JP5184182B2 - Method for producing Mg-containing oxide film-coated soft magnetic metal powder - Google Patents

Method for producing Mg-containing oxide film-coated soft magnetic metal powder Download PDF

Info

Publication number
JP5184182B2
JP5184182B2 JP2008092908A JP2008092908A JP5184182B2 JP 5184182 B2 JP5184182 B2 JP 5184182B2 JP 2008092908 A JP2008092908 A JP 2008092908A JP 2008092908 A JP2008092908 A JP 2008092908A JP 5184182 B2 JP5184182 B2 JP 5184182B2
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
magnesium
oxide film
magnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008092908A
Other languages
Japanese (ja)
Other versions
JP2009242908A (en
Inventor
宗明 渡辺
和則 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Diamet Corp
Original Assignee
Mitsubishi Materials Corp
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Diamet Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008092908A priority Critical patent/JP5184182B2/en
Publication of JP2009242908A publication Critical patent/JP2009242908A/en
Application granted granted Critical
Publication of JP5184182B2 publication Critical patent/JP5184182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、Mg含有酸化膜被覆軟磁性金属粉末の製造方法に関し、特に、酸化処理した鉄粉末などの軟磁性金属粉末とマグネシウム粉末とを用いて、Mg含有酸化膜被覆の厚みを厚くすることなく、Mg含有比率の高いMg含有酸化膜被覆軟磁性金属粉末を製造できる製造方法に関する。   The present invention relates to a method for producing a Mg-containing oxide film-coated soft magnetic metal powder, and in particular, using an oxidized soft powder such as iron powder and a magnesium powder to increase the thickness of the Mg-containing oxide film coating. The present invention relates to a production method capable of producing a Mg-containing oxide film-coated soft magnetic metal powder having a high Mg content ratio.

従来から、磁心、電動機コア、発電機コア、ソレノイドコア、イグニッションコア、リアクトル、トランス、チョークコイルコアまたは磁気センサーコアなど各種電磁気回路部品の素材として、Mg含有酸化膜被覆軟磁性金属粉末が知られている。Mg含有酸化膜被覆軟磁性金属粉末は、酸化処理した鉄粉末に対してマグネシウム粉末を配合して配合粉末とし、この配合粉末を真空雰囲気中で加熱しながら転動する方法などによって製造されている(例えば、特許文献1参照)。
特開2006−241583号公報
Conventionally, Mg-containing oxide film-coated soft magnetic metal powders are known as materials for various electromagnetic circuit components such as magnetic cores, motor cores, generator cores, solenoid cores, ignition cores, reactors, transformers, choke coil cores, or magnetic sensor cores. ing. Mg-containing oxide film-coated soft magnetic metal powder is manufactured by blending magnesium powder with oxidized iron powder to form a blended powder, and rolling this blended powder while heating in a vacuum atmosphere. (For example, refer to Patent Document 1).
JP 2006-241583 A

しかしながら、従来の方法を用いて、Mg含有酸化膜被覆軟磁性金属粉末を製造した場合、Mg含有比率が十分に高いMg含有酸化膜被覆軟磁性金属粉末が得られず、耐熱性や軟磁性複合材として用いる場合の絶縁性が不十分である場合があった。
Mg含有比率の高いMg含有酸化膜被覆軟磁性金属粉末を得るためには、原料である配合粉末中に含まれるマグネシウム粉末の配合量を増やしたり、加熱時間を長くしたりすることが考えられる。しかし、マグネシウム粉末の配合量を増やしたり、加熱時間を長くしたりしても、Mg含有酸化膜被覆軟磁性金属粉末のMg含有比率を一定以上高くすることは困難であった。
However, when an Mg-containing oxide film-coated soft magnetic metal powder is produced using a conventional method, an Mg-containing oxide film-coated soft magnetic metal powder with a sufficiently high Mg content cannot be obtained, and heat resistance and soft magnetic composite Insulating properties when used as a material may be insufficient.
In order to obtain a Mg-containing oxide film-coated soft magnetic metal powder having a high Mg content ratio, it is conceivable to increase the blending amount of magnesium powder contained in the blended powder as a raw material or to increase the heating time. However, it was difficult to increase the Mg content ratio of the Mg-containing oxide film-coated soft magnetic metal powder to a certain level or higher even if the blending amount of the magnesium powder was increased or the heating time was increased.

図4(a)は、標準1回処理後の粉末と、標準1回処理と同じ処理を3回行った3回処理後の粉末において、Fe濃度と表面からの深さとの関係を示したグラフであり、図4(b)は、標準1回処理後の粉末と、3回処理後の粉末において、Mg濃度と表面からの深さとの関係を示したグラフである。なお、図4(a)および図4(b)における標準1回処理後の粉末とは、酸化物被覆鉄粉からなる軟磁性金属粉末に対し、マグネシウム粉末を 0・3質量%の割合となるように添加してなる配合粉末を、熱処理温度650℃で60分間加熱してなる粉末である。また、3回処理後の粉末とは、標準1回処理後、冷却し得られた粉末に対し、新たにマグネシウム粉末を0.3質量%の割合となるように添加し、標準1回処理と同じ温度および時間の熱処理を2回行うことにより得られた粉末である。
図4(a)および図4(b)に示すように、マグネシウム粉末を追加して複数回の熱処理を行っても、Mg含有酸化膜被覆軟磁性金属粉末のMg含有比率を一定以上高くすることはできなかった。
FIG. 4 (a) is a graph showing the relationship between the Fe concentration and the depth from the surface in the powder after the standard once treatment and the powder after the third treatment in which the same treatment as the standard one treatment was performed three times. FIG. 4B is a graph showing the relationship between the Mg concentration and the depth from the surface in the powder after the standard one-time treatment and the powder after the three-time treatment. In addition, the powder after the standard one-time treatment in FIGS. 4A and 4B is a ratio of 0.3% by mass of magnesium powder to the soft magnetic metal powder made of oxide-coated iron powder. Thus, it is the powder formed by heating the compounding powder formed by heating at a heat treatment temperature of 650 ° C. for 60 minutes. In addition, the powder after the three times treatment is a standard one-time treatment by newly adding magnesium powder to a ratio of 0.3% by mass with respect to the powder obtained by cooling once after the standard treatment. It is a powder obtained by performing heat treatment twice at the same temperature and time.
As shown in FIGS. 4 (a) and 4 (b), the Mg content ratio of the Mg-containing oxide film-coated soft magnetic metal powder should be increased to a certain level or more even when magnesium powder is added and heat treatment is performed multiple times. I couldn't.

また、Mg含有比率の高いMg含有酸化膜被覆軟磁性金属粉末を得るために、Mg含有酸化膜被覆の厚みを厚くすることが考えられる。この場合、Mg含有比率を向上させることはできるが、鉄粉を酸化処理するための高温熱処理など軟磁性金属粉末の前処理時間を長くしなければならないという問題や、Mg含有酸化膜被覆軟磁性金属粉末の軟磁気特性が低下してしまうという問題が生じる。  In order to obtain a Mg-containing oxide film-coated soft magnetic metal powder having a high Mg content ratio, it is conceivable to increase the thickness of the Mg-containing oxide film coating. In this case, the Mg content ratio can be improved, but there is a problem that the pretreatment time of the soft magnetic metal powder such as high-temperature heat treatment for oxidizing the iron powder must be increased, or the Mg-containing oxide film-coated soft magnetic There arises a problem that the soft magnetic properties of the metal powder deteriorate.

本発明は上記課題を鑑みてなされたものであって、Mg含有酸化膜被覆の厚みを厚くすることなく、Mg含有酸化膜被覆軟磁性金属粉末のMg含有比率を向上させ、優れた軟磁気特性が得られるMg含有酸化膜被覆軟磁性金属粉末の製造方法を提供することを目的とする。  The present invention has been made in view of the above problems, and without increasing the thickness of the Mg-containing oxide film coating, improves the Mg content ratio of the Mg-containing oxide film-coated soft magnetic metal powder, and has excellent soft magnetic properties. An object of the present invention is to provide a method for producing an Mg-containing oxide film-coated soft magnetic metal powder obtained by

本発明者は、上記問題を解決するために、鋭意検討を重ねた。
すなわち、本発明者は、軟磁性金属粉末とマグネシウム粉末とを含む配合粉末をマグネシウム粉末の気化温度以上の温度で加熱した場合には、軟磁性金属粉末の周囲にマグネシウム蒸気が過剰にあったとしても、Mg含有比率は一定以上向上せず、余分なマグネシウム蒸気は飛散してしまうという知見を得た。そして、軟磁性金属粉末とマグネシウム粉末とを含む配合粉末をマグネシウム粉末の気化温度以上の温度で加熱して熱処理後粉末とし、得られた熱処理後粉末にマグネシウム蒸気を供給した場合には、得られたMg含有酸化膜被覆軟磁性金属粉末のMg含有比率を向上させることができることを見出し、本発明を想到した。即ち、本発明は以下に関する。
The present inventor has intensively studied to solve the above problems.
That is, the present inventor assumed that magnesium vapor was excessive around the soft magnetic metal powder when the blended powder containing the soft magnetic metal powder and the magnesium powder was heated at a temperature equal to or higher than the vaporization temperature of the magnesium powder. In addition, it was found that the Mg content ratio was not improved more than a certain level, and excess magnesium vapor was scattered. And, when the blended powder containing the soft magnetic metal powder and the magnesium powder is heated at a temperature equal to or higher than the vaporization temperature of the magnesium powder to obtain a heat-treated powder, and magnesium vapor is supplied to the obtained heat-treated powder, it is obtained. The present inventors have found that the Mg content ratio of the Mg-containing oxide film-coated soft magnetic metal powder can be improved, and the present invention has been conceived. That is, the present invention relates to the following.

本発明のMg含有酸化膜被覆軟磁性金属粉末の製造方法は、軟磁性金属粉末とマグネシウム粉末とを含む配合粉末を、前記マグネシウム粉末の気化温度以上の温度で加熱して、前記軟磁性金属粉末の表面に酸化マグネシウムを含む酸化膜皮膜が形成された熱処理後粉末とする熱処理工程と、前記熱処理後粉末にマグネシウム蒸気を供給する蒸気供給工程とを備え、前記蒸気供給工程が、前記熱処理後粉末とマグネシウム粉末とを容器内に離間して配置し、前記マグネシウム粉末を加熱してマグネシウム蒸気を発生させ、前記熱処理後粉末を前記マグネシウム粉末の気化温度未満として該熱処理後粉末にマグネシウム蒸気を供給する工程であることを特徴とする。

The method for producing a Mg-containing oxide film-coated soft magnetic metal powder according to the present invention comprises heating a blended powder containing a soft magnetic metal powder and a magnesium powder at a temperature equal to or higher than a vaporization temperature of the magnesium powder. A heat treatment step of forming a powder after heat treatment having an oxide film containing magnesium oxide formed on the surface thereof, and a steam supply step of supplying magnesium vapor to the powder after heat treatment, wherein the steam supply step comprises the powder after heat treatment And magnesium powder are spaced apart from each other in a container, the magnesium powder is heated to generate magnesium vapor, and the heat-treated powder is set to a temperature lower than the vaporization temperature of the magnesium powder, and the magnesium vapor is supplied to the heat-treated powder. It is a process .

また、上記のMg含有酸化膜被覆軟磁性金属粉末の製造方法においては、前記蒸気供給工程の前に、前記熱処理後粉末の温度を400℃以下とすることを特徴とする方法とすることができる。  Further, in the method for producing the Mg-containing oxide film-coated soft magnetic metal powder, the temperature of the powder after the heat treatment is set to 400 ° C. or less before the vapor supplying step. .

また、前記蒸気供給工程における前記熱処理後粉末の温度を、前記マグネシウム粉末の気化温度未満とする方法とすることができる。  Moreover, it can be set as the method of setting the temperature of the said powder after the heat processing in the said vapor | steam supply process to less than the vaporization temperature of the said magnesium powder.

また、上記のMg含有酸化膜被覆軟磁性金属粉末の製造方法においては、前記蒸気供給工程が、前記熱処理後粉末とマグネシウム粉末とを1つの加熱容器内に離間して配置し、前記マグネシウム粉末を加熱してマグネシウム蒸気を発生させ、前記熱処理後粉末にマグネシウム蒸気を供給する工程である方法とすることができる。  In the method for producing the Mg-containing oxide film-coated soft magnetic metal powder, the steam supplying step disposes the heat-treated powder and the magnesium powder separately in a heating container, and the magnesium powder The method may be a step of heating to generate magnesium vapor and supplying magnesium vapor to the powder after the heat treatment.

本発明のMg含有酸化膜被覆軟磁性金属粉末の製造方法においては、軟磁性金属粉末とマグネシウム粉末とを含む配合粉末を、前記マグネシウム粉末の気化温度以上の温度で加熱して、軟磁性金属粉末の表面に酸化マグネシウムを含む酸化膜皮膜が形成された熱処理後粉末とする熱処理工程と、前記熱処理後粉末にマグネシウム蒸気を供給する蒸気供給工程とを備えるので、熱処理工程によって得られた熱処理後粉末のMg含有比率を、蒸気供給工程において向上させることができ、Mg含有比率の高いMg含有酸化膜被覆軟磁性金属粉末が得られる。したがって、本発明によれば、Mg含有酸化膜被覆の厚みを厚くする必要はない。   In the method for producing a Mg-containing oxide film-coated soft magnetic metal powder according to the present invention, the blended powder containing the soft magnetic metal powder and the magnesium powder is heated at a temperature equal to or higher than the vaporization temperature of the magnesium powder to obtain the soft magnetic metal powder. A heat treatment step in which an oxide film containing magnesium oxide is formed on the surface of the heat treatment step and a steam supply step for supplying magnesium vapor to the post-heat treatment powder. The Mg content ratio can be improved in the steam supply step, and a Mg-containing oxide film-coated soft magnetic metal powder with a high Mg content ratio can be obtained. Therefore, according to the present invention, it is not necessary to increase the thickness of the Mg-containing oxide film coating.

本発明のMg含有酸化膜被覆軟磁性金属粉末の製造方法は、軟磁性金属粉末とマグネシウム粉末とを含む配合粉末を、マグネシウム粉末の気化温度以上の温度で加熱して熱処理後粉末とする熱処理工程と、熱処理後粉末にマグネシウム蒸気を供給する蒸気供給工程とを備えている。  The method for producing a Mg-containing oxide film-coated soft magnetic metal powder according to the present invention includes a heat treatment step in which a compounded powder containing a soft magnetic metal powder and a magnesium powder is heated at a temperature equal to or higher than the vaporization temperature of the magnesium powder to obtain a powder after heat treatment. And a steam supply step for supplying magnesium vapor to the powder after the heat treatment.

本発明において用いられる軟磁性金属粉末としては、従来から一般に知られている鉄粉末、絶縁処理鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末、Fe−Co系鉄基軟磁性合金粉末、Fe−Co−V系鉄基軟磁性合金粉末またはFe−P系鉄基軟磁性合金粉末などが挙げられる。
軟磁性金属粉末は、マグネシウムの被覆性を向上させるために、酸化処理してから用いることが好ましい。酸化処理としては、例えば、大気中で200℃〜250℃の温度で10分〜30分間熱処理を行う方法などが挙げられる。
また、酸化処理した軟磁性金属粉末とマグネシウム粉末との混合割合は、酸化処理した軟磁性金属粉末に対してマグネシウム粉末が0.05〜2質量%となるように添加することが好ましい。
As the soft magnetic metal powder used in the present invention, conventionally known iron powder, insulated iron powder, Fe-Al iron-based soft magnetic alloy powder, Fe-Ni iron-based soft magnetic alloy powder, Fe -Cr-based iron-based soft magnetic alloy powder, Fe-Si-based iron-based soft magnetic alloy powder, Fe-Si-Al-based iron-based soft magnetic alloy powder, Fe-Co-based iron-based soft magnetic alloy powder, Fe-Co-V Iron-based soft magnetic alloy powder or Fe-P iron-based soft magnetic alloy powder.
The soft magnetic metal powder is preferably used after being oxidized in order to improve the coverage of magnesium. Examples of the oxidation treatment include a method in which heat treatment is performed at a temperature of 200 ° C. to 250 ° C. for 10 minutes to 30 minutes in the air.
The mixing ratio of the oxidized soft magnetic metal powder and the magnesium powder is preferably added so that the magnesium powder is 0.05 to 2% by mass with respect to the oxidized soft magnetic metal powder.

熱処理工程においては、例えば、図1に示す真空加熱炉が用いられる。図1に示す真空加熱炉1は、加熱容器2と加熱手段3とを備えている。加熱容器2は、図1に示すように、略円筒状で長さ方向が略水平に設置されたものあり、中央に外径の拡大された拡径部2aが形成されている。拡径部2aには、軟磁性金属粉末とマグネシウム粉末とを含む配合粉末5が収容されている。加熱容器2は、中心軸21を中心として回転可能に支持されており、図1において矢印で示されるように、モータ(図示略)などの駆動装置により中心軸21回りに回転されるようになっている。
加熱容器2は、モリブデン、タンタル、若しくはタングステン、またはチタンおよびジルコニウムなどの耐熱性元素を必要に応じて含有するモリブデン合金や、ステンレス鋼などにより形成されている。
In the heat treatment step, for example, a vacuum heating furnace shown in FIG. 1 is used. A vacuum heating furnace 1 shown in FIG. 1 includes a heating container 2 and a heating means 3. As shown in FIG. 1, the heating container 2 has a substantially cylindrical shape and is provided with a length direction substantially horizontal, and a diameter-enlarged portion 2 a having an enlarged outer diameter is formed at the center. In the enlarged diameter portion 2a, a blended powder 5 containing a soft magnetic metal powder and a magnesium powder is accommodated. The heating container 2 is supported so as to be rotatable about a central axis 21 and is rotated around the central axis 21 by a driving device such as a motor (not shown) as indicated by an arrow in FIG. ing.
The heating container 2 is made of molybdenum, tantalum, or tungsten, or a molybdenum alloy containing a heat-resistant element such as titanium and zirconium as necessary, stainless steel, or the like.

加熱手段3は、加熱容器2に収容された配合粉末5を加熱容器2の外側から加熱するためのものである。加熱手段3は、円筒状であり、加熱容器2の拡径部2aの外側に、加熱容器2の外周面を取り囲むように加熱容器2の中心軸21と同軸で配置されている。  The heating means 3 is for heating the blended powder 5 accommodated in the heating container 2 from the outside of the heating container 2. The heating means 3 has a cylindrical shape, and is arranged coaxially with the central axis 21 of the heating container 2 so as to surround the outer peripheral surface of the heating container 2 on the outer side of the enlarged diameter portion 2 a of the heating container 2.

図1に示す真空加熱炉1を用いる熱処理工程は、加熱容器2内を真空状態にし、加熱容器2を回転させて配合粉末5を攪拌しながら加熱手段3により加熱容器2の拡径部2aを加熱して、配合粉末5をマグネシウム粉末の気化温度以上の温度となるように加熱して、軟磁性金属粉末の表面に酸化マグネシウムを含む酸化膜皮膜が形成された熱処理後粉末とする。  In the heat treatment step using the vacuum heating furnace 1 shown in FIG. 1, the inside of the heating container 2 is evacuated, the heating container 2 is rotated and the mixed powder 5 is agitated, and the diameter of the expanded portion 2 a of the heating container 2 is increased by the heating means 3. By heating, the blended powder 5 is heated to a temperature equal to or higher than the vaporization temperature of the magnesium powder to obtain a powder after heat treatment in which an oxide film containing magnesium oxide is formed on the surface of the soft magnetic metal powder.

熱処理工程の熱処理温度は、マグネシウム粉末の気化温度以上あればよく、特に限定されないが、500℃〜1100℃の範囲とすることが好ましく、500℃〜800℃の範囲とすることがより好ましい。
また、熱処理工程における配合粉末5の加熱時間は、30分〜120分間であることが好ましい。
The heat treatment temperature in the heat treatment step is not particularly limited as long as it is equal to or higher than the vaporization temperature of the magnesium powder, but is preferably in the range of 500 ° C to 1100 ° C, and more preferably in the range of 500 ° C to 800 ° C.
Moreover, it is preferable that the heating time of the compounding powder 5 in a heat treatment process is 30 minutes-120 minutes.

本実施形態においては、蒸気供給工程を行う前に、熱処理工程を行うことによって得られた熱処理後粉末を空冷などの方法により冷却し、熱処理後粉末の温度を400℃以下、より好ましくは200℃以下とする冷却工程を行う。  In this embodiment, before the vapor supply step, the heat-treated powder obtained by performing the heat treatment step is cooled by a method such as air cooling, and the temperature of the heat-treated powder is 400 ° C. or less, more preferably 200 ° C. The following cooling process is performed.

続いて、蒸気供給工程を行う。本実施形態の蒸気供給工程においては、例えば、図2に示す真空加熱炉が用いられる。図2に示す真空加熱炉11は、加熱容器12と加熱手段13とを備えている。加熱容器12は、略円筒状で長さ方向が略水平に設置されたものあり、図2における左側に外径の拡大された拡径部12aが形成されている。拡径部12aには、熱処理後粉末51が収容されている。また、加熱容器12の図2における右側は、拡径部12aよりも外径の小さい小径部となっており、加熱手段13によって加熱される加熱領域12bを有している。加熱領域12bには、図2に示すように、マグネシウム粉末52が収容されている。したがって、図2に示す真空加熱炉11においては、熱処理後粉末51とマグネシウム粉末52とが1つの加熱容器12内に離間して配置されている。
また、加熱容器12は、図1に示す加熱容器2と同様に中心軸21を中心として回転可能に支持されており、図2において矢印で示されるように、モータ(図示略)などの駆動装置により中心軸21回りに回転されるようになっている。
Subsequently, a steam supply process is performed. In the steam supply process of the present embodiment, for example, a vacuum heating furnace shown in FIG. 2 is used. A vacuum heating furnace 11 shown in FIG. 2 includes a heating container 12 and a heating means 13. The heating container 12 has a substantially cylindrical shape and is provided with a substantially horizontal length direction, and a diameter-enlarged portion 12a having an enlarged outer diameter is formed on the left side in FIG. A powder 51 after heat treatment is accommodated in the enlarged diameter portion 12a. Further, the right side of the heating container 12 in FIG. 2 is a small-diameter portion whose outer diameter is smaller than that of the enlarged-diameter portion 12 a and has a heating region 12 b that is heated by the heating means 13. As shown in FIG. 2, magnesium powder 52 is accommodated in the heating region 12b. Therefore, in the vacuum heating furnace 11 shown in FIG. 2, the post-heat treatment powder 51 and the magnesium powder 52 are arranged separately in one heating container 12.
The heating container 12 is supported so as to be rotatable about a central axis 21 as in the heating container 2 shown in FIG. 1, and as shown by an arrow in FIG. 2, a driving device such as a motor (not shown). Thus, it is rotated around the central axis 21.

加熱手段13は、加熱容器12の加熱領域12bに収容されたマグネシウム粉末52を加熱容器12の外側から加熱するヒーターなどからなる。加熱手段13は、円筒状であり、加熱容器12の加熱領域12bの外側に、加熱容器12の外周面を取り囲むように加熱容器12の中心軸21と同軸で配置されている。  The heating means 13 includes a heater that heats the magnesium powder 52 accommodated in the heating region 12 b of the heating container 12 from the outside of the heating container 12. The heating means 13 has a cylindrical shape, and is arranged outside the heating region 12 b of the heating container 12 and coaxially with the central axis 21 of the heating container 12 so as to surround the outer peripheral surface of the heating container 12.

図2に示す真空加熱炉11を用いる蒸気供給工程は、加熱容器12内を真空状態にし、加熱容器12を回転させて、拡径部12aにおいて熱処理後粉末51を、加熱領域12bにおいてマグネシウム粉末52を、それぞれ個別に攪拌しながら、加熱手段13により加熱領域12bをマグネシウム粉末52の気化温度以上の温度に加熱してマグネシウム蒸気を発生させる。得られたマグネシウム蒸気は、加熱容器12内で拡散して熱処理後粉末51に供給される。このことによって、熱処理後粉末51とマグネシウム蒸気とからMg含有比率の高いMg含有酸化膜被覆軟磁性金属粉末が得られる。  In the steam supply process using the vacuum heating furnace 11 shown in FIG. 2, the inside of the heating vessel 12 is evacuated, the heating vessel 12 is rotated, and the heat-treated powder 51 is produced in the enlarged diameter portion 12a, and the magnesium powder 52 is produced in the heating region 12b. Are heated individually to a temperature equal to or higher than the vaporization temperature of the magnesium powder 52 by the heating means 13 to generate magnesium vapor. The obtained magnesium vapor is diffused in the heating container 12 and supplied to the powder 51 after the heat treatment. As a result, an Mg-containing oxide film-coated soft magnetic metal powder having a high Mg content can be obtained from the heat-treated powder 51 and magnesium vapor.

蒸気供給工程におけるマグネシウム粉末52の温度は、マグネシウム粉末の気化温度以上あればよく、特に限定されないが、例えば、500℃〜900℃とすることが好ましく、500℃〜800℃の範囲とすることがより好ましい。上記温度が500℃未満であると、マグネシウム粉末52からマグネシウム蒸気を効率よく発生させることができないため、好ましくない。また、上記温度が900℃を超えると、蒸気供給工程を行うための設備が高価となる。  The temperature of the magnesium powder 52 in the steam supply step is not particularly limited as long as it is equal to or higher than the vaporization temperature of the magnesium powder, but is preferably set to 500 ° C to 900 ° C, for example, in the range of 500 ° C to 800 ° C. More preferred. If the temperature is less than 500 ° C., magnesium vapor cannot be efficiently generated from the magnesium powder 52, which is not preferable. Moreover, when the said temperature exceeds 900 degreeC, the installation for performing a steam supply process will become expensive.

蒸気供給工程における熱処理後粉末51の温度は、マグネシウム粉末の気化温度未満であることが好ましく、例えば、20℃〜400℃とすることが好ましく、50℃〜200 ℃の範囲とすることがより好ましい。
また、蒸気供給工程における熱処理後粉末51へのマグネシウム蒸気の供給時間は、 30分〜120分間であることが好ましい。
The temperature of the powder 51 after heat treatment in the steam supply step is preferably lower than the vaporization temperature of the magnesium powder, for example, preferably 20 ° C to 400 ° C, and more preferably 50 ° C to 200 ° C. .
Moreover, it is preferable that the supply time of the magnesium vapor | steam to the powder 51 after heat processing in a vapor | steam supply process is 30 minutes-120 minutes.

また、蒸気供給工程において加熱領域12bに供給されるマグネシウム粉末52の量は、拡径部12aに供給される熱処理後粉末51の量に対して0.05〜2質量%の割合となるように添加することが好ましい。  Further, the amount of the magnesium powder 52 supplied to the heating region 12b in the steam supply step is 0.05 to 2% by mass with respect to the amount of the heat-treated powder 51 supplied to the enlarged diameter portion 12a. It is preferable to add.

また、蒸気供給工程後に得られたMg含有酸化膜被覆軟磁性金属粉末のMg含有酸化膜被覆の厚みは、50nm〜200nmであることが好ましく、60nm〜150nmであることがより好ましい。Mg含有酸化膜被覆の厚みが上記範囲未満であると、蒸気供給工程によるMg含有酸化膜被覆軟磁性金属粉末のMg含有比率を向上させる効果が十分に得られない場合がある。また、Mg含有酸化膜被覆の厚みが上記範囲を超えると、Mg含有酸化膜被覆軟磁性金属粉末の磁束密度が十分に得られない場合がある。  The Mg-containing oxide film coating thickness of the Mg-containing oxide film-coated soft magnetic metal powder obtained after the vapor supply step is preferably 50 nm to 200 nm, and more preferably 60 nm to 150 nm. If the thickness of the Mg-containing oxide film coating is less than the above range, the effect of improving the Mg content ratio of the Mg-containing oxide film-coated soft magnetic metal powder by the steam supply process may not be sufficiently obtained. If the thickness of the Mg-containing oxide film coating exceeds the above range, the magnetic flux density of the Mg-containing oxide film-coated soft magnetic metal powder may not be sufficiently obtained.

このようにして得られたMg含有酸化膜被覆軟磁性金属粉末は、例えば、レジンなどのバインダーを添加して所定の温度および圧力で所定の形状に成型し、所定の温度および圧力で焼成することにより軟磁性複合材とされ、各種電磁気回路部品として使用される。   The Mg-containing oxide film-coated soft magnetic metal powder thus obtained is molded into a predetermined shape at a predetermined temperature and pressure by adding a binder such as a resin, and fired at a predetermined temperature and pressure. Therefore, it is made into a soft magnetic composite material and used as various electromagnetic circuit components.

本実施形態のMg含有酸化膜被覆軟磁性金属粉末の製造方法においては、軟磁性金属粉末とマグネシウム粉末とを含む配合粉末5を、マグネシウム粉末52の気化温度以上の温度で加熱して、軟磁性金属粉末の表面に酸化マグネシウムを含む酸化膜皮膜が形成された熱処理後粉末51とする熱処理工程と、熱処理後粉末51にマグネシウム蒸気を供給する蒸気供給工程とを備えるので、熱処理工程によって得られた熱処理後粉末51のMg含有比率を、蒸気供給工程において向上させることができ、Mg含有比率の高いMg含有酸化膜被覆軟磁性金属粉末が得られる。   In the manufacturing method of the Mg-containing oxide film-coated soft magnetic metal powder of the present embodiment, the blended powder 5 containing the soft magnetic metal powder and the magnesium powder is heated at a temperature equal to or higher than the vaporization temperature of the magnesium powder 52, and the soft magnetic Since it has a heat treatment step for forming a powder 51 after heat treatment in which an oxide film containing magnesium oxide is formed on the surface of the metal powder, and a steam supply step for supplying magnesium vapor to the powder 51 after heat treatment, the heat treatment step provides The Mg content ratio of the powder 51 after heat treatment can be improved in the steam supply step, and an Mg-containing oxide film-coated soft magnetic metal powder with a high Mg content ratio is obtained.

また、本実施形態のMg含有酸化膜被覆軟磁性金属粉末の製造方法において、蒸気供給工程の前に、熱処理後粉末51の温度を400℃以下とする冷却工程を行った場合には、熱処理後粉末51を、蒸気供給工程を行うことによりマグネシウム蒸気が被着しやすいものとすることができるので、より一層Mg含有比率の高いMg含有酸化膜被覆軟磁性金属粉末が得られる。   Moreover, in the manufacturing method of the Mg-containing oxide film-coated soft magnetic metal powder according to the present embodiment, when the cooling step of setting the temperature of the powder 51 after heat treatment to 400 ° C. or less is performed before the vapor supply step, Since the powder 51 can be made to be easily deposited with magnesium vapor by performing the vapor supplying step, an Mg-containing oxide film-coated soft magnetic metal powder having a still higher Mg content can be obtained.

また、蒸気供給工程における熱処理後粉末51の温度を、マグネシウム粉末の気化温度未満とした場合には、熱処理後粉末51にマグネシウム蒸気が被着しやすくなるので、より一層Mg含有比率の高いMg含有酸化膜被覆軟磁性金属粉末が得られる。   Further, when the temperature of the powder 51 after heat treatment in the steam supply step is lower than the vaporization temperature of the magnesium powder, magnesium vapor is likely to adhere to the powder 51 after heat treatment, so that the Mg content is further increased. An oxide film-coated soft magnetic metal powder is obtained.

また、本実施形態においては、蒸気供給工程が、図2に示すように、熱処理後粉末51とマグネシウム粉末52とを1つの加熱容器12内に離間して配置し、マグネシウム粉末52を加熱してマグネシウム蒸気を発生させ、熱処理後粉末51にマグネシウム蒸気を供給する工程であるので、Mg含有比率の高いMg含有酸化膜被覆軟磁性金属粉末を容易に製造できる。   Further, in the present embodiment, the steam supplying step arranges the heat-treated powder 51 and the magnesium powder 52 separately in one heating container 12 and heats the magnesium powder 52 as shown in FIG. Since it is a step of generating magnesium vapor and supplying magnesium vapor to the powder 51 after heat treatment, an Mg-containing oxide film-coated soft magnetic metal powder having a high Mg content can be easily manufactured.

なお、上述した冷却工程および蒸気供給工程は、熱処理工程の後に1回以上行えばよく、蒸気供給工程の後にさらに一回以上冷却工程および蒸気供給工程を繰り返し行ってもよい。蒸気供給工程の後にさらに一回以上冷却工程および蒸気供給工程を行うことで、より一層Mg含有比率の高いMg含有酸化膜被覆軟磁性金属粉末を製造できる。  Note that the cooling process and the steam supply process described above may be performed once or more after the heat treatment process, and the cooling process and the steam supply process may be repeated once more after the steam supply process. By performing the cooling step and the vapor supply step one or more times after the vapor supply step, the Mg-containing oxide film-coated soft magnetic metal powder having a higher Mg content can be produced.

「実施例」
図1に示す真空加熱炉1を用い、軟磁性金属粉末とマグネシウム粉末とを表1に示す混合割合(軟磁性金属粉末に対するマグネシウム粉末の割合で示す)で含む配合粉末5を、表1に示す熱処理温度で120分間加熱して熱処理後粉末51とする熱処理工程を行った。
その後、必要に応じて、熱処理工程で得られた熱処理後粉末51を空冷により表1に示す冷却温度となるまで冷却する冷却工程を行った。
次いで、図2に示す真空加熱炉11の拡径部12aに冷却工程後の熱処理後粉末51を供給し、加熱領域12bに表1に示す使用量(熱処理後粉末51に対するマグネシウム粉末52の割合で示す)でマグネシウム粉末52を供給し、マグネシウム粉末52を表1に示す加熱温度で60分間加熱して、熱処理後粉末51にマグネシウム蒸気を供給する蒸気供給工程を行い実験例1〜15のMg含有酸化膜被覆軟磁性金属粉末を得た。
"Example"
Table 1 shows a blended powder 5 containing soft magnetic metal powder and magnesium powder in the mixing ratio shown in Table 1 (shown as the ratio of magnesium powder to soft magnetic metal powder) using the vacuum heating furnace 1 shown in FIG. A heat treatment step was performed by heating at a heat treatment temperature for 120 minutes to obtain a powder 51 after the heat treatment.
Thereafter, if necessary, a cooling step was performed in which the heat-treated powder 51 obtained in the heat treatment step was cooled to the cooling temperature shown in Table 1 by air cooling.
Next, the heat-treated powder 51 after the cooling step is supplied to the diameter-enlarged portion 12a of the vacuum heating furnace 11 shown in FIG. 2, and the usage amount shown in Table 1 (the ratio of the magnesium powder 52 to the heat-treated powder 51 in the heating region 12b). Magnesium powder 52 is supplied, and the magnesium powder 52 is heated at the heating temperature shown in Table 1 for 60 minutes to perform a steam supply step of supplying magnesium vapor to the powder 51 after heat treatment. An oxide film-coated soft magnetic metal powder was obtained.

Figure 0005184182
Figure 0005184182

なお、軟磁性金属粉末としては、平均粒子径100μmの純鉄粉を大気中で220〜250℃の温度で20分間熱処理を行う酸化処理を施してなる酸化物被覆鉄粉を用いた。  As the soft magnetic metal powder, oxide-coated iron powder obtained by subjecting pure iron powder having an average particle diameter of 100 μm to heat treatment in the atmosphere at a temperature of 220 to 250 ° C. for 20 minutes was used.

このようにして得られた実験例1〜15のMg含有酸化膜被覆軟磁性金属粉末のMg含有酸化膜被覆の厚みと、表面から深さ40nmの位置の組成を以下に示すようにして求めた。その結果を表1に示す。
「Mg含有酸化膜被覆の厚み」
皮膜の厚みは電子顕微鏡にてMg含有酸化膜被覆軟磁性金属粉末の断面の組織観察を行い、測定した。
「表面から深さ40nmの位置の組成」
オージエ電子分光分析計にて測定した。
The thickness of the Mg-containing oxide film coating of the Mg-containing oxide film-coated soft magnetic metal powders of Experimental Examples 1 to 15 thus obtained and the composition at a position 40 nm deep from the surface were determined as follows. . The results are shown in Table 1.
"Thickness of Mg-containing oxide coating"
The thickness of the film was measured by observing the cross section of the Mg-containing oxide film-coated soft magnetic metal powder with an electron microscope.
“Composition at a depth of 40 nm from the surface”
Measured with an Auger electron spectrometer.

また、実験例1について、熱処理工程後に得られた熱処理後粉末と、蒸気供給工程後に得られたMg含有酸化膜被覆軟磁性金属粉末について、表面からの深さとMg濃度およびFe濃度との関係を調べた。その結果を図3に示す。
図3は、表面からの深さとMg濃度およびFe濃度との関係を示したグラフである。図3に示すように、Mg含有酸化膜被覆軟磁性金属粉末および熱処理後粉末は、いずれも表面からの深さが深くなるに連れて、Mg濃度が低くなり、Fe濃度が高くなっている。
しかし、Mg含有酸化膜被覆軟磁性金属粉末では、熱処理後粉末と比較して、Mg濃度が高く、Fe濃度が低くなっている。また、Mg含有酸化膜被覆軟磁性金属粉末と熱処理後粉末とのMg濃度およびFe濃度の差は、表面からに80nmまでの範囲おいては、深さが深くなるに連れて大きくなっている。また、図3に示すように、Mg含有酸化膜被覆軟磁性金属粉末と熱処理後粉末とのMg濃度およびFe濃度の差は、特に、表面から20nm〜100nmの範囲で大きくなっており、40nm〜80nmの範囲でより一層大きくなっている。
For Experimental Example 1, regarding the post-heat treatment powder obtained after the heat treatment step and the Mg-containing oxide film-coated soft magnetic metal powder obtained after the vapor supply step, the relationship between the depth from the surface and the Mg concentration and Fe concentration was Examined. The result is shown in FIG.
FIG. 3 is a graph showing the relationship between the depth from the surface and the Mg and Fe concentrations. As shown in FIG. 3, the Mg-containing oxide film-coated soft magnetic metal powder and the heat-treated powder both have a lower Mg concentration and a higher Fe concentration as the depth from the surface increases.
However, the Mg-containing oxide film-coated soft magnetic metal powder has a higher Mg concentration and a lower Fe concentration than the heat-treated powder. Further, the difference between the Mg concentration and the Fe concentration between the Mg-containing oxide film-coated soft magnetic metal powder and the heat-treated powder increases as the depth increases in the range up to 80 nm from the surface. Further, as shown in FIG. 3, the difference in Mg concentration and Fe concentration between the Mg-containing oxide film-coated soft magnetic metal powder and the heat-treated powder is particularly large in the range of 20 nm to 100 nm from the surface. It is even larger in the range of 80 nm.

また、実験例1〜15のMg含有酸化膜被覆軟磁性金属粉末に対し、シリコーンレジンを0.3質量%添加して温度150℃、圧力790MPaで、外径35mm、内径25mm、厚み5mmのリング状に成型し、窒素雰囲気中で650℃の温度で30分間焼成することにより軟磁性複合材を得た。
そして得られた軟磁性複合材の密度、磁束密度、1T、400Hzでの鉄損値を測定した。その結果を表1に示す。
Further, a ring having an outer diameter of 35 mm, an inner diameter of 25 mm, and a thickness of 5 mm at a temperature of 150.degree. And was baked for 30 minutes at a temperature of 650 ° C. in a nitrogen atmosphere to obtain a soft magnetic composite material.
The density of the obtained soft magnetic composite material, the magnetic flux density, and the iron loss value at 1T and 400 Hz were measured. The results are shown in Table 1.

表1に示すように、200℃以下の冷却工程を行ってから蒸気供給工程を行った実験例1〜5では、Mg含有酸化膜被覆の厚みが同じであっても、冷却工程および蒸気供給工程を行っていない実験例12と比較して、表面から深さ40nmのMg濃度が非常に高くなっており、冷却工程および蒸気供給工程を行っていない場合の厚みが300nmである実験例15と同等の表面から深さ40nmのMg濃度となっている。したがって、冷却工程および蒸気供給工程を行うことで、Mg含有酸化膜被覆の厚みを厚くすることなく、Mg含有酸化膜被覆軟磁性金属粉末のMg含有比率を向上できることが分かる。
また、実験例1〜5では、冷却温度が200℃超え〜400℃以下である実験例9および10や、冷却温度が400℃超えである実験例11と比較して、表面から深さ40nmのMg濃度が高くなっている。したがって、冷却温度は、400℃以下であることが好ましく、200℃以下がより好ましいことが分かる。
また、蒸気供給工程を行った実験例1〜11では、冷却工程および蒸気供給工程を行っていない実験例12〜15と比較して、鉄損値が小さかった。また、冷却工程および蒸気供給工程を行っていない実験例14および15では、表面から深さ40nmのMg濃度が47質量%以上であるが、Mg含有酸化膜被覆の厚みが厚いため、軟磁性複合材の密度や磁束密度が低いものとなった。
As shown in Table 1, in Experimental Examples 1 to 5 in which the steam supply process was performed after the cooling process at 200 ° C. or lower, the cooling process and the steam supply process were performed even when the Mg-containing oxide film coating had the same thickness. Compared with Experimental Example 12 in which the thickness is 40 nm, the Mg concentration at a depth of 40 nm from the surface is very high, and is equivalent to Experimental Example 15 in which the thickness when the cooling process and the steam supply process are not performed is 300 nm. The Mg concentration is 40 nm deep from the surface. Therefore, it can be seen that the Mg content ratio of the Mg-containing oxide film-coated soft magnetic metal powder can be improved without increasing the thickness of the Mg-containing oxide film coating by performing the cooling step and the steam supply step.
Moreover, in Experimental Examples 1-5, compared with Experimental Example 9 and 10 whose cooling temperature is 200 degreeC-400 degrees C or less, and Experimental Example 11 whose cooling temperature is 400 degreeC or more, it is 40 nm deep from the surface. The Mg concentration is high. Therefore, it is understood that the cooling temperature is preferably 400 ° C. or lower, and more preferably 200 ° C. or lower.
Moreover, in Experimental Examples 1-11 which performed the steam supply process, the iron loss value was small compared with Experimental Examples 12-15 which did not perform the cooling process and the steam supply process. Further, in Experimental Examples 14 and 15 in which the cooling process and the steam supply process were not performed, the Mg concentration at a depth of 40 nm from the surface was 47% by mass or more, but the thickness of the Mg-containing oxide film coating was large. The material density and magnetic flux density were low.

図1は、本発明のMg含有酸化膜被覆軟磁性金属粉末の製造方法に用いられる真空加熱炉の一例を示した概略構成図である。FIG. 1 is a schematic configuration diagram showing an example of a vacuum heating furnace used in the method for producing an Mg-containing oxide film-coated soft magnetic metal powder of the present invention. 図2は、本発明のMg含有酸化膜被覆軟磁性金属粉末の製造方法に用いられる真空加熱炉の一例を示した概略構成図である。FIG. 2 is a schematic configuration diagram showing an example of a vacuum heating furnace used in the method for producing a Mg-containing oxide film-coated soft magnetic metal powder of the present invention. 図3は、表面からの深さとMg濃度およびFe濃度との関係を示したグラフである。FIG. 3 is a graph showing the relationship between the depth from the surface and the Mg and Fe concentrations. 図4(a)は、標準1回処理後の粉末と、標準1回処理と同じ処理を3回行った3回処理後の粉末において、Fe濃度と表面からの深さとの関係を示したグラフであり、図4(b)は、標準1回処理後の粉末と、3回処理後の粉末において、Mg濃度と表面からの深さとの関係を示したグラフである。FIG. 4 (a) is a graph showing the relationship between the Fe concentration and the depth from the surface in the powder after the standard once treatment and the powder after the third treatment in which the same treatment as the standard one treatment was performed three times. FIG. 4B is a graph showing the relationship between the Mg concentration and the depth from the surface in the powder after the standard one-time treatment and the powder after the three-time treatment.

符号の説明Explanation of symbols

1、11…真空加熱炉、2、12…加熱容器、2a、12a…拡径部、2b…他端部、3、13…加熱手段、5…配合粉末、12b…加熱領域、51…熱処理後粉末、52…マグネシウム粉末。

DESCRIPTION OF SYMBOLS 1,11 ... Vacuum heating furnace, 2,12 ... Heating container, 2a, 12a ... Diameter expansion part, 2b ... Other end part, 3,13 ... Heating means, 5 ... Compounding powder, 12b ... Heating area, 51 ... After heat processing Powder, 52 ... magnesium powder.

Claims (2)

軟磁性金属粉末とマグネシウム粉末とを含む配合粉末を、前記マグネシウム粉末の気化温度以上の温度で加熱して、前記軟磁性金属粉末の表面に酸化マグネシウムを含む酸化膜皮膜が形成された熱処理後粉末とする熱処理工程と、
前記熱処理後粉末にマグネシウム蒸気を供給する蒸気供給工程とを備え
前記蒸気供給工程が、前記熱処理後粉末とマグネシウム粉末とを容器内に離間して配置し、前記マグネシウム粉末を加熱してマグネシウム蒸気を発生させ、前記熱処理後粉末を前記マグネシウム粉末の気化温度未満として該熱処理後粉末にマグネシウム蒸気を供給する工程であることを特徴とするMg含有酸化膜被覆軟磁性金属粉末の製造方法。
A powder after heat treatment in which a compounded powder containing a soft magnetic metal powder and a magnesium powder is heated at a temperature equal to or higher than the vaporization temperature of the magnesium powder to form an oxide film containing magnesium oxide on the surface of the soft magnetic metal powder. A heat treatment step,
A steam supply step of supplying magnesium vapor to the powder after the heat treatment ,
In the steam supply step, the heat-treated powder and the magnesium powder are disposed separately in a container, the magnesium powder is heated to generate magnesium vapor, and the heat-treated powder is set to a temperature lower than the vaporization temperature of the magnesium powder. A method for producing an Mg-containing oxide film-coated soft magnetic metal powder, characterized by being a step of supplying magnesium vapor to the powder after the heat treatment .
前記蒸気供給工程の前に、前記熱処理後粉末の温度を400℃以下とすることを特徴とする請求項1に記載のMg含有酸化膜被覆軟磁性金属粉末の製造方法。 The method for producing an Mg-containing oxide film-coated soft magnetic metal powder according to claim 1, wherein the temperature of the powder after the heat treatment is set to 400 ° C or lower before the vapor supplying step.
JP2008092908A 2008-03-31 2008-03-31 Method for producing Mg-containing oxide film-coated soft magnetic metal powder Expired - Fee Related JP5184182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008092908A JP5184182B2 (en) 2008-03-31 2008-03-31 Method for producing Mg-containing oxide film-coated soft magnetic metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092908A JP5184182B2 (en) 2008-03-31 2008-03-31 Method for producing Mg-containing oxide film-coated soft magnetic metal powder

Publications (2)

Publication Number Publication Date
JP2009242908A JP2009242908A (en) 2009-10-22
JP5184182B2 true JP5184182B2 (en) 2013-04-17

Family

ID=41305136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092908A Expired - Fee Related JP5184182B2 (en) 2008-03-31 2008-03-31 Method for producing Mg-containing oxide film-coated soft magnetic metal powder

Country Status (1)

Country Link
JP (1) JP5184182B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6160181B2 (en) * 2013-04-01 2017-07-12 株式会社ダイヤメット Dust core with high surface resistance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863628B2 (en) * 2004-09-06 2012-01-25 株式会社ダイヤメット Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP4863648B2 (en) * 2004-09-06 2012-01-25 株式会社ダイヤメット Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP2006213944A (en) * 2005-02-01 2006-08-17 Mitsubishi Materials Pmg Corp Apparatus for coating powder and method for producing coated powder
JP5101848B2 (en) * 2006-09-11 2012-12-19 株式会社アルバック Method for producing soft magnetic powder and dust core using the soft magnetic powder

Also Published As

Publication number Publication date
JP2009242908A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP6832774B2 (en) Silica-based insulating coated dust core and its manufacturing method and electromagnetic circuit parts
US11011305B2 (en) Powder magnetic core, and coil component
US20190214172A1 (en) Powder for magnetic core, method of producing dust core, dust core, and method of producing powder for magnetic core
JP5240234B2 (en) Manufacturing method of dust core
JP4010296B2 (en) Method for producing soft magnetic powder material
CN106104715B (en) The manufacturing method of magnetic core, coil component and magnetic core
JP6700919B2 (en) Silica-based insulating coated soft magnetic iron powder and method for producing the same
EP2227344B1 (en) Powder for magnetic core, method for manufacturing powder for magnetic core, and dust core
JP6667727B2 (en) Manufacturing method of dust core, manufacturing method of electromagnetic parts
JP6296997B2 (en) Method for producing magnetic particles
JP7179617B2 (en) Silica-based insulation-coated soft magnetic powder and method for producing the same
JP2019178402A (en) Soft magnetic powder
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP5184182B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder
JP5315183B2 (en) Method for producing powder for powder magnetic core
WO2017170901A1 (en) Dust core coated with silica-based insulation, method for manufacturing same, and electromagnetic circuit component
US10272491B2 (en) Soft magnetic member and manufacturing method of soft magnetic member
CN103227020A (en) Powder mixture for dust cores
JP6556780B2 (en) Powder magnetic core, powder for magnetic core, and production method thereof
JP2010016290A (en) Ferrous metal magnetic particle, soft magnetic material, powder magnetic core and manufacturing method of them
JP2010185126A (en) Composite soft magnetic material and method for producing the same
JP5332408B2 (en) Powder magnetic core and manufacturing method thereof
JP2021040083A (en) Resin magnetic core
JP2006134958A (en) Manufacturing method of soft magnetic material
JP2021165416A (en) Soft magnetic alloy powder, method for producing the same, and dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Ref document number: 5184182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees