JP5188480B2 - Light source for sterilization - Google Patents

Light source for sterilization Download PDF

Info

Publication number
JP5188480B2
JP5188480B2 JP2009206053A JP2009206053A JP5188480B2 JP 5188480 B2 JP5188480 B2 JP 5188480B2 JP 2009206053 A JP2009206053 A JP 2009206053A JP 2009206053 A JP2009206053 A JP 2009206053A JP 5188480 B2 JP5188480 B2 JP 5188480B2
Authority
JP
Japan
Prior art keywords
sterilization
light source
thin film
metal fluoride
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009206053A
Other languages
Japanese (ja)
Other versions
JP2011055898A (en
Inventor
晋吾 小野
敏尚 須山
健太郎 福田
範明 河口
澄人 石津
知史 長見
彰 吉川
健之 柳田
有為 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tokuyama Corp
Original Assignee
Tohoku University NUC
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tokuyama Corp filed Critical Tohoku University NUC
Priority to JP2009206053A priority Critical patent/JP5188480B2/en
Publication of JP2011055898A publication Critical patent/JP2011055898A/en
Application granted granted Critical
Publication of JP5188480B2 publication Critical patent/JP5188480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Physical Water Treatments (AREA)
  • Physical Vapour Deposition (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Description

本発明は、電子線源から放出される電子を利用して特定波長の紫外光を発光させて殺菌に使用する殺菌用光源に関する。   The present invention relates to a sterilization light source that is used for sterilization by emitting ultraviolet light having a specific wavelength using electrons emitted from an electron beam source.

紫外光は一般に紫外線と称せられ、照明、害虫駆除、樹脂の硬化などに広く使用されている。昨今は、特にその波長が200〜350nmの深紫外光や、200nm以下の真空紫外光への関心が高まっている。深紫外光な中でも、250〜270nmの紫外光は、ウイルス、バクテリア、カビに対する殺菌効果が高いとされている。その殺菌メカニズムについても研究され、この波長の紫外光が生体内のDNAに作用して増殖機能を失なわせるとされている。この殺菌作用を利用して、生肉、水産加工品、米飯、飲料用の水や湯、工場排水や生活排水、食品や医療用の容器など実に様々なものを対象とした殺菌装置が開発され、利用されている。
しかしながら、これらの紫外光の光源としては、エキシマレーザーや各種SHGレーザー(第2高調波発生レーザー)などのガスや固体を媒体とする紫外レーザー;エキシマランプ、キセノンフラッシュランプ、低圧水銀ランプなどのガスランプなどしか実用化されていない。これらは、大型で、寿命も短く、また高価であるため一般家庭や医療への応用が難しい。このため、コンパクトで安価な、そして高効率、高寿命の紫外光光源の開発が望まれていた。
現在、窒化アルミニウムガリウム系の半導体材料を使った深紫外発光ダイオードの開発が進められている。この材料は、200〜360nm帯に発光域を有し、高効率発光が可能であり、素子の寿命が長いなどの特徴をもつものである。しかしながら、これまで、発光素子の下地基板となる窒化アルミニウムの高品質の結晶が作製できなかったため、未だ発光効率が低く、高輝度の深紫外発光ダイオードの実現はできていない。また、この半導体発光ダイオードは、複雑な半導体伝導性制御、並びに複雑なデバイス構造(PN構造あるいはPIN構造)を必要とするものである。
ところで、高純度六方晶窒化ホウ素に電子線を照射して、215nmの深紫外光を発光させる方法が知られている(特許文献1)。一方、セリウム元素を含有するフッ化リチウムカルシウムアルミニウム(Ce:LiCaAlF)の電子線の照射による発光挙動について報告があり、290nm、310nmの紫外光が発光することが記載されている(非特許文献1)。これら電子線照射による発光は、何れも塊状の結晶体に電子線を照射して発光を行わせしめるため、大面積の殺菌は実質困難であった。また、発光材料が限定されているために、殺菌に有用な260nm付近の発光ができないという問題がある。
Ultraviolet light is generally referred to as ultraviolet light and is widely used for lighting, pest control, resin curing, and the like. In recent years, there has been an increasing interest in deep ultraviolet light having a wavelength of 200 to 350 nm and vacuum ultraviolet light having a wavelength of 200 nm or less. Among deep ultraviolet light, ultraviolet light of 250 to 270 nm is considered to have a high bactericidal effect against viruses, bacteria, and molds. The sterilization mechanism has also been studied, and it is said that ultraviolet light of this wavelength acts on DNA in the living body to lose its proliferation function. Using this bactericidal action, sterilizers have been developed for a wide variety of raw meat, processed fishery products, cooked rice, drinking water and hot water, factory wastewater and domestic wastewater, food and medical containers, It's being used.
However, these ultraviolet light sources include gases such as excimer lasers and various SHG lasers (second harmonic generation lasers) and ultraviolet lasers using solids as media; excimer lamps, xenon flash lamps, low-pressure mercury lamps, and other gases. Only lamps have been put to practical use. Since these are large-sized, have a short life span, and are expensive, they are difficult to apply to ordinary homes and medical care. Therefore, development of a compact, inexpensive, high-efficiency, long-life ultraviolet light source has been desired.
Currently, deep ultraviolet light emitting diodes using aluminum gallium nitride semiconductor materials are being developed. This material has a light emission region in the 200 to 360 nm band, is capable of high-efficiency light emission, and has characteristics such as a long lifetime of the element. However, until now, since a high-quality crystal of aluminum nitride serving as a base substrate of a light-emitting element could not be manufactured, a light-emitting efficiency is still low and a high-brightness deep ultraviolet light-emitting diode cannot be realized. In addition, this semiconductor light emitting diode requires complicated semiconductor conductivity control and a complicated device structure (PN structure or PIN structure).
By the way, a method is known in which high-purity hexagonal boron nitride is irradiated with an electron beam to emit deep ultraviolet light of 215 nm (Patent Document 1). On the other hand, there is a report on the light emission behavior of electron irradiation of lithium calcium aluminum aluminum fluoride (Ce: LiCaAlF 6 ) containing cerium element, and it is described that ultraviolet light of 290 nm and 310 nm emits light (non-patent document). 1). Since light emission by these electron beam irradiations is performed by irradiating an electron beam to a massive crystal body, it is difficult to sterilize a large area. In addition, since the light emitting material is limited, there is a problem that light cannot be emitted near 260 nm, which is useful for sterilization.

特開2005−228886号公報JP 2005-228886 A

Y.Suzuki et al.,“Hybrid time-resolved spectroscopic system for evaluating laser material using a table-top-sized, low-jitter, 3-MeV picoseconds electron-beam source with a photocathode” Applied Physics Letters 2002,80,p3280-3282Y. Suzuki et al. , “Hybrid time-resolved spectroscopic system for evaluating laser material using a table-top-sized, low-jitter, 3-MeV picoseconds electron-beam source with a photocathode” Applied Physics Letters 2002,80, p3280-3282

本発明は、現在使用されている紫外線殺菌用光源の欠点、即ち、大型であり、消費電力が大きく、寿命が短く、強度が不安定であるという問題点を改善した新たな発光手段を採用し、簡易な構造の殺菌用光源を提供することを目的とする。   The present invention adopts a new light emitting means that has improved the disadvantages of the currently used light source for ultraviolet sterilization, that is, large size, large power consumption, short life, and unstable intensity. An object of the present invention is to provide a light source for sterilization having a simple structure.

本発明者らは、上記実情に鑑み、種々の結晶材料についてその紫外光の発光特性を検討した結果、金属フッ化物結晶を用いしかも薄膜化して電子線源と組み合わせることにより、上記特性を満たした殺菌用光源になりうることを見出だし本発明を完成するに至った。   In view of the above circumstances, the present inventors examined the light emission characteristics of ultraviolet light for various crystal materials, and as a result, the metal fluoride crystals were used to make the film thin and combined with an electron beam source to satisfy the above characteristics. It has been found that it can be used as a light source for sterilization, and the present invention has been completed.

即ち、本発明によれば、
透明基板と該透明基板上に形成された金属フッ化物薄膜層とからなる発光基板並びに電子線源を備え、該発光基板の金属フッ化物層に電子線を照射することにより、殺菌に有効な200乃至320nmの波長の深紫外光を含む光を発生させることを特徴とする殺菌用光源が提供される。
上記殺菌用光源の発明においては、
金属フッ化物薄膜層が、フッ化カルシウム、フッ化バリウム、又はプラセオジウム(Pr)を含有する金属フッ化物からなる薄膜層であること
が好適である。
That is, according to the present invention,
A light emitting substrate composed of a transparent substrate and a metal fluoride thin film layer formed on the transparent substrate and an electron beam source are provided, and the metal fluoride layer of the light emitting substrate is irradiated with an electron beam, thereby being effective for sterilization. There is provided a sterilizing light source that generates light including deep ultraviolet light having a wavelength of 320 nm.
In the invention of the light source for sterilization,
The metal fluoride thin film layer is preferably a thin film layer made of a metal fluoride containing calcium fluoride, barium fluoride, or praseodymium (Pr).

本発明によれば、小型で、消費電力が低く、寿命が長く、しかも簡易な構造で大面積の殺菌が可能な殺菌用光源を提供でき、一般家庭や医療分野において好適に使用することができるだけでなく、小型で高出力の携帯用殺菌用光源として応用分野が飛躍的に広がることが期待できる。   According to the present invention, it is possible to provide a light source for sterilization that can be sterilized with a small size, low power consumption, long life, and a simple structure, and can be suitably used in general households and medical fields. In addition, it can be expected that the field of application will dramatically expand as a compact, high-power portable sterilization light source.

本発明の殺菌用光源の構造図である。It is a structural diagram of the light source for sterilization of this invention. 本発明の殺菌用光源の他の例の概略構造図である。It is a schematic structure figure of other examples of the light source for sterilization of the present invention. パルスレーザー堆積装置の概略図である。It is the schematic of a pulse laser deposition apparatus. 本発明の殺菌用光源を組み込んだ殺菌装置の概略図である。It is the schematic of the sterilization apparatus incorporating the light source for sterilization of this invention. 実施例1で作製された深紫外発光器の発光スペクトル図である。2 is an emission spectrum diagram of a deep ultraviolet light emitter manufactured in Example 1. FIG. 実施例2で作製された発光デバイスの発光スペクトル図である。6 is an emission spectrum diagram of the light-emitting device manufactured in Example 2. FIG. 実施例3で作製された発光デバイスの発光スペクトル図である。7 is an emission spectrum diagram of the light-emitting device manufactured in Example 3. FIG.

本発明の殺菌用光源は、極めて簡易な構造の紫外光発光部を有する点に特徴がある。当該殺菌用光源は、透明基板と該透明基板上に形成された金属フッ化物薄膜層とからなる発光基板、並びに電子線を発生させる電子線源を備え、該電子線源からの電子を発光基板に照射して、殺菌に有効な200乃至320nmの波長の深紫外光を含む光を発生させるものである。   The light source for sterilization of the present invention is characterized in that it has an ultraviolet light emitting part with a very simple structure. The light source for sterilization includes a light emitting substrate composed of a transparent substrate and a metal fluoride thin film layer formed on the transparent substrate, and an electron beam source for generating an electron beam, and emits electrons from the electron beam source to the light emitting substrate. To generate light including deep ultraviolet light having a wavelength of 200 to 320 nm which is effective for sterilization.

図1に、この殺菌用光源の基本構造を概略図で示す。発光基板は、透明基板5と該透明基板上に形成された金属フッ化物薄膜4とからなり、電子線源1、後出の陽極3、金属フッ化物薄膜4、透明基板5の順に配置されて殺菌用光源を形成する。図1では、透明基板1が本発明の殺菌用光源の筐体である真空容器6の窓部材を兼ねているが、図2のように、透明基板1の代わりに別途窓部材7を設け、透明基板5および該透明基板5上に形成された金属フッ化物薄膜層4とからなる発光基板を本発明の殺菌用光源の真空容器6内部に設置しても良い。   FIG. 1 schematically shows the basic structure of this sterilizing light source. The light emitting substrate includes a transparent substrate 5 and a metal fluoride thin film 4 formed on the transparent substrate, and is arranged in the order of the electron beam source 1, the anode 3 described later, the metal fluoride thin film 4, and the transparent substrate 5. A light source for sterilization is formed. In FIG. 1, the transparent substrate 1 also serves as the window member of the vacuum vessel 6 that is the housing of the sterilization light source of the present invention, but as shown in FIG. 2, a separate window member 7 is provided instead of the transparent substrate 1, A light-emitting substrate composed of the transparent substrate 5 and the metal fluoride thin film layer 4 formed on the transparent substrate 5 may be installed inside the vacuum container 6 of the sterilization light source of the present invention.

発光基板を構成する透明基板5は、電子を照射することにより金属フッ化物薄膜層4から発生する200乃至320nmの深紫外光を透過する必要がある。また、この透明基板は金属フッ化物薄膜の形成・保持のための下地基板としての働きもなす。図1に示した構造では、窓部材としての働きもなす。このような性質をもつ材料としては、石英、石英ガラス、サファイア、フッ化ガラス、フッ化リチウム、フッ化マグネシウム、フッ化カルシウム、フッ化バリウムなどの材料があり、特に石英、石英ガラス、フッ化ガラス、フッ化カルシウムなどが大面積の基板の作製が容易である点で好適である。   The transparent substrate 5 constituting the light emitting substrate needs to transmit 200 to 320 nm deep ultraviolet light generated from the metal fluoride thin film layer 4 by irradiating electrons. The transparent substrate also serves as a base substrate for forming and holding the metal fluoride thin film. The structure shown in FIG. 1 also serves as a window member. Examples of materials having such properties include quartz, quartz glass, sapphire, fluoride glass, lithium fluoride, magnesium fluoride, calcium fluoride, and barium fluoride. Glass, calcium fluoride, and the like are preferable in that a large-area substrate can be easily manufactured.

透明基板5の厚みは特に限定されないが、強度と透過性の観点から0.1〜20mmの範囲であることが好ましい。特に窓部材を兼ねる場合は、強度の観点から1〜10mmの範囲であることが好ましく、別途窓部材を設ける場合には強度はあまり必要ないので0.1〜1mmであることが好ましい。透明基板5の面積は特に限定されず、後述する金属フッ化物薄膜4の設けたい面積に依存し、薄膜層4並びに透明基板5が大きいほど大面積の殺菌用光源となり得る。   The thickness of the transparent substrate 5 is not particularly limited, but is preferably in the range of 0.1 to 20 mm from the viewpoint of strength and transparency. In particular, when it also serves as a window member, it is preferably in the range of 1 to 10 mm from the viewpoint of strength, and when a separate window member is provided, the strength is not necessary so that it is preferably 0.1 to 1 mm. The area of the transparent substrate 5 is not particularly limited, and depends on the area on which the metal fluoride thin film 4 to be described later is to be provided. The larger the thin film layer 4 and the transparent substrate 5, the larger the area of the light source for sterilization.

上記透明基板5上に金属フッ化物薄膜層4が形成される。電子線源1から放出された電子は該薄膜層4に照射されて薄膜層4から深紫外光を発光し、次いでこの深紫外光が透明基板5を透過して(別途窓部材を設ける場合には更に窓部材を透過して)本発明の殺菌用光源外へ照射される。   A metal fluoride thin film layer 4 is formed on the transparent substrate 5. The electrons emitted from the electron beam source 1 are applied to the thin film layer 4 to emit deep ultraviolet light from the thin film layer 4, and then the deep ultraviolet light passes through the transparent substrate 5 (when a separate window member is provided). Is further transmitted through the window member) and irradiated outside the light source for sterilization of the present invention.

金属フッ化物薄膜4を構成する金属フッ化物としては、電子線の照射により200乃至320nmの深紫外光を発光する金属フッ化物を用いる必要がある。このような金属フッ化物としては、自己束縛励起子(STE:self trapped exciton、self-trapped exciton)により200乃至320nmの深紫外光を発光するCaF、SrF、BaFなどが挙げられる。また、プラセオジウム(Pr)の5d−4f遷移による当該深紫外光を発光するPrF及びPrをドープしたCaF、SrF、BaF、LaF、CeF、BaY、KYF、KY10、YLiF、LuLiF、LiCaAlF、LiSrAlF等の金属フッ化物なども挙げられる。 As the metal fluoride constituting the metal fluoride thin film 4, it is necessary to use a metal fluoride that emits deep ultraviolet light of 200 to 320 nm when irradiated with an electron beam. Examples of such a metal fluoride include CaF 2 , SrF 2 , and BaF 2 that emit deep ultraviolet light of 200 to 320 nm by self-trapped exciton (STE). In addition, PrF 3 and Pr-doped CaF 2 , SrF 2 , BaF 2 , LaF 3 , CeF 3 , BaY 2 F 3 , KYF 4 , KY that emit the deep ultraviolet light due to the 5d-4f transition of praseodymium (Pr). Examples thereof include metal fluorides such as 3 F 10 , YLiF 4 , LuLiF 4 , LiCaAlF 6 , and LiSrAlF 6 .

金属フッ化物薄膜層4の結晶性は特に限定されず、非晶質、多結晶、単結晶の何れででも良いが、Prを含有(ドープ)した場合には結晶性が高い方がドープ元素であるPrが発光中心として働きやすいので、多結晶又は単結晶であることが好ましい。また、金属フッ化物薄膜層の大面積化の観点からは、非晶質又は多結晶であることが好ましい。   The crystallinity of the metal fluoride thin film layer 4 is not particularly limited and may be amorphous, polycrystalline, or single crystal. However, when Pr is contained (doped), the higher crystallinity is the doping element. Since some Pr is likely to work as a luminescent center, it is preferably polycrystalline or single crystal. From the viewpoint of increasing the area of the metal fluoride thin film layer, it is preferably amorphous or polycrystalline.

金属フッ化物薄膜層4の膜厚の下限は特に限定されない。ただし、形成する金属フッ化物薄膜層4の膜厚が不均一となり、著しく膜厚が薄い部分が生じないようにするため、平均100nm以上とすることが好ましい。更に発光効率の点で、1μm以上の厚みであることが好ましい。膜厚の上限は任意であるが、結晶性維持の観点や小型軽量化、発光の再吸収の観点から平均10μm未満であることが好ましい。形成する金属フッ化物薄膜層4の面積は特に限定されず、小さ過ぎて取り扱いや陽極形成が困難になってしまわない大きさであればよい。むしろ、大きくすることにより、大面積の発光が可能となり大面積化が必要な殺菌用光源となりうる。   The lower limit of the film thickness of the metal fluoride thin film layer 4 is not particularly limited. However, the average thickness of the metal fluoride thin film layer 4 to be formed is preferably 100 nm or more in order to prevent the thickness of the metal fluoride thin film layer 4 from becoming non-uniform and causing a remarkably thin portion. Further, in terms of luminous efficiency, the thickness is preferably 1 μm or more. The upper limit of the film thickness is arbitrary, but it is preferably less than 10 μm on average from the viewpoints of maintaining crystallinity, reducing the size and weight, and reabsorbing light emission. The area of the metal fluoride thin film layer 4 to be formed is not particularly limited as long as it is too small to handle and form an anode. Rather, by increasing the size, light can be emitted in a large area, which can be a light source for sterilization that requires a large area.

このような金属フッ化物薄膜層4を透明基板5上に一層形成するだけで発光基板として動作可能であるが、必ずしも一層の膜である必要はなく、多層膜とすることも可能である。例えば、透明基板5と金属フッ化物薄膜層4の間に格子不整合を解消する何らかの緩衝層を形成することで金属フッ化物薄膜層4の結晶性を向上させることが可能である。また、発光基板の最表面(深紫外光放出面側)に酸化防止膜を形成しても良い。   Such a metal fluoride thin film layer 4 can be operated as a light emitting substrate only by forming a single layer on the transparent substrate 5, but it is not always necessary to be a single layer film, and a multilayer film can also be used. For example, the crystallinity of the metal fluoride thin film layer 4 can be improved by forming some buffer layer that eliminates the lattice mismatch between the transparent substrate 5 and the metal fluoride thin film layer 4. Further, an antioxidant film may be formed on the outermost surface (the deep ultraviolet light emission surface side) of the light emitting substrate.

前記金属フッ化物薄膜層4を作製する方法は特に限定されず、公知の結晶成長法、薄膜化法を用いることができる。具体的には、パルスレーザー堆積法(レーザーアブレーション法)、真空中で蒸発させた分子状材料から結晶を成長させる分子線成長法、または高温で液体となった金属に結晶材料を溶かし種となる基板を入れて冷やすことで基板上に結晶を成長させるLPE法、スパッタ法などの方法を用いることができる。また、金属フッ化物粉末からなる薄膜層としてもよい。中でも気相成長法の一種であるパルスレーザー堆積法が好適である。パルスレーザー堆積法は、レーザーパルス照射によって原料に大きなエネルギーを与えて昇華させ基板上に堆積させる物理的気相成長法である。この方法は、形成される薄膜の光学的性質が不均一になりやすい化学的気相成長法に対し、光学的性質の均一な薄膜が容易に作製でき、従って発光性能が均一になるという点で優れている。   The method for producing the metal fluoride thin film layer 4 is not particularly limited, and a known crystal growth method or thinning method can be used. Specifically, a pulse laser deposition method (laser ablation method), a molecular beam growth method in which crystals are grown from a molecular material evaporated in a vacuum, or a crystal material is dissolved in a metal that has become liquid at high temperature to become a seed. It is possible to use a method such as an LPE method or a sputtering method in which a crystal is grown on the substrate by putting the substrate and cooling. Moreover, it is good also as a thin film layer which consists of metal fluoride powder. Among these, the pulse laser deposition method which is a kind of vapor phase growth method is preferable. The pulse laser deposition method is a physical vapor deposition method in which a raw material is given a large energy by laser pulse irradiation to be sublimated and deposited on a substrate. This method is easy to produce a thin film with uniform optical properties, and therefore has uniform light emission performance, compared to chemical vapor deposition, which tends to make the optical properties of the formed thin film non-uniform. Are better.

以下、代表的な気相成長法であるパルスレーザー堆積法を例にして、透明基板5上に金属フッ化物薄膜層4を形成する具体的説明を、図3に従って行う。パルスレーザー堆積法は、レーザー光を原料蒸発のエネルギー源とする物理的気相成長の一つであり、レーザーアブレーション法とも呼ばれている。高出力パルスレーザー光をレーザー光源8ら入射し、ターゲット9の表面に集光、照射し、その時に起きる表面層部の瞬間的な剥離(アブレーション)を利用して、構成元素の原子、分子、イオンやクラスタを透明基板10に堆積させる成膜プロセスである。ターゲット9には前記した金属フッ化物の単結晶体、多結晶体、ペレットなどを用いることができる。レーザー光源8にはNd:YAGレーザーの第三高調波などを用いることができる。   Hereinafter, a specific description of forming the metal fluoride thin film layer 4 on the transparent substrate 5 will be given with reference to FIG. 3 by taking a pulse laser deposition method as a typical vapor phase growth method as an example. The pulse laser deposition method is one of physical vapor depositions using laser light as an energy source for material evaporation, and is also called a laser ablation method. A high-power pulsed laser beam is incident from the laser light source 8, focused and irradiated on the surface of the target 9, and the instantaneous peeling (ablation) of the surface layer portion that occurs at that time is used to make atoms, molecules, In this film forming process, ions and clusters are deposited on the transparent substrate 10. The target 9 may be a single crystal, polycrystal, pellet or the like of the metal fluoride described above. The laser light source 8 may be a third harmonic of an Nd: YAG laser.

金属フッ化物薄膜層4の上には、通常、電子線源からの電子の引き出し、加速を目的として陽極3が設置される。この陽極3としては、金属薄板、金属膜もしくは導電性の金属酸化物膜を用いることができる。膜厚は特に限定されないが、1nm以上とすると最低限の耐久性があるため好ましく、1000μm以下であることが小型軽量化の観点から好ましい。また、複数の金属もしくは金属酸化物を用いて多層膜としても良い。該陽極3の材料としては、従来公知の金属、導電性酸化物を任意に用いることができる。具体的にはアルミニウム、チタン、ニッケル、コバルト、金、銀、銅、クロム、ITO(酸化インジウムスズ)などの少なくとも一種類からなる。   On the metal fluoride thin film layer 4, the anode 3 is usually installed for the purpose of extracting and accelerating electrons from the electron beam source. As the anode 3, a thin metal plate, a metal film, or a conductive metal oxide film can be used. The film thickness is not particularly limited, but it is preferably 1 nm or more because of minimum durability, and is preferably 1000 μm or less from the viewpoint of reduction in size and weight. Alternatively, a multilayer film may be formed using a plurality of metals or metal oxides. As the material of the anode 3, conventionally known metals and conductive oxides can be arbitrarily used. Specifically, it consists of at least one of aluminum, titanium, nickel, cobalt, gold, silver, copper, chromium, ITO (indium tin oxide), and the like.

金属膜や金属酸化物膜を金属フッ化物薄膜層4上に形成する方法は、従来公知の金属膜形成技術を任意に用いることができる。具体的には真空蒸着法を用いることができる。真空蒸着法は、真空中で蒸着材料を加熱により昇華または蒸発させて生じた粒子を基板に沈着させて均一な膜状試料を形成する方法である。マスクと呼ばれる遮蔽物を用いることで、蒸着させたくない部分を遮蔽して、任意の形状の陽極を形成できる。また、金属薄板を機械加工することにより所望の形状として陽極3とすることもできる。   As a method of forming a metal film or a metal oxide film on the metal fluoride thin film layer 4, a conventionally known metal film forming technique can be arbitrarily used. Specifically, a vacuum deposition method can be used. The vacuum vapor deposition method is a method of forming a uniform film sample by depositing particles generated by sublimation or evaporation of a vapor deposition material by heating in vacuum in a substrate. By using a shield called a mask, a portion that is not desired to be deposited can be shielded to form an anode having an arbitrary shape. Moreover, it can also be set as the anode 3 as a desired shape by machining a metal thin plate.

陽極の形状に特に制限はない。ただし、陽極3を電子線が通過して金属フッ化物薄膜層4に到達する必要があるため、メッシュ形状もしくは、スリット形状の陽極が好ましい。金属フッ化物薄膜4上全面に陽極を形成すると電子源から照射された電子線が全て陽極3に捕まり、発光しない。また、陽極3は透明基板5の金属フッ化物薄膜層4が形成されている面とは反対側の面上に形成しても良く、その場合は金属フッ化物薄膜層4上に形成した場合よりも大きな電圧を印加する必要がある。   There is no particular limitation on the shape of the anode. However, since it is necessary for the electron beam to pass through the anode 3 and reach the metal fluoride thin film layer 4, a mesh-shaped or slit-shaped anode is preferable. When the anode is formed on the entire surface of the metal fluoride thin film 4, all the electron beams irradiated from the electron source are captured by the anode 3 and do not emit light. The anode 3 may be formed on the surface of the transparent substrate 5 opposite to the surface on which the metal fluoride thin film layer 4 is formed. In that case, the anode 3 is formed on the metal fluoride thin film layer 4. It is necessary to apply a large voltage.

深紫外光を発光させるための電子線は、電子線源1から照射される。この電子線源1としては、従来公知の、タングステンフィラメントやホウ化ランタン(LaB)フィラメントなどを用いる、金属を高温度に加熱した時に放出される電子を利用する熱電子銃;カーボンナノチューブやダイヤモンドやシリコンなどの固体表面に電界を印加することにより放出される電子を利用する電界放出電子銃(フィールドエミッター)が採用される。熱が発生せず、電圧が低くて済み省電力であるうえ、薄くできるので殺菌用光源を小型化できることから、フィールドエミッターが好適である。電子線源1がフィールドエミッターの場合フィールドエミッター自体が陰極となる。 An electron beam for emitting deep ultraviolet light is irradiated from the electron beam source 1. As the electron beam source 1, a conventionally known tungsten electron filament, lanthanum boride (LaB 6 ) filament or the like is used. A thermoelectron gun using electrons emitted when a metal is heated to a high temperature; carbon nanotube or diamond A field emission electron gun (field emitter) that utilizes electrons emitted by applying an electric field to a solid surface such as silicon or silicon is employed. A field emitter is preferable because no heat is generated, the voltage is low, power is saved, and the light source for sterilization can be miniaturized because the thickness can be reduced. When the electron beam source 1 is a field emitter, the field emitter itself becomes a cathode.

前出のフィールドエミッターは真空中に保持される必要がある。真空度が低いとフィールドエミッターがスパッタリングされ、劣化する傾向にあるので、スパッタリングが生じない程度の真空度とすることが好ましい。具体的には、真空容器6の中に発光基板および電子線源1を設置し、この真空容器6の内部を好ましくは1Pa以下、より好ましくは1×10−3Pa以下の真空状態にする方法が採用される。 The aforementioned field emitter needs to be held in a vacuum. If the degree of vacuum is low, the field emitter is sputtered and tends to deteriorate. Therefore, it is preferable to set the degree of vacuum so that sputtering does not occur. Specifically, the light emitting substrate and the electron beam source 1 are installed in the vacuum vessel 6, and the inside of the vacuum vessel 6 is preferably in a vacuum state of preferably 1 Pa or less, more preferably 1 × 10 −3 Pa or less. Is adopted.

電子線源1としてフィールドエミッターを用いた場合、フィールドエミッターの材質や形状、陽極との間隔等により異なるが、例えばフィールドエミッターと陽極3間には電子密度1〜100mAで100V〜10kVの電圧をかければよい。
本発明の殺菌用光源は、波長200〜320nmの深紫外光を発光する。例えば金属フッ化物としてCaFを用いた場合には、波長280近辺にピークを有する波長230〜320nmの範囲の深紫外光を含んだ紫外光を発光する。
When a field emitter is used as the electron beam source 1, for example, a voltage of 100 V to 10 kV can be applied between the field emitter and the anode 3 at an electron density of 1 to 100 mA, depending on the material and shape of the field emitter and the distance from the anode. That's fine.
The light source for sterilization of the present invention emits deep ultraviolet light having a wavelength of 200 to 320 nm. For example, when CaF 2 is used as the metal fluoride, ultraviolet light including deep ultraviolet light in the wavelength range of 230 to 320 nm having a peak in the vicinity of the wavelength 280 is emitted.

上記発光基板と電子線源1とは、陽極3などの他の必要な部材と一体化され殺菌用光源を構成する。当該殺菌用光源を深紫外光の光源として組み込んで殺菌装置とするが、装置の構成自体は公知のものが採用でき、既存の殺菌装置に配置されている低圧水銀ランプに代えて本発明の殺菌用光源を設置すれば良い。   The light emitting substrate and the electron beam source 1 are integrated with other necessary members such as the anode 3 to constitute a light source for sterilization. The light source for sterilization is incorporated as a deep ultraviolet light source to form a sterilizer. However, a known device structure can be adopted, and the sterilizer of the present invention can be used instead of the low-pressure mercury lamp disposed in the existing sterilizer. A light source may be installed.

具体的には、水の殺菌処理の場合は、タンク内に本発明の殺菌用光源を設置し、必要に応じて、水を輸送するポンプ、ろ過機、加熱器や冷却器が配備される。殺菌用光源は、タンク内において、完全に浸漬する構造、半浸漬構造、或いは水の上面から照射する構造など処理対象物の種類、透明度などに応じて任意に設計し得る。
もちろん水の殺菌処理だけでなく、他の対象物の処理にも適用可能であり、例えば、対象物が自動販売機の水や湯である場合は、特開2004−50003に記載の殺菌装置が、生肉や水産加工品である場合は、特開平8−242829記載の殺菌装置が、食品容器や医療容器の内外表面を殺菌する場合は、特開平9−201401記載の殺菌装置が何ら制限なく採用され、これら既存の装置の紫外線ランプに代えて、本発明の殺菌用光源を配置することができる。
Specifically, in the case of water sterilization treatment, the light source for sterilization of the present invention is installed in a tank, and a pump, a filter, a heater and a cooler for transporting water are provided as necessary. The light source for sterilization can be arbitrarily designed in accordance with the type of object to be treated, transparency, etc., such as a completely immersed structure, a semi-immersed structure, or a structure irradiated from the upper surface of water.
Of course, it can be applied not only to the sterilization treatment of water but also to the treatment of other objects. For example, when the object is water or hot water of a vending machine, the sterilization apparatus described in JP-A-2004-50003 is used. In the case of raw meat or processed fishery products, the sterilization apparatus described in Japanese Patent Laid-Open No. 8-242929 is used, and in the case of sterilizing the inner and outer surfaces of food containers and medical containers, the sterilization apparatus described in Japanese Patent Laid-Open No. 9-201401 is used without any limitation. In place of the ultraviolet lamps of these existing apparatuses, the sterilization light source of the present invention can be arranged.

本発明の殺菌用光源は、殺菌対象物の形状に合わせて、複数立体的に配列することも、水平または垂直方向に並列させることもできる。この点は、本発明の殺菌用光源が、極めて小型で大面積が可能な装置であるため、棒状で長径の既存の紫外線ランプに比べてその組み合わせの自由度は大変高いものである。   The light source for sterilization according to the present invention can be arranged three-dimensionally in accordance with the shape of the object to be sterilized, or can be arranged in parallel in the horizontal or vertical direction. In this respect, since the light source for sterilization of the present invention is a device that is extremely small and can have a large area, the degree of freedom of the combination is very high as compared with an existing ultraviolet lamp having a long diameter.

例えば図3に示すように、本発明の殺菌用光源の表面に複数の屈曲部を有するつづら折り状の水路を設けることにより、大面積の発光面上に広い殺菌領域を設けることができ、殺菌時間を長くすることが可能となる。このとき、水路を挟むように別の殺菌用光源を設置しても良い。   For example, as shown in FIG. 3, by providing a zigzag water channel having a plurality of bent portions on the surface of the light source for sterilization of the present invention, a wide sterilization region can be provided on the light emitting surface of a large area, and the sterilization time Can be lengthened. At this time, another light source for sterilization may be installed so as to sandwich the water channel.

以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって制限されるものではない。また、実施例の中で説明されている特徴の組み合わせすべてが本発明の解決手段に必須のものとは限らない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In addition, not all combinations of features described in the embodiments are essential to the solution means of the present invention.

実施例1
[透明基板上への金属フッ化物薄膜の形成例]
パルスレーザー堆積装置を用いて石英ガラス基板上にフッ化カルシウム(CaF)薄膜を製造した。基板には20×20×0.5(幅×長さ×厚さ、単位mm)の石英ガラスを用いた。ターゲットにはCaFの焼結体を用いた。先ず、ロータリーポンプと油拡散ポンプを用いてチャンバー内を約2.0×10−4Paの真空とした。次いで、成膜が行われないよう基板とターゲットを金属板で遮断した状態で、波長355nm、繰り返し周波数10Hzのパルスレーザーをターゲットに照射して、不純物が付着している可能性のあるターゲット表層の剥離・除去を10分間行った後、基板とターゲット間の金属板を外して、成膜した。ターゲットと基板間の距離は4.2cm、堆積時間は240分とし、成膜は基板温度を400℃、単位面積あたりのレーザー照射のエネルギー量を15.5(J/cm)として成膜を行った。なお、単位面積あたりのレーザー照射のエネルギー量はレーザー照射後のターゲットのレーザー照射痕の幅Dと実験時のパルスエネルギーEから、E/πD/4として算出した。パルスエネルギーEは実験時の平均レーザーパワーPを基に、
E(J)=P(W)/10(Hz)、
の式より算出した。この成膜条件で作製した金属フッ化物薄膜の膜厚を断面SEM像の観察によって評価したところ300nmであった。
Example 1
[Formation of metal fluoride thin film on transparent substrate]
A calcium fluoride (CaF 2 ) thin film was produced on a quartz glass substrate using a pulse laser deposition apparatus. Quartz glass of 20 × 20 × 0.5 (width × length × thickness, unit mm) was used for the substrate. A CaF 2 sintered body was used as the target. First, the inside of the chamber was evacuated to about 2.0 × 10 −4 Pa using a rotary pump and an oil diffusion pump. Next, in a state where the substrate and the target are shielded by a metal plate so that film formation is not performed, the target is irradiated with a pulse laser having a wavelength of 355 nm and a repetition frequency of 10 Hz, and the target surface layer on which impurities may be attached After peeling and removing for 10 minutes, the metal plate between the substrate and the target was removed to form a film. The distance between the target and the substrate is 4.2 cm, the deposition time is 240 minutes, the film formation is performed at a substrate temperature of 400 ° C., and the energy amount of laser irradiation per unit area is 15.5 (J / cm 2 ). went. Incidentally, the energy of laser irradiation per unit area of the pulse energy E of the experiment and the width D of the laser irradiation signatures of the target after laser irradiation, was calculated as E / πD 2/4. The pulse energy E is based on the average laser power P during the experiment.
E (J) = P (W) / 10 (Hz),
It was calculated from the following formula. When the film thickness of the metal fluoride thin film produced under these film forming conditions was evaluated by observing a cross-sectional SEM image, it was 300 nm.

[殺菌用光源の作製]
次に上から、石英ガラス基板、CaF薄膜、板厚0.05mmのメッシュ状銅板陽極(0.1mm幅の電極が0.1mm間隙で配列)、板厚0.1mmのテフロン製のスペーサー、カーボンナノファイバーフィールドエミッターの順に配置し、これらをテフロン板で挟みこみ固定した。これを石英ガラスを窓部材(厚さ3mm)とした真空容器の中に封入し、4×10−4Pa以下の真空度として、殺菌用光源を得た。
[Production of light source for sterilization]
Next, from above, a quartz glass substrate, a CaF 2 thin film, a 0.05 mm thick mesh copper plate anode (0.1 mm wide electrodes arranged in a 0.1 mm gap), a 0.1 mm thick Teflon spacer, The carbon nanofiber field emitters were arranged in this order, and these were sandwiched between Teflon plates and fixed. This was enclosed in a vacuum container using quartz glass as a window member (thickness 3 mm) to obtain a light source for sterilization with a vacuum degree of 4 × 10 −4 Pa or less.

[殺菌用光源の深紫外発光特性]
このようにして作製した殺菌用光源を、エレクトロメーターと接続した。エレクトロメーターにはKeithley Electrometer Model 6517を用いた。殺菌用光源にはエレクトロメーター内蔵電源より770Vを印加し深紫外線発光スペクトルを測定した。スペクトル測定には、ステラネット社製EPP2000-UVN-SR型小型分光器を用い、F1000-UV-VIS-SR光ファイバーを通して測定を行った。得られた発光スペクトルを図5に示した。
[Deep ultraviolet emission characteristics of sterilization light source]
The sterilization light source thus produced was connected to an electrometer. Keithley Electrometer Model 6517 was used as the electrometer. A deep ultraviolet emission spectrum was measured by applying 770 V to the sterilizing light source from a power source with a built-in electrometer. The spectrum measurement was performed using an EPP2000-UVN-SR compact spectroscope manufactured by Stellarnet, through an F1000-UV-VIS-SR optical fiber. The obtained emission spectrum is shown in FIG.

実施例2
[透明基板上への金属フッ化物薄膜の形成]
ターゲットとしてPrF粉末とCaF粉末を混合してペレット化したもの(PrF:1モル%)を用いた他は実施例1と同様にして、石英ガラス基板上にPr:CaF2薄膜を製造した。膜厚は100nmであった。
Example 2
[Formation of metal fluoride thin film on transparent substrate]
PrF 3 powder and CaF 2 powder were mixed with those pellets as a target: except for using (PrF 3 1 mol%) in the same manner as in Example 1, Pr on a quartz glass substrate: 0.1 ml of the CaF2 film . The film thickness was 100 nm.

[デバイスの作製]
実施例1と同様にして殺菌用光源を作製した。
[Production of devices]
A light source for sterilization was produced in the same manner as in Example 1.

[デバイスの発光特性]
印加電圧を1000Vとした他は実施例1と同様にして、作製した殺菌用光源の発光スペクトルを測定した。得られた発光スペクトルを図6に示した。
[Device emission characteristics]
The emission spectrum of the produced sterilizing light source was measured in the same manner as in Example 1 except that the applied voltage was set to 1000V. The obtained emission spectrum is shown in FIG.

実施例3
[透明基板上への金属フッ化物薄膜の形成]
ターゲットとしてBaF粉末を溶融固化したものを用いた他は実施例1と同様にして、石英ガラス基板上にBaF薄膜を製造した。膜厚は100nmであった。
Example 3
[Formation of metal fluoride thin film on transparent substrate]
A BaF 2 thin film was produced on a quartz glass substrate in the same manner as in Example 1 except that a target obtained by melting and solidifying BaF 2 powder was used. The film thickness was 100 nm.

[デバイスの作製]
実施例1と同様にして殺菌用光源を作製した。
[Production of devices]
A light source for sterilization was produced in the same manner as in Example 1.

[デバイスの発光特性]
印加電圧を1000Vとした他は実施例1と同様にして、作製した殺菌用光源の発光スペクトルを測定した。得られた発光スペクトルを図7に示した。
[Device emission characteristics]
The emission spectrum of the produced sterilizing light source was measured in the same manner as in Example 1 except that the applied voltage was set to 1000V. The obtained emission spectrum is shown in FIG.

1 電子線源
2 スペーサー
3 陽極
4 金属フッ化物薄膜層
5 透明基板
6 真空容器
7 窓部材
8 レーザー光源
9 ターゲット
10 透明基板
11 殺菌用光源
12 水路
DESCRIPTION OF SYMBOLS 1 Electron beam source 2 Spacer 3 Anode 4 Metal fluoride thin film layer 5 Transparent substrate 6 Vacuum container 7 Window member 8 Laser light source 9 Target 10 Transparent substrate 11 Light source for sterilization 12 Water channel

Claims (2)

透明基板と該透明基板上に形成された金属フッ化物薄膜層とからなる発光基板並びに電子線源を備え、該発光基板の金属フッ化物層に電子線を照射することにより、殺菌に有効な200乃至320nmの波長の深紫外光を含む光を発生させることを特徴とする殺菌用光源。   A light emitting substrate composed of a transparent substrate and a metal fluoride thin film layer formed on the transparent substrate and an electron beam source are provided, and the metal fluoride layer of the light emitting substrate is irradiated with an electron beam, thereby being effective for sterilization. A light source for sterilization characterized by generating light including deep ultraviolet light having a wavelength of 320 nm. 金属フッ化物薄膜層が、フッ化カルシウム、フッ化バリウム、又はプラセオジウム(Pr)を含有する金属フッ化物からなる薄膜層であることを特徴とする請求項1に記載の殺菌用光源。   The light source for sterilization according to claim 1, wherein the metal fluoride thin film layer is a thin film layer made of a metal fluoride containing calcium fluoride, barium fluoride, or praseodymium (Pr).
JP2009206053A 2009-09-07 2009-09-07 Light source for sterilization Expired - Fee Related JP5188480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009206053A JP5188480B2 (en) 2009-09-07 2009-09-07 Light source for sterilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009206053A JP5188480B2 (en) 2009-09-07 2009-09-07 Light source for sterilization

Publications (2)

Publication Number Publication Date
JP2011055898A JP2011055898A (en) 2011-03-24
JP5188480B2 true JP5188480B2 (en) 2013-04-24

Family

ID=43944273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009206053A Expired - Fee Related JP5188480B2 (en) 2009-09-07 2009-09-07 Light source for sterilization

Country Status (1)

Country Link
JP (1) JP5188480B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147744A1 (en) * 2011-04-25 2012-11-01 浜松ホトニクス株式会社 Ultraviolet light generating target, electron-beam-excited ultraviolet light source, and method for producing ultraviolet light generating target
JP6283197B2 (en) * 2013-10-24 2018-02-21 独立行政法人国立高等専門学校機構 Disinfection, sterilization or sterilization device and sterilization, sterilization or sterilization method
US9278870B2 (en) 2014-01-21 2016-03-08 Panasonic Corporation Ultraviolet irradiation apparatus and ultraviolet irradiation method
JP6544524B2 (en) * 2015-05-18 2019-07-17 パナソニックIpマネジメント株式会社 UV light irradiation device
WO2017086874A1 (en) * 2015-11-20 2017-05-26 Wallenius Water Ab Liquid purifying drink container device with field emission uv light source
SE539934C2 (en) * 2016-06-22 2018-01-23 Lightlab Sweden Ab System for treating a fluid with non-mercury-based UV light
US10898600B2 (en) 2016-08-10 2021-01-26 Panasonic Intellectual Property Management Co., Ltd. Disinfecting method and disinfecting apparatus
JP7261994B2 (en) * 2016-08-10 2023-04-21 パナソニックIpマネジメント株式会社 Antibacterial method and antibacterial device
SE540283C2 (en) 2016-12-08 2018-05-22 Lightlab Sweden Ab A field emission light source adapted to emit UV light
CN108690952B (en) * 2017-04-12 2020-11-13 肇庆市双石金属实业有限公司 Vacuum plating sterilization film
CN112216597A (en) * 2020-09-15 2021-01-12 天津迈刻微科电子科技有限公司 Miniature ultraviolet light source and preparation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033080A (en) * 2000-07-14 2002-01-31 Futaba Corp Ultraviolet ray source
JP2006079873A (en) * 2004-09-08 2006-03-23 National Institute For Materials Science Solid far-ultraviolet-ray emitting device
US7208103B2 (en) * 2004-08-13 2007-04-24 General Electric Company Quantum-splitting fluoride-based phosphors, method of producing, and devices incorporating the same
JP2007294698A (en) * 2006-04-26 2007-11-08 Sumitomo Electric Ind Ltd Ultraviolet lamp, and exposure device using this
JP4785198B2 (en) * 2007-02-16 2011-10-05 株式会社トクヤマ Fluoride crystal and vacuum ultraviolet light emitting device
JP4555899B2 (en) * 2007-09-03 2010-10-06 国立大学法人神戸大学 Deep ultraviolet semiconductor optical device
WO2011027881A1 (en) * 2009-09-07 2011-03-10 国立大学法人名古屋工業大学 Device for emitting vacuum ultraviolet light

Also Published As

Publication number Publication date
JP2011055898A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP5188480B2 (en) Light source for sterilization
JP5468079B2 (en) Vacuum ultraviolet light emitting device
JP5569987B2 (en) Ultraviolet light emitting material and ultraviolet light source
JP5808021B2 (en) Activation container and kit used for electron affinity reduction processing apparatus, electron affinity reduction processing apparatus including the kit, photocathode electron beam source, electron gun including photocathode electron beam source, free electron laser accelerator, transmission Electron microscope, scanning electron microscope, electron holography microscope, electron beam drawing apparatus, electron beam diffractometer and electron beam inspection apparatus
KR102313234B1 (en) An x-ray device
US9728393B2 (en) Target for ultraviolet light generation, electron beam-excited ultraviolet light source, and production method for target for ultraviolet light generation
TW200814858A (en) A method of increasing the conversion efficiency of an EUV and/or soft X-ray lamp and a corresponding apparatus
JP5476531B2 (en) Phosphor crystal thin film and method for producing the same
TW201128678A (en) X-ray generation device and cathode thereof
JP2014235816A (en) Photo cathode type electron beam source, manufacturing method thereof, and photo cathode type electron beam source system
JP5580932B2 (en) Ultraviolet light generation target, electron beam excited ultraviolet light source, and method for producing ultraviolet light generation target
JP6029926B2 (en) Ultraviolet light generation target, electron beam excited ultraviolet light source, and method for producing ultraviolet light generation target
Ichikawa et al. Development of a UV light source using Pr: LuAG thin film pumped by electron beam
JP2018104645A (en) Target for ultraviolet generation and method for producing the same, and electron beam excitation ultraviolet light source
JP2018086108A (en) Phototherapy device
JP5167475B2 (en) Photodisinfection device and ultraviolet X-ray generator
Yanagihara et al. Vacuum ultraviolet field emission lamp consisting of neodymium ion doped lutetium fluoride thin film as phosphor
JP2006287028A (en) Laser luminescence structure
Djubua et al. Metal alloy cathodes for application in vacuum microwave devices
Yoo et al. UV lighting with carbon nanotube based cold cathode electron beam (C-beam) and its characteristics
JP2006335915A (en) Powdery phosphor, method for producing the same and luminescent device using the same
JP2011011952A (en) Method for producing nano-carbon material composite substrate, nano-carbon material composite substrate, electron emission element, and lighting lamp
JP2006189350A (en) Soft x-ray generator
JP2006139992A (en) Flash discharge lamp and light energy irradiation equipment
Yanagihara et al. Research Article Vacuum Ultraviolet Field Emission Lamp Consisting of Neodymium Ion Doped Lutetium Fluoride Thin Film as Phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees