JP5182861B2 - Highly active thermostable chitinase - Google Patents

Highly active thermostable chitinase Download PDF

Info

Publication number
JP5182861B2
JP5182861B2 JP2008011128A JP2008011128A JP5182861B2 JP 5182861 B2 JP5182861 B2 JP 5182861B2 JP 2008011128 A JP2008011128 A JP 2008011128A JP 2008011128 A JP2008011128 A JP 2008011128A JP 5182861 B2 JP5182861 B2 JP 5182861B2
Authority
JP
Japan
Prior art keywords
chitinase
polypeptide
activity
mutant
mutation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008011128A
Other languages
Japanese (ja)
Other versions
JP2009171858A (en
Inventor
浩一 上垣
一彦 石川
努 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008011128A priority Critical patent/JP5182861B2/en
Publication of JP2009171858A publication Critical patent/JP2009171858A/en
Application granted granted Critical
Publication of JP5182861B2 publication Critical patent/JP5182861B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高活性耐熱性キチナーゼを提供するものである。   The present invention provides a highly active thermostable chitinase.

キチンはセルロースに次いで豊富に存在するバイオマスであり、種々の生物種(海老、蟹、昆虫等)により地球上で年間一千億トン生産されている。キチンを加水分解して得られるN-アセチルグルコサミンは健康食品添加物だけでなく、最近、潤い成分として話題になっているヒアルロン酸の原料にもなることから化粧業界も注目している。また皮膚炎、変形関節症などの治療薬としても期待され、幅広い産業分野でその利用が期待されている。キチナーゼは、植物や微生物などから得られる酵素であり、キチンを加水分解して上述したように非常に付加価値の高いN-アセチルグルコサミンを得るための工業的利用において非常に重要な役割を果たす酵素で、その有効利用が期待されている。その有効利用のためにはキチナーゼの開発が重要課題の一つである。   Chitin is the next most abundant biomass after cellulose, and is produced by various biological species (shrimp, moths, insects, etc.) on the earth every year for 100 billion tons. N-acetylglucosamine obtained by hydrolyzing chitin is not only a health food additive, but also a raw material for hyaluronic acid that has recently become a hot topic as a moisturizing ingredient, so the cosmetic industry is also drawing attention. It is also expected to be used as a therapeutic drug for dermatitis, osteoarthritis, etc. and is expected to be used in a wide range of industrial fields. Chitinase is an enzyme obtained from plants, microorganisms, etc., and plays an extremely important role in industrial use to hydrolyze chitin to obtain very high added value N-acetylglucosamine as described above. Therefore, its effective use is expected. The development of chitinase is one of the important issues for its effective use.

キチナーゼは、種々の由来のものが単離され、耐熱性キチナーゼについても知られている(特許文献1〜2)。我々は超好熱菌ピロコッカス・フリオサス(Pyrococcus furiosus)由来のキチナーゼ遺伝子よりキチナーゼの触媒ドメインを単離、精製し、結晶化に成
功し、さらに結晶中での立体構造をX線結晶解析で決定し、蛋白質工学的手法を用いキチ
ナーゼ触媒活性を増強するため必要となる結晶中での本ドメインの構造情報とキチナーゼの触媒ドメインの結晶を提供する特許を出願している(特許文献3発明の名称:結晶性キ
チンを分解するキチナーゼの触媒ドメインの結晶)。
Chitinases of various origins have been isolated and thermostable chitinases are also known (Patent Documents 1 and 2). We isolated and purified the catalytic domain of chitinase from the hyperthermophile Pyrococcus furiosus chitinase gene, successfully crystallized it, and determined the three-dimensional structure in the crystal by X-ray crystallography. Have applied for a patent that provides the structural information of the domain in the crystal and the crystal of the catalytic domain of the chitinase necessary for enhancing the chitinase catalytic activity using protein engineering techniques (Title of Invention: Patent Document 3) Crystals of the catalytic domain of chitinase that degrades crystalline chitin).

本発明者が先行特許(特許文献3)で示唆しているように、触媒ドメインを構成する298アミノ酸のうち、Gln526、Asp524、Asp522はキチナーゼ触媒活性に非常に重要であり、
キチナーゼ触媒能を向上した変異型ドメインを製造する場合、Gln526、Asp524、Asp522をまたはその周辺を改変するのが望ましい。そしてキチナーゼ触媒ドメインに導入されるアミノ酸変異は、1個〜数個、例えば1〜9個、好ましくは1〜6個、より好ましくは1〜4個、特に1〜2個である、と先行特許(特許文献3)に記載している。
特開2001−54381号公報 特開2006−25701号公報 特開2007−312687号公報
Among the 298 amino acids constituting the catalytic domain, Gln 526 , Asp 524 , Asp 522 are very important for chitinase catalytic activity, as suggested by the inventor in the prior patent (Patent Document 3).
When producing a mutant domain with improved chitinase catalytic ability, it is desirable to modify Gln 526 , Asp 524 , Asp 522 or the vicinity thereof. The prior patent states that the amino acid mutation introduced into the chitinase catalytic domain is 1 to several, for example 1 to 9, preferably 1 to 6, more preferably 1 to 4, particularly 1 to 2. (Patent Document 3).
JP 2001-54381A JP 2006-25701 A JP 2007-312687 A

本発明は高活性耐熱性キチナーゼを提供することを目的とする。   An object of the present invention is to provide a highly active thermostable chitinase.

本発明者は、上記特許出願に記載している高機能化に重要である触媒部位周辺のアミノ酸(図1)のうちの一つ486番のアラニンをセリンに置換した変異体を作製し、機能解析
を行い、本変異体が低分子合成基質に対する分解活性が野生型に比べ約2倍増強している
ことを見出した。
The present inventor created a mutant in which one of the amino acids around the catalytic site (FIG. 1), which is important for high functionality described in the above-mentioned patent application (FIG. 1), was substituted with serine. Analysis revealed that this mutant had about two times the degradation activity against low molecular weight synthetic substrates compared to the wild type.

本発明は、以下の発明に関する。
項1.配列番号1に記載のアミノ酸配列を含むポリペプチド。
項2.項1に記載のポリペプチドをコードする遺伝子。
項3.項1に記載のポリペプチドを含むキチナーゼ。
項4.項3に記載のキチナーゼをコードする遺伝子。
The present invention relates to the following inventions.
Item 1. A polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 1.
Item 2. A gene encoding the polypeptide according to Item 1.
Item 3. A chitinase comprising the polypeptide according to Item 1.
Item 4. A gene encoding the chitinase according to Item 3.

本発明によれば、高活性の改良耐熱性キチナーゼが提供される。本発明のキチナーゼを用いることにより、地球上に豊富に存在するバイオマスの一つであるキチンを有効利用することが可能となる。また、分解様式が異なるキチナーゼ(例えば大雑把にキチンを分解
するエンド型酵素)との混合することによりシナジー効果(共同的に働く)が期待できる。
さらに追記しておくと、本研究開発は耐熱性キチナーゼの触媒ドメインで行ったものであり、適切に基質結合ドメインを融合させることにより更なる活性向上が容易に期待できる。
According to the present invention, an improved thermostable chitinase having high activity is provided. By using the chitinase of the present invention, it is possible to effectively utilize chitin, which is one of the biomass abundantly present on the earth. In addition, synergistic effects (cooperative work) can be expected by mixing with chitinases with different degradation modes (for example, endo-type enzymes that roughly degrade chitin).
In addition, this research and development was carried out with the catalytic domain of thermostable chitinase, and further improvement in activity can be easily expected by appropriately fusing the substrate binding domain.

本発明に係る酵素を利用することで耐熱性のキチン分解酵素の開発に弾みがつくものと期待できる。   By utilizing the enzyme according to the present invention, it can be expected that the development of a thermostable chitinolytic enzyme will gain momentum.

以下、本発明につき詳述する。   Hereinafter, the present invention will be described in detail.

本発明のポリペプチドは、超好熱菌ピロコッカス・フリオサス由来キチナーゼの触媒ドメインと推定されるポリペプチド{遺伝子データベース(http://gib.genes.nig.ac.jp)中のPF1233遺伝子にコードされるアミノ酸配列(配列番号2)中409番のアスパラギンから706番のフェニルアラニンに対応する298アミノ酸からなるポリペプチド}において486番目のアラニンがセリンに置換されたアミノ酸配列(配列番号1)を含むポリペプチドである。更に本発明のポリペプチドにおいて1若しくは数個のアミノ酸が欠失、置換若しくは付加されたキチナーゼの触媒ドメインとしての機能を有するポリペプチドを作成することができる。例えば、表面に露出したアミノ酸については耐熱性を落とさずに変異可能である。また、本発明の上記ポリペプチドは触媒ドメインのみであってもキチナーゼとして機能できる。   The polypeptide of the present invention is encoded by the PF1233 gene in a polypeptide {gene database (http://gib.genes.nig.ac.jp), which is presumed to be the catalytic domain of the hyperthermophile Pyrococcus furiosus-derived chitinase. Polypeptide comprising the amino acid sequence (SEQ ID NO: 1) in which the 486th alanine is substituted with serine in the polypeptide consisting of 298 amino acids corresponding to asparagine No. 409 to phenylalanine No. 706 in the amino acid sequence (SEQ ID NO: 2) It is. Furthermore, a polypeptide having a function as a catalytic domain of chitinase in which one or several amino acids are deleted, substituted or added in the polypeptide of the present invention can be prepared. For example, amino acids exposed on the surface can be mutated without degrading heat resistance. The polypeptide of the present invention can function as a chitinase even if only the catalytic domain is present.

本発明の該ポリペプチドをコードする遺伝子は、該ポリペプチドのアミノ酸のコドンに対応するDNA配列である。用いるコドンは当該遺伝子を発現させる生物種等により適宜選
択できる。
The gene encoding the polypeptide of the present invention is a DNA sequence corresponding to the amino acid codon of the polypeptide. The codon to be used can be appropriately selected depending on the species of the gene that expresses the gene.

本発明の該ポリペプチドを含むキチナーゼは該ポリペプチドのN末端、C末端又はその両方に1以上のアミノ酸を付加したキチナーゼである。付加する1以上のアミノ酸は好ましくは基質結合ドメインである。該ポリペプチドを基質結合ドメインや他の機能性ポリペプチドと融合させることにより、活性増強、あるいは菌体外の培地に発現蛋白質を放出させることができる等が可能となる。その他、既存のキチナーゼの触媒ドメインを本発明のポリペプチドと交換することによって酵素活性を向上させることが可能である。   The chitinase containing the polypeptide of the present invention is a chitinase in which one or more amino acids are added to the N-terminus, C-terminus or both of the polypeptide. The one or more amino acids to be added are preferably a substrate binding domain. By fusing the polypeptide with a substrate-binding domain or other functional polypeptide, the activity can be enhanced, or the expressed protein can be released to a medium outside the cell. In addition, the enzyme activity can be improved by exchanging the catalytic domain of an existing chitinase with the polypeptide of the present invention.

本発明の該キチナーゼをコードする遺伝子は、該キチナーゼのアミノ酸のコドンに対応するDNA配列である。用いるコドンは当該遺伝子を発現させる生物種等により適宜選択で
きる。
The gene encoding the chitinase of the present invention is a DNA sequence corresponding to the amino acid codon of the chitinase. The codon to be used can be appropriately selected depending on the species of the gene that expresses the gene.

PF1233遺伝子はその配列情報に基づいて、一般的遺伝子工学的手法により容易に製造、取得することができる〔Molecular Cloning 2d Ed, Cold Spring Harbor Lab. Press (1989);続生化学実験講座「遺伝子研究法I、II、III」、日本生化学会編(1986)など参照〕
The PF1233 gene can be easily produced and obtained by general genetic engineering techniques based on the sequence information [Molecular Cloning 2d Ed, Cold Spring Harbor Lab. Press (1989); (See Laws I, II, III, edited by the Japanese Biochemical Society (1986))
.

取得したPF1233遺伝子を利用して通常の遺伝子工学的手法により、変異体の鋳型となる耐熱性キチナーゼの触媒ドメインを含む発現プラスミドを作成し、DNAに所望の変異を導
入できる。そして、このプラスミドで大腸菌等の発現系を形質転換し、タンパク質を発現
することができる。また、常法に従い、目的のポリペプチド、キチナーゼを精製、単離することができる。
By using the obtained PF1233 gene, an expression plasmid containing a thermostable chitinase catalytic domain as a template for the mutant can be prepared by a conventional genetic engineering technique, and a desired mutation can be introduced into DNA. Then, an expression system such as E. coli can be transformed with this plasmid to express the protein. Moreover, the target polypeptide and chitinase can be purified and isolated according to a conventional method.

耐熱性キチナーゼの触媒ドメインの遺伝子の前後どちらか一方又は両方に、通常の遺伝子工学的手法により、基質結合ドメイン等に対応するDNA配列を連結することにより、ポ
リペプチドを含むキチナーゼを製造することができる。
It is possible to produce a chitinase containing a polypeptide by ligating a DNA sequence corresponding to a substrate binding domain or the like to the one or both of the genes of the catalytic domain of the thermostable chitinase by a conventional genetic engineering technique. it can.

1つの実施形態において、本発明は、耐熱性菌由来のキチナーゼの触媒活性の増強方法を提唱するものであるが、他の微生物、植物、動物由来のキチナーゼであっても、本発明に示した変異導入部位(486番目)に構造学的上対応する場所がセリン以外のアミノ酸の場
合、本発明のデザイン方法に従い増強することができる。
In one embodiment, the present invention proposes a method for enhancing the catalytic activity of a chitinase derived from a thermostable bacterium, but even a chitinase derived from another microorganism, plant, or animal is shown in the present invention. When an amino acid other than serine is structurally corresponding to the mutation introduction site (486th position), it can be enhanced according to the design method of the present invention.

以下、本発明を実施例により詳細に説明するが、本発明がこれら実施例に限定されないことは言うまでもない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, it cannot be overemphasized that this invention is not limited to these Examples.

実験方法
触媒ドメインの変異体作成法
変異体の鋳型となる耐熱性キチナーゼの触媒ドメインを含む発現プラスミドはMine S, Nakamura T, Hirata K, Ishikawa K, Hagihara Y, Uegaki K. Acta Crystallogr Sect F Struct Biol Cryst Commun. 62. 791-793 (2006)で得たものを用いた。
変異体作成は次に示す合成DNAを用い、QuickChange mutagenesis kit (STARATAGENE社)
を用い行った。

各変異導入用合成DNAを以下に示す(下線が置換した後のコドン)
A486S (Ala→Ser 変異)
5’-GGAGAAGTAATAATATCCTTTGGTGGGGCTGTAG-3’
5’-CTACAGCCCCACCAAAGGATATTATTACTTCTCC-3’

M587Y (Met→Tyr変異)
5’-GTCAATCCAATGACGTACGATTACTACTGGACTC-3’
5’-GAGTCCAGTAGTAATCGTACGTCATTGGATTGAC-3’

M587A (Met→Ala変異)
5’-GTCAATCCAATGACGGCGGATTACTACTGGACTC-3’
5’-GAGTCCAGTAGTAATCCGCCGTCATTGGATTGAC-3’

D588N (Asp→Asn変異)
5’-CAATCCAATGACGATGAACTACTACTGGACTCC-3’
5’-GGAGTCCAGTAGTAGTTCATCGTCATTGGATTG-3’

D636N (Asp→Asn変異)
5’-CCAATGATAGGAGTAAATAACGACAAGAGTGTG-3’
5’-CACACTCTTGTCGTTATTTACTCCTATCATTGG-3’

D524N (Asp→Asn変異)
5'-GCCACTTACTTGGACTTTAACATAGAAGCCGG-3’
5'-CCGGCTTCTATGTTAAAGTCCAAGTAAGTGGC-3’

D524A (Asp→Ala変異)
5'-GCCACTTACTTGGACTTTGCGATAGAAGCCGG-3’
5'-CCGGCTTCTATCGCAAAGTCCAAGTAAGTGGC-3’

E526Q (Glu→Asn変異)
5'-GGACTTTGACATACAAGCCGGTATCGATGC-3’
5'-GCATCGATACCGGCTTGTATGTCAAAGTCC-3’

E526A (Glu→Ala変異)
5'-GGACTTTGACATAGCGGCCGGTATCGATGC-3’
5'-GCATCGATACCGGCCGCTATGTCAAAGTCC-3’
experimental method
Method for creating a mutant of the catalytic domain The expression plasmid containing the catalytic domain of thermostable chitinase used as a template for the mutant is Mine S, Nakamura T, Hirata K, Ishikawa K, Hagihara Y, Uegaki K. Acta Crystallogr Sect F Struct Biol Cryst Commun 62. 791-793 (2006) was used.
The mutants were created using the following synthetic DNA, QuickChange mutagenesis kit (STARATAGENE)
Was performed.

The synthetic DNA for mutagenesis is shown below (underlined codon after substitution)
A486S (Ala → Ser mutation)
5'-GGAGAAGTAATAATA TCC TTTGGTGGGGCTGTAG-3 '
5'-CTACAGCCCCACCAAA GGA TATTATTACTTCTCC-3 '

M587Y (Met → Tyr mutation)
5'-GTCAATCCAATGACG TAC GATTACTACTGGACTC-3 '
5'-GAGTCCAGTAGTAATC GTA CGTCATTGGATTGAC-3 '

M587A (Met → Ala mutation)
5'-GTCAATCCAATGACG GCG GATTACTACTGGACTC-3 '
5'-GAGTCCAGTAGTAATC CGC CGTCATTGGATTGAC-3 '

D588N (Asp → Asn mutation)
5'-CAATCCAATGACGATG AAC TACTACTGGACTCC-3 '
5'-GGAGTCCAGTAGTA GTT CATCGTCATTGGATTG-3 '

D636N (Asp → Asn mutation)
5'-CCAATGATAGGAGTAAAT AAC GACAAGAGTGTG-3 '
5'-CACACTCTTGTC GTT ATTTACTCCTATCATTGG-3 '

D524N (Asp → Asn mutation)
5'-GCCACTTACTTGGACTTT AAC ATAGAAGCCGG-3 '
5'-CCGGCTTCTAT GTT AAAGTCCAAGTAAGTGGC-3 '

D524A (Asp → Ala mutation)
5'-GCCACTTACTTGGACTTT GCG ATAGAAGCCGG-3 '
5'-CCGGCTTCTAT CGC AAAGTCCAAGTAAGTGGC-3 '

E526Q (Glu → Asn mutation)
5'-GGACTTTGACATA CAA GCCGGTATCGATGC-3 '
5'-GCATCGATACCGGC TTG TATGTCAAAGTCC-3 '

E526A (Glu → Ala mutation)
5'-GGACTTTGACATA GCG GCCGGTATCGATGC-3 '
5'-GCATCGATACCGGC CGC TATGTCAAAGTCC-3 '

キチナーゼの触媒ドメインを含有する形質転換体の作製
1.5ml容チューブ内に、大腸菌(E. coli)Rosetta(DE3)株(Novagen社)のコンピテントセ
ル0.04ml(20,000,000cfu/mg)と、上記調製した触媒ドメイン遺伝子含有プラスミドDNA溶液0.003ml(プラスミドDNA 8.4ng)を加え氷中に30分間放置した後、42℃で30秒間ヒート
ショックを与えた。次いで、チューブ内にSOC 培地を0.25ml加え、37℃で1時間振とう培養した。次いで、アンピシリンを含むLB寒天プレートに塗布し、37℃で一晩培養することにより形質転換体を得た。
Preparation of transformants containing chitinase catalytic domain
In a 1.5 ml tube, 0.04 ml (20,000,000 cfu / mg) of competent cells of E. coli Rosetta (DE3) strain (Novagen) and 0.003 ml of plasmid DNA solution containing the above-mentioned catalytic domain gene (plasmid) DNA (8.4 ng) was added and allowed to stand in ice for 30 minutes, followed by heat shock at 42 ° C. for 30 seconds. Next, 0.25 ml of SOC medium was added to the tube and cultured with shaking at 37 ° C. for 1 hour. Subsequently, it apply | coated to the LB agar plate containing an ampicillin, and the transformant was obtained by culture | cultivating at 37 degreeC overnight.

変異体キチナーゼの触媒ドメインの精製
得られた形質転換体をアンピシリンを含むLB培地に接種し、600nmにおける吸光度が0.5に達するまで37℃で培養した後、発現量を高めるためにIPTG(isopropyl-b-D-thiogalactopyranoside)を加え(最終濃度1mM)さらに19時間培養した。培養液を8,000rpmで10min
遠心分離することにより集菌した。集菌した菌体10gに、BugBuster溶液(NOVAGEN社)
100mlを加え、菌体を90Wの出力で30分間超音波破砕した。破砕した菌液を 15,000rpmで30分間遠心分離し、上清を採取した。BugBuster溶液で平衡化した金属キレートカラムHiTrap-Chelating(GEヘルスケア社製)カラム(事前に100mM NiCl2を10ml添加しNiを結
合)を用いてカラムクロマトグラフィーを行った。溶出は0.5Mイミダゾールを含む25mM
トリスヒドロキシメチルアミノメタン、 500mM NaCl (pH8.5)の直線グラジエントを用い
た。得られた目的分画にPreScission Protease(GEヘルスケア社製)を添加し、透析チュ
ーブ(分画サイズMw.3500)に入れ、25mMトリスヒドロキシアミノメタン、25mM NaCl (pH8.5)溶液で4℃、16時間、透析をおこなった。
Purification of mutant chitinase catalytic domain The resulting transformant was inoculated into LB medium containing ampicillin, cultured at 37 ° C until the absorbance at 600 nm reached 0.5, and then IPTG (isopropyl-bD to increase the expression level. -thiogalactopyranoside) was added (final concentration: 1 mM) and the cells were further cultured for 19 hours. 10 min at 8,000 rpm
Bacteria were collected by centrifugation. BugBuster solution (NOVAGEN) to 10g of collected cells
100 ml was added and the cells were sonicated at 90 W for 30 minutes. The disrupted bacterial solution was centrifuged at 15,000 rpm for 30 minutes, and the supernatant was collected. Column chromatography was carried out using a metal chelate column HiTrap-Chelating (manufactured by GE Healthcare) equilibrated with BugBuster solution (10 ml of 100 mM NiCl 2 was added in advance and Ni was bound). Elution is 25 mM with 0.5 M imidazole.
A linear gradient of trishydroxymethylaminomethane, 500 mM NaCl (pH 8.5) was used. PreScission Protease (manufactured by GE Healthcare) was added to the obtained target fraction, put into a dialysis tube (fraction size Mw.3500), and 4 ° C. with 25 mM Trishydroxyaminomethane, 25 mM NaCl (pH 8.5) solution. Dialysis was performed for 16 hours.

透析終了後、再び、25mMトリスヒドロキシメチルアミノメタン、25mM NaCl (pH8.5)溶液で平衡化した金属キレートカラムHiTrapーChelating(GEヘルスケア社製)カラム(事前に100mM NiCl2を10ml添加しNiを結合)に添加し、カラムを素通りした分画を回収し、25mMトリスヒドロキシメチルアミノメタン, 25mM NaCl(pH8.5)緩衝液で平衡化した陰イオン交換樹脂のHiTrapQ(GEヘルスケア社製)カラムに回収した分画を添加し、イオン交換
クロマトグラフィーを行った。目的タンパク質を含む分画にはSDS−ポリアクリルアミド
ゲル電気泳動により単一バンドを与える均一標品が含まれていた。
After completion of the dialysis, again, 25 mM tris (hydroxymethyl) aminomethane, and 25 mM NaCl (pH 8.5) (manufactured by GE Healthcare) was equilibrated with metal chelate column HiTrap chromatography Chelating column (previously 100 mM NiCl 2 was added 10 ml Ni The fraction that passed through the column was collected, and the anion exchange resin HiTrapQ (manufactured by GE Healthcare) equilibrated with 25 mM Trishydroxymethylaminomethane, 25 mM NaCl (pH 8.5) buffer. The collected fraction was added to the column, and ion exchange chromatography was performed. The fraction containing the target protein contained a homogeneous sample that gave a single band by SDS-polyacrylamide gel electrophoresis.

変異体の活性測定
酵素活性はp-ニトロフェニル-Di-N-アセチル-β-キトビオシド(生化学工業)を測定基質として用い、酵素反応により遊離したp-ニトロフェノールの量を定量した。反応はすべて50℃でおこなった。p-ニトロフェノールの定量は反応液と0.2M炭酸ナトリウム溶液pH10を50μlずつ混合後、405nmの吸光度を測定した。以下に示す反応条件により行った。

1)図2に示す酵素活性の時間変化の測定
100mM 酢酸ナトリウム pH 4.8
野生型キチナーゼ(14.1nM)あるいは変異体(6.9nM)
0.96mM p-ニトロフェニル-Di-N-アセチル-β-キトビオシド

2)図3に示す基質飽和曲線の測定
100mM 酢酸ナトリウム pH 5.5
野生型キチナーゼ(14.1nM)あるいは変異体(6.9nM)
種々のp-ニトロフェニル-Di-N-アセチル-β-キトビオシド濃度で60分までの反応曲線を
測定し反応速度を算出し、基質濃度に対し反応速度をプロット

3)表1野生型と変異型の反応速度論的パラメーターの比較
図3により測定した基質飽和曲線からミカエリス・メンテンの式に則り酵素と基質の親和性を表すKm(ミカエリス・メンテン定数)とタンパク質1分子あたり、1秒間に何個の基質を触媒するか、を示すkcat(分子活性)を算出した。
Activity measurement of mutants The enzyme activity was determined by using p-nitrophenyl-Di-N-acetyl-β-chitobioside (Seikagaku Corporation) as a measurement substrate and quantifying the amount of p-nitrophenol released by the enzymatic reaction. All reactions were carried out at 50 ° C. p-Nitrophenol was quantified by mixing 50 μl of the reaction solution with 0.2 M sodium carbonate solution pH 10 and measuring the absorbance at 405 nm. The reaction was performed under the following reaction conditions.

1) Measurement of enzyme activity over time shown in Fig. 2
100 mM sodium acetate pH 4.8
Wild-type chitinase (14.1nM) or mutant (6.9nM)
0.96 mM p-nitrophenyl-Di-N-acetyl-β-chitobioside

2) Measurement of substrate saturation curve shown in Fig. 3
100 mM sodium acetate pH 5.5
Wild-type chitinase (14.1nM) or mutant (6.9nM)
Measure reaction curves up to 60 minutes at various p-nitrophenyl-Di-N-acetyl-β-chitobioside concentrations, calculate reaction rates, and plot reaction rates against substrate concentrations

3) Table 1 Comparison of wild-type and mutant-type kinetic parameters K m (Michaelis-Menten constant) representing the affinity between the enzyme and the substrate according to the Michaelis-Menten equation from the substrate saturation curve measured according to FIG. The k cat (molecular activity) indicating how many substrates are catalyzed per protein molecule per second was calculated.

Figure 0005182861
Figure 0005182861

4)図4に示す他の変異型と野生型の活性比較
100mM 酢酸ナトリウム pH 5.5
0.48mM p-ニトロフェニル-Di-N-アセチル-β-キトビオシド
の反応液に以下の酵素濃度になるように各々、酵素を加え15分反応を行った。
野生型、変異型キチナーゼ(A486S,M587Y,D588N,D636N,D524N)(最終濃度14nM)、変異体(M587A,D524A,E526Q,E526A)に関しては(最終濃度1200,1200,2200,2200nM)で行った。野生型
を100%と各変異体の相対比較値を示す。
4) Comparison of activity between other mutant types and wild type shown in Fig. 4
100 mM sodium acetate pH 5.5
Each enzyme was added to a reaction solution of 0.48 mM p-nitrophenyl-Di-N-acetyl-β-chitobioside so as to have the following enzyme concentration and reacted for 15 minutes.
For wild-type and mutant chitinases (A486S, M587Y, D588N, D636N, D524N) (final concentration 14 nM) and mutants (M587A, D524A, E526Q, E526A) (final concentrations 1200, 1200, 2200, 2200 nM) . The relative value of each mutant is shown as 100% wild type.

反応速度パラメーターの解析
図2に示しているように酵素反応の時間変化は明らかに野生型に比べ変異型の方が高活性であることが分かった。しかしこの現象は酵素反応論的に言えば基質結合が強化されたこと(Km)によるか、あるいは反応効率が強化されたこと(kcat)によるのか区別する必要がある。そこでどちらの効果がより強いのかを知るために図3に示す基質濃度に依存した反応速度をプロットし(基質飽和曲線)、酵素反応パラメーターを求めた。表1はその結果を示しているが、野生型、変異体共に基質との親和性を示すKmは大きく変化することがなく、反応効率を示すkcatが2倍以上強化されたことがわかった。このことから変異導入す
ることにより変異体の低分子合成基質に対する分解活性がおおきく増強した酵素開発に成功したと結論できる。触媒部位を形成する他のアミノ酸(524D、526E、587M、588D、636D
図1参照)に対し変異導入を行い、活性の変化を調べた(図4)。その結果、486Aを除き
他のアミノ酸変異では活性増強は見られず、変異を行ったアミノ酸すべてにおいて活性低下を引き起こすことが分かった。以上の解析結果から、本研究で活性増強に効果のあったアミノ酸変異体はA486Sのみであることが分かった。だたし、注意しておくべき点は変異
により活性が低下したアミノ酸の位置(524D、526E、587M、588D、636D)は活性に重要な役割を果たしている事は本実験から明らかであり、例えば他のアミノ酸変異、あるいはこれらのアミノ酸に複数個所に変異導入を行う事により、活性増強を果たすことができる可能性は残っている。
Analysis of reaction rate parameter As shown in FIG. 2, it was found that the time course of the enzyme reaction was clearly higher in the mutant type than in the wild type. However, it is necessary to distinguish whether this phenomenon is due to enhanced substrate binding (K m ) or enhanced reaction efficiency (k cat ) in terms of enzyme reaction. Therefore, in order to know which effect is stronger, the reaction rate depending on the substrate concentration shown in FIG. 3 was plotted (substrate saturation curve), and enzyme reaction parameters were obtained. Table 1 shows the results, the wild type, K m indicating the affinity between the variants both substrates without changes significantly, found that k cat showing the reaction efficiency is enhanced more than twice It was. From this, it can be concluded that the introduction of mutation has succeeded in the development of an enzyme with greatly enhanced degradation activity of the mutant against a low molecular weight synthetic substrate. Other amino acids that form the catalytic site (524D, 526E, 587M, 588D, 636D
Mutation was carried out on (see FIG. 1), and the change in activity was examined (FIG. 4). As a result, with the exception of 486A, the other amino acid mutations showed no activity enhancement, and it was found that all the amino acids subjected to the mutation caused a decrease in activity. From the above analysis results, it was found that A486S was the only amino acid variant that was effective in enhancing the activity in this study. However, it is clear from this experiment that the amino acid positions (524D, 526E, 587M, 588D, 636D) whose activity has been reduced by mutation play an important role in the activity. There is still a possibility that the activity can be enhanced by other amino acid mutations or by introducing mutations into these amino acids at a plurality of positions.

キチナーゼの触媒部位周辺のアミノ酸の立体配置図である。Gln526、Asp524、Ala486、M587、D588、D636の空間配置を示す。FIG. 3 is a configuration diagram of amino acids around the catalytic site of chitinase. The spatial arrangement of Gln526, Asp524, Ala486, M587, D588, and D636 is shown. 実施例において酵素活性の時間変化を表す図である。It is a figure showing the time change of an enzyme activity in an Example. 実施例において基質飽和曲線を表す図である。It is a figure showing a substrate saturation curve in an Example. 実施例において他の変異型と野生型の酵素活性の比較を表す図である。In an Example, it is a figure showing the comparison of the enzyme activity of another mutant type and a wild type.

Claims (4)

配列番号1に記載のアミノ酸配列からなるポリペプチド。 Polypeptide comprising an amino acid sequence shown in SEQ ID NO: 1. 請求項1に記載のポリペプチドをコードする遺伝子。 A gene encoding the polypeptide of claim 1. 請求項1に記載のポリペプチドを含むキチナーゼ。 A chitinase comprising the polypeptide of claim 1. 請求項3に記載のキチナーゼをコードする遺伝子。 A gene encoding the chitinase according to claim 3.
JP2008011128A 2008-01-22 2008-01-22 Highly active thermostable chitinase Expired - Fee Related JP5182861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008011128A JP5182861B2 (en) 2008-01-22 2008-01-22 Highly active thermostable chitinase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011128A JP5182861B2 (en) 2008-01-22 2008-01-22 Highly active thermostable chitinase

Publications (2)

Publication Number Publication Date
JP2009171858A JP2009171858A (en) 2009-08-06
JP5182861B2 true JP5182861B2 (en) 2013-04-17

Family

ID=41027716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011128A Expired - Fee Related JP5182861B2 (en) 2008-01-22 2008-01-22 Highly active thermostable chitinase

Country Status (1)

Country Link
JP (1) JP5182861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116064484A (en) * 2022-09-21 2023-05-05 山东弥美生物科技股份有限公司 Mutant chitinase SsChi18A-2 and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116064485B (en) * 2022-09-21 2024-02-23 山东弥美生物科技股份有限公司 Mutant chitinase SsChi18A-3 and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312687A (en) * 2006-05-26 2007-12-06 National Institute Of Advanced Industrial & Technology Crystal of catalytic domain of chitinase decomposing crystalline chitin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116064484A (en) * 2022-09-21 2023-05-05 山东弥美生物科技股份有限公司 Mutant chitinase SsChi18A-2 and application thereof
CN116064484B (en) * 2022-09-21 2024-02-23 山东弥美生物科技股份有限公司 Mutant chitinase SsChi18A-2 and application thereof

Also Published As

Publication number Publication date
JP2009171858A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
Hoyoux et al. Cold-adapted β-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis
Alquati et al. The cold‐active lipase of Pseudomonas fragi: Heterologous expression, biochemical characterization and molecular modeling
Rina et al. Alkaline phosphatase from the Antarctic strain TAB5: properties and psychrophilic adaptations
Ewis et al. Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus
Jiao et al. A GH57 family amylopullulanase from deep-sea Thermococcus siculi: expression of the gene and characterization of the recombinant enzyme
Ojima et al. Biochemical characterization of a thermophilic cellobiose 2-epimerase from a thermohalophilic bacterium, Rhodothermus marinus JCM9785
CN102597232B (en) Method for designing mutant enzyme, method for preparing mutant enzyme, and mutant enzyme
Li et al. Identification of a new thermostable and alkali-tolerant α-carbonic anhydrase from Lactobacillus delbrueckii as a biocatalyst for CO 2 biomineralization
Tsujimoto et al. Gene cloning, expression, and crystallization of a thermostable exo-inulinase from Geobacillus stearothermophilus KP1289
JP5006380B2 (en) Novel α-galactosidase
AU2012281960B2 (en) Mutant beta-glucosidase, enzyme composition for decomposing biomass, and method for producing sugar solution
Jiewei et al. Purification and characterization of a cold-adapted lipase from Oceanobacillus strain PT-11
Mahadevan et al. Thermostable lipase from Geobacillus sp. Iso5: Bioseparation, characterization and native structural studies
Li et al. Characterization of a new S8 serine protease from marine sedimentary Photobacterium sp. A5–7 and the function of its protease-associated domain
Fan et al. Engineering of Alicyclobacillus hesperidum L-arabinose isomerase for improved catalytic activity and reduced pH optimum using random and site-directed mutagenesis
JP5182861B2 (en) Highly active thermostable chitinase
Fu et al. Purification and characterization of a thermostable aliphatic amidase from the hyperthermophilic archaeon Pyrococcus yayanosii CH1
Ben Hlima et al. Engineered glucose isomerase from Streptomyces sp. SK is resistant to Ca2+ inhibition and Co2+ independent
JP4815219B2 (en) DNA containing an alkalophilic cyclodextran synthase gene, recombinant DNA, and method for producing an alkalophilic cyclodextran synthase
Shi et al. Enhancing the thermostability of a novel β-agarase AgaB through directed evolution
Ohshima et al. The Sulfolobus tokodaii gene ST1704 codes highly thermostable glucose dehydrogenase
An et al. Structural and biochemical analysis of the asc operon encoding 6-phospho-β-glucosidase in Pectobacterium carotovorum subsp. carotovorum LY34
Maloney et al. Mitochondrial malate dehydrogenase from the thermophilic, filamentous fungus Talaromyces emersonii: Purification of the native enzyme, cloning and overexpression of the corresponding gene
Itoh et al. Structural and functional characterization of a glycoside hydrolase family 3 β-N-acetylglucosaminidase from Paenibacillus sp. str. FPU-7
Cui et al. Efficient synthesis of Ala-Tyr by L-amino acid ligase coupled with ATP regeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Ref document number: 5182861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees