041,2873,2218,1590,1540,1510,1407,1213,1102,1049,997,835,750,636,540 IR (KBr, cm −1 ) 3289, 3041, 2873, 2218, 1590, 1540, 1510, 1407, 1213, 1102, 1049, 997, 835, 750, 636, 540

元素分析:Calcd for C3824O・1.5HO:C,82.74;H,4.93;N,5.08.
Found:C,82.54;H,4.57;N,4.80
Elemental analysis: Calcd for C 38 H 24 N 2 O · 1.5H 2 O: C, 82.74; H, 4.93; N, 5.08.
Found: C, 82.54; H, 4.57; N, 4.80

(2)トリメチル{4−メチル−3,5−ビス[4−(4−ピリジルエチニル)フェニルエチニル]ベンジル}アンモニウムブロマイドの合成
トリフェニルホスフィン(367mg,1.40mmol)及び四臭化炭素(597mg,1.80mmol)を、アルゴン雰囲気下、室温で、{4−メチル−3,5−ビス[4−(4−ピリジルエチニル)フェニルエチニル]フェニル}メタノール(314mg,0.600mmol)の乾燥THF(150mL)溶液に順次添加した。
(2) Synthesis of trimethyl {4-methyl-3,5-bis [4- (4-pyridylethynyl) phenylethynyl] benzyl} ammonium bromide Triphenylphosphine (367 mg, 1.40 mmol) and carbon tetrabromide (597 mg, 1.80 mmol) in dry THF (150 mL) of {4-methyl-3,5-bis [4- (4-pyridylethynyl) phenylethynyl] phenyl} methanol (314 mg, 0.600 mmol) at room temperature under an argon atmosphere. ) Sequentially added to the solution.

全容を3時間攪拌することにより、4−メチル−3,5−ビス[4−(4−ピリジルエチニル)フェニルエチニル]ベンジルブロマイドが定量的に生成していることを、MALDI−TOF MSにより確認した(単離せず。)。   It was confirmed by MALDI-TOF MS that 4-methyl-3,5-bis [4- (4-pyridylethynyl) phenylethynyl] benzyl bromide was quantitatively formed by stirring the whole volume for 3 hours. (Not isolated.)

この溶液をトリメチルアミン(7.0mL,30mmol;4.3M水溶液)を添加して、全容を室温で15時間攪拌した。溶媒を減圧留去したのち、得られた残渣を酢酸エチル及び水で洗浄し、真空乾燥することにより、標記化合物を白色固体(295mg,0.456mmol)として得た。収率76%。   To this solution, trimethylamine (7.0 mL, 30 mmol; 4.3 M aqueous solution) was added, and the whole volume was stirred at room temperature for 15 hours. After the solvent was distilled off under reduced pressure, the resulting residue was washed with ethyl acetate and water and dried in vacuo to give the title compound as a white solid (295 mg, 0.456 mmol). Yield 76%.

H−NMR(500MHz,CDCN,27℃)δppm:8.61(d,J=4.8Hz,4H),7.71(s,2H),7.64(s,8H),7.46(d,J=4.6Hz,4H),4.49(s,2H),3.09(s,9H),2.78(s,3H) 1 H-NMR (500 MHz, CD 3 CN, 27 ° C.) δ ppm: 8.61 (d, J = 4.8 Hz, 4H), 7.71 (s, 2H), 7.64 (s, 8H), 7 .46 (d, J = 4.6 Hz, 4H), 4.49 (s, 2H), 3.09 (s, 9H), 2.78 (s, 3H)

13C−NMR(125MHz,CDCN,27℃)δppm:151.1(CH),145.7(C),137.2(CH),133.1(CH),132.8(CH),131.5(C),127.1(C),126.4(CH),125.3(C),124.4(C),123.5(C),95.1(C),93.6(C),89.9(C),89.5(C),68.9(CH),53.5(CH),19.7(CH 13 C-NMR (125 MHz, CD 3 CN, 27 ° C.) δ ppm: 151.1 (CH), 145.7 (C), 137.2 (CH), 133.1 (CH), 132.8 (CH) , 131.5 (C), 127.1 (C), 126.4 (CH), 125.3 (C), 124.4 (C), 123.5 (C), 95.1 (C), 93.6 (C), 89.9 (C), 89.5 (C), 68.9 (CH 2 ), 53.5 (CH 3 ), 19.7 (CH 3 )

IR(KBr,cm−1)3431,3010,2218,1590,1510,1487,1407,1215,988,878,820,637,538 IR (KBr, cm −1 ) 3431, 3010, 2218, 1590, 1510, 1487, 1407, 1215, 988, 878, 820, 637, 538

元素分析:Calcd for C4132Br・1.0HO・1.0EtOAc:C,71.80;H,5.62;N,5.58
Found:C,71.94;H,5.57;N,5.66
Elemental analysis: Calcd for C 41 H 32 N 3 Br · 1.0H 2 O · 1.0EtOAc: C, 71.80; H, 5.62; N, 5.58
Found: C, 71.94; H, 5.57; N, 5.66

(3)トリメチル{4−メチル−3,5−ビス[4−(4−ピリジルエチニル)フェニルエチニル]ベンジル}アンモニウムニトレイトの合成
トリメチル{4−メチル−3,5−ビス[4−(4−ピリジルエチニル)フェニルエチニル]ベンジル}アンモニウムブロマイド(120mg,0.186mmol)、及び硝酸銀(32.6mg,0.192mmol)のアセトニトリル(10mL)及び水(60mL)の混合溶液に加え、全容を、アルゴン雰囲気下、40℃で12時間攪拌した。反応液をろ過し、真空乾燥することにより、標記化合物を白色固体(111mg,0.176mmol)として得た。収率95%。
(3) Synthesis of trimethyl {4-methyl-3,5-bis [4- (4-pyridylethynyl) phenylethynyl] benzyl} ammonium nitrate trimethyl {4-methyl-3,5-bis [4- (4- Pyridylethynyl) phenylethynyl] benzyl} ammonium bromide (120 mg, 0.186 mmol), and a mixed solution of silver nitrate (32.6 mg, 0.192 mmol) in acetonitrile (10 mL) and water (60 mL) were added to the whole volume in an argon atmosphere. Under stirring at 40 ° C. for 12 hours. The reaction mixture was filtered and dried in vacuo to give the title compound as a white solid (111 mg, 0.176 mmol). Yield 95%.

H−NMR(500MHz,CDCl,27℃)δppm:8.60(d,J=5.9Hz,4H),7.62(s,2H),7.55−7.51(m,8H),7.37(d,J=5.6Hz,4H),4.81(s,2H),3.28(s,9H),2.72(s,3H) 1 H-NMR (500 MHz, CDCl 3 , 27 ° C.) δ ppm: 8.60 (d, J = 5.9 Hz, 4H), 7.62 (s, 2H), 7.55-7.51 (m, 8H) ), 7.37 (d, J = 5.6 Hz, 4H), 4.81 (s, 2H), 3.28 (s, 9H), 2.72 (s, 3H)

13C−NMR(125MHz,CDCN,27℃)δppm:149.8(CH),145.0(C),135.7(CH),131.9(CH),131.7(CH),131.0(C),125.5(CH),125.1(C),124.9(C),123.3(C),122.5(C),94.9(C),93.3(C),88.73(C),88.68(C),68.3(CH),53.0(CH),19.3(CH 13 C-NMR (125 MHz, CD 3 CN, 27 ° C.) δ ppm: 149.8 (CH), 145.0 (C), 135.7 (CH), 131.9 (CH), 131.7 (CH) , 131.0 (C), 125.5 (CH), 125.1 (C), 124.9 (C), 123.3 (C), 122.5 (C), 94.9 (C), 93.3 (C), 88.73 (C), 88.68 (C), 68.3 (CH 2 ), 53.0 (CH 3 ), 19.3 (CH 3 )

IR(KBr,cm−1)3400,3034,2217,1591,1540,1509,1489,1407,1360,1336,1215,1103,988,880,819,636,539 IR (KBr, cm −1 ) 3400, 3034, 2217, 1591, 1540, 1509, 1489, 1407, 1360, 1336, 1215, 1103, 988, 880, 819, 636, 539

元素分析: Calcd for C4132・1.8HO:C,74.48;H,5.43;N,8.47
Found:C,74.67;H,5.29;N,8.16
Elemental analysis: Calcd for C 41 H 32 N 4 O 3 · 1.8H 2 O: C, 74.48; H, 5.43; N, 8.47
Found: C, 74.67; H, 5.29; N, 8.16

(実施例6)配位子2cの合成
(1)1−(2−{2,6−ビス[(4−ピリジル)エチニル]フェノキシ}エチニル)ピロール−2,5−ジオン(4c)の合成
Example 6 Synthesis of Ligand 2c (1) Synthesis of 1- (2- {2,6-bis [(4-pyridyl) ethynyl] phenoxy} ethynyl) pyrrole-2,5-dione (4c)

Figure 0005190915
Figure 0005190915

ジイソプロピルアゾジカルボキシレート(0.21mL,1.2mmol)を、2,6−ビス(4−ピリジルエチニル)フェノール(294mg,1.00mmol)、及びトリフェニルホスフィン(262mg,1.00mmol)のTHF(10mL)溶液に加え、全容を、アルゴン雰囲気下、室温で20分間攪拌した。そこへ、N−(2−ヒドロキシエチル)マレイミド(141mg,1.00mmol)を添加し、全容を、アルゴン雰囲気下、室温で12時間攪拌した。反応液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(CHCl:MeOH=50:1(体積比))により精製して、標記化合物を白色固体(310mg,0.740mmol)として得た。収率74%。 Diisopropyl azodicarboxylate (0.21 mL, 1.2 mmol) was added to 2,6-bis (4-pyridylethynyl) phenol (294 mg, 1.00 mmol) and triphenylphosphine (262 mg, 1.00 mmol) in THF ( 10 mL) solution and the whole volume was stirred for 20 minutes at room temperature under argon atmosphere. N- (2-hydroxyethyl) maleimide (141 mg, 1.00 mmol) was added thereto, and the whole was stirred at room temperature for 12 hours under an argon atmosphere. The reaction mixture was concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (CHCl 3 : MeOH = 50: 1 (volume ratio)) to give the title compound as a white solid (310 mg, 0.740 mmol). . Yield 74%.

H−NMR(500MHz,CDCl,27℃)δppm:8.65(d,J=5.6Hz,4H),7.53(d,J=7.5Hz,2H),7.46(d,J=5.6Hz,4H),7.13(t,J=7.6Hz,1H),6.55(s,2H),4.50(t,J=6.0Hz,2H),4.04(d,J=6.0Hz,2H) 1 H-NMR (500 MHz, CDCl 3 , 27 ° C.) δ ppm: 8.65 (d, J = 5.6 Hz, 4H), 7.53 (d, J = 7.5 Hz, 2H), 7.46 (d , J = 5.6 Hz, 4H), 7.13 (t, J = 7.6 Hz, 1H), 6.55 (s, 2H), 4.50 (t, J = 6.0 Hz, 2H), 4 .04 (d, J = 6.0 Hz, 2H)

13C−NMR(125MHz,CDCl,27℃)δppm:170.4(C),160.5(C),149.9(CH),134.7(CH),134.1(CH),131.0(C),125.6(CH),124.1(CH),116.8(C),91.5(C),89.1(C),70.0(CH),37.9(CH 13 C-NMR (125 MHz, CDCl 3 , 27 ° C.) δ ppm: 170.4 (C), 160.5 (C), 149.9 (CH), 134.7 (CH), 134.1 (CH), 131.0 (C), 125.6 (CH), 124.1 (CH), 116.8 (C), 91.5 (C), 89.1 (C), 70.0 (CH 2 ), 37.9 (CH 2 )

IR(KBr,cm−1)3462,3049,2946,2215,1708,1593,1539,1446,1412,1324,1238,1171,1019,990,969,817,695 IR (KBr, cm −1 ) 3462, 3049, 2946, 2215, 1708, 1593, 1539, 1446, 1412, 1324, 1238, 1171, 1019, 990, 969, 817, 695

元素分析:Calcd for C2617:C,74.45;H,4.09;N,10.02
Found:C,74.20;H,4.09;N,9.81
Elemental analysis: Calcd for C 26 H 17 N 3 O 3: C, 74.45; H, 4.09; N, 10.02
Found: C, 74.20; H, 4.09; N, 9.81

(2)配位子2cの合成 (2) Synthesis of ligand 2c

Figure 0005190915
Figure 0005190915

トリス(2−カルボキシエチル)ホスフィンを変異ユビキチン(mutated ubiquitin)(28.4mg,3.30μmol)の20mM トリスバッファー溶液(20mL)に添加し、37℃で2時間攪拌した。モノマー化したユビキチンの生成を、MALDI−TOF MSにて確認した。1M水酸化ナトリウム水溶液にてpHを8.0に調整し、化合物4c(68.2mg,110μmol)のTHF(10mL)を添加した。全容を37℃で2時間、室温で12時間攪拌した。   Tris (2-carboxyethyl) phosphine was added to a 20 mM Tris buffer solution (20 mL) of mutated ubiquitin (28.4 mg, 3.30 μmol) and stirred at 37 ° C. for 2 hours. Production of monomerized ubiquitin was confirmed by MALDI-TOF MS. The pH was adjusted to 8.0 with 1 M aqueous sodium hydroxide solution, and THF (10 mL) of compound 4c (68.2 mg, 110 μmol) was added. The whole volume was stirred at 37 ° C. for 2 hours and at room temperature for 12 hours.

反応混合物を逆相(reversedphase)HPLC〔on an Inertsil Peptide C18 semi−preparative column(20mm×250mm)、溶離液:0.1重量%トリフルオロ酢酸(TFA)水溶液とアセトニトリル〕で精製後、凍結乾燥し、標記化合物を白色粉末(24mg,2.6μmol)として得た。収率80%。   The reaction mixture was purified by reverse phase HPLC (on an Inertsil Peptide C18 semi-preparative column (20 mm × 250 mm), eluent: 0.1 wt% trifluoroacetic acid (TFA) aqueous solution and acetonitrile), and then lyophilized. The title compound was obtained as a white powder (24 mg, 2.6 μmol). Yield 80%.

MALDI−TOF−MS calcd for [M+Na]9053.3,found 9054.8 MALDI-TOF-MS calcd for [M + Na] + 9053.3, found 9054.8

(実施例9)配位子1cの合成 Example 9 Synthesis of Ligand 1c

Figure 0005190915
Figure 0005190915

(1){4−メチル−3,5−ビス[(4−ピリジル)エチニル]フェニル}メタノールの合成
トリt−ブチルホスフィン(1.84mL,0.745mmol;10重量%n−ヘキサン溶液、及びジイソプロピルアミン(9.0mL,64mmol)を、(3,5−ジブロモ−4−メチルフェニル)メタノール(1.34g,4.79mmol),4−エチニルピリジン塩酸塩(2.18g,15.6mmol),Pd(PhCN)Cl(138mg,0.360mmol)、及びヨウ化銅(I)(45.7mg,0.2400mmol)の1,4−ジオキサン(30mL)溶液に加え、全容を、アルゴン雰囲気下、40℃で24時間攪拌した。反応液に酢酸エチル(40mL)を加え、不溶物をろ別し、ろ液に水(100mL)を加え、エチレンジアミン(3mL)で洗浄し、酢酸エチルで抽出した。有機層を集め、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(CHCl:メタノール=50:1(体積比))で精製することにより、標記化合物を白色固体(1.15g,3.54mmol)として得た。収率74%。
(1) Synthesis of {4-methyl-3,5-bis [(4-pyridyl) ethynyl] phenyl} methanol Tri-t-butylphosphine (1.84 mL, 0.745 mmol; 10 wt% n-hexane solution, and diisopropyl Amine (9.0 mL, 64 mmol) was added to (3,5-dibromo-4-methylphenyl) methanol (1.34 g, 4.79 mmol), 4-ethynylpyridine hydrochloride (2.18 g, 15.6 mmol), Pd. (PhCN) 2 Cl 2 (138 mg, 0.360 mmol) and a solution of copper (I) iodide (45.7 mg, 0.2400 mmol) in 1,4-dioxane (30 mL) were added under an argon atmosphere. The mixture was stirred for 24 hours at 40 ° C. Ethyl acetate (40 mL) was added to the reaction mixture, the insoluble material was filtered off, and water (100 mL) was added to the filtrate. . Additionally, washed with ethylenediamine (3 mL), and extracted with ethyl acetate The organic layer was collected, dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure the resulting residue was purified by silica gel column chromatography (CHCl 3:. Methanol = 50: 1 (volume ratio)) to give the title compound as a white solid (1.15 g, 3.54 mmol), yield 74%.

H−NMR(500MHz,CDCl,27℃)δppm:8.63(d,J=5.9Hz,4H),7.57(s,2H),7.40(d,J=6.0Hz,4H),4.71(d,J=4.9Hz,2H),2.69(s,3H),1.86(t,J=5.6Hz,1H) 1 H-NMR (500 MHz, CDCl 3 , 27 ° C.) δ ppm: 8.63 (d, J = 5.9 Hz, 4H), 7.57 (s, 2H), 7.40 (d, J = 6.0 Hz) , 4H), 4.71 (d, J = 4.9 Hz, 2H), 2.69 (s, 3H), 1.86 (t, J = 5.6 Hz, 1H)

13C−NMR(125MHz,CDCl,27℃)δppm:149.9(CH),142.0(C),138.8(C),131.4(CH),131.2(C),125.5(CH),122.9(C),92.1(C),91.0(C),64.1(CH),19.0(CH 13 C-NMR (125 MHz, CDCl 3 , 27 ° C.) δ ppm: 149.9 (CH), 142.0 (C), 138.8 (C), 131.4 (CH), 131.2 (C), 125.5 (CH), 122.9 (C), 92.1 (C), 91.0 (C), 64.1 (CH 2 ), 19.0 (CH 3 )

IR(KBr,cm−1)3290,2858,2208,1594,1538,1490,1417,1215,1113,1064,998,869,819,742,554 IR (KBr, cm −1 ) 3290, 2858, 2208, 1594, 1538, 1490, 1417, 1215, 1113, 1064, 998, 869, 819, 742, 554

(2)トリメチル(4−メチル−3,5−ビス[(4−ピリジル)エチニル]ベンジル)アンモニウムブロマイドの合成
トリフェニルホスフィン(1.73g,6.60mmol)、及び四臭化炭素(2.98g,9.00mmol)を、{4−メチル−3,5−ビス[(4−ピリジル)エチニル]フェニル}メタノール(930mg,3.00mmol)の乾燥THF(200mL)様液に、アルゴン雰囲気下、室温で順次添加した。全容を3時間攪拌することにより、4−メチル−3,5−ビス[(4−ピリジル)エチニル]ベンジルブロマイドが定量的に生成していることをMALDI−TOF MSにより確認した(単離せず。)。
(2) Synthesis of trimethyl (4-methyl-3,5-bis [(4-pyridyl) ethynyl] benzyl) ammonium bromide Triphenylphosphine (1.73 g, 6.60 mmol) and carbon tetrabromide (2.98 g) , 9.00 mmol) in a dry THF (200 mL) -like solution of {4-methyl-3,5-bis [(4-pyridyl) ethynyl] phenyl} methanol (930 mg, 3.00 mmol) under argon atmosphere at room temperature. Were added sequentially. By stirring the whole volume for 3 hours, it was confirmed by MALDI-TOF MS that 4-methyl-3,5-bis [(4-pyridyl) ethynyl] benzyl bromide was quantitatively formed (not isolated). ).

この溶液に、トリメチルアミン(14.0mL,60mmol;4.3M水溶液)を加え、室温で18時間攪拌した。反応液から溶媒を減圧留去し、得られた残渣を酢酸エチル及び水で洗浄したのち、真空乾燥して、標記化合物を白色固体(1.21g,2.79mmol)として得た。収率97%。   To this solution, trimethylamine (14.0 mL, 60 mmol; 4.3 M aqueous solution) was added and stirred at room temperature for 18 hours. The solvent was removed from the reaction solution under reduced pressure, and the resulting residue was washed with ethyl acetate and water, and then dried in vacuo to give the title compound as a white solid (1.21 g, 2.79 mmol). Yield 97%.

H−NMR(500MHz,DMSO−d,27℃)δppm:8.69(d,J=6.1Hz,4H),7.89(s,2H),7.59(d,J=6.1Hz,4H),4.58(s,2H),3.09(s,9H),2.74(s,3H) 1 H-NMR (500 MHz, DMSO-d 6 , 27 ° C.) δ ppm: 8.69 (d, J = 6.1 Hz, 4H), 7.89 (s, 2H), 7.59 (d, J = 6 .1 Hz, 4H), 4.58 (s, 2H), 3.09 (s, 9H), 2.74 (s, 3H)

13C−NMR(125MHz,DMSO−d,27℃)δppm:150.0(CH),144.2(C),136.9(CH),129.5(C),127.0(C),125.2(CH),122.6(C),91.7(C),90.6(C),66.3(CH),51.9(CH),18.9(CH 13 C-NMR (125 MHz, DMSO-d 6 , 27 ° C.) δ ppm: 150.0 (CH), 144.2 (C), 136.9 (CH), 129.5 (C), 127.0 (C ), 125.2 (CH), 122.6 (C), 91.7 (C), 90.6 (C), 66.3 (CH 2 ), 51.9 (CH 3 ), 18.9 ( CH 3)

IR(KBr,cm−1)3412,3005,2214,1593,1535,1488,1405,1211,1063,988,881,821,742,549 IR (KBr, cm −1 ) 3412, 3005, 2214, 1593, 1535, 1488, 1405, 1211, 1063, 988, 881, 821, 742, 549

(2)トリメチル(4−メチル−3,5−ビス[(4−ピリジル)エチニル]ベンジル)アンモニウムトリフルロメタンスルホネート(1c)の合成 (2) Synthesis of trimethyl (4-methyl-3,5-bis [(4-pyridyl) ethynyl] benzyl) ammonium trifluoromethanesulfonate (1c)

トリメチル(4−メチル−3,5−ビス[(4−ピリジル)エチニル]ベンジル)アンモニウムブロマイド(259mg,0.600mmol)、及びトリフルオロメタンスルホン酸の銀塩(AgOTf)(162mg,0.630mmol)のアセトニトリル(60mL)を、アルゴン雰囲気下、40℃で5時間攪拌した。反応液をろ過し、ろ液を減圧濃縮することにより、標記化合物を白色固体(295mg,0.589mmol)として得た。収率98%。   Trimethyl (4-methyl-3,5-bis [(4-pyridyl) ethynyl] benzyl) ammonium bromide (259 mg, 0.600 mmol), and silver salt of trifluoromethanesulfonic acid (AgOTf) (162 mg, 0.630 mmol) Acetonitrile (60 mL) was stirred at 40 ° C. for 5 hours under an argon atmosphere. The reaction solution was filtered, and the filtrate was concentrated under reduced pressure to obtain the title compound as a white solid (295 mg, 0.589 mmol). Yield 98%.

H−NMR(500MHz,DMSO−d,27℃)δppm:8.69(d,J=5.7Hz,4H),7.88(s,2H),7.59(d,J=6.0Hz,4H),4.53(s,2H),3.07(s,9H),2.74(s,3H) 1 H-NMR (500 MHz, DMSO-d 6 , 27 ° C.) δ ppm: 8.69 (d, J = 5.7 Hz, 4H), 7.88 (s, 2H), 7.59 (d, J = 6 .0Hz, 4H), 4.53 (s, 2H), 3.07 (s, 9H), 2.74 (s, 3H)

13C−NMR(125MHz,DMSO−d,27℃)δppm:150.6(CH),144.8(C),137.5(CH),130.1(C),127.5(C),125.8(CH),123.2(C),92.2(C),91.2(C),67.0(CH),52.5(CH),19.4(CH 13 C-NMR (125 MHz, DMSO-d 6 , 27 ° C.) δ ppm: 150.6 (CH), 144.8 (C), 137.5 (CH), 130.1 (C), 127.5 (C ), 125.8 (CH), 123.2 (C), 92.2 (C), 91.2 (C), 67.0 (CH 2 ), 52.5 (CH 3 ), 19.4 ( CH 3)

IR(KBr,cm−1)3041,2215,1594,1489,1408,1257,1224,1160,1030,988,880,820,639,573,547
(参考1)
得られた二座有機配位子2a、2b、2cにつき、SDS−ポリアクリルアミドゲル電気泳動(SDS−PAGE)による分析を行った。SDS−PAGEは、アクリルアミドとN,N’−メチレンビスアクリルアミドの混合溶液を重合させた分子ふるいを用いて、その目の大きさによって蛋白質を分子量別によりわける手法である。サンプルを煮て蛋白質の高次構造をほどき、SDS(sodium dodecyl sulfate)を付加させることにより、分子量(=アミノ酸鎖の長さ)と対応する負電荷を蛋白質に与えた。ここに電圧をかけることにより蛋白質は陽極方向に移動し、ほぼ分子量によって分画することが可能である。最後に、Coomasie Brilliant Blueにより蛋白質を青色に着色を行った。
IR (KBr, cm −1 ) 3041, 2155, 1594, 1489, 1408, 1257, 1224, 1160, 1030, 988, 880, 820, 639, 573, 547
(Reference 1)
The obtained bidentate organic ligands 2a, 2b, and 2c were analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). SDS-PAGE is a technique for separating proteins according to molecular weight according to the size of the eyes using a molecular sieve obtained by polymerizing a mixed solution of acrylamide and N, N′-methylenebisacrylamide. The sample was boiled to unfold the higher-order structure of the protein, and SDS (sodium dodecyl sulfate) was added to give the protein a negative charge corresponding to the molecular weight (= amino acid chain length). By applying a voltage to this, the protein moves in the anode direction and can be fractionated by the molecular weight. Finally, the protein was colored blue with Coomassie Brilliant Blue.

配位子2cについてSDS−PAGEを行った結果を図1に示す。図1中、aが分子量マーカー、bが還元前のユビキチン、c,dがTCEPによる還元後のユビキチン、e‐iが配位子2cである。還元前のユビキチンは、14400のマーカー付近に大きなスポットが現れている。これは、ユビキチンの分子量が8600程度であることを考えると、チオール基同士がS−S結合を形成したユビキチンの2量体であると考えられる。これをTCEPで還元したものについては二量体のスポットは消え、分子量6000付近のスポットのみとなったことから、すべてのS−S結合が還元され単量体となっていることが確認できた。さらに、配位子と結合した2cについても1つのスポットのみが確認され、分解物などは存在せずユビキチン連結配位子が得られたことが確かめられた。   FIG. 1 shows the result of SDS-PAGE performed on the ligand 2c. In FIG. 1, a is a molecular weight marker, b is ubiquitin before reduction, c and d are ubiquitin after reduction by TCEP, and ei is ligand 2c. Ubiquitin before reduction has a large spot near the 14400 marker. Considering that the molecular weight of ubiquitin is about 8600, this is considered to be a dimer of ubiquitin in which thiol groups form an S—S bond. As a result of reducing this with TCEP, the spot of the dimer disappeared and only a spot having a molecular weight of about 6000 was found, so that it was confirmed that all SS bonds were reduced and became monomers. . Further, only one spot was confirmed for 2c bonded to the ligand, and it was confirmed that a ubiquitin-linked ligand was obtained without the presence of decomposition products.

(参考2)
続いて、錯体形成反応に用いる溶媒を決定するために、溶媒によるユビキチンのフォールディング構造への影響を調べた。蛋白質のフォールディング構造の情報は、H−NMRの測定により、シグナルが存在する化学シフト値の幅から読み取ることができる。フォールディング構造を維持している場合には、それぞれのプロトンの存在する環境が異なるため、アミドプロトンの化学シフト値が幅広い領域に観測される。一方、蛋白質が変性した場合には、ランダムコイル状になることによりアミドプロトンの観測される化学シフトの幅は狭くなることが知られている。
(Reference 2)
Subsequently, in order to determine the solvent used for the complex formation reaction, the influence of the solvent on the folding structure of ubiquitin was examined. Information on the protein folding structure can be read from the width of the chemical shift value in which a signal exists by measurement of 1 H-NMR. When the folding structure is maintained, the chemical shift value of the amide proton is observed in a wide range because the environment in which each proton exists is different. On the other hand, when the protein is denatured, it is known that the width of the chemical shift observed for the amide protons becomes narrow due to the random coil shape.

ユビキチンのH−NMRスペクトルを図2に示した。ユビキチンはHO中では安定なフォールディング構造をとることが知られているが、HO中でアミドプロトンは9.5ppm−7.0ppmの領域に観測された(図2(a))。一方、DMSO中でのスペクトルでは8.5ppm−7.0ppmにブロードなピークとして観測され、水中でのユビキチンの場合と比較してその領域は狭くなったといえる(図2(b))。ユビキチンを水とアセトニトリルの混合溶媒(HO/CDCN=1:1)に溶解させたところ、アミドプロトンは9.5ppm−7.0ppmに観測され、水中とほぼ同じ幅の領域に観測された(図2(c))。 The 1 H-NMR spectrum of ubiquitin is shown in FIG. Ubiquitin is known to take a stable folding structure in H 2 O, amide protons in H 2 O was observed in the region of 9.5 ppm-7.0 ppm (FIG. 2 (a)). On the other hand, in the spectrum in DMSO, it was observed as a broad peak at 8.5 ppm to 7.0 ppm, and it can be said that the region was narrower than in the case of ubiquitin in water (FIG. 2B). When ubiquitin was dissolved in a mixed solvent of water and acetonitrile (H 2 O / CD 3 CN = 1: 1), the amide proton was observed at 9.5 ppm to 7.0 ppm, and was observed in a region of almost the same width as water. (FIG. 2 (c)).

以上の結果より、ユビキチンはDMSO中では変性が見られるのに対し、水とアセトニトリルの混合溶媒中では、フォールディング構造をほぼ維持していることが確認された。そこで、フォールディング構造を維持した状態でのユビキチンの内包を行うために、球状錯体の形成は水−アセトニトリルの混合溶媒を用いるのが好ましいことがわかった。   From the above results, it was confirmed that ubiquitin denatured in DMSO, but almost maintained a folding structure in a mixed solvent of water and acetonitrile. Therefore, it was found that it is preferable to use a mixed solvent of water-acetonitrile for the formation of the spherical complex in order to encapsulate ubiquitin while maintaining the folding structure.

(実施例10)球状遷移金属錯体(3a)の製造 (Example 10) Production of spherical transition metal complex (3a)

Figure 0005190915
Figure 0005190915

配位子(1a)とユビキチン連結配位子(2a)、Pd(NOを23:1:12の比率で混合し、DO:CDCN=1:1(体積比)の混合溶媒中、45℃で3時間穏やかに攪拌することにより球状錯体(3a)の製造を行った。 Ligand (1a), ubiquitin-linked ligand (2a), and Pd (NO 3 ) 2 are mixed at a ratio of 23: 1: 12, and D 2 O: CD 3 CN = 1: 1 (volume ratio) The spherical complex (3a) was produced by gently stirring in a mixed solvent at 45 ° C. for 3 hours.

これらの反応溶液についてのDOSY NMRを測定した。図3に、ユビキチン連結配位子(2a)のDOSYスペクトルと、錯体形成後のスペクトルを示した。
錯体形成後のスペクトルより、配位子骨格の拡散係数はlogD=−10.12に観測され、(1a)のみから形成する球状錯体の拡散係数(logD=−10.10)とほぼ等しいことより、直径6.3nmの球状錯体の形成が確認された。
The DOSY NMR for these reaction solutions was measured. FIG. 3 shows the DOSY spectrum of the ubiquitin-linked ligand (2a) and the spectrum after complex formation.
From the spectrum after complex formation, the diffusion coefficient of the ligand skeleton is observed at log D = -10.12, and is substantially equal to the diffusion coefficient of the spherical complex formed only from (1a) (log D = -10.10). The formation of a spherical complex with a diameter of 6.3 nm was confirmed.

一方、錯体形成前のユビキチン連結配位子(2a)の拡散係数はlogD=−10.08に観測された。錯体形成後のスペクトルからは、ユビキチンの拡散係数はlogD=−10.12となり、錯体形成前と比較してユビキチンの運動がわずかに緩慢になったことが分かった。注目すべき点として、ユビキチンの拡散係数が球状錯体の拡散係数とほぼ等しくなっており、球状錯体と同じ速度で運動していることが分かる。   On the other hand, the diffusion coefficient of the ubiquitin-linked ligand (2a) before complex formation was observed at log D = -10.08. From the spectrum after complex formation, it was found that the diffusion coefficient of ubiquitin was logD = -10.12, and the ubiquitin motion was slightly slower than that before complex formation. It should be noted that the diffusion coefficient of ubiquitin is almost equal to the diffusion coefficient of the spherical complex, and it can be seen that it moves at the same speed as the spherical complex.

(実施例11)球状遷移金属錯体(3b)の製造 (Example 11) Production of spherical transition metal complex (3b)

Figure 0005190915
Figure 0005190915

実施例10と同様にして、球状遷移金属錯体(3b)を製造し、反応溶液についてのDOSY NMRを測定した。図4に、ユビキチン連結配位子(2b)のDOSYスペクトルと、錯体形成後のスペクトルを示した。   In the same manner as in Example 10, a spherical transition metal complex (3b) was produced, and DOSY NMR of the reaction solution was measured. FIG. 4 shows the DOSY spectrum of the ubiquitin-linked ligand (2b) and the spectrum after complex formation.

錯体形成後、配位骨格に由来するシグナルの拡散係数が−10.26に観測されたことより、直径7.3nmの球状錯体の形成が確認できた。ユビキチン連結配位子(2b)については、錯体形成前の拡散係数はlogD=−10.08に観測された。   After the complex formation, the diffusion coefficient of the signal derived from the coordination skeleton was observed at -10.26, confirming the formation of a spherical complex having a diameter of 7.3 nm. For the ubiquitin-linked ligand (2b), the diffusion coefficient before complex formation was observed at log D = -10.08.

一方、球状錯体を形成することにより、ユビキチンの拡散係数はlogD=−10.26と大きく変化し、ユビキチンの運動が遅くなったことが分かる。ここでも、球状錯体形成後のユビキチンの拡散係数は、球状錯体の拡散係数とほぼ同じ値で観測され、球状錯体と同じ速度で運動していることが分かる。   On the other hand, by forming a spherical complex, it can be seen that the diffusion coefficient of ubiquitin is greatly changed to log D = -10.26, and the movement of ubiquitin is slow. Also here, the diffusion coefficient of ubiquitin after the formation of the spherical complex is observed at almost the same value as the diffusion coefficient of the spherical complex, and it can be seen that it moves at the same speed as the spherical complex.

以上の結果より、ユビキチンはそれぞれ直径6.3nm、7.3nmの球状錯体と同一の運動をしていることが強く示唆された。また、形成した球状錯体の拡散係数は、ユビキチンを導入していない球状錯体の拡散係数とほぼ同じであることから、ユビキチンは球状錯体の外側に存在するのではなく、球状錯体内に内包されていると考えられる。   From the above results, it was strongly suggested that ubiquitin moves in the same manner as a spherical complex having diameters of 6.3 nm and 7.3 nm, respectively. In addition, the diffusion coefficient of the formed spherical complex is almost the same as the diffusion coefficient of the spherical complex into which ubiquitin is not introduced. Therefore, ubiquitin is not present outside the spherical complex, but is included in the spherical complex. It is thought that there is.

ユビキチンを内包した球状錯体の分子モデルを図5に示した(図では外面のカチオン部位、内面のメチル基を省略して表示した)。それぞれ、6.3nm、7.3nmの球状錯体内にユビキチンが内包されているが、ともにユビキチンのサイズに対して十分な広さの空間を提供していることが分かる。   A molecular model of a spherical complex encapsulating ubiquitin is shown in FIG. 5 (in the figure, the cation portion on the outer surface and the methyl group on the inner surface are omitted). Ubiquitin is encapsulated in spherical complexes of 6.3 nm and 7.3 nm, respectively, and it can be seen that both provide a sufficiently wide space for the size of ubiquitin.

以下のDOSY NMRによる実験においても、球状錯体へのユビキチンの内包を支持する結果が得られた。
まず、配位子(1a)から直径7.3nmの球状錯体を形成した。この錯体に対し、配位子を連結していないユビキチンを添加し室温で攪拌後、DOSY NMRの測定を行った。その結果、添加したユビキチンの拡散係数は球状錯体と比較して大きな領域に観測され、ユビキチンは球状錯体よりもサイズが小さく、拡散運動が早いことが分かった。すなわち、溶液中にユビキチンと球状錯体が共存する場合において、これらの拡散係数は区別して観測されることが示された。これは、先の実験において球状錯体とユビキチンが同一の拡散係数で観測されたことは、ユビキチンが球状錯体内に内包されたと解釈できることを支持している。
(参考例3)
Also in the following experiment by DOSY NMR, the result of supporting the inclusion of ubiquitin in a spherical complex was obtained.
First, a spherical complex having a diameter of 7.3 nm was formed from the ligand (1a). To this complex, ubiquitin not linked with a ligand was added and stirred at room temperature, and then DOSY NMR was measured. As a result, the diffusion coefficient of the added ubiquitin was observed in a larger region than that of the spherical complex, and it was found that ubiquitin was smaller in size and faster in diffusing motion than the spherical complex. That is, when ubiquitin and a spherical complex coexist in a solution, it was shown that these diffusion coefficients are observed separately. This supports that the fact that the spherical complex and ubiquitin were observed with the same diffusion coefficient in the previous experiment can be interpreted as ubiquitin being encapsulated in the spherical complex.
(Reference Example 3)

Figure 0005190915
Figure 0005190915

配位子(1c)と配位子(2c)とPd(OTf)を23:1:12の比率で混合し、DO:CDCN=2:1(体積比)の溶媒中において45℃で3時間攪拌し、直径4.5nmの球状錯体を形成した。 Ligand (1c), ligand (2c) and Pd (OTf) 2 were mixed at a ratio of 23: 1: 12, and in a solvent of D 2 O: CD 3 CN = 2: 1 (volume ratio). The mixture was stirred at 45 ° C. for 3 hours to form a spherical complex having a diameter of 4.5 nm.

得られた反応溶液についてH−NMR及びDOSY NMRの測定を行った。H−NMRにおいて8−10ppmの領域にlogD=−10.15の拡散係数で収束したシグナルが観測されたことより、M1224球状錯体の形成が確認できた。一方、ユビキチンの拡散係数はlogD=−10.20に観測されたことより、ユビキチンの運動は球状錯体よりも緩慢であることが分かる。すなわち、ユビキチンは球状錯体と別々に運動しており、球状錯体内には内包されていないことが示唆された。球状錯体内への内包か起こらなかったのは、直径4.5nmの球状錯体内にはユビキチンを内包できるだけの広い空間が存在していないためであると考えられる。 The obtained reaction solution was subjected to 1 H-NMR and DOSY NMR measurements. In 1 H-NMR, a signal converged with a diffusion coefficient of log D = -10.15 was observed in the region of 8-10 ppm, whereby formation of an M 12 L 24 spherical complex could be confirmed. On the other hand, since the diffusion coefficient of ubiquitin was observed at log D = -10.20, it can be seen that the movement of ubiquitin is slower than that of the spherical complex. That is, it was suggested that ubiquitin moves separately from the spherical complex and is not encapsulated in the spherical complex. The reason why the inclusion in the spherical complex did not occur is considered to be because there was no wide space for enclosing ubiquitin in the spherical complex having a diameter of 4.5 nm.

これらの結果より、内部空間の広さが十分でない4.5nmの錯体には、ユビキチンを内包することはできず、直径7.3nmおよび6.3nmの球状錯体には、ユビキチンを内包することができることがわかった。   From these results, it is not possible to encapsulate ubiquitin in a complex of 4.5 nm whose internal space is not sufficient, and it is possible to encapsulate ubiquitin in spherical complexes of 7.3 nm and 6.3 nm in diameter. I knew it was possible.

配位子2cについてSDS−PAGEを行った結果を示す図である。It is a figure which shows the result of having performed SDS-PAGE about the ligand 2c. ユビキチンのH−NMRスペクト図である。(a)は、HO中で測定した図であり、(b)はDMSO中で測定した図であり、(c)は水とアセトニトリルの混合溶媒(HO/CDCN=1:1)中で測定した図である。 1 is a 1 H-NMR spectrum of ubiquitin. (A) is a figure measured in H 2 O, (b) is a figure measured in DMSO, (c) is a mixed solvent of water and acetonitrile (H 2 O / CD 3 CN = 1: It is the figure measured in 1). ユビキチン連結配位子(2a)のDOSYスペクトルと、錯体形成後のスペクトルを示す図である。It is a figure which shows the DOSY spectrum of a ubiquitin connection ligand (2a), and the spectrum after complex formation. ユビキチン連結配位子(2b)のDOSYスペクトルと、錯体形成後のスペクトルを示す図である。It is a figure which shows the DOSY spectrum of a ubiquitin connection ligand (2b), and the spectrum after complex formation. ユビキチンを内包した球状錯体の分子モデルを示す図である。(a)が中空の大きさが6.3nmの球状錯体内にユビキチンが内包されている場合、(b)が中空の大きさが7.3nmの球状錯体内にユビキチンが内包されている場合をそれぞれ示す。It is a figure which shows the molecular model of the spherical complex which included ubiquitin. (A) is a case where ubiquitin is encapsulated in a spherical complex having a hollow size of 6.3 nm, and (b) is a case where ubiquitin is encapsulated in a spherical complex having a hollow size of 7.3 nm. Each is shown.

Claims (6)

中空の殻を有し、遷移金属化合物(M)、連結基を介して蛋白質が結合してなる二座有機配位子(L1)、および二座有機配位子(L2)とから、前記蛋白質が中空の殻内部に配向するように自己組織的に形成された、式:M L2 (2n−1) L1(nは、6〜60の整数を表し、複数のM同士、L2同士は、それぞれ同一であっても、相異なっていても良い。)で表される球状遷移金属錯体であって、
前記二座有機配位子(L1)が、式(I)
Figure 0005190915
{式中、Xは、エチニレン基またはp−フェニレン基を表し、
tは2〜6の整数を表し、複数のX同士は同一であっても相異なっていてもよい。
、R はそれぞれ独立して、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基またはニトロ基を表す。
m1、m2はそれぞれ独立して、0〜4の整数を表す。m1、m2が2以上のとき、複数のR 同士、R 同士はそれぞれ同一であっても、相異なっていても良い。
は、下記式(a−1)〜(a−4)
Figure 0005190915
〔式中、R は、式:−Y−D−Pro(式中、Yは、単結合、または、−O−(CH −(aは1〜8の整数を表す。以下にて同じ)、−O−(CH −C(=O)−、−C(=O)−、−O−(CH −NH−、−NH−、及び下記式
Figure 0005190915
(式中、m9は1〜10の整数を表す。)で表される基からなる群から選ばれる2価の連結基を表し、Dは、O、S、NH、又はO−(C=O)を表し、D−Proは、Pro−DHで表される蛋白質のHを除いた部分を表す。)で表される基を表す。
は、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基、ニトロ基、ヒドロキシル基、ヒドロキシアルキル基、カルボキシル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミノアルキル基、または4級化アミノアルキル基を表す。
m3は0〜3の整数を表し、m4は0〜2の整数を表す。m3が2以上のとき、またはm4が2のとき、複数個のR 同士は同一であっても、相異なっていても良い。
Qは、−Nr1−(r1は、水素原子、アルキル基、アリール基若しくはアシル基を表す。)、−O−、−C(=O)−、−S−、または−SO −を表す。〕で表される基の一種を示す。}で示される化合物であり、
前記二座有機配位子(L2)が、式(II)
Figure 0005190915
{式中、Xおよびtは前記と同じ意味を表す。
、R はそれぞれ独立して、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基またはニトロ基を表す。
m5、m6はそれぞれ独立して、0〜4の整数を表す。m5、m6が2以上のとき、複数のR 同士、R 同士はそれぞれ同一であっても、相異なっていても良い。
は、下記式(a−5)〜(a−8)
Figure 0005190915
(式中、Qは前記と同じ意味を表す。
は、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基、ニトロ基、ヒドロキシル基、ヒドロキシアルキル基、カルボキシル基、カルボキシアルキル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミノアルキル基、または4級化アミノアルキル基を表す。
は、水素原子、ハロゲン原子、アルキル基、またはハロアルキル基を表す。
m7は0〜3の整数を表し、m8は0〜2の整数を表す。m7が2以上のとき、またはm8が2のとき、複数個のR 同士は同一であっても、相異なっていても良い。)で表される基の一種を示す。}で示される化合物であることを特徴とする蛋白質内包球状遷移金属錯体。
Have a hollow shell, the transition metal compound (M), the bidentate organic ligand proteins through a linking group formed by bonding (L1), and from a bidentate organic ligand (L2), said protein Is formed in a self-organized manner so that the inside of the hollow shell is oriented: M n L2 (2n−1) L1 (n represents an integer of 6 to 60, and a plurality of Ms, L2s are be the same, respectively, a spherical transition metal complex is Ru represented by may be different from each other.)
The bidentate organic ligand (L1) has the formula (I)
Figure 0005190915
{Wherein X represents an ethynylene group or a p-phenylene group,
t represents an integer of 2 to 6, and a plurality of Xs may be the same or different.
R 1 and R 2 each independently represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group or a nitro group.
m1 and m2 each independently represents an integer of 0 to 4. When m1 and m2 are 2 or more, a plurality of R 1 s and R 2 s may be the same or different.
A 1 represents the following formulas (a-1) to (a-4):
Figure 0005190915
[Wherein R 3 represents a formula: —YD-Pro (wherein Y represents a single bond or —O— (CH 2 ) a — (a represents an integer of 1 to 8. same), Te - O- (CH 2) a -C (= O) -, - C (= O) -, - O- (CH 2) a -NH -, - NH-, and the following formula
Figure 0005190915
(Wherein, m9 represents an integer of 1 to 10) represents a divalent linking group selected from the group consisting of groups represented by: D represents O, S, NH, or O— (C═O D-Pro represents a portion excluding H of the protein represented by Pro-DH. ) Represents a group represented by
R 4 may have a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group, a nitro group, a hydroxyl group, a hydroxyalkyl group, a carboxyl group, or a substituent. An amino group, an aminoalkyl group which may have a substituent, or a quaternized aminoalkyl group is represented.
m3 represents an integer of 0 to 3, and m4 represents an integer of 0 to 2. When m3 is 2 or more, or when m4 is 2, even a plurality of R 4 with each other are the same, may be different from each other.
Q is, -Nr1- (r1 represents a hydrogen atom, an alkyl group, an aryl group or an acyl group.), - O -, - C (= O) -, - S-, or -SO 2 - represents a. ] The kind of group represented by this is shown. } Is a compound represented by
The bidentate organic ligand (L2) has the formula (II)
Figure 0005190915
{Wherein X and t represent the same meaning as described above.
R 5 and R 6 each independently represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group or a nitro group.
m5 and m6 each independently represents an integer of 0 to 4. m5, when m6 is 2 or more, plural R 5 together, even R 6 together are each identical or may be different phases.
A 2 represents the following formulas (a-5) to (a-8)
Figure 0005190915
(In the formula, Q represents the same meaning as described above.
R 7 has a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group, a nitro group, a hydroxyl group, a hydroxyalkyl group, a carboxyl group, a carboxyalkyl group, and a substituent. An amino group that may be substituted, an aminoalkyl group that may have a substituent, or a quaternized aminoalkyl group.
R 8 represents a hydrogen atom, a halogen atom, an alkyl group, or a haloalkyl group.
m7 represents an integer of 0 to 3, and m8 represents an integer of 0 to 2. When m7 is 2 or more, or when m8 is 2, a plurality of R 7 may be the same or different. ). } The protein inclusion globular transition metal complex characterized by the above-mentioned.
前記nが、6、12、24、30または60であることを特徴とする請求項1に記載の蛋白質内包球状遷移金属錯体。   The protein-encapsulated globular transition metal complex according to claim 1, wherein n is 6, 12, 24, 30 or 60. 前記遷移金属錯体を構成する遷移金属原子が、Ti、Fe、Co、Ni、Cu、Zn、Ru、Rh、Pd、Cd、Os、Ir及びPtからなる群から選ばれる一種であることを特徴とする請求項1または2に記載の蛋白質内包球状遷移金属錯体。 The transition metal atom constituting the transition metal complex is a kind selected from the group consisting of Ti, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Cd, Os, Ir, and Pt. The protein-encapsulated globular transition metal complex according to claim 1 or 2 . 遷移金属化合物(M)と、前記式(I)で表される二座有機配位子(L1)および式(II)で表される二座有機配位子(L2)とを、遷移金属化合物(M)nモル(nは6〜60の整数を表す)に対し、二座有機配位子(L1)を1モル、二座有機配位子(L2)を(2n−1)モルの割合で反応させることを特徴とする請求項1〜のいずれかに記載の蛋白質内包球状遷移金属錯体の製造方法。 Transition metal compound (M), bidentate organic ligand (L1) represented by formula (I) and bidentate organic ligand (L2) represented by formula (II) (M) A ratio of 1 mol of bidentate organic ligand (L1) and (2n-1) mol of bidentate organic ligand (L2) with respect to n mol (n represents an integer of 6 to 60). The method for producing a protein-encapsulated globular transition metal complex according to any one of claims 1 to 3 , wherein 式(I)
Figure 0005190915
{式中、Xは、エチニレン基またはp−フェニレン基を表し、
n1は1〜6の整数を表し、n1が2以上のとき、複数のX同士は同一であっても相異なっていてもよい。
、Rはそれぞれ独立して、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基またはニトロ基を表す。
m1、m2はそれぞれ独立して、0〜4の整数を表す。m1、m2が2以上のとき、複数のR同士、R同士はそれぞれ同一であっても、相異なっていても良い。
は、下記式(a−1)〜(a−4)
Figure 0005190915
〔式中、Rは、式:−Y−D−Pro(式中、Yは、単結合、または、−O−(CH −(aは1〜8の整数を表す。以下にて同じ)、−O−(CH −C(=O)−、−C(=O)−、−O−(CH −NH−、−NH−、及び下記式
Figure 0005190915
(式中、m9は1〜10の整数を表す。)で表される基からなる群から選ばれる2価の連結基を表し、Dは、O、S、NH、またはO−(C=O)を表し、D−Proは、Pro−DHで表される蛋白質のHを除いた部分を表す。)で表される基を表す。
は、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基、ニトロ基、ヒドロキシル基、ヒドロキシアルキル基、カルボキシル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミノアルキル基、または4級化アミノアルキル基を表す。
m3は0〜3の整数を表し、m4は0〜2の整数を表す。m3が2以上のとき、またはm4が2のとき、複数個のR4同士は同一であっても、相異なっていても良い。
Qは、−Nr1−(r1は、水素原子、アルキル基、アリール基若しくはアシル基を表す。)、−O−、−C(=O)−、−S−、または−SO−を表す。〕で表される基の一種を示す。}で示される化合物。
Formula (I)
Figure 0005190915
{Wherein X represents an ethynylene group or a p-phenylene group,
n1 represents an integer of 1 to 6, and when n1 is 2 or more, a plurality of Xs may be the same or different.
R 1 and R 2 each independently represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group or a nitro group.
m1 and m2 each independently represents an integer of 0 to 4. When m1 and m2 are 2 or more, a plurality of R 1 s and R 2 s may be the same or different.
A 1 represents the following formulas (a-1) to (a-4):
Figure 0005190915
[Wherein R 3 represents a formula: —YD-Pro (wherein Y represents a single bond or —O— (CH 2 ) a — (a represents an integer of 1 to 8. same), Te - O- (CH 2) a -C (= O) -, - C (= O) -, - O- (CH 2) a -NH -, - NH-, and the following formula
Figure 0005190915
(Wherein, m9 represents an integer of 1 to 10) represents a divalent linking group selected from the group consisting of groups represented by: D is O, S, NH, or O— (C═O D-Pro represents a portion excluding H of the protein represented by Pro-DH. ) Represents a group represented by
R 4 may have a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group, a nitro group, a hydroxyl group, a hydroxyalkyl group, a carboxyl group, or a substituent. An amino group, an aminoalkyl group which may have a substituent, or a quaternized aminoalkyl group is represented.
m3 represents an integer of 0 to 3, and m4 represents an integer of 0 to 2. When m3 is 2 or more, or when m4 is 2, a plurality of R4s may be the same or different.
Q is, -Nr1- (r1 represents a hydrogen atom, an alkyl group, an aryl group or an acyl group.), - O -, - C (= O) -, - S-, or -SO 2 - represents a. ] The kind of group represented by this is shown. } The compound shown.
式(II
Figure 0005190915
{式中、Xは、エチニレン基またはp−フェニレン基を表し、
n1は1〜6の整数を表し、n1が2以上のとき、複数のX同士は同一であっても相異なっていてもよい。
、Rはそれぞれ独立して、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基またはニトロ基を表す。
m5、m6はそれぞれ独立して、0〜4の整数を表す。m5、m6が2以上のとき、複数のR同士、R同士はそれぞれ同一であっても、相異なっていても良い。
は、下記式(a−5)〜(a−8)
Figure 0005190915
(式中、Qは前記と同じ意味を表す。
、4級化アミノアルキル基を表す。
は、水素原子、ハロゲン原子、アルキル基、またはハロアルキル基を表す。
m10は1〜3の整数を表し、m11は1〜2の整数を表す。m10が2以上のとき、またはm11が2のとき、複数個のR同士は同一であっても、相異なっていても良い。)で表される基の一種を示す。}で示される化合物。
Formula (II ' )
Figure 0005190915
{Wherein X represents an ethynylene group or a p-phenylene group,
n1 represents an integer of 1 to 6, and when n1 is 2 or more, a plurality of Xs may be the same or different.
R 5 and R 6 each independently represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group or a nitro group.
m5 and m6 each independently represents an integer of 0 to 4. m5, when m6 is 2 or more, plural R 5 together, even R 6 together are each identical or may be different phases.
A 2 represents the following formulas (a-5) to (a-8)
Figure 0005190915
(In the formula, Q represents the same meaning as described above.
R 7 represents a quaternized aminoalkyl group.
R 8 represents a hydrogen atom, a halogen atom, an alkyl group, or a haloalkyl group.
m10 represents an integer of 1 to 3, and m11 represents an integer of 1 to 2. When m10 is 2 or more, or when m11 is 2, a plurality of R 7 may be the same or different. ). } The compound shown.
JP2007040808A 2007-02-21 2007-02-21 Protein-encapsulating spherical transition metal complex and method for producing the same Active JP5190915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007040808A JP5190915B2 (en) 2007-02-21 2007-02-21 Protein-encapsulating spherical transition metal complex and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007040808A JP5190915B2 (en) 2007-02-21 2007-02-21 Protein-encapsulating spherical transition metal complex and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008201734A JP2008201734A (en) 2008-09-04
JP5190915B2 true JP5190915B2 (en) 2013-04-24

Family

ID=39779604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040808A Active JP5190915B2 (en) 2007-02-21 2007-02-21 Protein-encapsulating spherical transition metal complex and method for producing the same

Country Status (1)

Country Link
JP (1) JP5190915B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6119653B2 (en) * 2014-03-31 2017-04-26 マツダ株式会社 Transparent laminate and method for producing the same
JP2018076243A (en) * 2016-11-08 2018-05-17 コニカミノルタ株式会社 Supramolecular metal complex particle, film and method for producing supramolecular metal complex particle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3892796B2 (en) * 2002-11-01 2007-03-14 独立行政法人科学技術振興機構 Spherical transition metal complex and method for producing the same
JP4940422B2 (en) * 2005-07-05 2012-05-30 国立大学法人 東京大学 Spherical transition metal complex and method for producing the same
US20090318663A1 (en) * 2006-03-09 2009-12-24 Makoto Fujita Polymerizable Spherical Transition Metal Complex, Spherical Transition Metal Complex, and Production Method Thereof

Also Published As

Publication number Publication date
JP2008201734A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
EP3279181B1 (en) Method for producing a mixture of a polymerizable compound
ES2453951T3 (en) Cycloalkylamine derivative
CN104370837A (en) Thioether bitriazole compound as well as preparation method and application of thioether bitriazole compound
JP5190915B2 (en) Protein-encapsulating spherical transition metal complex and method for producing the same
Sueur et al. New syntheses of polyaza derivatives. Crystal structure of pyridazine‐3, 6‐dicarboxylic acid
JP4528123B2 (en) Process for the production of nitrooxy derivatives of naproxen
CN114957697A (en) Photostimulation response coordination polymer based on [2+2] photoring addition reaction and preparation and application thereof
CN114105984A (en) Preparation method of indolizine corrosion inhibitor
JP4940422B2 (en) Spherical transition metal complex and method for producing the same
JP4099526B2 (en) Separation and purification of porphyrin dimer derivatives and carbon nanotubes using them
JP7079494B2 (en) New compound and its synthesis method
CN104370838A (en) Preparation method and application of p-phenyl-4-substituted-bitriazole compound
JP5025970B2 (en) Hollow transition metal complex having fluorine-containing alkyl group inside hollow shell and method for producing the same
JP2015509913A (en) Reaction products of stannyl derivatives of naphthalene diimides with rylene compounds
JP5629473B2 (en) Process for producing soluble monosubstituted phthalocyanines having amino groups
JP5391393B2 (en) Method for controlling internal environment of spherical transition metal complex and spherical transition metal complex
JP4929452B2 (en) New coumarin derivatives
CN104370840A (en) Preparation method and application of m-phenyl-4-substituted-bitriazole compound
JP2008214294A (en) Polymerizable spherical transition metal complex and method for producing polymerizable spherical transition metal complex
JP5087800B2 (en) Spherical transition metal complex and method for controlling functional group inside spherical transition metal complex
EP4105295B1 (en) Amphoteric fluorescent substance capable of being attached to biomaterials
JP3823176B1 (en) Dipyridylbisbenzothiadiazole derivatives
JP2006038745A (en) Mass spectrometry for peptide, fullerene derivative, fullerene-peptide complex, and their manufacturing method
JP7316228B2 (en) Compounds and methods for producing compounds
CN108299196B (en) Method for synthesizing p-methylbenzyl alcohol oxalic acid diester as thermosensitive sensitizer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5190915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250