JP5189558B2 - Optical wavelength multiplexing transmission system - Google Patents
Optical wavelength multiplexing transmission system Download PDFInfo
- Publication number
- JP5189558B2 JP5189558B2 JP2009127181A JP2009127181A JP5189558B2 JP 5189558 B2 JP5189558 B2 JP 5189558B2 JP 2009127181 A JP2009127181 A JP 2009127181A JP 2009127181 A JP2009127181 A JP 2009127181A JP 5189558 B2 JP5189558 B2 JP 5189558B2
- Authority
- JP
- Japan
- Prior art keywords
- optical signal
- optical
- wavelength
- intensity
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Communication System (AREA)
Description
本発明は、それぞれ異なる波長の強度変調した光信号と位相変調した光信号とを多重化して高速大容量伝送を行う光波長多重化伝送システムに関する。 The present invention relates to an optical wavelength multiplexing transmission system that multiplexes intensity-modulated optical signals and phase-modulated optical signals of different wavelengths to perform high-speed and large-capacity transmission.
データ伝送速度が10Gbps程度以下の場合、送信データにより光信号を強度変調して光伝送路により伝送する場合が一般的であり、又複数系列の送信データについては、それぞれ異なる波長の光信号を強度変調して多重化して伝送する光波長多重化伝送方式が適用されている。又データ伝送速度が40Gbps程度の高速伝送を行う場合、RZ−DQPSK(Return to Zero−Differential Quadrature Phase Shift Keying)方式や、NRZ−DPSK(Non Return to Zero Differential Phese Shift Keying)方式等の位相変調方式が適用されている。 When the data transmission speed is about 10 Gbps or less, it is common to modulate the intensity of the optical signal with the transmission data and transmit it over the optical transmission path. For multiple series of transmission data, the intensity of the optical signals of different wavelengths is different. An optical wavelength multiplexing transmission system that modulates and multiplexes and transmits is applied. In addition, when performing high-speed transmission at a data transmission rate of about 40 Gbps, RZ-DQPSK (Return to Zero-Differential Quadrature Phase Shift Keying) method, NRZ-DPSK (Non-Return to Zero-Different Modulation method, etc.) Has been applied.
光伝送路を構成する光ファイバは、非線形光学効果を有することにより、長距離伝送の場合の波形劣化が問題となる。この非線形光学効果として、自己位相変調効果、相互位相変調効果、4光波混合効果等が知られている。自己位相変調効果は、光信号の強度に依存して、光ファイバの屈折率が変化し、光信号の位相変化が生じる現象であり、相互位相変調効果は、異なる波長の光信号が同時に同一方向に伝送された場合に、一方の光信号の強度が、他方の光信号の強度に依存した位相変化を受ける現象である。又4光波混合効果は、波長が異なる光信号を同一方向に伝送する場合に、それぞれの波長差に相当する光信号成分が生じる現象である。何れも長距離高速伝送に於けるS/N劣化の原因となる。 Since the optical fiber constituting the optical transmission line has a nonlinear optical effect, waveform deterioration in the case of long-distance transmission becomes a problem. As this nonlinear optical effect, a self phase modulation effect, a mutual phase modulation effect, a four-wave mixing effect, and the like are known. The self-phase modulation effect is a phenomenon in which the refractive index of an optical fiber changes depending on the intensity of the optical signal, resulting in a phase change of the optical signal. The cross-phase modulation effect is a phenomenon in which optical signals of different wavelengths are simultaneously in the same direction. This is a phenomenon in which the intensity of one optical signal undergoes a phase change depending on the intensity of the other optical signal. The four-wave mixing effect is a phenomenon in which optical signal components corresponding to respective wavelength differences are generated when optical signals having different wavelengths are transmitted in the same direction. Both cause S / N degradation in long-distance high-speed transmission.
又伝送速度が2.5Gbpsの強度変調による光信号と、10Gbpsの強度変調による光信号とを波長多重化して伝送する場合、それぞれの送信光信号レベルを同一とすると、10Gbpsの光信号のS/Nが劣化する。そこで、高速の10Gbpsの光信号のS/N劣化を避ける為に、送信光強度を増加すると、非線形光学効果が大きくなって、何れの伝送速度の光信号もその伝送特性が劣化する。このような伝送特性の劣化を回避する為に、伝送速度が1:nの場合、低速の光信号の送信光強度を、高速の光信号の送信光強度の1/nとして伝送する光波長多重化伝送を行うシステムが提案されている(例えば、特許文献1参照)。
Also, when an optical signal based on intensity modulation with a transmission rate of 2.5 Gbps and an optical signal based on intensity modulation of 10 Gbps are wavelength-multiplexed and transmitted, assuming that the respective transmission optical signal levels are the same, S / N deteriorates. Therefore, when the transmission light intensity is increased in order to avoid S / N degradation of a high-
データ伝送速度が10Gbps又はそれ以下のデータ伝送速度の光信号は、従来、前述のように、強度変調と光波長多重化とを適用した光波長多重化伝送システムを構成しているものであるが、このような伝送システムを利用し、位相変調方式により光信号を変調した前述の40Gbpsの伝送速度の光信号を波長多重化して伝送する伝送システムが考えられている。即ち、既設の光伝送路を利用して、位相変調方式による40Gbpsの光信号を波長多重化により伝送し、経済的に高速大容量通信を可能とするシステムが考えられている。 Conventionally, an optical signal having a data transmission rate of 10 Gbps or less constitutes an optical wavelength multiplexing transmission system to which intensity modulation and optical wavelength multiplexing are applied as described above. A transmission system that uses such a transmission system and multiplexes and transmits the above-described optical signal with a transmission rate of 40 Gbps modulated by the phase modulation method is considered. That is, a system capable of economically performing high-speed and large-capacity communication by transmitting an optical signal of 40 Gbps by a phase modulation method by wavelength multiplexing using an existing optical transmission line is considered.
しかし、非線形光学効果の特に相互位相変調効果により、位相変調方式を適用した40Gbpsの光信号に対して、強度変調方式を適用した10Gbps又はそれ以下の伝送速度の光信号の強度が大きく影響を与えるもので、40Gbpsの伝送速度の光信号の位相変調特性が大きく劣化し、S/N低下が大きくなる問題がある。この場合、10Gbpsの光信号波長と、40Gbpsの光信号波長との波長間隔を広くすれば、位相変調方式の40Gbpsの光信号に対する強度変調方式の10Gbpsの光信号強度による影響を低減することが可能である。しかし、10Gbpsの光信号に割当てる光波長群と、40Gbpsの光信号に割当てる光波長群との波長間隔を広くすることは、不使用波長数が多くなって、光信号の波長帯域の有効利用を図ることができなくなる問題がある。更に、10Gbpsの光信号に対する光信号波長の割当てと、40Gbpsの光信号に対する光信号波長の割当てとを予め設定する必要が生じ、光信号波長の割当制限の問題がある。従って、相互位相変調効果の影響を受けないように、強度変調方式の光信号と位相変調方式の光信号とを別個の光伝送路により伝送することになるが、この場合は、二重の光伝送路を敷設することになり、コストアップとなる問題がある。 However, due to the non-linear optical effect, particularly the cross-phase modulation effect, the intensity of an optical signal having a transmission rate of 10 Gbps or less to which an intensity modulation method is applied greatly affects a 40 Gbps optical signal to which a phase modulation method is applied. However, there is a problem that the phase modulation characteristic of an optical signal having a transmission rate of 40 Gbps is greatly deteriorated, and the S / N reduction is increased. In this case, if the wavelength interval between the optical signal wavelength of 10 Gbps and the optical signal wavelength of 40 Gbps is widened, it is possible to reduce the influence of the optical signal intensity of 10 Gbps of the intensity modulation method on the optical signal of 40 Gbps of the phase modulation method. It is. However, widening the wavelength interval between the optical wavelength group assigned to the optical signal of 10 Gbps and the optical wavelength group assigned to the optical signal of 40 Gbps increases the number of unused wavelengths and effectively uses the wavelength band of the optical signal. There is a problem that makes it impossible to plan. Furthermore, it is necessary to preset the allocation of the optical signal wavelength to the 10 Gbps optical signal and the allocation of the optical signal wavelength to the 40 Gbps optical signal, and there is a problem of the allocation limitation of the optical signal wavelength. Therefore, the optical signal of the intensity modulation method and the optical signal of the phase modulation method are transmitted by separate optical transmission lines so as not to be affected by the mutual phase modulation effect. There is a problem that the transmission path is laid and the cost is increased.
又前記特許文献1には、光信号を同一の強度変調方式により変調して光波長多重化伝送する場合の10Gbps以下の伝送速度の相違に基づく問題点とその解決手段とを示すものであるが、10Gbps以下の伝送速度の強度変調方式により変調した光信号に、40Gbpsの高速の位相変調方式により変調した光信号を波長多重化して、同一の光伝送路により伝送を行う場合の問題点並びにその解決手段については、全く示唆されていない。 Japanese Patent Application Laid-Open No. H10-260260 shows problems and solutions based on a difference in transmission speed of 10 Gbps or less when an optical signal is modulated by the same intensity modulation method and transmitted by optical wavelength multiplexing. Problems in the case where an optical signal modulated by an intensity modulation method with a transmission rate of 10 Gbps or less is wavelength-multiplexed with an optical signal modulated by a high-speed phase modulation method of 40 Gbps, and transmission is performed using the same optical transmission line No solution is suggested.
本発明は、前述の問題点を解決するもので、任意の光波長を選択して強度変調方式による10Gbps又それ以下の伝送速度の光信号と、位相変調方式による40Gbpsの伝送速度の光信号とを光波長多重化方式に従って多重化伝送し、且つ両変調方式の光信号の伝送品質を維持できるようにすることを目的とする。 The present invention solves the above-described problems. An optical signal having a transmission rate of 10 Gbps or less by an intensity modulation method and an optical signal having a transmission rate of 40 Gbps by a phase modulation method are selected by selecting an arbitrary optical wavelength. Is to multiplex and transmit in accordance with the optical wavelength multiplexing system, and to maintain the transmission quality of the optical signals of both modulation systems.
本発明の光波長多重化伝送システムは、光波長がそれぞれ異なり、且つ伝送速度が高速の位相変調光信号と、この位相変調光信号より伝送速度が低速の強度変調光信号とを多重化した波長多重化光信号を光伝送路により伝送する光波長多重化伝送システムであって、波長多重化光信号を波長対応に分波する分波器と、この分波器により分波された波長対応の光信号のそれぞれの光強度を減衰制御可能の光減衰器と、フィルタを備え、前記波長対応の光信号が位相変調光信号か又は強度変調光信号かを、前記フィルタを介した入出力光信号レベル差の大小により判定する判定手段と、該判定手段による判定情報に基づいて、位相変調光信号の光強度よりも強度変調光信号の光強度を低減するように前記光減衰器を制御する制御部と、この制御部によって制御される前記光減衰器を介して出力される光信号を合波して波長多重化光信号として出力する合波器とを含む構成を備えている。 Optical wavelength multiplex transmission system of the present invention is different optical wavelengths, respectively, and the transmission rate and high-speed phase modulation optical signal, the wavelength of the transmission rate from the phase-modulated optical signal obtained by multiplexing the low-speed intensity modulation optical signal An optical wavelength multiplex transmission system for transmitting a multiplexed optical signal through an optical transmission line, a demultiplexer for demultiplexing the wavelength multiplexed optical signal corresponding to the wavelength, and a wavelength corresponding to the wavelength demultiplexed by the demultiplexer An optical attenuator capable of attenuating and controlling the optical intensity of each optical signal and a filter, and whether the optical signal corresponding to the wavelength is a phase modulated optical signal or an intensity modulated optical signal is input / output optical signal via the filter determination means according to the magnitude of the level difference, based on the determination information from the determination unit, a control for controlling the optical attenuator so as to reduce the light intensity of the intensity-modulated optical signal than the light intensity of the phase-modulated optical signal and the part, the control unit Thus has a configuration in which an optical signal outputted through the optical attenuator is controlled by multiplexing by including a multiplexer for outputting the wavelength-multiplexed optical signal.
又波長多重化光信号に重畳して伝送された波長対応の位相変調光信号であるか又は強度変調光信号であるかの情報を受信分離し、この受信分離した情報に基づいて位相変調光信号の光強度より強度変調光信号の光強度を低減するように、光減衰器を制御する制御部を備えている。 In addition, it receives and separates information on whether it is a wavelength-corresponding phase-modulated optical signal or intensity-modulated optical signal transmitted superimposed on the wavelength-multiplexed optical signal, and based on this received and separated information, the phase-modulated optical signal A control unit for controlling the optical attenuator so as to reduce the light intensity of the intensity-modulated optical signal from the light intensity of
又分波器により波長対応に分波された光信号が、位相変調光信号であるか又は強度変調光信号であるかを判定する判定部と、この判定部によって判定した位相変調光信号の光強度より、強度変調光信号の光強度を低減するように、光減衰器を制御する制御部を備えている。 Also, a determination unit for determining whether the optical signal demultiplexed by the demultiplexer according to the wavelength is a phase modulation optical signal or an intensity modulation optical signal, and the light of the phase modulation optical signal determined by the determination unit A control unit for controlling the optical attenuator is provided so as to reduce the light intensity of the intensity-modulated optical signal rather than the intensity.
又判定部は、光フィルタの入力側と出力側との光信号のレベルを検出してレベル比較し、レベル差が所定値以下の時に強度変調光信号と判定し、レベル差が前記所定値を超える大きい値の時に位相変調光信号と判定する比較判定手段を備えている。 The determination unit detects the level of the optical signal between the input side and the output side of the optical filter and compares the level. When the level difference is equal to or less than a predetermined value, the determination unit determines that the signal is an intensity-modulated optical signal. Comparing / determining means for determining a phase-modulated optical signal when the value exceeds a large value is provided.
位相変調光信号は、40Gbpsの伝送速度で伝送し、強度変調光信号は、10Gbpsの伝送速度又はそれ以下の伝送速度で伝送する為の変調方式に従ったものであり、位相変調光信号の送信レベルに比較して、強度変調光信号の送信レベルを、光減衰器により低減して、波長多重化により伝送することにより、同一の光伝送路により波長多重化によって伝送する場合の相互位相変調効果による位相変調光信号の特性劣化を抑制することができる。 The phase-modulated optical signal is transmitted at a transmission rate of 40 Gbps, and the intensity-modulated optical signal is in accordance with a modulation scheme for transmission at a transmission rate of 10 Gbps or lower. Compared to the level, the transmission level of the intensity-modulated optical signal is reduced by the optical attenuator and transmitted by wavelength multiplexing, so that the mutual phase modulation effect when transmitting by wavelength multiplexing through the same optical transmission line It is possible to suppress the deterioration of the characteristics of the phase-modulated optical signal due to.
本発明の光波長多重化伝送システムは、図2を参照すると、光波長がそれぞれ異なり、伝送速度が高速の位相変調光信号と、この位相変調光信号より伝送速度が低速の強度変調光信号とを多重化した波長多重化光信号を光伝送路により伝送する光波長多重化伝送システムであって、波長多重化光信号を波長対応に分波する分波器3と、この分波器3により分波された波長対応の光信号のそれぞれの光強度を減衰制御可能の光減衰器6−1〜6−nと、フィルタを備え、前記波長対応の光信号が位相変調光信号か又は強度変調光信号かを、前記フィルタを介した入出力光信号レベル差の大小により判定する判定手段(伝送速度判定部21)と、この判定手段による判定情報に基づいて、位相変調光信号の光強度よりも強度変調光信号の光強度を低減するように、前記光減衰器6−1〜6−nを制御する制御部22と、この制御部22によって制御される前記光減衰器6−1〜6−nを介して出力される光信号を合波して波長多重化光信号として出力する合波器7とを含む構成を備えている。
Referring to FIG. 2 , the optical wavelength multiplexing transmission system of the present invention has a phase-modulated optical signal having a different optical wavelength and a high transmission rate, and an intensity-modulated optical signal having a transmission rate lower than that of the phase-modulated optical signal. the an optical wavelength multiplex transmission system for transmitting the optical transmission line wavelength-multiplexed optical signal obtained by multiplexing, a demultiplexer 3 demultiplexes the wavelength multiplexed optical signal to the wavelength corresponding, this demultiplexer 3 each the optical attenuators 6-1 to 6-n of the light intensity attenuation controllable demultiplexed wavelength corresponding optical signals, a filter, said wavelength corresponding optical signal phase-modulated optical signal or intensity modulated Based on the determination information (transmission speed determination unit 21) for determining whether the optical signal is an input / output optical signal level difference through the filter or not based on the determination information by the determination unit , the light intensity of the phase-modulated optical signal is determined. the light intensity of the strength-modulated optical signal As reduced, a
図1は、本発明の実施例1の説明図であり、1,9は制御信号としてのOSC(Optical Supervisor Channel)信号の送受信を行う信号処理部、2,8は光増幅器、3は光波長λ1〜λnに分波する分波器、4−1〜4−nは光信号のドロップ・インサート又はスルーの状態に切替える光スイッチ回路(2×2SW)、5−1〜5−nは光信号の復調及び変調手段を含む光送受信機、6−1〜6−nは光減衰器、7は波長λ1〜λnの光信号を合波する合波器、9はOSC信号の送受信を行う信号処理部、10は制御処理部、11は分波器、12は合波器を示し、送信光信号の挿入及び受信光信号の分離(OADM;Optical Add/Drop Multiplexer)の機能を有する光波長多重化伝送システムの中継装置の要部を示す。この中継装置は、例えば、リング状の光伝送路により順次複数接続し、各中継装置に接続した光送受信機間の光信号による送受信を行い、且つ各光送受信機間の光信号を波長多重化して中継伝送するシステムを構成するものである。 FIG. 1 is an explanatory diagram of a first embodiment of the present invention, in which 1 and 9 are signal processing units for transmitting and receiving an OSC (Optical Supervisor Channel) signal as a control signal, 2 and 8 are optical amplifiers, and 3 is an optical wavelength. Demultiplexers for demultiplexing to λ1 to λn, 4-1 to 4-n are optical switch circuits (2 × 2SW) for switching to an optical signal drop / insert or through state, and 5-1 to 5-n are optical signals 6-1 to 6-n are optical attenuators, 7 is a multiplexer that multiplexes optical signals of wavelengths λ1 to λn, and 9 is a signal processing that transmits and receives OSC signals. , 10 is a control processing unit, 11 is a demultiplexer, and 12 is a multiplexer, which is an optical wavelength multiplex having functions of insertion of a transmission optical signal and separation of a received optical signal (OADM). Transmission system Showing a main part of the arm of the relay device. For example, this repeater is connected in sequence by a ring-shaped optical transmission line, performs transmission / reception with an optical signal between optical transceivers connected to each repeater, and wavelength-multiplexes optical signals between the optical transceivers. This constitutes a system for relay transmission.
受信側の信号処理部1は、分波器11により分波されたOSC(Optical Supervisor Channel)信号による光波長多重化信号の波長対応の変調方式や伝送速度の情報を制御処理部10へ転送し、制御処理部10は、波長対応の変調方式や伝送速度の情報をメモリ(図示を省略)に保持し、それらの変更に従ってメモリ内容も更新する。又OSC信号を分波器11により分波した後の光波長多重化信号を、光増幅器2により増幅し、分波器3により波長λ1〜λn対応に分波する。制御処理部10は、信号処理部1からのOSC信号による情報を基に、波長λ1〜λn対応の光信号をドロップするかスルーするかを識別し、スルーの場合は、光スイッチをスルー状態に切替え、ドロップの場合は、光スイッチをドロップ・インサートの状態に切替え、光スイッチによりドロップした光信号を光送受信機へ転送し、又その光送受信機からの光信号をインサートして、光減衰器6−1〜6−n側へ転送する。
The
又制御処理部10は、波長λ1〜λn対応の光信号の10Gbpsや40Gbpsの伝送速度、強度変調信号か位相変調信号かの変調方式を示す情報を信号処理部1により受信し、その情報に対応して、光減衰器6−1〜6−nの減衰量を、図示を省略した制御径路を介して制御する場合を示す。そして、合波器7により波長λ1〜λnの光信号を合波し、光増幅器8により増幅し、信号処理部10からの制御に従った信号処理部9から次の中継装置に通知する波長対応の変調方式や伝送速度の情報をOSC信号として、合波器12により合波して送出する。
The
伝送速度と変調方式とについて、40Gbpsの位相変調信号に対して、10Gbpsの強度変調信号の光強度を、6dB程度低くしても、同一の伝送距離を同等の特性で伝送可能である。そこで、光減衰器6−1〜6−nを、制御処理部10に於いて認識した波長λ1〜λn対応の変調方式即ち伝送速度に従って制御するもので、40Gbpsの位相変調信号に対して、10Gbpsの強度変調信号を6dB程度減衰させる。それにより、10Gbpsの光信号と40Gbpsの光信号とを同程度のS/N耐力で伝送可能となる。この場合、n個の波長λ1〜λnの中の任意の波長の所要数を、位相変調方式による伝送速度40Gbpsの伝送用に割当て、他の波長を、強度変調方式による伝送速度10Gbps又はそれ以下の伝送用に割当てることができる。
With regard to the transmission speed and modulation method, even if the optical intensity of the 10 Gbps intensity modulation signal is reduced by about 6 dB with respect to the 40 Gbps phase modulation signal, the same transmission distance can be transmitted with the same characteristics. Therefore, the optical attenuators 6-1 to 6-n are controlled in accordance with the modulation method corresponding to the wavelengths λ1 to λn recognized by the
図2は、本発明の実施例2の説明図であり、図1と同一符号は同一名称部分を示し、21は伝送速度判定部、22は制御部を示す。この実施例2は、中継装置間で、OSC信号等による波長対応の伝送速度や変調方式の情報を伝送することなく、伝送速度判定部21により波長λ1〜λn対応の光信号の伝送速度を判定し、その判定結果に応じて、制御部22により、各光減衰器6−1〜6−nの減衰量を制御する。即ち、伝送速度40Gbpsの位相変調方式による光信号に対して、10Gbps程度以下の強度変調方式による光信号を6dB程度減衰させるように制御する。それにより、それぞれの伝送速度の光信号を同程度のS/N耐力で伝送することができる。
FIG. 2 is an explanatory diagram of Embodiment 2 of the present invention, where the same reference numerals as those in FIG. 1 denote the same name parts, 21 denotes a transmission rate determination unit, and 22 denotes a control unit. In the second embodiment, the transmission rate of the optical signal corresponding to the wavelengths λ1 to λn is determined by the transmission
又伝送速度判定部21は、波長λ1〜λn対応の伝送速度の判定手段を備えた構成として、波長λ1〜λn対応の伝送速度の情報を制御部22に通知する。この場合の伝送速度が40Gbpsであれば、位相変調光信号であり、又10Gbps又はそれ以下の伝送速度であれば、強度変調光信号である。又伝送速度の変更が頻繁に発生しない場合は、伝送速度判定部21に於いて時分割的に波長λ1〜λn対応の伝送速度を判定し、その結果を制御部22に通知し、制御部22内のメモリ(図示を省略)に記憶させ、伝送速度変更を検出した場合は、そのメモリ内容を更新し、メモリ内容に応じて光減衰器6−1〜6−nの減衰量を制御する構成とすることも可能である。
Further, the transmission
図3は、伝送速度判定部の説明図であり、31は分岐部(CPL)、32はフィルタ、33,35は光検出部(PD;Phot Diode)、35は光強度検出器を示す。フィルタ32に入力される光信号を光検出部33により検出し、フィルタ32を介して出力される光信号を光検出部34により検出し、光強度検出器35により比較する。40Gbpsの位相変調信号のスペクトルは、10Gbpsの強度変調信号のスペクトルに比較して広がっているものであり、フィルタ32の通過特性を10Gbpsの強度変調信号のスペクトルについては、殆ど通過可能とすると、40Gbpsの位相変調信号のスペクトルは広がっているので、フィルタ32の入出力レベル差が大きくなる。光強度検出器35は、このような入出力レベル差の大小関係を光強度検出器35により判定する。即ち、入出力レベル差が大きい場合は、40Gbpsの伝送速度の位相変調光信号、入出力レベル差が小さい場合は、10Gbps又はそれ以下の伝送速度の強度変調光信号と判定することができる。このような伝送速度の判定結果に従って、制御部22(図2参照)により、波長λ1〜λn対応の光減衰器6−1〜6−nの減衰量を制御する。即ち、40Gbpsの伝送速度の位相変調光信号を入力する光減衰器に比較して、10Gbps又はそれ以下の伝送速度の強度変調光信号を入力する光減衰器による減衰量を、例えば、前述のように、6dB程度減衰させるように制御する。それにより、40Gbpsの位相変調光信号が、10Gbps又はそれ以下の伝送速度の強度変調光信号により受ける伝送特性劣化を回避することが可能となる。
FIG. 3 is an explanatory diagram of a transmission rate determination unit, 31 is a branching unit (CPL), 32 is a filter, 33 and 35 are light detection units (PD), and 35 is a light intensity detector. An optical signal input to the
1,9 信号処理部
2,8 光増幅器
3 分波器
4−1〜4−n 光スイッチ回路
5−1〜5−n 光送受信機
6−1〜6−n 光減衰器
7 合波器
10 制御処理部
11 分波器
12 合波器
DESCRIPTION OF
Claims (1)
前記波長多重化光信号を波長対応に分波する分波器と、
該分波器により分波された波長対応の光信号のそれぞれの光強度を減衰制御可能の光減衰器と、
フィルタを備え、前記波長対応の光信号が位相変調光信号か又は強度変調光信号かを、前記フィルタを介した入出力光信号レベル差の大小により判定する判定手段と、
該判定手段による判定情報に基づいて、位相変調光信号の光強度よりも強度変調光信号の光強度を低減するように前記光減衰器を制御する制御部と、
該制御部によって制御される前記光減衰器を介して出力される光信号を合波して波長多重化光信号として出力する合波器と
を備えたことを特徴とする波長多重化伝送システム。 Light that transmits a wavelength-multiplexed optical signal, which is obtained by multiplexing a phase-modulated optical signal having different optical wavelengths and a high transmission rate , and an intensity-modulated optical signal having a transmission rate slower than the phase-modulated optical signal , through an optical transmission line In a wavelength division multiplexing transmission system,
A demultiplexer for demultiplexing the wavelength-multiplexed optical signal corresponding to the wavelength;
An optical attenuator capable of controlling attenuation of each light intensity of the optical signal corresponding to the wavelength demultiplexed by the demultiplexer ;
A determination unit that includes a filter, and determines whether the optical signal corresponding to the wavelength is a phase-modulated optical signal or an intensity-modulated optical signal, based on the level difference of the input / output optical signal through the filter;
Based on the determination information from the determination unit, and a controller for controlling the optical attenuator so as to reduce the light intensity of the intensity-modulated optical signal than the light intensity of the phase-modulated optical signal,
And a multiplexer that multiplexes the optical signals output through the optical attenuator controlled by the control unit and outputs the multiplexed optical signal as a wavelength multiplexed optical signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009127181A JP5189558B2 (en) | 2009-05-27 | 2009-05-27 | Optical wavelength multiplexing transmission system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009127181A JP5189558B2 (en) | 2009-05-27 | 2009-05-27 | Optical wavelength multiplexing transmission system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010278592A JP2010278592A (en) | 2010-12-09 |
JP5189558B2 true JP5189558B2 (en) | 2013-04-24 |
Family
ID=43425164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009127181A Expired - Fee Related JP5189558B2 (en) | 2009-05-27 | 2009-05-27 | Optical wavelength multiplexing transmission system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5189558B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2259455B1 (en) * | 2009-06-02 | 2012-02-01 | Alcatel Lucent | Method and equipment for adjusting power amplification |
JP6557956B2 (en) * | 2014-09-30 | 2019-08-14 | 富士通株式会社 | Optical transmission device and optical transmission system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4783648B2 (en) * | 2006-02-28 | 2011-09-28 | 富士通株式会社 | Relay device and relay method |
JP4571933B2 (en) * | 2006-12-28 | 2010-10-27 | 富士通株式会社 | Optical transmission apparatus and optical transmission method |
JP5018453B2 (en) * | 2007-12-19 | 2012-09-05 | 富士通株式会社 | WDM transmission system |
JP2010004251A (en) * | 2008-06-19 | 2010-01-07 | Hitachi Communication Technologies Ltd | Optical transmission device and optical transmission method |
JP2009213160A (en) * | 2009-06-15 | 2009-09-17 | Fujitsu Ltd | Optical transmission device |
-
2009
- 2009-05-27 JP JP2009127181A patent/JP5189558B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010278592A (en) | 2010-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6690756B2 (en) | Optical transmitter / receiver and optical transmitter / receiver method | |
US8625996B2 (en) | Optical transmitter, optical transmission method, and wavelength-selective variable delayer | |
EP3487091B1 (en) | Method and system for establishing at least two bidirectional communication links using coherent detection | |
EP2993807B1 (en) | Method for detecting wavelength usage conflicts in an optical network | |
US11251895B2 (en) | Seabed branching device, optical seabed cable system, and optical communication method | |
JP5994508B2 (en) | Transmission device, communication system, and transmission level control method | |
US9912407B2 (en) | Optical relay device, optical communication system, optical relay method, and storage medium | |
US9467244B2 (en) | Transmission apparatus and transmission system | |
US11336386B2 (en) | Submarine branching apparatus, optical submarine cable system, and optical communication method | |
US20060198636A1 (en) | Wavelength grid for DWDM | |
JP6072302B2 (en) | WDM transmission system | |
CN107735963B (en) | Communication apparatus, communication method, and communication system | |
JP5189558B2 (en) | Optical wavelength multiplexing transmission system | |
US10069589B2 (en) | Method and apparatus for increasing a transmission performance of a hybrid wavelength division multiplexing system | |
US20050226630A1 (en) | Optical bypass method and architecture | |
US8355631B2 (en) | Reducing optical service channel interference in phase modulated wavelength division multiplexed (WDM) communication systems | |
US6147785A (en) | Coherent crosstalk attenuation apparatus | |
JP4602739B2 (en) | WDM transmission system | |
US20040109684A1 (en) | Bidirectional wavelength division multiplexing self-healing ring network | |
WO2015145984A1 (en) | Optical transmission device, optical communication system, optical transmission method, and storage medium | |
US20150180583A1 (en) | Wavelength division multiplexing optical transmission device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110817 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20110915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130124 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160201 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |