JP5182858B2 - Sensitizer for X-ray therapy - Google Patents

Sensitizer for X-ray therapy Download PDF

Info

Publication number
JP5182858B2
JP5182858B2 JP2007333562A JP2007333562A JP5182858B2 JP 5182858 B2 JP5182858 B2 JP 5182858B2 JP 2007333562 A JP2007333562 A JP 2007333562A JP 2007333562 A JP2007333562 A JP 2007333562A JP 5182858 B2 JP5182858 B2 JP 5182858B2
Authority
JP
Japan
Prior art keywords
ray
protoporphyrin
sensitizer
cells
porphyrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007333562A
Other languages
Japanese (ja)
Other versions
JP2009155239A (en
Inventor
雅樹 三澤
淳子 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007333562A priority Critical patent/JP5182858B2/en
Publication of JP2009155239A publication Critical patent/JP2009155239A/en
Application granted granted Critical
Publication of JP5182858B2 publication Critical patent/JP5182858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、X線照射により、ガン細胞などの悪性新生物、ガン前駆細胞、ウイルスおよび細菌が感染した細胞を損傷または死滅させる効果を発揮するX線治療用増感剤に関する。   The present invention relates to a sensitizer for X-ray treatment that exhibits an effect of damaging or killing malignant neoplasms such as cancer cells, cancer precursor cells, cells infected with viruses and bacteria by X-ray irradiation.

従来の放射線治療では、高エネルギーのX線、ガンマ線を腫瘍に集中的に照射すると、細胞内の水がヒドロキシラジカルと水素原子に分解され、細胞内の酸素と反応して、スーパーオキシドやヒドロペルオキシラジカルが生成される。これらの活性酸素やフリーラジカルは、細胞の中のDNAに直接損傷を与える場合と、細胞膜の脂質から水素を引き抜き、過酸化ラジカルの連鎖によって過酸化脂質に変質させて細胞膜傷害を引き起こす間接的な損傷経路の2つの系統がある。しかし、放射線を標的細胞にのみ選択的に照射することはできないので、これらの反応が患部周囲の正常細胞でも進行し、強度の放射線が照射された経路および患部周辺では、腫瘍細胞と正常細胞の区別なく、損傷を与えてしまう結果となる。   In conventional radiotherapy, when high-energy X-rays or gamma rays are intensively irradiated to a tumor, intracellular water is decomposed into hydroxy radicals and hydrogen atoms, and reacts with intracellular oxygen to produce superoxide and hydroperoxy Radicals are generated. These active oxygens and free radicals cause direct damage to DNA in the cell, and indirectly, by extracting hydrogen from lipids in cell membranes and transforming them into lipid peroxides through a chain of peroxide radicals, causing cell membrane damage. There are two systems of damage pathways. However, since it is not possible to selectively irradiate only the target cells with radiation, these reactions also proceed in normal cells around the affected area, and there are tumor cells and normal cells in the path and around the affected area. The result is damaging without discrimination.

放射線治療をより効果的に行うため、正常組織の損傷を抑え、特異的に腫瘍の放射線感受性を高める増感剤の開発が進められており、このような増感剤としてメタロポルフィリン類を使用することが提案されている。(例えば、特許文献1,2参照)
特開2006−298897号公報 特表2005−504012号公報
In order to perform radiation therapy more effectively, sensitizers that suppress normal tissue damage and specifically increase the radiosensitivity of tumors are being developed, and metalloporphyrins are used as such sensitizers. It has been proposed. (For example, see Patent Documents 1 and 2)
Japanese Unexamined Patent Publication No. 2006-289897 JP-T-2005-504012

これらの特許文献に記載されたメタロポルフィリン類は、ポルフィリン誘導体を骨格として2価または3価の鉄等の金属イオンを含み、さらに、側鎖にベンゼン環を複数もった構造となっており、動植物の生体由来であるプロトポルフィリンやヘマトポルフィリン、ポルフィリン塩等に比べて大型で複雑な構造となる。そのため、腫瘍細胞内部への取り込みが低下したり、鉄によるラジカルの触媒作用が進行して細胞を損傷するおそれがある。   The metalloporphyrins described in these patent documents contain a metal ion such as divalent or trivalent iron with a porphyrin derivative as a skeleton, and have a structure having a plurality of benzene rings in the side chain. Compared to protoporphyrin, hematoporphyrin, porphyrin salt and the like, which are derived from the living body, the structure is large and complicated. Therefore, there is a possibility that the uptake into tumor cells may be reduced, or the catalytic action of radicals by iron proceeds to damage the cells.

一方、ポルフィリン類化合物の一種であるヘマトポルフィリン誘導体は、光感受性物質としてレーザーと光感受性物質を組み合わせてがん治療を行う光線力学的治療(PDT:Photodynamic Therapy)に用いられている。作用機構は一重項酸素1O2によるものとされており、光感受性物質が特定波長の光で照射されたとき、分子は光を吸収し光のエネルギーが分子を励起状態に引き上げ、次いで励起エネルギーは酸素分子にわたされ、酸素分子を1O2に変換すると同時に色素分子は基底状態に戻る。1O2はタンパク質のメチオニン、トリプトファン、ヒスチジン、システインの残基を酸化損傷し、不飽和脂肪酸と反応して過酸化脂質を生じる。PDTでは、励起光源として赤色レーザーを使うため生体組織への透過性が低く、表面から1cm程度の深さの患部までが限界であり、大きな腫瘍や深部の腫瘍には適さない。 On the other hand, a hematoporphyrin derivative, which is a kind of porphyrin compound, is used for photodynamic therapy (PDT) in which cancer is treated by combining a laser and a photosensitive substance as a photosensitive substance. The mechanism of action is due to singlet oxygen 1 O 2 and when a photosensitive substance is irradiated with light of a specific wavelength, the molecule absorbs light and the energy of the light raises the molecule to an excited state, and then the excitation energy Is passed to the oxygen molecule, and at the same time it converts the oxygen molecule to 1 O 2 , the dye molecule returns to the ground state. 1 O 2 oxidatively damages the residues of protein methionine, tryptophan, histidine, and cysteine, and reacts with unsaturated fatty acids to produce lipid peroxides. PDT uses a red laser as an excitation light source, and thus has low permeability to living tissue, and is limited to the affected area about 1 cm deep from the surface, and is not suitable for large tumors or deep tumors.

したがって、本発明はこれら従来技術の問題点を解消して、X線を照射して腫瘍等の患部の標的細胞を治療する際に、深部にある患部にも適用することが可能で、X線のエネルギーを効率よく標的細胞に伝達して標的細胞を損傷し、しかも周囲の正常細胞の損傷を低減することのできる低被曝、低侵襲のX線治療用の増感剤を提供することを目的とする。   Therefore, the present invention can be applied to a deeply affected area when the target cells of the affected area such as a tumor are treated by irradiating X-rays by solving the problems of the prior art. To provide a low-exposure and minimally invasive sensitizer for X-ray treatment that can efficiently transfer the energy of the target to the target cell to damage the target cell and reduce damage to surrounding normal cells And

本発明者等は鋭意検討した結果、側鎖にベンゼン環を持たない生体由来のプロトポルフィリンやそのナトリウム塩等の特定のポルフィリン類が、X線を照射しない時は細胞毒性が低く、X線照射時のみ、効率よく増感作用を発現することを見出し本発明を完成したものである。
すなわち、本発明は次の構成を採用するものである。
1.プロトポルフィリン、プロトポルフィリンナトリウム、ヘマトポルフィリン及び5-アミノレヴリン酸からなる群から選択された化合物を有効成分として含有するX線治療用増感剤。
5-アミノレヴリン酸(ALA)自体は光感受性を有さないが、生体内投与後に腫瘍内に選択的にプロトポルフィリンIX(PpIX)が生成され、PpIXの吸収波長で同様にX線治療用増感剤としての作用を有するものである。現在PDTで臨床応用されているレザフィリン、フォトフィリンもポルフィリン骨格を基本構造として持ちながら、その周囲にベンゼン環を持たない構造であるため、細胞毒性が低く、X線によって増感作用を発揮するという本発明の範疇に入る。
2.前記X線治療用増感剤が、200keV以下の低エネルギーX線、望ましくは1〜100keV程度のX線エネルギーで、10Gy以下の吸収線量で増感効果を発現するものである1に記載のX線治療用増感剤。
As a result of intensive studies, the present inventors have found that certain porphyrins such as protoporphyrin derived from a living body having no benzene ring in its side chain and its sodium salt have low cytotoxicity when X-ray irradiation is not performed, and X-ray irradiation The present invention has been completed by finding that the sensitizing action can be efficiently expressed only at times.
That is, the present invention employs the following configuration.
1. A sensitizer for X-ray therapy containing a compound selected from the group consisting of protoporphyrin, protoporphyrin sodium, hematoporphyrin and 5-aminolevulinic acid as an active ingredient.
5-Aminolevulinic acid (ALA) itself does not have photosensitivity, but protoporphyrin IX (PpIX) is selectively produced in the tumor after in vivo administration, and is similarly sensitized for X-ray therapy at the absorption wavelength of PpIX. It has an action as an agent. Rezaphyrin and photophyllin currently applied clinically in PDT have a porphyrin skeleton as a basic structure but do not have a benzene ring around it, and therefore have low cytotoxicity and exert a sensitizing effect by X-rays. It falls within the scope of the present invention.
2. 2. The X-ray therapeutic sensitizer according to 1, wherein the sensitizer for X-ray therapy exhibits a sensitizing effect with an absorbed dose of 10 Gy or less at a low energy X-ray of 200 keV or less, desirably about 1 to 100 keV. Sensitizer for radiation therapy.

本発明のX線治療用増感剤は、次のような顕著な効果を奏するものである。
(1)ポルフィリン環内に遷移金属イオンを含まないために、X線を照射しない条件下での細胞損傷を抑制することができる。また、側鎖にベンゼン環等の有機化合物を含まない動植物の生体由来のポルフィリン誘導体であるために、細胞内への取り込みが容易となる。
(2)治療用X線発生装置(200keV以上)よりもX線エネルギーの低い、診断用X線装置(200keV以下)の領域で、かつ、従来の治療被曝量(50〜70Gy)より低い低線量域(10Gy以下)で増感作用を発現する。
(3)吸収したX線エネルギーを酸化還元反応に変換して、活性酸素種又はフリーラジカルを発生させることにより、X線照射量に応じて治療の強度を制御できるため、低被曝の治療に有効である。
(4)生体適合性があって腫瘍に選択的に取りこまれるポルフィリンを用いることにより、遠達力のあるX線照射によって大きな腫瘍、深部の腫瘍の治療が可能となる。
The sensitizer for X-ray treatment of the present invention has the following remarkable effects.
(1) Since no transition metal ion is contained in the porphyrin ring, cell damage under conditions where X-ray irradiation is not performed can be suppressed. In addition, since it is a porphyrin derivative derived from animals and plants that do not contain an organic compound such as a benzene ring in its side chain, it can be easily taken into cells.
(2) Low X-ray energy in the region of diagnostic X-ray equipment (200 keV or less), lower X-ray energy than therapeutic X-ray generator (200 keV or more), and lower than conventional therapeutic dose (50-70 Gy) Sensitization effect is expressed in the range (10 Gy or less).
(3) By converting the absorbed X-ray energy into a redox reaction and generating reactive oxygen species or free radicals, the intensity of treatment can be controlled according to the amount of X-ray irradiation. It is.
(4) By using porphyrin that is biocompatible and is selectively taken into the tumor, it is possible to treat large tumors and deep tumors by long-distance X-ray irradiation.

本発明では、X線治療用増感剤として、プロトポルフィリン、プロトポルフィリンナトリウム、ヘマトポルフィリン及び5-アミノレヴリン酸からなる群から選択された化合物を使用することを特徴とする。
下記の化学式(1)〜(3)に示すように、プロトポルフィリン(1)、ヘマトポルフィリン(2)及びプロトポルフィリンナトリウム(3)は、側鎖にベンゼン環等の有機基を含まない動植物の生体由来のポルフィリン誘導体であるために、特許文献1に記載された側鎖に複数のベンゼン環を有する大型で複雑な構造のポルフィリン誘導体に比較して、生体内への取り込みが容易である。
In the present invention, a compound selected from the group consisting of protoporphyrin, sodium protoporphyrin, hematoporphyrin and 5-aminolevulinic acid is used as a sensitizer for X-ray treatment.
As shown in the following chemical formulas (1) to (3), protoporphyrin (1), hematoporphyrin (2) and protoporphyrin sodium (3) are living animals and plants that do not contain an organic group such as a benzene ring in the side chain. Since it is a derived porphyrin derivative, it can be easily incorporated into a living body as compared with a porphyrin derivative having a large and complicated structure having a plurality of benzene rings in the side chain described in Patent Document 1.

また、5-アミノレヴリン酸(ALA)自体は次の式(4)で表される化合物であり、それ自体は光感受性を有さないが、生体内投与後に腫瘍内に選択的にプロトポルフィリンIX(PpIX)が生成され、PpIXの吸収波長で同様にX線治療用増感剤としての作用を有する。
NCHCOCHCHCOOH (4)
これらのX線治療用増感剤は、ポルフィリン環内に遷移金属イオンを含まないために、X線を照射しない時は細胞毒性が低く、X線照射時のみ、効率よく増感作用を発現することができる。また、現在PDTで臨床応用されているレザフィリン、フォトフィリンもポルフィリン骨格を基本構造として持ちながら、その周囲にベンゼン環を持たない構造であるため、細胞毒性が低く、X線によって増感作用を発揮するという本発明の範疇に入る。
In addition, 5-aminolevulinic acid (ALA) itself is a compound represented by the following formula (4), which itself does not have photosensitivity, but selectively receives protoporphyrin IX ( PpIX) is produced and has the same action as a sensitizer for X-ray therapy at the absorption wavelength of PpIX.
H 2 NCH 2 COCH 2 CH 2 COOH (4)
Since these X-ray therapeutic sensitizers do not contain a transition metal ion in the porphyrin ring, they have low cytotoxicity when not irradiated with X-rays, and efficiently develop a sensitizing action only when irradiated with X-rays. be able to. Rezaphyrin and photophyllin currently applied clinically in PDT have a porphyrin skeleton as a basic structure but do not have a benzene ring around it. Therefore, cytotoxicity is low, and X-rays exert a sensitizing effect. This is within the scope of the present invention.

本発明のX線治療用増感剤は、通常の方法で、注射剤、坐剤、錠剤、散剤、顆粒剤、カプセル剤、丸剤、軟膏剤、液剤、貼付剤、バップ剤、エアゾール剤などの種々の剤形にすることができる。注射剤を製造する場合は、適当な溶剤、必要に応じて、pH調整剤、緩衝剤、安定化剤、懸濁剤、溶解補助剤、担体等を添加し、常法により注射剤にすることができる。   The sensitizer for X-ray treatment of the present invention is an ordinary method such as injection, suppository, tablet, powder, granule, capsule, pill, ointment, liquid, patch, buccal, aerosol, etc. Various dosage forms. When manufacturing an injection, add an appropriate solvent, if necessary, pH adjuster, buffer, stabilizer, suspension, solubilizer, carrier, etc. Can do.

安定化剤としては、亜硫酸ナトリウム、メタ亜硫酸ナトリウムなどが用いられる。懸濁剤としては、例えば、メチルセルロース、ポリソルベート80、アラビアゴム等が用いられる。溶解補助剤としては、ポリオキシエチレン硬化ヒマシ油、ニコチン酸アミド、ポリオキシエチレンソルビタンモノラウレートなどが用いられる。   As the stabilizer, sodium sulfite, sodium metasulfite and the like are used. As the suspending agent, for example, methylcellulose, polysorbate 80, gum arabic and the like are used. As the solubilizer, polyoxyethylene hydrogenated castor oil, nicotinamide, polyoxyethylene sorbitan monolaurate, or the like is used.

注射剤は、例えば、X線治療用増感剤を注射用生理食塩水などの水性担体にあらかじめ、溶解、分散、乳化等するか、または注射用の粉末にして、用時に溶解、分散、乳化等することにより製造することができる。
注射剤の投与方法としては、静脈内投与、動脈内投与、門脈内投与、筋肉内投与、腹腔内投与、皮下投与、病巣内直接投与等が挙げられる。
For injection, for example, an X-ray therapeutic sensitizer is dissolved, dispersed, emulsified or the like in advance in an aqueous carrier such as physiological saline for injection, or dissolved, dispersed or emulsified at the time of use as a powder for injection. It can manufacture by doing.
Examples of the administration method of the injection include intravenous administration, intraarterial administration, intraportal administration, intramuscular administration, intraperitoneal administration, subcutaneous administration, and intralesional direct administration.

錠剤、散剤、顆粒剤、カプセル剤、丸剤、坐剤等の固形製剤、またはシロップ剤等の液剤は、X線治療用増感剤に賦形剤、結合剤、崩壊剤、滑沢剤、着色剤、矯味剤、矯臭剤、増量剤、被覆剤等を加え、常法に従い製造することができる。例えば、X線治療用増感剤を常法に従い錠剤、散剤、顆粒剤、カプセル剤、丸剤、シロップ剤に製剤化し、経口投与してもよい。
軟膏剤、液剤、貼付剤、バップ剤、エアゾール剤は、X線治療用増感剤と適当な担体とから、常法により製造することができ、外用剤として病巣部に直接適用してもよい。本発明のX線治療用増感剤は、1種または2種以上適宜組み合わせて用いてもよい。
Solid preparations such as tablets, powders, granules, capsules, pills, suppositories, or liquids such as syrups are sensitizers for X-ray treatment, excipients, binders, disintegrants, lubricants, A coloring agent, a flavoring agent, a flavoring agent, a bulking agent, a coating agent, and the like can be added to produce the composition according to a conventional method. For example, a sensitizer for X-ray treatment may be formulated into tablets, powders, granules, capsules, pills, and syrups according to a conventional method and administered orally.
Ointments, liquids, patches, patches, aerosols can be manufactured from sensitizers for X-ray treatment and appropriate carriers by conventional methods, and may be applied directly to the lesion as an external preparation. . The sensitizers for X-ray treatment of the present invention may be used alone or in combination of two or more.

本発明のX線治療用増感剤の投与量は、患者の年齢、体重、性別、投与方法、症状によって異なるが、通常は成人1人1日あたり、1〜1500mg程度の範囲で選択される。また、通常は本発明のX線治療用増感剤の投与後12時間以内に放射線照射するが、1時間以内に放射線照射を受けるのがより望ましい。   The dose of the sensitizer for X-ray treatment of the present invention varies depending on the age, weight, sex, administration method, and symptoms of the patient, but is usually selected within a range of about 1-1500 mg per day per adult. . In general, irradiation is performed within 12 hours after administration of the sensitizer for X-ray therapy of the present invention, but it is more desirable to receive irradiation within 1 hour.

次に、実施例により本発明のX線治療用増感剤についてさらに説明するが、以下の具体例は本発明を限定するものではない。以下の例では、X線照射及び試料の蛍光強度の測定は次のようにして行った。
(X線照射)
X線源はX線診断用の東芝製KXO-15Eを用い、X線照射口から18cm離した位置に、用意した試料を置き、X線を管電圧100kV、管電流4mAの一定条件とし、照射時間を変えることで吸収線量を変えた。
(蛍光強度の測定)
マイクロプレート分光蛍光光度計(TECAN社、infinite M200)を用いて波長456nmで励起した時の、585nmの蛍光強度を測定した。
Next, the sensitizer for X-ray treatment of the present invention will be further described with reference to examples, but the following specific examples do not limit the present invention. In the following examples, X-ray irradiation and measurement of the fluorescence intensity of the sample were performed as follows.
(X-ray irradiation)
The X-ray source is Toshiba KXO-15E for X-ray diagnosis, and the prepared sample is placed at a position 18 cm away from the X-ray irradiation port. The X-ray is irradiated under the constant conditions of tube voltage 100 kV and tube current 4 mA. The absorbed dose was changed by changing the time.
(Measurement of fluorescence intensity)
Using a microplate spectrofluorometer (TECAN, infinite M200), the fluorescence intensity at 585 nm was measured when excited at a wavelength of 456 nm.

(実施例1)
プロトポルフィリン(Protoporphyrin IX C34H34N4O4 分子量562.66)をリン酸緩衝液に懸濁させて、その濃度が0.3μg/ml、1.0μg/ml、3.0μg/ml、10.0μg/ml、30.0ug/mlの試料液を調製し、各100μlを、おのおの96wellマイクロプレートに分注した。
次に、各試料に終濃度が25μMとなる様に、ジハイドロエチジウム(dihydroethidium,
Invitrogen - Molecular Probes社)を加えた後に、0Gy、1Gy、2Gy、3Gy、5Gy、10GyのX線を照射する処理を行った。照射後の試料について、蛍光強度(Ex 456nm, Em 585nm)を測定した結果を図1に示す。数値は相対的な蛍光強度であり、数値が高いほど、活性酸素種またはフリーラジカルの産生が多いことを示す。
Example 1
Protoporphyrin (Protoporphyrin IX C 34 H 34 N 4 O 4 molecular weight 562.66) is suspended in a phosphate buffer, and its concentration is 0.3 μg / ml, 1.0 μg / ml, 3.0 μg / ml, 10.0 μg / ml, A sample solution of 30.0 ug / ml was prepared, and 100 μl of each was dispensed into each 96-well microplate.
Next, dihydroethidium, so that the final concentration of each sample is 25 μM.
Invitrogen-Molecular Probes) was added, followed by irradiation with X-rays of 0 Gy, 1 Gy, 2 Gy, 3 Gy, 5 Gy, and 10 Gy. FIG. 1 shows the result of measuring the fluorescence intensity (Ex 456 nm, Em 585 nm) of the sample after irradiation. The numerical value is a relative fluorescence intensity, and the higher the numerical value, the more active oxygen species or free radicals are produced.

(実施例2)
上記実施例1において、プロトポルフィリンに代えてプロトポルフィリンナトリウム(Protoporphyrin Disodium Salt、C34H32N4Na2O4、606.6、東京化成)を使用した以外は、実施例1と同様にしてX線照射を行った試料について、蛍光強度を測定した結果を図2に示す。
(Example 2)
In the first embodiment, protoporphyrin sodium instead of protoporphyrin (Protoporphyrin Disodium Salt, C 34 H 32 N 4 Na 2 O 4, 606.6, Tokyo Kasei) was used instead of the, X-rays in the same manner as in Example 1 The result of measuring the fluorescence intensity of the irradiated sample is shown in FIG.

(実施例3)
上記実施例1において、プロトポルフィリンに代えてヘマトポルフィリン(Hematoporphyrin IX base、C34H38N4O6、598.71、フナコシ)を使用した以外は、実施例1と同様にしてX線照射を行った試料について、蛍光強度を測定した結果を図3に示す。
(Example 3)
In Example 1 above, X-ray irradiation was performed in the same manner as in Example 1 except that hematoporphyrin (Hematoporphyrin IX base, C 34 H 38 N 4 O 6 , 598.71, Funakoshi) was used instead of protoporphyrin. The result of measuring the fluorescence intensity of the sample is shown in FIG.

(比較例1)
上記実施例1において、プロトポルフィリンに代えて鉄ポルフィリン(Fe(III) Mesoporphyrin IX chloride、C34H36FeN4O4Cl、656.0、フナコシ)を使用した以外は、実施例1と同様にしてX線照射を行った試料について、蛍光強度を測定した結果を図4に示す。
(Comparative Example 1)
X in the same manner as in Example 1 except that iron porphyrin (Fe (III) Mesoporphyrin IX chloride, C 34 H 36 FeN 4 O 4 Cl, 656.0, Funakoshi) was used instead of protoporphyrin. FIG. 4 shows the result of measuring the fluorescence intensity of the sample irradiated with the beam.

ジハイドロエチジウム試薬は、O2-(スーパーオキサイドアニオン)、HO2・(ペルオキシラジカル)、・HO(ヒドロキシラジカル)等の活性酸素の存在下でジハイドロエチジウム(励起波長385nm、蛍光波長480nm)からエチジウム(励起波長465nm、蛍光波長585nm)が生成されることから、その活性性酸素の測定方法の一つとして用いられる。(参考文献:Nethery D, Stofan D, Callahan L, DiMarco A, Supinski G.: Formation of reactive oxygen species by the contracting diaphragm is PLA(2) dependent. J Appl Physiol. 1999 Aug;87(2):792-800.)。 Dihydroethidium reagents are derived from dihydroethidium (excitation wavelength: 385 nm, fluorescence wavelength: 480 nm) in the presence of active oxygen such as O 2- (superoxide anion), HO 2 (peroxy radical), and HO (hydroxy radical). Since ethidium (excitation wavelength: 465 nm, fluorescence wavelength: 585 nm) is generated, it is used as one method for measuring active oxygen. (Reference: Nethery D, Stofan D, Callahan L, DiMarco A, Supinski G .: Formation of reactive oxygen species by the contracting diaphragm is PLA (2) dependent. J Appl Physiol. 1999 Aug; 87 (2): 792- 800.).

これらの結果より、本発明で使用する特定のポルフィリン誘導体では、X線照射により従来の鉄ポルフィリンに比較して、多量の活性酸素が発生していることが確認された。
鉄ポルフィリンの一つである、Fe(III) Mesoporphyrin IX chlorideは、上記の例で設定した診断用X線の低線量領域では、図4に示すように、活性酸素の発生がほとんど見られなかった。このことは、特許文献1に記載された鉄を含むポルフィリン鉄錯体、ポルフィリン鉄錯体包接アルブミン化合物が、100keV以下、10Gy以下の低線量領域では、必ずしも有効ではないことを示すものである。
From these results, it was confirmed that in the specific porphyrin derivative used in the present invention, a large amount of active oxygen was generated by X-ray irradiation as compared with the conventional iron porphyrin.
Fe (III) Mesoporphyrin IX chloride, one of the iron porphyrins, showed almost no generation of active oxygen in the low-dose region of the diagnostic X-ray set in the above example, as shown in FIG. . This indicates that the porphyrin iron complex containing iron and the porphyrin iron complex inclusion albumin compound described in Patent Document 1 are not necessarily effective in a low dose region of 100 keV or less and 10 Gy or less.

放射線療法は、放射線によりDNA近傍で発生するフリーラジカルを介してDNA鎖を切断して、細胞のDNAに障害を与えることで作用すると考えられている。このことからO2-(スーパーオキサイドアニオン)、HO2・(ペルオキシラジカル)、・HO(ヒドロキシラジカル)等の活性酸素の発生量の多いプロトポルフィリン、プロトポルフィリンナトリウム、ヘマトポルフィリンは、上記の例で設定した低線量領域では、鉄含有ポルフィリンよりX線増感剤としてより有効である。 Radiation therapy is thought to act by damaging the DNA of cells by cleaving DNA strands through free radicals generated in the vicinity of DNA by radiation. From this, protoporphyrin, protoporphyrin sodium and hematoporphyrin with a large amount of active oxygen generation such as O 2- (superoxide anion), HO 2 (peroxy radical), and HO (hydroxy radical) In the set low dose range, it is more effective as an X-ray sensitizer than iron-containing porphyrin.

(実施例4)
96wellマイクロプレートにHELA細胞を播種し、サブコンフルエントになる様に培地(MEM,10%FCS)を用いてCO2インキュベータで培養した。これとは別に、実施例1で使用したプロトポルフィリンを、最終濃度が0.3μg/mlおよび1.0μg/mlとなるように培地(MEM,10%FCS)に加え試料を調製した。
上記マイクロプレートから培地を吸い出し、各試料30μlを、おのおの96wellマイクロプレートに加え1時間培養した後に、0Gy、1Gy、2Gy、3GyのX線を照射する処理を行った。この処理では、X線の線量が増加するにつれて放射線そのものによる細胞損傷の影響が大きくなるため、実施例1に比べて低いX線量で処理を行った。
X線照射後試料を吸い出し、トリプシン処理により細胞を剥離し、25cm2フラスコに播種した。翌日培地交換を行い、対照区の細胞が1コロニー50個以上になるように9日程度培養した後に、細胞を4%ホルマリン緩衝液で固定し、1コロニー50個以上のコロニー数を画像処理によりカウントした。結果を図5、6及び表1に示す。表1は、1GyのX線照射によるポルフィリン類のコロニー形成能阻害を、線量が0Gyの対照区のコロニー形成能を1として表示したものである。
Example 4
HELA cells were seeded on a 96-well microplate, and cultured in a CO 2 incubator using medium (MEM, 10% FCS) so as to be subconfluent. Separately, a sample was prepared by adding the protoporphyrin used in Example 1 to the medium (MEM, 10% FCS) so that the final concentrations were 0.3 μg / ml and 1.0 μg / ml.
The medium was sucked out from the microplate, and 30 μl of each sample was added to each 96-well microplate and incubated for 1 hour, followed by irradiation with 0 Gy, 1 Gy, 2 Gy, and 3 Gy X-rays. In this process, the influence of cell damage due to radiation itself increases as the X-ray dose increases, so the process was performed with a lower X-ray dose than in Example 1.
After X-irradiation, the sample was sucked out, the cells were detached by trypsin treatment, and seeded in a 25 cm 2 flask. The medium is changed the next day, and after culturing for about 9 days so that the number of cells in the control group is 50 colonies or more, the cells are fixed with 4% formalin buffer, and the number of colonies of 50 colonies or more is image-processed. I counted. The results are shown in FIGS. Table 1 shows the inhibition of colony forming ability of porphyrins by 1 Gy X-ray irradiation, with the colony forming ability of the control group having a dose of 0 Gy as 1.

(比較例2)
実施例4において、プロトポルフィリンに代えて比較例1で使用した鉄ポルフィリンを使用した以外は、実施例4と同様にして各処理を行った試料について、コロニー数をカウントした結果を図5、6に示す。
(Comparative Example 2)
In Example 4, except that the iron porphyrin used in Comparative Example 1 was used instead of protoporphyrin, the results of counting the number of colonies for the samples treated in the same manner as in Example 4 are shown in FIGS. Shown in

(実施例5)
実施例4において、プロトポルフィリンに代えて実施例2で使用したプロトポルフィリンナトリウムを使用し、X線照射の線量を1Gyとした以外は、実施例4と同様にして各処理を行った試料についてコロニー数をカウントし、コロニー形成能阻害を評価した結果を表1に示す。
(Example 5)
In Example 4, instead of protoporphyrin, the protoporphyrin sodium used in Example 2 was used, and the X-ray irradiation dose was set to 1 Gy. Table 1 shows the results of counting the number and evaluating the inhibition of colony forming ability.

(実施例6)
実施例4において、プロトポルフィリンに代えて実施例3で使用したヘマトポルフィリンを使用し、X線照射の線量を1Gyとした以外は、実施例4と同様にして各処理を行った試料についてコロニー数をカウントし、コロニー形成能阻害を評価した結果を表1に示す。
(Example 6)
In Example 4, instead of protoporphyrin, hematoporphyrin used in Example 3 was used, and the X-ray irradiation dose was set to 1 Gy. The number of colonies for each sample treated in the same manner as in Example 4 Table 1 shows the results of the evaluation of colony forming ability inhibition.

上記のとおり、X線エネルギーが従来の治療用より低い100keV以下の診断X線領域で、吸収線量も従来の放射線治療より低い3Gy以下の領域において、X線単独よりもプロトポルフィリンを加えたものが、同じX線量でもコロニー形成率が低いことが確認できた。
これは、本発明の増感剤の存在によりX線照射による腫瘍細胞損傷の効果が増強されるものが有効であることを示す。さらに、上記の照射条件下において、鉄を含むポルフィリンと比較して、鉄を含まないポルフィリンの方が、コロニー形成率が低いことが確認できた。
As described above, in the diagnostic X-ray region where the X-ray energy is 100 keV or less, which is lower than that for conventional treatment, and the absorbed dose is 3 Gy or less, which is lower than that for conventional radiation therapy, the protoporphyrin is added to the X-ray alone than X-ray alone It was confirmed that the colony formation rate was low even at the same X-ray dose.
This indicates that what enhances the effect of tumor cell damage by X-ray irradiation due to the presence of the sensitizer of the present invention is effective. Furthermore, under the irradiation conditions described above, it was confirmed that the porphyrin containing no iron had a lower colony formation rate than the porphyrin containing iron.

放射線によって引き起こされる高等動物への傷害は、それを構成するここの細胞に対する影響、特にその細胞死に由来する。細胞死には増殖死と間期死があり、高線量の放射線を照射した場合には、DNA分子以外の標的に対する傷害が直接その細胞を死に至らしめる間期死と呼ばれる状態になる。放射線治療においては、細胞核内のDNAに対する傷害による増殖死が重要である。増殖死とは、本来は増殖能を持つ細胞がその分裂能を失うことを意味する。従って、たとえ細胞が正常に代謝を続けていても、1つの細胞が培養によってコロニーとして目に見える細胞集団に増殖しない、つまり増殖能力を失えば増殖死と見なされる。培養細胞集団を考えたときに、放射線の線量の増加と共に死ぬ細胞の数が増えてコロニーの数が減少する。
このために、細胞に対する放射線効果は、コロニー形成率という定量的な指標による評価が確立されており、動物実験の結果を予測するものとして、古くから用いられている(T. T. Puck and P. I. Marcus ,J. Exp. Med. 103, 653-666 (1956))。
したがって、上記の各実施例にみられるように、活性酸素種またはフリーラジカル発生量と、細胞損傷を示すコロニー形成率の2つのデータによって、動物実験の効果を的確に予測することができる。
The damage to higher animals caused by radiation stems from the effects on this cell that make it up, particularly its cell death. Cell death includes proliferative death and interphase death. When a high dose of radiation is irradiated, damage to a target other than a DNA molecule directly results in a state called interphase death in which the cell is killed. In radiotherapy, proliferation death due to damage to DNA in the cell nucleus is important. Proliferative death means that cells that originally have proliferative ability lose their ability to divide. Therefore, even if the cells continue to metabolize normally, if one cell does not grow into a cell population that is visible as a colony by culturing, that is, if it loses the ability to grow, it is regarded as proliferative death. When considering a cultured cell population, the number of dead cells increases and the number of colonies decreases with increasing radiation dose.
For this reason, the radiation effect on cells has been established by a quantitative index called colony formation rate, and has been used for a long time to predict the results of animal experiments (TT Puck and PI Marcus, J Exp. Med. 103, 653-666 (1956)).
Therefore, as seen in each of the above examples, the effect of animal experiments can be accurately predicted based on the two data of the amount of reactive oxygen species or free radicals generated and the colony formation rate indicating cell damage.

本発明は、放射線治療において、ガン細胞などの悪性新生物、ガン前駆細胞、ウイルスおよび細菌が感染した細胞を損傷または死滅させて治療するのに有用なX線治療用増感剤を提供する。この線増感剤を使用することにより、患部領域にX線の照射を限定した低被曝線量で、放射線を使った低侵襲の治療が可能となる。
また、菌(大腸菌、エンドトキシン、O157、ベロ毒素、MRSA(メチシリン耐性黄色ブドウ球菌)、エンテロトキシン、緑濃菌)の殺菌、毒素分解、ならびに、バクテリア、ウイルスの酸化分解、損傷、死滅により、殺菌滅菌を行うことも可能である。
The present invention provides a sensitizer for X-ray therapy that is useful in treating or treating malignant neoplasms such as cancer cells, cancer precursor cells, cells infected with viruses and bacteria in radiation therapy. By using this linear sensitizer, it is possible to perform a minimally invasive treatment using radiation at a low exposure dose in which X-ray irradiation is limited to the affected area.
Sterilization and sterilization by sterilization of bacteria (Escherichia coli, endotoxin, O157, verotoxin, MRSA (methicillin-resistant Staphylococcus aureus), enterotoxin, chlorophyll), toxic degradation, and oxidative degradation, damage, and death of bacteria and viruses It is also possible to perform.

実施例1において、X線照射後の試料について、蛍光強度(Ex 456nm, Em 585nm)を測定した結果を示す図である。In Example 1, it is a figure which shows the result of having measured the fluorescence intensity (Ex 456nm, Em 585nm) about the sample after X-ray irradiation. 実施例2において、X線照射後の試料について、蛍光強度(Ex 456nm, Em 585nm)を測定した結果を示す図である。In Example 2, it is a figure which shows the result of having measured the fluorescence intensity (Ex 456nm, Em 585nm) about the sample after X-ray irradiation. 実施例3において、X線照射後の試料について、蛍光強度(Ex 456nm, Em 585nm)を測定した結果を示す図である。In Example 3, it is a figure which shows the result of having measured the fluorescence intensity (Ex 456nm, Em 585nm) about the sample after X-ray irradiation. 比較例1において、X線照射後の試料について、蛍光強度(Ex 456nm, Em 585nm)を測定した結果を示す図である。In Comparative example 1, it is a figure which shows the result of having measured the fluorescence intensity (Ex 456nm, Em 585nm) about the sample after X-ray irradiation. 実施例4及び比較例2において、X線照射後の試料について、コロニー形成能阻害を示す図である。In Example 4 and Comparative Example 2, it is a figure which shows colony formation ability inhibition about the sample after X-ray irradiation. 実施例4及び比較例2において、X線照射後の試料について、コロニー形成能阻害を示す図である。In Example 4 and Comparative Example 2, it is a figure which shows colony formation ability inhibition about the sample after X-ray irradiation.

Claims (1)

プロトポルフィリン、プロトポルフィリンナトリウム及び5-アミノレヴリン酸からなる群から選択された化合物を有効成分として含有するX線治療用増感剤。 Protoporphyrin, protoporphyrin sodium c arm及 beauty X-ray therapy sensitizer containing a compound selected from the group as an active ingredient consisting of 5-Aminorevurin acid.
JP2007333562A 2007-12-26 2007-12-26 Sensitizer for X-ray therapy Active JP5182858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007333562A JP5182858B2 (en) 2007-12-26 2007-12-26 Sensitizer for X-ray therapy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007333562A JP5182858B2 (en) 2007-12-26 2007-12-26 Sensitizer for X-ray therapy

Publications (2)

Publication Number Publication Date
JP2009155239A JP2009155239A (en) 2009-07-16
JP5182858B2 true JP5182858B2 (en) 2013-04-17

Family

ID=40959633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007333562A Active JP5182858B2 (en) 2007-12-26 2007-12-26 Sensitizer for X-ray therapy

Country Status (1)

Country Link
JP (1) JP5182858B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103721257B (en) * 2012-10-16 2016-12-21 无锡兆真辐射技术有限公司 Phytochrome catalytic decomposition hydrogen peroxide medicine series
CN103405769A (en) * 2013-03-07 2013-11-27 北京亿仁赛博医疗科技研发中心有限公司 Application of photosensitizer to preparation of virus inactivated medicines for treating diseases
JP6994700B2 (en) * 2017-12-28 2022-01-14 国立研究開発法人産業技術総合研究所 Radiation therapy sensitizer
WO2020175253A1 (en) * 2019-02-26 2020-09-03 Sbiファーマ株式会社 Radiosensitizer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161725A (en) * 1986-07-29 1987-07-17 Noboru Iijima Preventive agent for malignant tumor

Also Published As

Publication number Publication date
JP2009155239A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
Anas et al. Advances in photodynamic antimicrobial chemotherapy
Oniszczuk et al. The potential of photodynamic therapy (PDT)—Experimental investigations and clinical use
Dai et al. Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?
JP4222628B2 (en) Novel rhodamine derivatives for photodynamic therapy of cancer and in vitro purification of leukemia
Senge et al. Temoporfin (Foscan®, 5, 10, 15, 20‐tetra (m‐hydroxyphenyl) chlorin)—a second‐generation photosensitizer
TWI654008B (en) Method and system for treating cell proliferative disorders
Kulka et al. Photofrin as a radiosensitizer in an in vitro cell survival assay
Buck et al. Photodynamic efficiency of xanthene dyes and their phototoxicity against a carcinoma cell line: a computational and experimental study
Ghoodarzi et al. Assessing of integration of ionizing radiation with Radachlorin-PDT on MCF-7 breast cancer cell treatment
Tudor et al. Combined regimen of photodynamic therapy mediated by Gallium phthalocyanine chloride and Metformin enhances anti-melanoma efficacy
JP5182858B2 (en) Sensitizer for X-ray therapy
JP2017513952A (en) Modification of extracorporeal circulation photochemotherapy technology using porphyrin precursor
Ahn et al. Intratumoral photodynamic therapy with newly synthesized pheophorbide a in murine oral cancer
Girotti et al. Role of nitric oxide in hyper-aggressiveness of tumor cells that survive various anti-cancer therapies
Openda et al. Novel cationic-chalcone phthalocyanines for photodynamic therapy eradication of S. aureus and E. coli bacterial biofilms and MCF-7 breast cancer
Huo et al. Oxygen pathology and oxygen-functional materials for therapeutics
Shea et al. Phototoxicity of lumidoxycycline
Li et al. Interaction and oxidative damage of DVDMS to BSA: a study on the mechanism of photodynamic therapy-induced cell death
Mozafari et al. ROS-Based Cancer Radiotherapy
AlSalhi et al. Photodynamic damage study of HeLa cell line using ALA
Kavarnos et al. Visible-light and X irradiations of Chinese hamster lung cells treated with hematoporphyrin derivative
Murav’eva et al. Comparative study of the photophysical properties of low-toxicity photosensitizers based on endogenous porphyrins
Takeuchi et al. Blue light induces apoptosis and autophagy by promoting ROS‐mediated mitochondrial dysfunction in synovial sarcoma
Sarbadhikary et al. Enhancement of radiosensitivity of oral carcinoma cells by iodinated chlorin p6 copper complex in combination with synchrotron X-ray radiation
RU2792003C1 (en) Monocationic chlorine photosensitizer for photodynamic inactivation of tumor cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Ref document number: 5182858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250