JP5187117B2 - Optical property measuring device - Google Patents

Optical property measuring device Download PDF

Info

Publication number
JP5187117B2
JP5187117B2 JP2008263741A JP2008263741A JP5187117B2 JP 5187117 B2 JP5187117 B2 JP 5187117B2 JP 2008263741 A JP2008263741 A JP 2008263741A JP 2008263741 A JP2008263741 A JP 2008263741A JP 5187117 B2 JP5187117 B2 JP 5187117B2
Authority
JP
Japan
Prior art keywords
optical
liquid crystal
light shielding
crystal panel
measuring apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008263741A
Other languages
Japanese (ja)
Other versions
JP2010091509A (en
Inventor
信次 山本
猛 松本
健二 井村
計弥 清井
義幸 長嶋
泰史 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Optics Inc
Original Assignee
Konica Minolta Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Optics Inc filed Critical Konica Minolta Optics Inc
Priority to JP2008263741A priority Critical patent/JP5187117B2/en
Publication of JP2010091509A publication Critical patent/JP2010091509A/en
Application granted granted Critical
Publication of JP5187117B2 publication Critical patent/JP5187117B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

ディスプレイ装置の光学特性を測定する光学特性測定装置に関するものである。   The present invention relates to an optical characteristic measuring apparatus for measuring optical characteristics of a display device.

ディスプレイ装置の製造工程において、前記ディスプレイ装置の表示部の輝度、色度等の物理量を測定することで、前記表示部の光学特性を測定することが行われている。前記表示部の光学特性の測定には、前記表示部と対向するセンサーを備えた測定装置が用いられる。   In the manufacturing process of the display device, the optical characteristics of the display unit are measured by measuring physical quantities such as luminance and chromaticity of the display unit of the display device. For the measurement of the optical characteristics of the display unit, a measuring device including a sensor facing the display unit is used.

前記ディスプレイ装置の表示部の光学特性測定を行う場合は、前記センサーに前記表示部からの光のみが入射されるように、外乱となる外部から入射される光(いわゆる、環境光)を遮光する必要がある。環境光を遮光する方法としては、光学特性を測定するときに前記表示部を暗室に配置して測定する方法がある。しかしながら、暗室での測定は手間がかかり、それだけ、製造に時間とコストがかかる。   When measuring the optical characteristics of the display unit of the display device, the externally incident light (so-called ambient light) is blocked so that only the light from the display unit is incident on the sensor. There is a need. As a method for shielding ambient light, there is a method in which the display unit is placed in a dark room when measuring optical characteristics. However, measurement in a dark room is time-consuming and much time and cost are required for manufacturing.

そこで、前記表示部に少なくとも一部を密着させ、前記センサーに環境光が入らないようにする計測器が提案されている(例えば、米国特許第7027140号参照)。従来の計測器について図面を参照して説明する。図12は従来の光学特性測定装置の側面図であり、図13は図12に示す光学特性測定装置の背面図である。図12に示すように、光学特性測定装置Eは、本体91と、本体91の背面部910に形成された開口部911の奥に配置され、表示部の輝度を測定するセンサーである受光素子92と、背面部910の外周部を取り囲むように配置された遮光部93とを備えている。   Therefore, a measuring instrument has been proposed in which at least part of the display unit is in close contact with the display unit so that ambient light does not enter the sensor (see, for example, US Pat. No. 7,072,140). A conventional measuring instrument will be described with reference to the drawings. FIG. 12 is a side view of a conventional optical characteristic measuring apparatus, and FIG. 13 is a rear view of the optical characteristic measuring apparatus shown in FIG. As shown in FIG. 12, the optical property measuring device E is disposed behind the main body 91 and the opening 911 formed in the back surface portion 910 of the main body 91 and is a light receiving element 92 that is a sensor for measuring the luminance of the display unit. And a light-shielding portion 93 disposed so as to surround the outer peripheral portion of the back surface portion 910.

光学特性を測定するディスプレイ装置が液晶表示装置の場合、液晶表示装置は押えて圧力が作用することで、その圧力が作用している部分の近傍での光学特性が変化してしまう。そこで、圧力による光学特性の変化を抑えるため、図12、図13に示す光学特性測定装置E遮光部93は遮光部93からの圧力の光学特性への影響を減らすために、遮光部93が開口部911から離れた位置に形成されている。さらに、遮光部93は緩衝性を有している。緩衝性を有する遮光部93を用いることで、光学特性測定装置Eを表示部に押し当てたことによる遮光部93から表示部へ作用する圧力を低減することが可能である。
米国特許第7027140号
When the display device for measuring the optical characteristics is a liquid crystal display device, the liquid crystal display device is pressed and pressure is applied, so that the optical characteristics in the vicinity of the portion where the pressure is applied are changed. Therefore, in order to suppress the change in the optical characteristics due to the pressure, the optical characteristic measuring apparatus E light shielding part 93 shown in FIGS. 12 and 13 is opened to reduce the influence of the pressure from the light shielding part 93 on the optical characteristics. It is formed at a position away from the portion 911. Further, the light shielding portion 93 has a buffering property. By using the light-shielding part 93 having buffering properties, it is possible to reduce the pressure acting on the display part from the light-shielding part 93 by pressing the optical property measuring device E against the display part.
US Pat. No. 7,072,140

前記ディスプレイ装置の表示部は温度によって光学特性が変化してしまうものが多い。図12、13に示すような光学特性測定装置Eを用いて光学特性を測定する場合、遮光部93に囲まれた空間に放出された熱の逃げ場がなく、遮光部93に囲まれた空間内の空気の温度が上昇してしまい、表示部の表面の温度が大きく上昇し、温度上昇によって光学特性が大きく変化してしまい、表示部の正確な光学特性の測定が困難である。   Many of the display units of the display device have optical characteristics that change with temperature. When measuring the optical characteristics using the optical characteristic measuring apparatus E as shown in FIGS. 12 and 13, there is no escape space for the heat released in the space surrounded by the light shielding portion 93, and the inside of the space surrounded by the light shielding portion 93. The temperature of the air rises, the temperature of the surface of the display portion rises greatly, and the optical characteristics change greatly due to the temperature rise, making it difficult to accurately measure the optical characteristics of the display portion.

そこで本発明は、通常環境下でディスプレイ装置の表示部の光学特性を正確に測定することができる光学特性測定装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide an optical characteristic measuring device that can accurately measure the optical characteristics of a display unit of a display device under a normal environment.

上記目的を達成するために本発明は、ディスプレイ装置の表示部の光学特性を測定する光学特性測定装置であって、前記表示部に対向して配置される平面状の背面部を有する本体部と、前記背面部に形成された開口部から入射された光を受光する光学センサーと、前記背面部の周縁部に配置され、前記表示部と前記背面部との距離を一定に保つための支持部とを備え、前記背面部の前記開口部の辺縁部を囲むように配置され、前記光学特性の測定を行うときに前記表示部の表面と密着するの遮光部が備えられており、前記遮光部の側部には、前記光学センサー及び前記表示部の表面に光が照射されない位置に貫通孔が形成されている。   In order to achieve the above object, the present invention provides an optical characteristic measuring apparatus for measuring the optical characteristics of a display unit of a display device, and a main body unit having a planar back surface portion opposed to the display unit; An optical sensor that receives light incident from an opening formed in the back surface portion, and a support portion that is disposed at a peripheral edge portion of the back surface portion and keeps the distance between the display portion and the back surface portion constant. And is disposed so as to surround the edge of the opening of the back surface portion, and includes a light shielding portion that is in close contact with the surface of the display portion when measuring the optical characteristics. A through hole is formed in a side portion of the unit at a position where light is not irradiated on the surfaces of the optical sensor and the display unit.

この構成によると、遮光部によって外部の光が遮断され、光学センサーに光が入射しないので、通常環境下での表示部の光学特性を正確に測定することができる。また、前記背面部と前記表示部との間の距離を一定に保つので、熱が外部に放出されやすい。さらに、貫通孔が形成されていることで、遮光部の内部の熱を効果的に外部に排出することが可能である。   According to this configuration, external light is blocked by the light shielding unit, and light does not enter the optical sensor, so that the optical characteristics of the display unit in a normal environment can be accurately measured. In addition, since the distance between the back surface portion and the display portion is kept constant, heat is likely to be released to the outside. Furthermore, since the through hole is formed, the heat inside the light shielding portion can be effectively discharged to the outside.

このことにより、前記表示部の表面の温度の上昇を低減することができるので、前記表示部の被測定部の温度変化による光学特性の変化を低減することができ、前記表示部の光学特性を精度良く測定することが可能である。   As a result, an increase in the temperature of the surface of the display unit can be reduced, so that a change in optical characteristics due to a temperature change in the measured part of the display unit can be reduced, and the optical characteristics of the display unit can be reduced. It is possible to measure with high accuracy.

上記構成において、前記遮光部は少なくとも側壁部の内面が光を反射しにくい又は吸収するように形成されていてもよい。   The said structure WHEREIN: The said light-shielding part may be formed so that at least the inner surface of a side wall part may hardly reflect or absorb light.

上記構成において、前記光学特性の測定は、前記表示部が起立された状態で行われるものであり、前記貫通孔は前記光学測定を行うときに、少なくとも前記遮光部の上部と下部とに形成されていてもよい。この構成によると、前記表示部から発散される熱によって発生する上昇気流が、貫通孔を通過するので、効果的に遮光部内部の熱を効果的に取り除くことが可能である。   In the above configuration, the measurement of the optical characteristic is performed in a state where the display unit is erected, and the through hole is formed at least at the upper part and the lower part of the light shielding unit when performing the optical measurement. It may be. According to this configuration, the ascending air flow generated by the heat dissipated from the display unit passes through the through hole, so that the heat inside the light shielding unit can be effectively removed effectively.

上記構成において、前記貫通孔には、複数のフィンが前記遮光部の長さ方向に配列されていてもよい。また、前記複数のフィンの少なくとも一部は、前記背面部と平行に形成されていてもよい。   In the above configuration, a plurality of fins may be arranged in the length direction of the light shielding portion in the through hole. Further, at least some of the plurality of fins may be formed in parallel with the back surface portion.

上記構成において、前記背面部に近い側に配置されたフィンが、前記遮光部の外壁側から内壁側に向かって、前記背面部から遠ざかるように傾けて配置されていてもよく、前記表示部に近い側に配置されたフィンが、前記遮光部の外壁側から内壁側に向かって、前記背面部に近づくように傾けて配置されていてもよい。   In the above configuration, the fins disposed on the side close to the back surface portion may be disposed so as to be inclined away from the back surface portion from the outer wall side to the inner wall side of the light shielding portion, The fins arranged on the near side may be arranged to be inclined so as to approach the back surface part from the outer wall side of the light shielding part toward the inner wall side.

この構成によると、前記フィンが傾けて取り付けられていることで、少ないフィン枚数で前記光学センサー及び(又は)表示部に向かって貫通孔に入射する光を遮ることができるので、加工の手間が少なくなる。   According to this configuration, since the fins are attached at an angle, light incident on the through-hole toward the optical sensor and / or the display unit can be blocked with a small number of fins. Less.

上記構成において、前記背面部は、前記光学特性の測定が行われるとき、左右の少なくとも一方の端部に配置され、前記背面部と前記表示部との間を通過する光を遮断する遮光壁部を備えているものであってもよい。   In the above configuration, the back surface portion is disposed at at least one of the left and right ends when the optical property is measured, and the light shielding wall portion blocks light passing between the back surface portion and the display portion. May be provided.

上記構成において、前記遮光壁部は、前記光学特性の測定が行われるとき、前記表示部と非接触であってもよい。   The said structure WHEREIN: The said light-shielding wall part may be non-contact with the said display part, when the measurement of the said optical characteristic is performed.

上記構成において、前記支持部は、前記光学特性の測定を行うときの前記背面部と前記表示部との距離が15mm以上となるように形成されていてもよい。   The said structure WHEREIN: The said support part may be formed so that the distance of the said back part and the said display part when measuring the said optical characteristic may be 15 mm or more.

上記構成において、前記表示部として、液晶パネル、プラズマパネルを挙げることができる。   In the above structure, examples of the display unit include a liquid crystal panel and a plasma panel.

上記構成において、前記支持部の少なくとも一部が前記遮光部を兼ねていてもよい。これにより、前記光学特性測定装置の構造を簡単にすることができ、それだけ、製造にかかる手間と時間を省くことが可能である。   The said structure WHEREIN: At least one part of the said support part may serve as the said light-shielding part. As a result, the structure of the optical property measuring apparatus can be simplified, and it is possible to save labor and time for manufacturing.

本発明によると、通常環境下でディスプレイ装置の表示部の光学特性を正確に測定することができる光学特性測定装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the optical characteristic measuring apparatus which can measure the optical characteristic of the display part of a display apparatus correctly under a normal environment can be provided.

以下に、本発明の実施の形態について図面を参照して説明する。図1は本発明にかかる光学特性測定装置で測定している状態の概略側面図であり、図2は図1に示す光学特性測定装置の背面図であり、図3は図1に示す光学特性測定装置の背面側から見た斜視図である。なお、以下の実施の形態では、光学特性が測定される表示部として液晶表示装置に用いられる液晶パネルを例に説明している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic side view of the state measured by the optical characteristic measuring apparatus according to the present invention, FIG. 2 is a rear view of the optical characteristic measuring apparatus shown in FIG. 1, and FIG. 3 is an optical characteristic shown in FIG. It is the perspective view seen from the back side of the measuring device. In the following embodiments, a liquid crystal panel used in a liquid crystal display device is described as an example of a display unit whose optical characteristics are measured.

図1に示すように、光学特性測定装置Aは、起立された液晶パネルLPに押し当てられて、液晶パネルLPの光学特性を測定するものである。図1〜図3に示すように、光学特性測定装置Aは、背面が長方形状の本体1と、本体1の背面部10に形成された開口部11の内部に配置された光学特性を測定するセンサーである受光素子2と、長方形状の背面部10の四隅に配置された4本の支持部3と、背面部10の開口部11を囲むように配置された筒状の遮光部4とを備えている。   As shown in FIG. 1, the optical characteristic measuring apparatus A is pressed against a standing liquid crystal panel LP to measure the optical characteristics of the liquid crystal panel LP. As shown in FIGS. 1 to 3, the optical characteristic measuring apparatus A measures the optical characteristics arranged inside the main body 1 having a rectangular back surface and the opening 11 formed in the back surface portion 10 of the main body 1. The light receiving element 2 that is a sensor, the four support portions 3 disposed at the four corners of the rectangular back surface portion 10, and the cylindrical light shielding portion 4 disposed so as to surround the opening 11 of the back surface portion 10. I have.

受光素子2は、液晶パネルの光学特性値のひとつである輝度の測定を行うためのセンサーである。なお、液晶パネルの光学特性の測定として、輝度以外の色度、応答速度、コントラスト等を測定するものであってもよい。また、複数のパラメータの測定を行うものであってもよい。   The light receiving element 2 is a sensor for measuring luminance which is one of the optical characteristic values of the liquid crystal panel. In addition, as a measurement of the optical characteristic of a liquid crystal panel, you may measure chromaticity other than a brightness | luminance, a response speed, contrast, etc. Further, a plurality of parameters may be measured.

本体1の背面部10の四隅に配置された4本の支持部3はすべて同じ長さである。支持部3の先端部は力を分散することができる素材で形成された緩衝部31を備えている。遮光部4は円筒形状の部材であり、光が透過しにくい(例えば、黒色の樹脂材料等)で形成されている。なお、遮光部4の内径は開口部11の内径と略同じ内径である(理由については後述する)。遮光部4の先端部には支持部3と同様、力を分散することができる緩衝部41が形成されている。また、遮光部4には、光学特性測定装置Aが液晶パネルLPに配置されているときに、上部及び下部に貫通する貫通孔42が形成されている。支持部3と遮光部4とは互いに離れて配置されている。   The four support portions 3 arranged at the four corners of the back surface portion 10 of the main body 1 have the same length. The front end portion of the support portion 3 includes a buffer portion 31 formed of a material that can disperse force. The light shielding portion 4 is a cylindrical member and is formed of a material that does not easily transmit light (for example, a black resin material). The inner diameter of the light shielding portion 4 is substantially the same as the inner diameter of the opening 11 (the reason will be described later). A buffer portion 41 that can disperse force is formed at the tip of the light shielding portion 4 in the same manner as the support portion 3. Further, the light shielding part 4 is formed with a through hole 42 penetrating through the upper part and the lower part when the optical property measuring apparatus A is arranged in the liquid crystal panel LP. The support part 3 and the light shielding part 4 are arranged apart from each other.

本発明にかかる光学特性測定装置Aを用いて、ディスプレイ装置の表示部の一例である液晶パネルの光学特性の測定状態を図面を参照して説明する。   A measurement state of optical characteristics of a liquid crystal panel, which is an example of a display unit of a display device, will be described with reference to the drawings using the optical characteristic measurement apparatus A according to the present invention.

光学特性測定装置Aは背面部10を液晶パネルLPと対向させた状態で輝度の測定を行う。光学特性測定装置Aは光学特性測定装置Aは本体1の背面部10が液晶パネルLPと平行となるとともに、背面10と液晶パネルLPとの間が所定の長さを保つように、背面部10の四隅に形成された支持部3にて支持されている。このとき、遮光部4の先端部に形成された緩衝部41が液晶パネルLPの測定対象部分を取り囲むように液晶パネルLPに密着されている。緩衝部41は緩衝部41と液晶パネルLPとの間に隙間が形成されず、遮光部4の筒内部に外部の光が入射するのを抑制している。   The optical characteristic measuring apparatus A measures the luminance with the back surface portion 10 facing the liquid crystal panel LP. The optical property measuring apparatus A is configured so that the back surface portion 10 of the main body 1 is parallel to the liquid crystal panel LP and the back surface 10 and the liquid crystal panel LP are kept at a predetermined length. Are supported by support portions 3 formed at the four corners. At this time, the buffer portion 41 formed at the tip of the light shielding portion 4 is in close contact with the liquid crystal panel LP so as to surround the measurement target portion of the liquid crystal panel LP. The buffer portion 41 does not form a gap between the buffer portion 41 and the liquid crystal panel LP, and suppresses external light from entering the cylinder of the light shielding portion 4.

緩衝部31及び緩衝部41は光学特性測定装置Aが液晶パネルLPに押し当てられるときの力を分散させることができるので、液晶パネルLPに作用する圧力を低減することができる。これにより、液晶パネルLPの表面に傷がつくのを抑制することができるとともに、緩衝部31及び緩衝部41から液晶パネルLPに作用する圧力による液晶パネルLPの輝度の変化を防ぐことができ、より正確な輝度を測定することができる。   Since the buffer part 31 and the buffer part 41 can disperse the force when the optical property measuring apparatus A is pressed against the liquid crystal panel LP, the pressure acting on the liquid crystal panel LP can be reduced. Thereby, while being able to suppress that the surface of liquid crystal panel LP is damaged, the change of the brightness | luminance of liquid crystal panel LP by the pressure which acts on liquid crystal panel LP from the buffer part 31 and the buffer part 41 can be prevented, More accurate luminance can be measured.

遮光部4は液晶パネルの輝度が測定される被測定領域を囲むものであり、支持部3に比べて押し付けによる圧力の輝度への影響がでやすい。そこで、遮光部4の先端に備えられた緩衝部41は支持部3の先端に備えられた緩衝部31よりもやわらかい(力を分散しやすい)ものとしたり、厚く形成したりすることで緩衝部41から液晶パネルLPに作用する圧力を低減することが可能である。   The light-shielding part 4 surrounds a region to be measured where the brightness of the liquid crystal panel is measured. Therefore, the buffer part 41 provided at the tip of the light shielding part 4 is made softer (easy to disperse force) than the buffer part 31 provided at the tip of the support part 3 or is formed thicker so that the buffer part 41 is formed. The pressure acting on the liquid crystal panel LP from 41 can be reduced.

また、遮光部4の長さを支持部3よりも短く形成しておき、緩衝部31がある程度変形した段階で、緩衝部41が液晶パネルLPと当接するようにしてもよい。このように形成することで、緩衝部41が液晶パネルLPに密着したときに緩衝部41から液晶パネルLPに作用する圧力を小さくすることができる。また、緩衝部31から液晶パネルLPに作用する圧力は大きくなるが、測定対象位置から離れているので、圧力による輝度への影響が出にくく、輝度測定の精度が低下するのを抑えることができる。   Alternatively, the length of the light shielding portion 4 may be shorter than that of the support portion 3, and the buffer portion 41 may come into contact with the liquid crystal panel LP when the buffer portion 31 is deformed to some extent. By forming in this way, the pressure acting on the liquid crystal panel LP from the buffer portion 41 when the buffer portion 41 is in close contact with the liquid crystal panel LP can be reduced. In addition, the pressure acting on the liquid crystal panel LP from the buffer unit 31 is increased, but since it is away from the measurement target position, it is difficult to exert an influence on the luminance due to the pressure, and it is possible to suppress a decrease in luminance measurement accuracy. .

光学特性測定装置Aの液晶パネルLPへの押し当ては、従来良く知られている方法が用いられる。すなわち、光学特性測定装置Aの自重によるもの、弾性力を有するベルトを用いて液晶パネルLPに捲きつけ、ベルトの弾性力で押し付けるもの、冶具を用いて固定された光学特性測定装置Aを液晶パネルLPに押し付けるもの等、所定の力で液晶パネルLPに押し付けることができる方法を広く採用することができる。   For the pressing of the optical property measuring apparatus A to the liquid crystal panel LP, a conventionally well-known method is used. In other words, the optical characteristic measuring device A is caused by its own weight, the belt having elasticity is used to rub against the liquid crystal panel LP, and the belt is pressed by the elastic force of the belt, and the optical property measuring device A fixed using a jig is used as the liquid crystal panel. Methods that can be pressed against the liquid crystal panel LP with a predetermined force, such as those that are pressed against the LP, can be widely adopted.

光学特性測定装置Aを液晶パネルLPに取り付けたときの外部からの環境光の受光素子への影響について図面を参照して説明する。図5は光学特性測定装置を用いた状態での外部からの環境光の入射状態を示す平面図である。   The influence of external ambient light on the light receiving element when the optical characteristic measuring apparatus A is attached to the liquid crystal panel LP will be described with reference to the drawings. FIG. 5 is a plan view showing an incident state of ambient light from the outside in a state where the optical characteristic measuring apparatus is used.

図4に示すように、環境光は本体1の背面部10と液晶パネルLPとの間隙に入射される。環境光の多くは光路O1に示すように、液晶パネルLPの外表面で遮られ遮光部4に遮られて、受光素子2には到達しない。   As shown in FIG. 4, the ambient light is incident on the gap between the back surface portion 10 of the main body 1 and the liquid crystal panel LP. Most of the ambient light does not reach the light receiving element 2 because it is blocked by the outer surface of the liquid crystal panel LP and blocked by the light blocking portion 4 as indicated by the optical path O1.

一方で、光路O2に示すように、環境光が遮光部4の貫通孔42に入射される場合がある。しかしながら、図4に示すように、遮光部4の貫通孔42は、外部からの光の入射があった場合でも、入射した光を受光素子2及び(又は)液晶パネルLPの表面に到達させない位置及び形状で形成されている。これにより、環境光が直接受光素子2及び(又は)液晶パネルLPに入射して、受光素子2の測定精度が低下するのを抑制することができる。   On the other hand, as indicated by the optical path O <b> 2, ambient light may enter the through hole 42 of the light shielding unit 4. However, as shown in FIG. 4, the through-hole 42 of the light shielding portion 4 is a position where the incident light does not reach the surface of the light receiving element 2 and / or the liquid crystal panel LP even when external light is incident. And formed in a shape. As a result, it is possible to prevent the ambient light from directly entering the light receiving element 2 and / or the liquid crystal panel LP and reducing the measurement accuracy of the light receiving element 2.

また、貫通孔42を通過した光が遮光部4の内壁部で反射を繰り返して受光素子2及び(又は)液晶パネルLPの表面に到達するのを抑制するために、遮光部4の少なくとも内壁面は、光が反射しない(反射しにくい)或いは光が吸収されるように形成されている。光の反射を防ぐ或いは光を吸収させる方法としては、遮光部4の内壁面を黒色の樹脂で形成するものを挙げることができる。遮光部4全体を黒色の樹脂で形成してもかまわないし、内壁面にシート状の黒色樹脂を貼り付けてもよく、黒色の樹脂を塗布するようにしてもかまわない。   Further, in order to prevent light that has passed through the through hole 42 from being repeatedly reflected by the inner wall portion of the light shielding portion 4 and reaching the surface of the light receiving element 2 and / or the liquid crystal panel LP, at least the inner wall surface of the light shielding portion 4. Is formed so that light is not reflected (is less likely to be reflected) or is absorbed. As a method for preventing light reflection or absorbing light, a method in which the inner wall surface of the light shielding portion 4 is formed of a black resin can be used. The entire light shielding portion 4 may be formed of a black resin, or a sheet-like black resin may be attached to the inner wall surface, or a black resin may be applied.

一方で、光路O3のように液晶パネルLPの受光素子2と対向する部分に光が入射された場合、液晶パネルLPの光学フィルム層やガラス層と光学フィルム層の境界では拡散反射されて、光路O3で入射された光の一部が受光素子2に到達する場合がある。光路O3の液晶パネルLPの表面に対する角度θが大きいほど、受光素子2に入射する光の量が多くなる。そこで、角度θが大きくなる横からの光の入射を防ぐために補助遮光部を備えていてもよい。   On the other hand, when light is incident on a portion facing the light receiving element 2 of the liquid crystal panel LP as in the optical path O3, the light is diffusely reflected at the boundary between the optical film layer or the glass layer and the optical film layer of the liquid crystal panel LP. Some of the light incident at O3 may reach the light receiving element 2. As the angle θ of the optical path O3 with respect to the surface of the liquid crystal panel LP increases, the amount of light incident on the light receiving element 2 increases. Therefore, an auxiliary light shielding unit may be provided in order to prevent the incidence of light from the side where the angle θ increases.

本発明にかかる光学特性測定装置の他の例について図面を参照して説明する。図5は本発明にかかる他の例の背面側から見た斜視図である。図5に示す光学特性測定装置Bは図3に示す光学特性測定装置Aに補助遮光部である遮光壁部5を備えたものである。それ以外の部分は光学特性測定装置Aと同じ構成を有するものであり、実質上同じ部分には同じ符号が付してある。   Another example of the optical property measuring apparatus according to the present invention will be described with reference to the drawings. FIG. 5 is a perspective view of another example of the present invention viewed from the back side. An optical property measuring apparatus B shown in FIG. 5 is provided with a light shielding wall portion 5 as an auxiliary light shielding portion in the optical property measuring apparatus A shown in FIG. The other parts have the same configuration as the optical characteristic measuring apparatus A, and substantially the same parts are denoted by the same reference numerals.

図5に示すように、光学特性測定装置Bは底部10の端部と開口部11との距離は、液晶パネルLPに取り付けられたときの上下方向に比べて左右方向が短くなっている。よって、左右方向より光路O3をたどって入射される外部光の液晶パネルLPに対する角度は上下方向のそれよりも大きくなり、受光素子2に到達しやすい。そこで、光学特性測定装置Bでは、遮光壁部5が遮光部4の左右両側部を覆うように配置されている。   As shown in FIG. 5, in the optical property measuring apparatus B, the distance between the end of the bottom 10 and the opening 11 is shorter in the left-right direction than in the up-down direction when attached to the liquid crystal panel LP. Therefore, the angle of the external light incident along the optical path O3 from the left and right direction with respect to the liquid crystal panel LP becomes larger than that in the up and down direction and easily reaches the light receiving element 2. Therefore, in the optical characteristic measuring apparatus B, the light shielding wall 5 is disposed so as to cover the left and right side portions of the light shielding portion 4.

遮光壁部5は背面部10の側端部より支持部3と同じ方向に突出された部材である。遮光壁部5の突出方向の長さは支持部3の長さよりも短い。また、光学特性測定装置Bが液晶パネルLPに押し当てられ、液晶パネルLPの輝度を測定するとき(換言すれば、支持部3の緩衝部31が所定の力で液晶パネルLPに押し当てられているとき)に、遮光壁部5は液晶パネルLPの表面と近接又は接触する程度の長さを持っている。これにより、光学特性測定装置Bが液晶パネルLPに押し当てられた状態のときに左右両側部からの光の入射を抑制することができる。また、光学特性測定装置Bが押し当てられたときに、遮光壁部5が液晶パネルLPに近接又は接触するので、液晶パネルLPの表面が傷つくのを抑制することができる。   The light shielding wall portion 5 is a member that protrudes in the same direction as the support portion 3 from the side end portion of the back surface portion 10. The length of the light shielding wall 5 in the protruding direction is shorter than the length of the support 3. Further, when the optical characteristic measuring device B is pressed against the liquid crystal panel LP and measures the luminance of the liquid crystal panel LP (in other words, the buffer portion 31 of the support portion 3 is pressed against the liquid crystal panel LP with a predetermined force. The light shielding wall 5 has a length that is close to or in contact with the surface of the liquid crystal panel LP. Thereby, when the optical characteristic measuring apparatus B is pressed against the liquid crystal panel LP, it is possible to suppress the incidence of light from the left and right sides. Further, when the optical characteristic measuring device B is pressed, the light shielding wall 5 is close to or in contact with the liquid crystal panel LP, so that the surface of the liquid crystal panel LP can be prevented from being damaged.

液晶パネルLPは温度変化によってその光学特性が変化する性質を持っている。液晶パネルLPを表示部とする液晶表示装置は多くの場合バックライトを備えており、そのバックライトからの熱が液晶パネルLPにも伝達される。液晶表示装置の通常使用状態において液晶パネルLPに伝達された熱は、液晶パネルLPの表面より外部に放出されるので、液晶パネルLPの表面の温度上昇は抑制される。しかしながら、光学特性測定装置で液晶パネルLPの光学特性を測定するとき、遮光部4が液晶パネルLPに密着するとともに、本体部1も近接するので、液晶パネルLPの表面から熱が逃げにくい状態になっている。   The liquid crystal panel LP has a property that its optical characteristics change with temperature changes. In many cases, a liquid crystal display device using the liquid crystal panel LP as a display unit includes a backlight, and heat from the backlight is also transmitted to the liquid crystal panel LP. Since the heat transferred to the liquid crystal panel LP in the normal use state of the liquid crystal display device is released to the outside from the surface of the liquid crystal panel LP, the temperature rise on the surface of the liquid crystal panel LP is suppressed. However, when the optical characteristics of the liquid crystal panel LP are measured by the optical characteristic measuring device, the light shielding part 4 is in close contact with the liquid crystal panel LP and the main body part 1 is also close to the surface, so that it is difficult for heat to escape from the surface of the liquid crystal panel LP. It has become.

そこで、本発明にかかる光学特性測定装置Bを用いて液晶パネルLPの輝度を測定している状態の液晶パネルLPの表面での熱の移動について図面を参照して説明する。図6は図5に示す光学特性測定装置で液晶パネルの輝度を測定している状態の熱の出入りが表示された側面図である。図6は測定状態での熱の出入りを矢印を用いて表示している。なお、図6に示す例では、光学特性測定装置Bを用いているが、図3に示す光学特性測定装置Aでも同様の熱の出入りが行われる。   Accordingly, heat transfer on the surface of the liquid crystal panel LP in a state where the luminance of the liquid crystal panel LP is measured using the optical characteristic measuring apparatus B according to the present invention will be described with reference to the drawings. FIG. 6 is a side view showing heat input and output in a state where the brightness of the liquid crystal panel is measured by the optical characteristic measuring apparatus shown in FIG. FIG. 6 shows the heat input and output in the measurement state using arrows. In the example shown in FIG. 6, the optical property measuring apparatus B is used, but the same heat enters and exits in the optical property measuring apparatus A shown in FIG. 3.

液晶パネルLPからの熱は表面から空気中に放出される。図6に示すように、光学特性測定装置Bを液晶パネルLPに取り付けた状態のとき液晶パネルLPの表面から放出される熱のうち一部の熱Taが遮光部4の内部の空間Zに放出され、残りの熱Tb(液晶パネルLPからの熱の大半)は囲まれていない空間Yに放出される。   Heat from the liquid crystal panel LP is released from the surface into the air. As shown in FIG. 6, when the optical characteristic measuring device B is attached to the liquid crystal panel LP, a part of the heat Ta emitted from the surface of the liquid crystal panel LP is released into the space Z inside the light shielding portion 4. Then, the remaining heat Tb (most of the heat from the liquid crystal panel LP) is released to the unwrapped space Y.

熱Taは液晶パネルLPの表面から空間Zに放出されるものであり、熱Taは遮光部4の内部の空間Zに放出されるので、遮光部4の内部の空間Zの内部の空気の温度が上昇する。   The heat Ta is released from the surface of the liquid crystal panel LP to the space Z, and the heat Ta is released to the space Z inside the light shielding portion 4, so that the temperature of the air inside the space Z inside the light shielding portion 4 Rises.

また、空間Zの内部の空気の温度上昇により、空間Zから液晶パネルLPの表面の遮光部4の緩衝部41で囲まれた表面部Xに熱Tdが伝達される。熱Tdのうち一部の熱Teは液晶パネルLPの沿面方向に拡散される。   Further, due to the temperature rise of the air inside the space Z, heat Td is transmitted from the space Z to the surface portion X surrounded by the buffer portion 41 of the light shielding portion 4 on the surface of the liquid crystal panel LP. Part of the heat Td is diffused in the creeping direction of the liquid crystal panel LP.

光学特性測定装置Bと液晶パネルLPの表面との間には、液晶パネルLPより放出される熱によって空気が暖められ上昇気流Fcが発生する。上昇気流Fcによって熱Tbは運ばれるので、液晶パネルLPの温度上昇は熱Tbの影響を受けにくい。また、遮光部4の上下には貫通孔42が形成されており、この貫通孔42を通って上昇気流Fcが空間Zの内部を通過するので、空間Zの内部の空気が入れ替わり、空間Zの熱を外部に放出することが可能である。   Between the optical characteristic measuring apparatus B and the surface of the liquid crystal panel LP, the air is warmed by the heat released from the liquid crystal panel LP, and an upward air flow Fc is generated. Since the heat Tb is carried by the rising air flow Fc, the temperature rise of the liquid crystal panel LP is not easily affected by the heat Tb. Further, through holes 42 are formed above and below the light shielding portion 4, and the ascending airflow Fc passes through the inside of the space Z through the through holes 42, so that the air inside the space Z is replaced, and the space Z It is possible to release heat to the outside.

なお、遮光壁部25は、光学特性測定装置Bを液晶パネルLPに取り付けたときに、光学特性測定装置Bの左右両側部に配置され上下に伸びるものであり、上昇気流Fcの発生及び流れに影響しにくく、液晶パネルLPの温度上昇にも影響しにくい。   The light shielding wall 25 is arranged on both the left and right sides of the optical property measuring device B and extends vertically when the optical property measuring device B is attached to the liquid crystal panel LP. It is difficult to affect and it is difficult to affect the temperature rise of the liquid crystal panel LP.

また、液晶パネルLPより放出された熱Tbの一部は本体1の背面部10で吸収され、背面部10の温度が上昇し、背面部10と液晶パネルLPとで挟まれた空間Yの空気の温度が上昇する。また、液晶パネルLPより背面部10に輻射された熱のうち一部の熱Tfは反射して液晶パネルLPに戻り、液晶パネルLPの表面温度を上げる。   Further, part of the heat Tb released from the liquid crystal panel LP is absorbed by the back surface portion 10 of the main body 1, the temperature of the back surface portion 10 rises, and the air in the space Y sandwiched between the back surface portion 10 and the liquid crystal panel LP. Temperature rises. Further, a part of the heat Tf radiated from the liquid crystal panel LP to the back surface portion 10 is reflected and returned to the liquid crystal panel LP, and the surface temperature of the liquid crystal panel LP is increased.

光学特性測定装置Bで液晶パネルLPの輝度を測定するときには、以上のような熱の動きが考えられる。液晶パネルLPの熱による輝度への影響を抑えるためには、光学特性測定装置Bを設置したことによる液晶パネルLPの遮光部4で囲まれた表面部Xの表面温度の上昇を抑える必要がある。   When the luminance of the liquid crystal panel LP is measured by the optical characteristic measuring apparatus B, the above-described heat movement can be considered. In order to suppress the influence of the heat of the liquid crystal panel LP on the luminance, it is necessary to suppress an increase in the surface temperature of the surface portion X surrounded by the light shielding portion 4 of the liquid crystal panel LP due to the installation of the optical characteristic measuring device B. .

液晶パネルLPの表面温度を低下させるためには、空間Z内の空気の温度を低くすればよい。空間Z内部の空気の温度上昇を抑えるためには、熱Taの量を減らし、空間Zの空気の量を増やせばよい。熱Taは表面部Xの面積に比例して多くなるものであり、表面部Xの面積を小さくすることで空間Z内の空気へ伝達される熱Taの量を減らすことができる。また、遮光部4の長さを長くする、すなわち、背面部10と液晶パネルLPの距離Lを長くすることで、空間Zの容積を大きくすることが可能であり、空間Z内の空気に伝達される熱Taの体積あたりの熱量を減らすことができ、温度上昇を低減することが可能である。さらに、遮光部4の貫通孔42の断面積を大きくすることで、空間Zを通過する上昇気流Fcの流量が多くなるので、空間Z内部の空気の温度上昇を抑制することが可能である。   In order to lower the surface temperature of the liquid crystal panel LP, the temperature of the air in the space Z may be lowered. In order to suppress the temperature rise of the air inside the space Z, the amount of heat Ta can be reduced and the amount of air in the space Z can be increased. The thermal Ta increases in proportion to the area of the surface portion X, and the amount of the thermal Ta transmitted to the air in the space Z can be reduced by reducing the area of the surface portion X. Further, the volume of the space Z can be increased by increasing the length of the light-shielding portion 4, that is, by increasing the distance L between the back surface portion 10 and the liquid crystal panel LP, and is transmitted to the air in the space Z. It is possible to reduce the amount of heat per volume of the heat Ta that is produced, and to reduce the temperature rise. Furthermore, by increasing the cross-sectional area of the through-hole 42 of the light shielding portion 4, the flow rate of the ascending airflow Fc passing through the space Z increases, so that the temperature rise of the air inside the space Z can be suppressed.

また、遮光部4の長さを長くすることで上昇気流Fcが吹き付ける面積を大きくすることができ、遮光部4の外表面から多くの熱が外部に放出される。これにより、空間Z内の空気の熱も外部に放出されるので、空間Z内の空気の温度上昇を抑制することが可能である。また、遮光部4の長さを長くすることで、貫通孔42から入射した光が受光素子2及び(又は)液晶パネルLPの表面に到達しにくくなり、測定精度を上げることができる。   In addition, by increasing the length of the light shielding part 4, the area to which the rising air flow Fc is blown can be increased, and a lot of heat is released from the outer surface of the light shielding part 4. Thereby, since the heat of the air in the space Z is also released outside, it is possible to suppress the temperature rise of the air in the space Z. In addition, by increasing the length of the light-shielding portion 4, it becomes difficult for light incident from the through hole 42 to reach the surface of the light receiving element 2 and / or the liquid crystal panel LP, and the measurement accuracy can be increased.

背面部10で反射される熱Tfを減少させるために、背面部10に熱を反射しにくい部材を取り付けるようにしてもよい。背面部10に輻射された熱Tfの反射を抑制することができ、液晶パネルLPの表面温度の上昇を抑制することができる。なお、背面部10に貼り付けられる部材としては、熱を反射しにくく、放熱しにくい部材であることが好ましい。背面部10に貼り付けられる部材としては、黒色の樹脂材料で形成されたシートや、熱が吸収されやすく、他の部材に移動されやすい放熱シートも用いられる。   In order to reduce the heat Tf reflected by the back surface portion 10, a member that hardly reflects heat may be attached to the back surface portion 10. Reflection of the heat Tf radiated to the back surface portion 10 can be suppressed, and an increase in the surface temperature of the liquid crystal panel LP can be suppressed. In addition, as a member affixed on the back surface part 10, it is preferable that it is a member which is hard to reflect heat and is hard to dissipate heat. As a member affixed to the back surface part 10, the sheet | seat formed with the black resin material and the heat-radiation sheet which heat | fever absorbs easily and is easy to move to another member are also used.

本発明にかかる光学特性測定装置の具体的な例について実験データをもとに説明する。
(実験1)
本発明にかかる光学特性測定装置を用いたときの液晶パネル表面の温度変化を従来の光学特性測定装置を用いたときと比較した。実験において、貫通孔が形成されていない遮光部4を備えた光学特性測定装置Bである実験試料E1と、貫通孔42が形成されている遮光部4を備えた光学特性測定装置Bである実験試料E2とを用いて実験を行った。また、比較試料V1として、背面部910の外周部を取り囲むように遮光部93が形成され、液晶パネルの被測定部の表面が本体91の背面部910、遮光部93にて覆われる従来の光学特性測定装置E(図12、13参照)を用いて実験を行った。なお液晶パネルと背面部との距離Lはいずれも30mmであり、光学特性測定装置Bの遮光部4は外形20mm、内径15mmの筒状の部材である。
A specific example of the optical property measuring apparatus according to the present invention will be described based on experimental data.
(Experiment 1)
The temperature change on the surface of the liquid crystal panel when using the optical property measuring apparatus according to the present invention was compared with that when using the conventional optical property measuring apparatus. In the experiment, an experimental sample E1, which is an optical characteristic measuring apparatus B including a light shielding part 4 in which a through hole is not formed, and an experiment that is an optical characteristic measuring apparatus B including a light shielding part 4 in which a through hole 42 is formed. An experiment was performed using Sample E2. Further, as a comparative sample V1, a light shielding portion 93 is formed so as to surround the outer peripheral portion of the back surface portion 910, and the surface of the measured portion of the liquid crystal panel is covered with the back surface portion 910 and the light shielding portion 93 of the main body 91. Experiments were performed using the characteristic measuring device E (see FIGS. 12 and 13). Note that the distance L between the liquid crystal panel and the back surface portion is 30 mm, and the light-shielding portion 4 of the optical property measuring apparatus B is a cylindrical member having an outer diameter of 20 mm and an inner diameter of 15 mm.

実験試料E1を用いた実験では、液晶パネル表面温度は2℃上昇し、輝度の変化率は2.5%であった。また、実験試料E2を用いた実験では、液晶パネル表面温度は1.7℃上昇し、輝度の変化率は2.2%であった。一方、従来の光学特性測定装置Eを用いたときの液晶パネル表面温度は7℃上昇しており、輝度の変化率は8%であった。通常液晶表示装置の表示部の光学特性を測定する光学特性測定装置の確度は、輝度の変化率で2%前後であることが多く、従来の光学特性測定装置を用いる場合、測定精度が大幅に低下することがわかる。一方で、実験試料E1を用いることで、温度変化を抑制し、測定精度を大幅に低下させることなく液晶パネルの光学特性を測定できることがわかる。そして、貫通孔42が形成されている実験試料E2を用いると、実験試料E1を用いた場合に比べてさらに温度上昇を抑えることができ、液晶パネルの光学特性を精度良く測定することが可能である。   In the experiment using the experimental sample E1, the liquid crystal panel surface temperature increased by 2 ° C., and the luminance change rate was 2.5%. Further, in the experiment using the experimental sample E2, the liquid crystal panel surface temperature increased by 1.7 ° C., and the luminance change rate was 2.2%. On the other hand, the liquid crystal panel surface temperature increased by 7 ° C. when the conventional optical property measuring apparatus E was used, and the luminance change rate was 8%. Usually, the accuracy of an optical property measuring device that measures the optical properties of the display part of a liquid crystal display device is often around 2% in terms of the rate of change in luminance. When using a conventional optical property measuring device, the measurement accuracy is greatly increased. It turns out that it falls. On the other hand, it can be seen that by using the experimental sample E1, the optical characteristics of the liquid crystal panel can be measured without suppressing a temperature change and greatly reducing the measurement accuracy. When the experimental sample E2 in which the through hole 42 is formed is used, the temperature rise can be further suppressed as compared with the case where the experimental sample E1 is used, and the optical characteristics of the liquid crystal panel can be measured with high accuracy. is there.

(実験2)
本発明にかかる光学特性測定装置Bを用いて液晶パネルLPの輝度を測定する場合、液晶パネルLPと本体1の背面部10との距離によって、液晶パネルLPの表面温度が変化することがわかっている。したがって、実験2では、背面部10と液晶パネルLPの距離が5mm、10mm、15mm、20mm、30mmの5パターンで実験を行った。なお、本実験では背面部10と液晶パネルLPの表面の距離と、液晶パネルLPの表面温度との関係を調べるものであるので、遮光部4を取り付けていない状態で実験を行った。
(Experiment 2)
When the luminance of the liquid crystal panel LP is measured using the optical characteristic measuring apparatus B according to the present invention, it is understood that the surface temperature of the liquid crystal panel LP changes depending on the distance between the liquid crystal panel LP and the back surface portion 10 of the main body 1. Yes. Therefore, in Experiment 2, the experiment was performed using five patterns in which the distance between the back surface portion 10 and the liquid crystal panel LP was 5 mm, 10 mm, 15 mm, 20 mm, and 30 mm. In this experiment, since the relationship between the distance between the back surface 10 and the surface of the liquid crystal panel LP and the surface temperature of the liquid crystal panel LP is examined, the experiment was performed without the light shielding portion 4 attached.

図7は液晶パネルと背面部との距離と温度変化との関係を示すグラフである。なお、図7に示すグラフにおいて、横軸は液晶パネルと背面部との距離(mm)、縦軸は液晶パネルの温度変化(℃)である。温度変化とは光学特性測定装置を押し当てない状態での液晶パネルの表面温度と、光学特性測定装置を押し当てたときの温度との差である。   FIG. 7 is a graph showing the relationship between the distance between the liquid crystal panel and the back surface and the temperature change. In the graph shown in FIG. 7, the horizontal axis represents the distance (mm) between the liquid crystal panel and the back surface, and the vertical axis represents the temperature change (° C.) of the liquid crystal panel. The temperature change is a difference between the surface temperature of the liquid crystal panel in a state where the optical characteristic measuring device is not pressed and the temperature when the optical characteristic measuring device is pressed.

図7に示すように、液晶パネルLPと背面部10との距離が開くほど、被測定部の温度変化は小さくなっている。すなわち、液晶パネルLPと背面部10との距離が、5mmのときの温度変化が4.1℃であったのに対し、10mmでは1.5℃、15mmでは1.3℃、20mmでは1℃、30mmでは0.9℃と減少していることがわかる。また、5mm〜15mmまでの間に急激に温度変化しているのに対し、15mmを境に温度変化が小さくなっていることがわかる。よって、本発明にかかる光学特性測定装置Bでは液晶パネルLPに押し当てられたときに、液晶パネルLPの表面と本体1の背面部10との距離が15mm以上になるように製造することで、温度変化を抑えることができ、測定精度の悪化を低減できるとの知見を得た。   As shown in FIG. 7, as the distance between the liquid crystal panel LP and the back surface portion 10 increases, the temperature change of the measured portion becomes smaller. That is, the change in temperature when the distance between the liquid crystal panel LP and the back surface portion 10 was 5 mm was 4.1 ° C., whereas 1.5 ° C. for 10 mm, 1.3 ° C. for 15 mm, and 1 ° C. for 20 mm. , It can be seen that it decreased to 0.9 ° C. at 30 mm. It can also be seen that the temperature change suddenly changes from 5 mm to 15 mm, whereas the temperature change is small at 15 mm. Therefore, in the optical characteristic measuring apparatus B according to the present invention, when pressed against the liquid crystal panel LP, the distance between the surface of the liquid crystal panel LP and the back portion 10 of the main body 1 is 15 mm or more, It was found that temperature change can be suppressed and deterioration of measurement accuracy can be reduced.

本発明にかかる光学特性測定装置の他の例を図面を参照して説明する。図8は本発明にかかる光学特性測定装置の他の例の斜視図であり、図9は図8に示す光学特性測定装置の測定ユニットの断面図である。図8に示す光学特性測定装置は、測定器6と、測定ユニット7とに分離できるものである。測定ユニット7は測定器6の背面部と連結されて測定器6と液晶パネルLPの表面との距離を一定に保つための部材であり、支持部73と、遮光部74と遮光壁部75とを備えている。支持部73、遮光部74及び遮光壁部75は図5に示す支持部3、遮光部4及び遮光壁部5と同様の構成のものであり詳細な説明を省略する。なお遮光部74には、遮光部4と同様に貫通孔742が形成されている。   Another example of the optical property measuring apparatus according to the present invention will be described with reference to the drawings. FIG. 8 is a perspective view of another example of the optical property measuring apparatus according to the present invention, and FIG. 9 is a cross-sectional view of the measurement unit of the optical property measuring apparatus shown in FIG. The optical characteristic measuring apparatus shown in FIG. 8 can be separated into a measuring instrument 6 and a measuring unit 7. The measurement unit 7 is a member that is connected to the back surface portion of the measurement device 6 to keep the distance between the measurement device 6 and the surface of the liquid crystal panel LP constant, and includes a support portion 73, a light shielding portion 74, and a light shielding wall portion 75. It has. The support part 73, the light-shielding part 74, and the light-shielding wall part 75 have the same configuration as the support part 3, the light-shielding part 4, and the light-shielding wall part 5 shown in FIG. The light shielding portion 74 is formed with a through hole 742 as in the light shielding portion 4.

図9に示すように、測定ユニット7の底面部711は、測定器6の底面と当接できるように平面で形成されており、遮光部74の内筒部が測定器6の受光素子と光が入射しないように、連結することができる連結部712を備えている。このように、測定器6と測定ユニット7とを分離させることができるので、これにより、ことなる光学特性値を測定することができる複数の測定器6を取り替えて使うことができる。   As shown in FIG. 9, the bottom surface portion 711 of the measurement unit 7 is formed in a plane so as to be in contact with the bottom surface of the measuring device 6, and the inner cylinder portion of the light shielding portion 74 is connected to the light receiving element of the measuring device 6 and the light. Is provided with a connecting portion 712 that can be connected so that the light does not enter. As described above, since the measuring device 6 and the measuring unit 7 can be separated, a plurality of measuring devices 6 capable of measuring different optical characteristic values can be replaced and used.

また、従来用いられてきた光学特性測定装置の背面部と係合できるように測定ユニット7を作製することで、従来の光学特性測定装置で本発明の光学特性測定装置と同様に温度による影響をうけることなく、液晶パネルの光学特性の測定を行うことができる。   Further, by producing the measurement unit 7 so that it can be engaged with the back surface of the optical property measuring device that has been conventionally used, the conventional optical property measuring device is affected by the temperature similarly to the optical property measuring device of the present invention. The optical characteristics of the liquid crystal panel can be measured without being affected.

本発明にかかる光学特性測定装置の他の例を図面を参照して説明する。図10は本発明にかかる光学特性測定装置の他の例の遮光部の拡大断面図である。図10に示す光学特性測定装置Cは遮光部8が異なる以外は、光学特性測定装置Bと同じ構成を有しており、実質上同じ部分には同じ符号が付してある。光学特性測定装置Cの遮光部8の貫通孔82には、複数のフィン83が背面部10から液晶パネルLPに並んで配置されている。フィン83は、平板状の部材である。フィン83を取り付けることで、貫通孔82に斜めに入射される光がフィン83で遮断されるので、貫通孔82の大きさを大きくしても、受光素子2及び(又は)液晶パネルLPに到達しない。また、フィン83は薄い部材で形成されているので、貫通孔82の開口面積を広くすることが可能であり、それだけ、遮光部8の内部の冷却効果を高めることが可能である。   Another example of the optical property measuring apparatus according to the present invention will be described with reference to the drawings. FIG. 10 is an enlarged cross-sectional view of a light shielding part of another example of the optical characteristic measuring apparatus according to the present invention. The optical characteristic measuring apparatus C shown in FIG. 10 has the same configuration as the optical characteristic measuring apparatus B except that the light shielding portion 8 is different, and substantially the same parts are denoted by the same reference numerals. In the through hole 82 of the light shielding unit 8 of the optical characteristic measuring device C, a plurality of fins 83 are arranged side by side from the back surface unit 10 to the liquid crystal panel LP. The fin 83 is a flat member. By attaching the fins 83, light incident obliquely into the through holes 82 is blocked by the fins 83, so that even if the size of the through holes 82 is increased, the light reaches the light receiving element 2 and / or the liquid crystal panel LP. do not do. Further, since the fin 83 is formed of a thin member, the opening area of the through hole 82 can be widened, and the cooling effect inside the light shielding portion 8 can be enhanced accordingly.

なお、図10に示すように、複数のフィン83のうち、背面10側に近いフィン831を遮光部8の内側に向かって背面側より遠ざかるように配置してもよい。このように配置されることで、受光素子2に向かって傾いて入射される光を遮断する面積を大きくすることができるので、フィンの枚数を減らすことができる。同様に、液晶パネルLP側のフィン832を内側に向かって液晶パネルLPから遠ざかるように取り付けていてもよい。また、フィン83を光の反射しにくい材料或いは光を吸収する材料で形成することで、光が受光素子2及び(又は)液晶パネルLPに入射するのを効果的に抑制することが可能である。   As shown in FIG. 10, among the plurality of fins 83, the fins 831 close to the back surface 10 side may be arranged so as to move away from the back surface side toward the inside of the light shielding unit 8. By arranging in this way, it is possible to increase the area for blocking incident light that is inclined toward the light receiving element 2, and thus the number of fins can be reduced. Similarly, the fins 832 on the liquid crystal panel LP side may be attached so as to be away from the liquid crystal panel LP inward. Further, by forming the fin 83 with a material that hardly reflects light or absorbs light, it is possible to effectively suppress the light from entering the light receiving element 2 and / or the liquid crystal panel LP. .

上記各実施形態では、4本の支持部を備えているもので説明されているが、それに限定されるものではなく、本体を安定させることができる本数の支持部を備えていればよい。また、遮光壁部の一部又は全体を支持部のかわりとして利用してもよい。このとき、遮光壁部の液晶パネルと接触する部分には緩衝部が形成されていることが好ましい。また、遮光部が支持部の1つとして用いられるようにしてもよい。   In each of the above-described embodiments, the description has been given of the case where the four support portions are provided. However, the present invention is not limited to this, and it is only necessary to provide the number of support portions that can stabilize the main body. Moreover, you may utilize a part or whole of the light-shielding wall part as a support part. At this time, it is preferable that a buffer portion is formed in a portion of the light shielding wall portion that contacts the liquid crystal panel. Further, the light shielding portion may be used as one of the support portions.

本発明にかかる光学特性測定装置の他の例を図面を参照して説明する。図11は本発明にかかる光学特性測定装置の他の例の側面図である。図11に示すように、光学特性測定装置Dは、本体部1dと、遮光部4dとを備えている。光学特性測定装置Dは遮光部4dが支持部として用いられているものである。このように、支持部と遮光部とを共用することで、構造を簡単にすることができ、それだけ、製造にかかる手間と時間を省略することが可能である。なお、遮光部4dには、緩衝部41d及び貫通孔42dが形成されており、貫通孔42dは入射した光が直接液晶パネルLPの表面や開口部11dの奥に配置されている受光素子2に入射しないように形成されていることはいうまでもない。   Another example of the optical property measuring apparatus according to the present invention will be described with reference to the drawings. FIG. 11 is a side view of another example of the optical property measuring apparatus according to the present invention. As shown in FIG. 11, the optical characteristic measuring device D includes a main body 1d and a light shielding part 4d. In the optical characteristic measuring device D, the light shielding part 4d is used as a support part. Thus, by sharing the support part and the light-shielding part, the structure can be simplified, and it is possible to save labor and time for manufacturing. The light shielding part 4d is formed with a buffer part 41d and a through hole 42d. The through hole 42d is formed on the light receiving element 2 where the incident light is arranged directly on the surface of the liquid crystal panel LP or at the back of the opening part 11d. Needless to say, it is formed so as not to be incident.

上記各実施形態において、遮光部として円筒形状のものを例に説明しているが、これに限定されるものではなく、開口部に光が入射するのを抑制することができる形状を広く採用することが可能である。   In each of the above embodiments, the cylindrical light shielding portion is described as an example. However, the light shielding portion is not limited to this, and a shape that can prevent light from entering the opening is widely adopted. It is possible.

上記実施形態の光学特性測定装置では表示部に液晶パネルを用いる液晶表示装置の液晶パネルの光学特性の測定を例に説明しているが、それに限定されるものではなく、熱によって光学特性が変化しやすい表示部を備えたディスプレイ装置の表示部の光学特性を熱による影響を抑えて光学特性の測定を行うことができる。   In the optical characteristic measuring apparatus of the above embodiment, the measurement of the optical characteristic of the liquid crystal panel of the liquid crystal display device using a liquid crystal panel as the display unit is described as an example, but the invention is not limited thereto, and the optical characteristic changes due to heat. The optical characteristics of the display unit of the display device including the display unit that can be easily measured can be measured while suppressing the influence of heat.

上記実施例では、測定される光学特性の指標として、輝度を例に説明しているが、それに限定されるものではなく、表示部の表示性能を示す指標(例えば、輝度、コントラスト、階調等あるいは、これらのうち複数)を測定するようにしてもよい。   In the above-described embodiment, the luminance is described as an example of the index of the optical characteristic to be measured. However, the index is not limited thereto, and an index indicating the display performance of the display unit (for example, luminance, contrast, gradation, etc.) Alternatively, a plurality of them may be measured.

上記実施形態の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮する様に解すべきではない。本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能であることは勿論である。   The above description of the embodiment is for explaining the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof. It is needless to say that each part configuration of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims.

本発明の光学特性測定装置は、自己発熱或いは近くに熱源を有する表示部の光学特性を測定するときに、熱による光学特性への影響を低減しつつ光学特性を測定することに用途に適用できる。   The optical property measuring apparatus of the present invention can be applied to use for measuring optical properties while reducing the influence on the optical properties due to heat when measuring the optical properties of a display unit having self-heating or a nearby heat source. .

本発明にかかる光学特性測定装置で測定している状態の概略側面図である。It is a schematic side view of the state currently measured with the optical characteristic measuring apparatus concerning this invention. 図1に示す光学特性測定装置の背面図である。It is a rear view of the optical characteristic measuring apparatus shown in FIG. 図1に示す光学特性測定装置の背面側から見た斜視図である。It is the perspective view seen from the back side of the optical characteristic measuring apparatus shown in FIG. 光学特性測定装置を用いた状態での外部からの環境光の入射状態を示す平面図である。It is a top view which shows the incident state of the ambient light from the outside in the state using an optical characteristic measuring apparatus. 本発明にかかる他の例の背面側から見た斜視図である。It is the perspective view seen from the back side of the other example concerning this invention. 図5に示す光学特性測定装置で液晶パネルの輝度を測定している状態の熱の出入りが表示された側面図である。FIG. 6 is a side view showing heat input and output in a state where the luminance of the liquid crystal panel is measured by the optical characteristic measuring apparatus shown in FIG. 5. 液晶パネルと背面部との距離と温度変化との関係を示すグラフである。It is a graph which shows the relationship between the distance of a liquid crystal panel and a back surface part, and a temperature change. 本発明にかかる光学特性測定装置の他の例の斜視図である。It is a perspective view of the other example of the optical characteristic measuring apparatus concerning this invention. 図8に示す光学特性測定装置の測定ユニットの断面図である。It is sectional drawing of the measurement unit of the optical characteristic measuring apparatus shown in FIG. 本発明にかかる光学特性測定装置の他の例の遮光部の拡大断面図である。It is an expanded sectional view of the light-shielding part of the other example of the optical characteristic measuring apparatus concerning this invention. 本発明にかかる光学特性測定装置の他の例の側面図である。It is a side view of the other example of the optical characteristic measuring apparatus concerning this invention. 従来の光学特性測定装置の側面図である。It is a side view of the conventional optical characteristic measuring apparatus. 図12に示す光学特性測定装置の背面図である。It is a rear view of the optical characteristic measuring apparatus shown in FIG.

符号の説明Explanation of symbols

A、B 光学特性測定装置
1 本体
10 背面部
11 開口部
2 受光素子
3 支持部
31 緩衝部
4 遮光部
41 緩衝部
42 貫通孔
5 遮光壁部
A, B Optical characteristic measuring apparatus 1 Main body 10 Back surface portion 11 Opening portion 2 Light receiving element 3 Supporting portion 31 Buffer portion 4 Light shielding portion 41 Buffer portion 42 Through hole 5 Light shielding wall portion

Claims (12)

ディスプレイ装置の表示部の光学特性を測定する光学特性測定装置であって、
前記表示部に対向して配置される平面状の背面部を有する本体部と、
前記背面部に形成された開口部から入射された光を受光する光学センサーと、
前記背面部に配置され、前記表示部と前記背面部との距離を一定に保つための支持部とを備え、
前記背面部の前記開口部の辺縁部を囲むように配置され、前記光学特性の測定を行うときに前記表示部の表面と密着する遮光部が備えられており、
前記遮光部の側壁部には、前記光学センサー及び前記表示部の表面に光が照射されない位置に貫通孔が形成されていることを特徴とする光学特性測定装置。
An optical property measuring device for measuring an optical property of a display unit of a display device,
A main body having a planar back surface disposed opposite to the display;
An optical sensor that receives light incident from an opening formed in the back surface; and
A support portion disposed on the back surface portion for maintaining a constant distance between the display portion and the back surface portion;
It is arranged so as to surround the edge part of the opening part of the back part, and is provided with a light shielding part that is in close contact with the surface of the display part when measuring the optical characteristics,
An optical characteristic measuring apparatus, wherein a through hole is formed in a side wall portion of the light shielding portion at a position where light is not irradiated on the surfaces of the optical sensor and the display portion.
前記遮光部は少なくとも側壁部の内面が光を反射しにくい又は吸収するように形成されている請求項に記載の光学特性測定装置。   The optical characteristic measuring apparatus according to claim 1, wherein the light shielding part is formed so that at least an inner surface of the side wall part hardly reflects or absorbs light. 前記光学特性の測定は、前記表示部が起立された状態で行われるものであり、
前記貫通孔は前記光学測定を行うときに、少なくとも前記遮光部の上部と下部とに形成されている請求項1又は請求項2に記載の光学特性測定装置。
The measurement of the optical characteristics is performed in a state where the display unit is upright,
The optical characteristic measuring apparatus according to claim 1, wherein the through-hole is formed at least in an upper part and a lower part of the light shielding part when performing the optical measurement.
前記貫通孔には、複数のフィンが前記遮光部の長さ方向に配列されている請求項1から請求項3のいずれかに記載の光学特性測定装置。   The optical characteristic measuring device according to any one of claims 1 to 3, wherein a plurality of fins are arranged in a length direction of the light shielding portion in the through hole. 前記複数のフィンの少なくとも一部は、前記背面部と平行に形成されている請求項4に記載の光学特性測定装置。   The optical characteristic measuring apparatus according to claim 4, wherein at least some of the plurality of fins are formed in parallel with the back surface portion. 前記背面部に近い側に配置されたフィンが、前記遮光部の外壁側から内壁側に向かって、前記背面部から遠ざかるように傾けて配置されている請求項4又は請求項5に記載の光学特性測定装置。   6. The optical device according to claim 4, wherein the fin disposed on the side close to the back surface portion is inclined so as to be away from the back surface portion from the outer wall side to the inner wall side of the light shielding portion. Characteristic measuring device. 前記表示部に近い側に配置されたフィンが、前記遮光部の外壁側から内壁側に向かって、前記背面部に近づくように傾けて配置されている請求項4から請求項6のいずれかに記載の光学特性測定装置。   The fin disposed on the side close to the display unit is disposed so as to be inclined so as to approach the back surface unit from the outer wall side to the inner wall side of the light shielding unit. The optical characteristic measuring apparatus as described. 前記背面部は、前記光学特性の測定が行われるとき、左右の少なくとも一方の端部に配置され、前記背面部と前記表示部との間を通過する光を遮断する遮光壁部を備えている請求項1から請求項7のいずれかに記載の光学特性測定装置。   The back surface portion includes a light shielding wall portion that is disposed at at least one of right and left ends when the optical property is measured, and blocks light passing between the back surface portion and the display portion. The optical property measuring apparatus according to claim 1. 前記遮光壁部は、前記光学特性の測定が行われるとき、前記表示部と非接触である請求項8に記載の光学特性測定装置。   The optical characteristic measuring apparatus according to claim 8, wherein the light shielding wall part is not in contact with the display part when the optical characteristic is measured. 前記支持部は、前記光学特性の測定を行うときの前記背面部と前記表示部との距離が15mm以上となるように形成されている請求項3から請求項9のいずれかに記載の光学特性測定装置。   The optical characteristic according to any one of claims 3 to 9, wherein the support part is formed so that a distance between the back part and the display part when the optical characteristic is measured is 15 mm or more. measuring device. 前記表示部は液晶パネルである請求項1から請求項10のいずれかに記載の光学特性測定装置。   The optical characteristic measuring apparatus according to claim 1, wherein the display unit is a liquid crystal panel. 前記支持部の少なくとも一部が前記遮光部を兼ねている請求項1から請求項11のいずれかに記載の光学特性測定装置。   The optical characteristic measuring apparatus according to claim 1, wherein at least a part of the support part also serves as the light shielding part.
JP2008263741A 2008-10-10 2008-10-10 Optical property measuring device Expired - Fee Related JP5187117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008263741A JP5187117B2 (en) 2008-10-10 2008-10-10 Optical property measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008263741A JP5187117B2 (en) 2008-10-10 2008-10-10 Optical property measuring device

Publications (2)

Publication Number Publication Date
JP2010091509A JP2010091509A (en) 2010-04-22
JP5187117B2 true JP5187117B2 (en) 2013-04-24

Family

ID=42254358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008263741A Expired - Fee Related JP5187117B2 (en) 2008-10-10 2008-10-10 Optical property measuring device

Country Status (1)

Country Link
JP (1) JP5187117B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140107244A (en) 2011-12-16 2014-09-04 수미토모 케미칼 컴퍼니 리미티드 Jig for flexible optical measurement
JP5964065B2 (en) * 2012-02-01 2016-08-03 株式会社トプコン Luminous intensity measuring instrument
JP5954424B2 (en) * 2012-10-16 2016-07-20 コニカミノルタ株式会社 Optical property measuring device
KR102250051B1 (en) 2014-10-30 2021-05-11 삼성디스플레이 주식회사 Method for manufacturing curved display apparatus
JP2019039738A (en) * 2017-08-24 2019-03-14 セイコーエプソン株式会社 Optical module and electronic apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3314747B2 (en) * 1999-01-29 2002-08-12 ミノルタ株式会社 LCD panel optical measuring device
JP2003294528A (en) * 2002-03-29 2003-10-15 Fuji Photo Film Co Ltd Luminance measuring device of liquid crystal display
JP2008151776A (en) * 2006-11-21 2008-07-03 Produce:Kk Brightness measuring instrument and brightness measuring method

Also Published As

Publication number Publication date
JP2010091509A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP5187117B2 (en) Optical property measuring device
US8164583B2 (en) Display device
JP5955753B2 (en) Display device
RU2592742C1 (en) Light sensor mounting structure for display device for displaying images
US9733423B2 (en) Backlight assembly and display device having the same
JP2006195146A (en) Liquid crystal display device
JP2009245885A (en) Surface light source device
JP2017173557A (en) Head-up display device
JP5468692B1 (en) Liquid crystal display
JP2006216244A (en) Led backlight and liquid crystal display device
JP5696831B2 (en) Infrared sensor
JP2008198540A (en) Optical sheet, backlight device using optical sheet, and liquid crystal display
JP2006049282A (en) Backlight assembly, display device using the same, and method of preventing deflection and damage of backlight assembly
JP2012164507A (en) Backlight device and liquid crystal display
JP5187116B2 (en) Optical property measuring device
US9396686B2 (en) Display device
JP2016075760A (en) Head-up display device
JP2009128420A (en) Liquid crystal display device
CN105629368A (en) Polaroid and display device
JP2012242347A (en) Dew point meter, and hygrometer
JP2007027056A (en) Backlight unit and liquid crystal display device
JP6450571B2 (en) Backlight device and liquid crystal display device
JP6390733B2 (en) Frame, surface light source device, display device, and electronic device
US9835311B2 (en) Light source assembly, backlight module and display device
TWI692635B (en) Optical measurement stability control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees