JP5183970B2 - Prediction method of cavity resonance of pneumatic tire - Google Patents

Prediction method of cavity resonance of pneumatic tire Download PDF

Info

Publication number
JP5183970B2
JP5183970B2 JP2007143308A JP2007143308A JP5183970B2 JP 5183970 B2 JP5183970 B2 JP 5183970B2 JP 2007143308 A JP2007143308 A JP 2007143308A JP 2007143308 A JP2007143308 A JP 2007143308A JP 5183970 B2 JP5183970 B2 JP 5183970B2
Authority
JP
Japan
Prior art keywords
tire
cavity
finite element
element model
deformed shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007143308A
Other languages
Japanese (ja)
Other versions
JP2008296676A (en
Inventor
克敏 大石
健 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2007143308A priority Critical patent/JP5183970B2/en
Publication of JP2008296676A publication Critical patent/JP2008296676A/en
Application granted granted Critical
Publication of JP5183970B2 publication Critical patent/JP5183970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、有限要素法(FEM)を用いて空気入りタイヤとタイヤ内部の空洞領域をモデル化することで空洞共鳴周波数、音圧、伝達関数などを予測する空気入りタイヤの空洞共鳴の予測方法に関する。   The present invention relates to a method for predicting cavity resonance of a pneumatic tire that predicts cavity resonance frequency, sound pressure, transfer function, etc. by modeling the pneumatic tire and a cavity region inside the tire using a finite element method (FEM). About.

空気入りタイヤはその構造上、タイヤ内部の円管長さに起因する空洞共鳴現象を有することが知られている。乗用車タイヤの場合、そのタイヤ周長さから空洞共鳴周波数は200Hz〜270Hz辺りに存在し、空洞共鳴であるがために車軸に伝達される際にはそれ以外の帯域と異なり鋭いピークとなり不快な車内騒音の一因となっている。   It is known that a pneumatic tire has a cavity resonance phenomenon due to the length of a circular pipe inside the tire due to its structure. In the case of a passenger car tire, the cavity resonance frequency exists around 200Hz to 270Hz from the tire circumference, and when it is transmitted to the axle due to the cavity resonance, it becomes a sharp peak unlike other bands and is uncomfortable in the vehicle. It contributes to noise.

路面凹凸からのタイヤへの入力による空気入りタイヤの振動や騒音をFEM等の手法を用いてシミュレーションすることは従来より知られおり、例えば、下記特許文献1では、路面凹凸によるタイヤへの入力を定量的に求めて、タイヤの振動及び騒音の少なくとも一方を求めるタイヤの振動・騒音シミュレーション方法が提案されている。   It has been conventionally known to simulate the vibration and noise of a pneumatic tire due to input to the tire from road surface unevenness using a technique such as FEM. For example, in Patent Document 1 below, input to the tire due to road surface unevenness is performed. There has been proposed a tire vibration / noise simulation method for quantitatively obtaining at least one of tire vibration and noise.

また、特許文献2では、ロードノイズの予測を簡便に行う車内騒音の予測方法及び装置が提案され、標準タイヤの4輪全部の周波数応答関数と騒音予測対象タイヤのオートパワースペクトル及びクロスパワースペクトルとを4輪分合成し、ロードノイズのパワースペクトルを演算している。   Further, Patent Document 2 proposes a vehicle interior noise prediction method and apparatus for easily predicting road noise, including frequency response functions for all four wheels of a standard tire, and auto power spectrum and cross power spectrum of a noise prediction target tire. Is synthesized for four wheels, and the power spectrum of road noise is calculated.

しかしながら、タイヤの空洞共鳴についてはFEM等を用いた解析は十分行われておらず、タイヤ設計ステップに組み込む場合には多くの問題点を抱えていた。   However, analysis using the FEM or the like has not been sufficiently performed for the cavity resonance of the tire, and there have been many problems when incorporated in the tire design step.

従来、空気入りタイヤの空洞共鳴を評価し、タイヤ設計ステップに組み込む場合には、以下の方法が挙げられる。   Conventionally, when cavity resonance of a pneumatic tire is evaluated and incorporated in a tire design step, the following method is exemplified.

従来法1:タイヤを実際に製造し、実験計測により空洞共鳴周波数を評価していた。この場合、タイヤ製造、タイヤ特性や振動、騒音の実測における工数、費用は、非常に大きいものでありかつ、精度も低く、タイヤの設計ステップにその評価結果を組み込むことに障害があった。   Conventional method 1: Tires were actually manufactured, and cavity resonance frequencies were evaluated by experimental measurement. In this case, the number of man-hours and costs for tire manufacture, tire characteristics, vibration, and noise measurement are very large and the accuracy is low, and there are obstacles to incorporating the evaluation results into the tire design step.

従来法2:タイヤ内部における周方向の空洞を管とし、その管長をもとにした1次元問題とした近似の机上の計算が実行されてきた。この場合、タイヤ設計パラメータ、タイヤ変形状態や外的条件(内圧、接地など)は考慮されていないものであり、これもまた精度の低いものであった。   Conventional method 2: An approximate desktop calculation has been executed as a one-dimensional problem based on the pipe length of the cavity in the circumferential direction inside the tire. In this case, the tire design parameters, the tire deformation state, and external conditions (internal pressure, ground contact, etc.) are not taken into consideration, and this is also low in accuracy.

また、従来では、タイヤ構造体を有限要素モデル化し、内圧充填、荷重負荷に振動を入力し、走行状態に近似させたタイヤの振動、騒音などの性能予測が行われてきたが、この場合の演算には長時間を要していた。さらに、タイヤ構造体単体を有限要素モデル化すると同時にタイヤ内部の空洞領域もモデル化することによるタイヤ空洞共鳴周波数の予測はなされていなかった。
特開2000−241309号公報 特開平11−6758号公報
Conventionally, a tire structure is modeled as a finite element, and internal pressure filling, vibration is input to the load load, and performance predictions such as tire vibration and noise approximated to the running state have been performed. The calculation took a long time. Furthermore, the tire cavity resonance frequency has not been predicted by modeling the tire structure itself as a finite element model and simultaneously modeling the cavity region inside the tire.
JP 2000-241309 A Japanese Patent Laid-Open No. 11-6758

従来の空気入りタイヤの空洞共鳴の評価方法は、タイヤ製造、評価における工数、費用が大きく、精度も低いものであった。   The conventional method for evaluating the cavity resonance of a pneumatic tire has a large man-hour and cost in manufacturing and evaluating the tire, and has low accuracy.

そこで、本発明は、有限要素法(FEM)を用いて空気入りタイヤのタイヤ構造体とタイヤ内部の空洞領域をモデル化することで空洞共鳴周波数などの空洞共鳴を短時間、かつ精度良く予測することができる空気入りタイヤの空洞共鳴の予測方法を提供することを目的とするものである。   Therefore, the present invention predicts cavity resonance such as cavity resonance frequency in a short time and accurately by modeling the tire structure of a pneumatic tire and the cavity region inside the tire using a finite element method (FEM). An object of the present invention is to provide a method for predicting cavity resonance of a pneumatic tire.

本発明者らは、タイヤ構造体だけでなくタイヤ内部の空洞領域の空気層をモデル化し、両者を結合した有限要素モデルを使ったタイヤ空洞共鳴を解析することで、短時間に、かつ正確なタイヤの空洞共鳴の予測が得られ、それをタイヤ設計ステップに組み込むことを図るものである。   The present inventors have modeled not only the tire structure but also the air layer in the cavity region inside the tire, and analyzed the tire cavity resonance using a finite element model in which both are combined. A prediction of tire cavity resonance is obtained and is intended to be incorporated into the tire design step.

すなわち、本発明の空気入りタイヤの空洞共鳴の予測方法は、有限要素法によって、タイヤ構造体の変形形状を算出し、前記タイヤ構造体の変形形状に基づきタイヤ空洞部の変形形状を算出し、前記タイヤ構造体の変形形状と前記タイヤ空洞部の変形形状を結合して、前記タイヤ構造体及び空洞部の変形形状を表す有限要素モデル化した(タイヤ構造体+空洞部)の有限要素モデルを作成し、タイヤ構造体と空洞部の連成問題としての有限要素法による固有値計算を実行し取得された固有周波数からタイヤの空洞共鳴周波数、音圧、伝達関数を取得しタイヤの空洞共鳴を予測することを特徴とする。 That is, the method for predicting the cavity resonance of a pneumatic tire according to the present invention calculates the deformation shape of the tire structure by a finite element method, and calculates the deformation shape of the tire cavity based on the deformation shape of the tire structure. A finite element model representing the tire structure and the deformed shape of the cavity by combining the deformed shape of the tire structure and the deformed shape of the tire cavity (tire structure + cavity) The tire cavity resonance frequency, sound pressure, and transfer function are obtained from the obtained natural frequency by executing the eigenvalue calculation by the finite element method as a coupled problem of the tire structure and the cavity, and the tire cavity resonance is obtained. It is characterized by prediction.

本発明の空気入りタイヤの空洞共鳴の予測方法は、タイヤ構造体を有限個の多数の要素に分割した有限要素モデルで近似モデル化してタイヤ有限要素モデルを作成する第1ステップと、該タイヤ構造体を構成するトレッド、ベルト、カーカスなどの各部材の材料特性を表すヤング率、ポアソン比及び比重を前記タイヤ有限要素モデルに規定する第2ステップと、前記タイヤ有限要素モデルに対して、評価条件である内圧及び荷重を定義し、タイヤ構造体の変形形状を有限要素によって算出する第3ステップと、タイヤ内部空洞部を多数の要素に分割した有限要素モデルで近似モデル化してタイヤ空洞部有限要素モデルを作成する第4ステップと、前記タイヤ空洞部有限要素モデルに対して空気材料特性を表す体積弾性率及び質量密度を規定する第5ステップと、前記第3ステップの計算によるタイヤ構造体の変形形状に基づき、前記タイヤ空洞部有限要素モデルの変形形状を有限要素法によって算出する第6ステップと、前記第3ステップと第6ステップで算出したタイヤ構造体の変形形状とタイヤ空洞部の変形形状を結合して、タイヤ構造体及び空洞部の変形形状を表す有限要素モデル化したタイヤ構造体+空洞部)の有限要素モデルを作成する第7ステップと、前記第7ステップで作成した有限要素モデルに対してタイヤ構造体と空洞の連成問題としての有限要素法による固有値計算を実行する第8ステップと、前記第8ステップで取得された固有周波数からタイヤの空洞共鳴周波数、音圧、伝達関数を取得する第9ステップとを有することが好ましいA method for predicting cavity resonance of a pneumatic tire according to the present invention includes a first step of creating a tire finite element model by approximating a tire structure into a finite element model obtained by dividing a tire structure into a finite number of elements, and the tire. tread constituting the structure, the belt, the Young's modulus representing the material properties of the members, such as carcass, a second step of defining a Poisson's ratio and specific gravity in the tire finite element model, with respect to the tire finite element model, evaluation define the pressure and load a condition, and a third step of calculating a deformed shape of the tire structure by a finite element is approximated modeled by finite element model by dividing a tire internal cavity on a number of factors tire to define a fourth step of creating a cavity finite element model, the bulk modulus and mass density representing the air material properties with respect to the tire cavity finite element model A fifth step, based on the deformation shape of the tire structure according to the calculation of the third step, a sixth step of calculating a deformed shape of the tire cavity finite element model by a finite element method, and the third step 6 A finite element model ( tire structure + cavity ) that represents the deformation shape of the tire structure and the cavity by combining the deformation shape of the tire structure calculated in the step and the deformation shape of the tire cavity. an eighth step of performing eigenvalue calculation by the finite element method as interaction problem of tire structure and the cavity portion and a seventh step of creating, for finite element model created in the seventh step, the eighth It is preferable to have a ninth step of acquiring the cavity resonance frequency, sound pressure, and transfer function of the tire from the natural frequency acquired in the step.

本発明によれば、FEMを用いて、タイヤ構造体の変形形状とタイヤ空洞部の変形形状を算出し、前記タイヤ構造体及び空洞部の変形形状を結合して有限要素モデル化しタイヤ+空洞部の連成問題としてのFEMによる固有周波数からタイヤの空洞共鳴周波数、音圧、伝達関数を取得することで、空気入りタイヤの空洞共鳴を短時間、かつ精度良く予測し、空気入りタイヤの設計ステップに組み込み車内騒音の低減を図ることができる。   According to the present invention, the FEM is used to calculate the deformation shape of the tire structure and the deformation shape of the tire cavity, and the tire + cavity is formed by combining the tire structure and the deformation shape of the cavity to form a finite element model. Steps to design pneumatic tire cavity resonance in a short time with high accuracy by obtaining tire cavity resonance frequency, sound pressure, and transfer function from natural frequency by FEM The built-in vehicle noise can be reduced.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は実施形態にかかるタイヤ空洞共鳴の予測方法の流れを示すブロック図であり、コンピュータを用いて実施することができる。より詳しくは、下記第1〜9ステップをコンピュータに実行させるためのプログラムを作成しておき、このプログラムを入力したコンピュータを用いることにより本実施形態の空洞共鳴予測方法を実施することができる。   FIG. 1 is a block diagram showing a flow of a tire cavity resonance prediction method according to the embodiment, which can be implemented using a computer. More specifically, a cavity resonance prediction method according to the present embodiment can be implemented by creating a program for causing a computer to execute the following first to ninth steps and using a computer that inputs this program.

本実施形態では、まず、第1ステップ(S1)において、解析対象となるタイヤについてタイヤ構造体を有限個の多数の要素に分割した有限要素モデルで近似モデル化した初期FEMモデルを作成する。より詳しくは、タイヤ断面形状を基準形状とし、この基準形状を有限要素法(FEM)によりモデル化して、内部構造を含むタイヤ断面形状を表すと共にメッシュ分割によって複数の有限要素に分割されたタイヤのFEMモデルを作成する。図2はFEMモデルの一例を示したものであり、図2に示すように、タイヤ断面は複数の有限要素に分割されるとともにタイヤ周方向に複数に分割されている。なお、図2の例では、タイヤ周方向において均等な角度で分割しているが、このような均等分割には限られず、例えば、接地面側が細かくメッシュ分割されていてもよい。   In the present embodiment, first, in the first step (S1), an initial FEM model is created by approximating an finite element model obtained by dividing a tire structure into a finite number of elements for a tire to be analyzed. More specifically, the tire cross-sectional shape is set as a reference shape, and this reference shape is modeled by a finite element method (FEM) to represent the tire cross-sectional shape including the internal structure and the tire divided into a plurality of finite elements by mesh division. Create an FEM model. FIG. 2 shows an example of the FEM model. As shown in FIG. 2, the tire cross section is divided into a plurality of finite elements and a plurality of tire circumferential directions. In the example of FIG. 2, the tire is divided at an equal angle in the tire circumferential direction. However, the division is not limited to such an equal division, and for example, the ground contact surface side may be finely divided into meshes.

次の第2ステップ(S2)では、材料特性値を定義し、その初期値を与える。材料特性値は、トレッドゴム、サイドウォールゴム、ベルト層、カーカス層、ビードコアなどタイヤを構成する各ゴム材料、補強材料毎に定義され、その初期値として各部材の材料特性を表すヤング率、ポアソン比や比重などをFEMモデルに規定し付与する。この場合、ゴム材料の使用量、厚み、コード材料の断面積、配置間隔、角度などが考慮される。   In the next second step (S2), material property values are defined and their initial values are given. Material property values are defined for each rubber material and reinforcing material such as tread rubber, sidewall rubber, belt layer, carcass layer, and bead core, and the Young's modulus and Poisson representing the material properties of each member as their initial values. The ratio, specific gravity, etc. are specified and assigned to the FEM model. In this case, the usage amount and thickness of the rubber material, the cross-sectional area of the cord material, the arrangement interval, the angle, and the like are taken into consideration.

次の第3ステップ(S3)では、実使用状態に相当するリムサイズの仮想リムにタイヤFEMモデルを装着して結合し、これに実使用状態に相当する評価条件として内圧とリム中心に垂直荷重を負荷し、タイヤの変形形状をFEMによって算出する。   In the next third step (S3), a tire FEM model is mounted and coupled to a virtual rim having a rim size corresponding to the actual use state, and an internal pressure and a vertical load are applied to the center of the rim as evaluation conditions corresponding to the actual use state. The tire is deformed and the deformed shape of the tire is calculated by FEM.

上記S1〜S3により、タイヤ構造体単体における、実使用状態でのタイヤ変形形状がFEM解析によって得られる(図2参照)。なお、FEM解析には、市販のFEM解析ソフトプログラム、例えば、構造解析プログラム「ABAQUS」等を使用することもできる。   By S1 to S3, the tire deformation shape in the actual use state in the tire structure alone is obtained by FEM analysis (see FIG. 2). For the FEM analysis, a commercially available FEM analysis software program such as a structural analysis program “ABAQUS” may be used.

次の第4ステップ(S4)では、タイヤ内部空洞部、すなわちタイヤ内部の空気層を多数の要素に分割したタイヤ空洞部FEMモデルで近似モデル化する。より詳しくは、タイヤ断面内面形状を基準形状とし、この基準形状をFEMによりモデル化して、内部空洞部の断面形状を表すと共にメッシュ分割によって複数の有限要素に分割されたタイヤ内部空洞部のFEMモデルを作成する。図3はタイヤ内部空洞部のFEMモデルの一例を示したものであり、図3に示すように、空洞部断面は複数の有限要素に分割されるとともにタイヤ周方向に複数に分割されている。   In the next fourth step (S4), an approximate model is formed by a tire cavity FEM model in which the tire cavity, that is, the air layer inside the tire is divided into a number of elements. More specifically, the tire cross-section inner surface shape is set as a reference shape, and this reference shape is modeled by FEM to represent the cross-sectional shape of the internal cavity, and the FEM model of the tire internal cavity divided into a plurality of finite elements by mesh division Create FIG. 3 shows an example of the FEM model of the tire internal cavity. As shown in FIG. 3, the cavity section is divided into a plurality of finite elements and divided into a plurality of tire circumferential directions.

次の第5ステップ(S5)では、前記タイヤ内部空洞FEMモデルに対して空気材料特性を表す体積弾性率、質量密度をFEMモデルに規定し付与する。そして、第6ステップ(S6)において、前記S3の計算により得られたタイヤ構造体単体の変形形状に基づき、前記空洞部FEMモデルの変形形状をFEMによって算出する。   In the next fifth step (S5), a volume elastic modulus and a mass density representing air material characteristics are defined and given to the FEM model with respect to the tire internal cavity FEM model. Then, in a sixth step (S6), the deformation shape of the cavity FEM model is calculated by FEM based on the deformation shape of the single tire structure obtained by the calculation of S3.

上記S4〜S6により、タイヤ内部空洞部における、変形形状がFEM解析によって得られる(図3参照)。   Through S4 to S6, a deformed shape in the tire internal cavity is obtained by FEM analysis (see FIG. 3).

つぎの第7ステップ(S7)は、前記第S3とS6の変位結果を参照した、タイヤ構造体と空洞部の変形形状を結合し、図4に示すようにFEMモデル化したタイヤ構造体+内部空洞部を結合したFEMモデルを作成する。   In the next seventh step (S7), referring to the displacement results of S3 and S6, the tire structure and the deformed shape of the cavity are combined, and the FEM modeled tire structure + inside as shown in FIG. An FEM model in which cavities are combined is created.

次の第8ステップ(S8)では、前記S7のFEMモデルに対してタイヤ構造体・空洞部の連成問題としてのFEMによる固有値計算を実行し、内圧と垂直荷重を負荷したタイヤの実使用状態における固有周波数を取得する。そして、前記FEM解析結果から得られた固有周波数に基づきタイヤの空洞共鳴周波数、音圧、伝達関数を取得し(第9ステップ)、その結果を評価することで終了する。   In the next eighth step (S8), an eigenvalue calculation by FEM is performed on the FEM model of S7 as a coupled problem of the tire structure / cavity, and the actual use state of the tire loaded with internal pressure and vertical load Get the natural frequency at. Then, based on the natural frequency obtained from the FEM analysis result, the tire cavity resonance frequency, sound pressure, and transfer function are acquired (9th step), and the result is evaluated to finish.

図5に、上記により得られたリムセンター部における空洞共鳴の伝達関数を例示する。   FIG. 5 illustrates a transfer function of cavity resonance in the rim center portion obtained as described above.

本発明に係る空洞共鳴予測方法は、タイヤ構造体とタイヤ空洞部を個別にモデル化し変形形状を得、両者を結合し固有値計算を行い固有周波数を取得するもので、周波数220〜230Hz付近に空洞共鳴周波数のピークが表れている。   The cavity resonance prediction method according to the present invention obtains a natural frequency by modeling a tire structure and a tire cavity individually, obtaining a deformed shape, and combining them to obtain a natural frequency. The peak of the resonance frequency appears.

本発明の空洞共鳴の予測方法の特長は、従来はタイヤ構造体のみをモデル化していたのに対し、タイヤ内部空洞部もモデル化することで空洞共鳴の予測が可能となり、さらに、FEMモデルの解析サイズを小さくすることで個々の演算効率を向上させ、その結果を結合したFEMモデルを解析することで短時間でのFEM解析が可能となる。   The feature of the method for predicting cavity resonance according to the present invention is that only the tire structure is conventionally modeled, but the cavity resonance can be predicted by modeling the cavity inside the tire. By reducing the analysis size, individual calculation efficiency is improved, and by analyzing the FEM model obtained by combining the results, FEM analysis can be performed in a short time.

タイヤサイズが205/50R17であり、タイヤ構造が異なる2つの空気入りラジアルタイヤ(コントロールタイヤと試作タイヤ)について、上記した本実施形態の解析方法に従って空洞共鳴周波数を予測するものと、従来のタイヤを実際に製造し実験計測する方法との所要時間を表1に、上記2つのタイヤの空洞共鳴周波数のFEM解析値と従来法による実測値を表2に示す。   For two pneumatic radial tires (control tire and trial tire) having a tire size of 205 / 50R17 and different tire structures, a cavity resonance frequency is predicted according to the analysis method of the present embodiment, and a conventional tire is used. Table 1 shows the time required for the actual manufacturing and experimental measurement method, and Table 2 shows the FEM analysis values of the cavity resonance frequencies of the two tires and the actual measurement values obtained by the conventional method.

なお、リムサイズは17×6.5JJ、空気圧は220kPa、荷重は5000Nとした。また、空洞共鳴周波数の実測は、所定の空気圧になるようにタイヤに空気を充填し、負荷荷重をかけた状態で、タイヤ外周上面のトレッド中央部に対し、Z方向(鉛直方向)にハンマー加振し、その際の軸に生じるZ方向の応答を振動伝達レベルで測定した。   The rim size was 17 × 6.5JJ, the air pressure was 220 kPa, and the load was 5000N. The cavity resonance frequency was measured by adding a hammer in the Z direction (vertical direction) to the center of the tread on the tire outer surface when the tire was filled with air to a predetermined air pressure and a load was applied. The response in the Z direction generated on the shaft at that time was measured at the vibration transmission level.

Figure 0005183970
Figure 0005183970

Figure 0005183970
Figure 0005183970

表に示すように、従来の手法に比べて、本発明に係る実施形態の手法では、解析時間が1/10に短縮され、また両タイヤ共に実測値に近いFEM解析結果が得られ、タイヤ空洞共鳴の精度の高い予測が可能であることが確認された。   As shown in the table, compared with the conventional method, in the method according to the embodiment of the present invention, the analysis time is shortened to 1/10, and the FEM analysis result close to the actual measurement value is obtained for both tires. It was confirmed that the resonance can be predicted with high accuracy.

本発明は、タイヤ空洞共鳴を高精度に予測することができ、そのため、タイヤの開発及び設計ステップに利用することができる。   The present invention can predict tire cavity resonance with high accuracy and can therefore be used in tire development and design steps.

本発明の1実施形態に係るタイヤ空洞共鳴予測方法の流れを示すブロック図である。It is a block diagram which shows the flow of the tire cavity resonance prediction method which concerns on one Embodiment of this invention. タイヤを複数の有限要素に分割したFEMモデルの図である。It is a figure of the FEM model which divided | segmented the tire into the several finite element. タイヤ空洞部を複数の有限要素に分割したFEMモデルの図である。It is a figure of the FEM model which divided the tire cavity part into a plurality of finite elements. タイヤと該タイヤ空洞部を結合したFEMモデルの図である。It is a figure of the FEM model which combined the tire and the tire cavity. FEM解析により得られた空洞共鳴の伝達関数を示すグラフである。It is a graph which shows the transfer function of cavity resonance obtained by FEM analysis.

Claims (2)

有限要素法によって、タイヤ構造体の変形形状を算出し、
前記タイヤ構造体の変形形状に基づきタイヤ空洞部の変形形状を算出し、
前記タイヤ構造体の変形形状と前記タイヤ空洞部の変形形状を結合して、前記タイヤ構造体及び空洞部の変形形状を表す有限要素モデル化した(タイヤ構造体+空洞部)の有限要素モデルを作成し、
タイヤ構造体と空洞部の連成問題としての有限要素法による固有値計算を実行し取得された固有周波数からタイヤの空洞共鳴周波数、音圧、伝達関数を取得しタイヤの空洞共鳴を予測する
ことを特徴とする空気入りタイヤの空洞共鳴の予測方法。
Calculate the deformation shape of the tire structure by the finite element method,
Based on the deformed shape of the tire structure, calculating a deformed shape of the tire cavity,
A finite element model (tire structure + cavity) representing a finite element model representing the tire structure and the deformed shape of the cavity by combining the deformed shape of the tire structure and the deformed shape of the tire cavity. make,
Execute the eigenvalue calculation by the finite element method as a coupled problem of the tire structure and the cavity, and obtain the cavity resonance frequency, sound pressure, and transfer function of the tire from the acquired natural frequency to predict the cavity resonance of the tire A method for predicting cavity resonance of a pneumatic tire.
タイヤ構造体を有限個の多数の要素に分割した有限要素モデルで近似モデル化してタイヤ有限要素モデルを作成する第1ステップと、
該タイヤ構造体を構成するトレッド、ベルト、カーカスなどの各部材の材料特性を表すヤング率、ポアソン比及び比重を前記タイヤ有限要素モデルに規定する第2ステップと、
前記タイヤ有限要素モデルに対して、評価条件である内圧及び荷重を定義し、タイヤ構造体の変形形状を有限要素によって算出する第3ステップと、
タイヤ内部空洞部を多数の要素に分割した有限要素モデルで近似モデル化してタイヤ空洞部有限要素モデルを作成する第4ステップと、
前記タイヤ空洞部有限要素モデルに対して空気材料特性を表す体積弾性率及び質量密度を規定する第5ステップと、
前記第3ステップの計算によるタイヤ構造体の変形形状に基づき、前記タイヤ空洞部有限要素モデルの変形形状を有限要素法によって算出する第6ステップと、
前記第3ステップと第6ステップで算出したタイヤ構造体の変形形状とタイヤ空洞部の変形形状を結合して、タイヤ構造体及び空洞部の変形形状を表す有限要素モデル化したタイヤ構造体+空洞部)の有限要素モデルを作成する第7ステップと、
前記第7ステップで作成した有限要素モデルに対してタイヤ構造体と空洞の連成問題としての有限要素法による固有値計算を実行する第8ステップと、
前記第8ステップで取得された固有周波数からタイヤの空洞共鳴周波数、音圧、伝達関数を取得する第9ステップとを有する
ことを特徴とする請求項1に記載の空気入りタイヤの空洞共鳴の予測方法。
A first step of creating a tire finite element model by approximating the tire structure with a finite element model obtained by dividing a tire structure into a finite number of elements;
A second step of defining, in the tire finite element model, a Young's modulus, Poisson's ratio and specific gravity representing material characteristics of each member such as a tread, a belt and a carcass constituting the tire structure;
For the tire finite element model, a third step of defining internal pressure and load as evaluation conditions, and calculating a deformation shape of the tire structure by a finite element;
A fourth step of creating a tire cavity finite element model approximated modeled by finite element model by dividing a tire internal cavity on a number of factors,
A fifth step of defining a bulk modulus and mass density representing air material properties for the tire cavity finite element model;
Based on the deformed shape of the tire structure according to the calculation of the third step, a sixth step of calculating a deformed shape of the tire cavity finite element model by a finite element method,
The deformed shape of the tire structure calculated in the third step and the sixth step and the deformed shape of the tire cavity are combined to form a finite element model representing the deformed shape of the tire structure and the cavity ( tire structure + A seventh step of creating a finite element model of the cavity ) ;
An eighth step of performing eigenvalue calculation by the finite element method as interaction problem of tire structure and the cavity portion for finite element model created in the seventh step,
The prediction of cavity resonance of a pneumatic tire according to claim 1, further comprising a ninth step of acquiring a cavity resonance frequency, sound pressure, and transfer function of the tire from the natural frequency acquired in the eighth step. Method.
JP2007143308A 2007-05-30 2007-05-30 Prediction method of cavity resonance of pneumatic tire Active JP5183970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007143308A JP5183970B2 (en) 2007-05-30 2007-05-30 Prediction method of cavity resonance of pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007143308A JP5183970B2 (en) 2007-05-30 2007-05-30 Prediction method of cavity resonance of pneumatic tire

Publications (2)

Publication Number Publication Date
JP2008296676A JP2008296676A (en) 2008-12-11
JP5183970B2 true JP5183970B2 (en) 2013-04-17

Family

ID=40170610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007143308A Active JP5183970B2 (en) 2007-05-30 2007-05-30 Prediction method of cavity resonance of pneumatic tire

Country Status (1)

Country Link
JP (1) JP5183970B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672797B2 (en) * 2010-06-25 2015-02-18 横浜ゴム株式会社 Simulation model creation method, simulation method, simulation model creation device, and simulation device
JP5740929B2 (en) * 2010-11-19 2015-07-01 横浜ゴム株式会社 Tire / wheel assembly model creation method, tire / wheel assembly model creation computer program, tire / wheel assembly simulation method, and tire / wheel assembly model creation apparatus
CN109649092B (en) * 2019-01-23 2020-09-04 合肥工业大学 Design method of pneumatic tire cavity resonance noise reduction device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063218A (en) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd Tire dynamics characteristic evaluating device
JP4177671B2 (en) * 2003-01-10 2008-11-05 住友ゴム工業株式会社 Method and apparatus for providing tire information

Also Published As

Publication number Publication date
JP2008296676A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
KR20100100877A (en) Method for simulating tire noise performance and method for manufacturing tire
JP4081330B2 (en) Mechanical property simulation method and mechanical property simulation apparatus for composite material
JP4745845B2 (en) Simulation method for radiation noise from tires
JP4639912B2 (en) Tire performance prediction method, tire performance prediction computer program, and tire / wheel assembly model creation method
JP5183970B2 (en) Prediction method of cavity resonance of pneumatic tire
JP5661526B2 (en) Simulation apparatus, method thereof and program thereof
JP4275991B2 (en) Tire performance simulation method and tire design method
JP4067934B2 (en) Tire performance prediction method using tire model, tire performance prediction program, and input / output device
JP6065472B2 (en) Tire model creation method, tire cross-sectional shape determination method, tire model creation device, and program
JP2002014011A (en) Simulation method for hydroplaning of tire
JP2004217075A (en) Tire model producing method, tire characteristic prediction method, tire model producing device, tire characteristic prediction device, and program for executing tire model producing method
JP4318971B2 (en) Tire performance simulation method and tire design method
JP3314082B2 (en) How to create a tire finite element model
JP7355579B2 (en) Tire model evaluation method and tire model creation method
JP6658108B2 (en) Tire vibration performance evaluation method
JP4761753B2 (en) Simulation method
JP4064192B2 (en) Tire model, tire performance prediction method, tire performance prediction program and input / output device using the tire model
JP3305705B1 (en) Tire running simulation method
JP5993185B2 (en) Tire rolling simulation method
JP2014141164A (en) Tire simulation method
JP6003174B2 (en) Tire model creation method for simulation, tire simulation method, computer program used in these methods, and tire simulation apparatus
JP3332370B1 (en) Tire running simulation method
JP4761752B2 (en) Simulation method
JP7359627B2 (en) Tire model evaluation method and tire model creation method
JP6312975B2 (en) Tire durability evaluation method and design method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Ref document number: 5183970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250