JP5177712B2 - Method and apparatus for correcting gene data in competitive hybridization - Google Patents

Method and apparatus for correcting gene data in competitive hybridization Download PDF

Info

Publication number
JP5177712B2
JP5177712B2 JP2010294175A JP2010294175A JP5177712B2 JP 5177712 B2 JP5177712 B2 JP 5177712B2 JP 2010294175 A JP2010294175 A JP 2010294175A JP 2010294175 A JP2010294175 A JP 2010294175A JP 5177712 B2 JP5177712 B2 JP 5177712B2
Authority
JP
Japan
Prior art keywords
nucleic acid
stranded nucleic
molecules
total
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010294175A
Other languages
Japanese (ja)
Other versions
JP2012139168A (en
Inventor
伸哉 松本
純 菅野
健一 相▲崎▼
健一 濱島
武文 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Data Corp
National Institute of Health Sciences
Original Assignee
NTT Data Corp
National Institute of Health Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Data Corp, National Institute of Health Sciences filed Critical NTT Data Corp
Priority to JP2010294175A priority Critical patent/JP5177712B2/en
Publication of JP2012139168A publication Critical patent/JP2012139168A/en
Application granted granted Critical
Publication of JP5177712B2 publication Critical patent/JP5177712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、競合的ハイブリダイゼーションにおける遺伝子データの補正方法及び補正装置に関する。   The present invention relates to a method and apparatus for correcting gene data in competitive hybridization.

核酸は生命体の遺伝情報を蓄積・伝達するために用いられている物質であるが、ペプチド核酸のように安定性や機能性を高めた人工核酸も作出されており、その応用分野は広がりつつある。特に、塩基配列が完全特異的(相補的)もしくは部分特異的な核酸断片対が結合して二重鎖を形成するという核酸の基本物性(以下、ハイブリダイゼーション現象と称する)の活用は、医学・生物学といったバイオテクノロジーだけでなく、情報工学でも応用され始めている。   Nucleic acids are substances that are used to store and transmit genetic information of living organisms, but artificial nucleic acids with improved stability and functionality, such as peptide nucleic acids, have been created, and their application fields are expanding. is there. In particular, the utilization of the basic physical properties of nucleic acids (hereinafter referred to as hybridization phenomena) in which a nucleic acid fragment pair whose base sequence is completely specific (complementary) or partially specific to form a duplex is used in medicine / Not only biotechnology such as biology, but also information technology has begun to be applied.

現在、最も盛んにハイブリダイゼーション現象を利用しているのは、バイオテクノロジーの分野である。この分野では、生物や細胞における遺伝子もしくはその活動状態を網羅的に解析する強力な測定手段として、マイクロアレイ(特許文献1参照)や定量
in situハイブリダイゼーション等の技術が利用されている。これらの技術では数個〜数百万個の核酸検出用プローブを用いて塩基配列の特異的な結合量を測定することによって、ゲノムスケールで全ての遺伝子もしくは遺伝子活動を同時に定量したり、細胞・組織内の局在と量的分布を測定したりすることができる。
Currently, the field of biotechnology uses the hybridization phenomenon most actively. In this field, techniques such as microarray (see Patent Document 1) and quantitative in situ hybridization are used as powerful measuring means for comprehensively analyzing genes or their activity states in organisms and cells. These technologies measure the amount of specific binding of nucleotide sequences using several to several million probes for nucleic acid detection, thereby simultaneously quantifying all genes or gene activities on a genome scale, It is possible to measure the localization and quantitative distribution in the tissue.

このような核酸量の高精度測定技術は、効果および安全性の高い核酸医薬や遺伝子治療の開発・臨床応用に不可欠であり、定量性の向上を目指した技術開発が進められている。
また情報工学の分野でも、演算対象となる問題を塩基配列に置き換えin vitro反応を行う事で、非常に多くの問題を同時かつ高速に解く試み(超並列計算機あるいは
DNAコンピュータ)においてハイブリダイゼーション現象の応用が見られる。このような装置の実用化に際しては、核酸量測定の一層の精度向上が必要である。
Such a high-precision measurement technique for the amount of nucleic acid is indispensable for the development and clinical application of highly effective and safe nucleic acid medicine and gene therapy, and technological development aimed at improving quantitativeness is underway.
Also, in the field of information engineering, by replacing the problem to be calculated with a base sequence and performing an in vitro reaction, an attempt to solve a large number of problems simultaneously and at high speed (hybrid parallel computer or DNA computer) Application is seen. When such an apparatus is put to practical use, it is necessary to further improve the accuracy of nucleic acid amount measurement.

特開平11−512293号公報JP-A-11-512293

一般的にハイブリダイゼーション現象を応用した測定装置では、特定のプローブには、その目的とする核酸断片(ターゲット)のみが結合すると仮定して、各プローブの標識強度からターゲットの濃度を推定している。しかしながら、各プローブに対して、目的外の核酸断片が結合する現象(クロスハイブリダイゼーション)が知られており、標識強度からターゲット濃度を正確に測定することが困難であるという問題があった。   In general, in a measurement apparatus using a hybridization phenomenon, it is assumed that only a target nucleic acid fragment (target) binds to a specific probe, and the target concentration is estimated from the label intensity of each probe. . However, a phenomenon (cross-hybridization) in which an unintended nucleic acid fragment binds to each probe is known, and there is a problem that it is difficult to accurately measure the target concentration from the label intensity.

そこで本発明は、上記問題に鑑みてなされたものであり、核酸断片の存在量の測定における定量性を向上させることを可能とする競合的ハイブリダイゼーションにおける遺伝子データの補正方法及び補正装置を提供することを課題とする。   Accordingly, the present invention has been made in view of the above problems, and provides a method and apparatus for correcting genetic data in competitive hybridization that can improve the quantitativeness in measuring the abundance of nucleic acid fragments. This is the issue.

<図3の単鎖核酸分子数推定装置20>
上述した課題を解決するために、本発明の単鎖核酸分子数推定装置(図3の単鎖核酸分子数装置20)は、
(構成要素1)(式(6)参照)
第1の単鎖核酸の分子数C と、
該第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の分子数C と、
前記第1の単鎖核酸と前記第2の単鎖核酸とが結合した二重鎖核酸が離脱する速度である離脱速度係数βijと、
に基づき、前記第1の単鎖核酸と前記第2の単鎖核酸とが結合した二重鎖核酸の分子数Mij を前記第1の単鎖核酸と前記第2の単鎖核酸との組み合わせ毎に更新する二重鎖核酸分子数更新部(図3の二重鎖核酸分子数更新部21)と、
(構成要素2)(式(7)参照)
前記二重鎖核酸分子数更新部(図3の二重鎖核酸分子数更新部21)により更新された各二重鎖核酸の分子数Mij t+1と、
自装置(図3の単鎖核酸分子装置20)の外部より与えられた核酸断片の総分子数Sと、
に基づいて、前記単鎖核酸の分子数C t+1を前記単鎖核酸の種類i毎に更新する単鎖核酸分子数更新部(図3の単鎖核酸分子数更新部22)と、
(構成要素3)
前記単鎖核酸分子数更新部(図3の単鎖核酸分子数更新部22)により更新される前の単鎖核酸の分子数C と、
前記単鎖核酸分子数更新部(図3の単鎖核酸分子数更新部22)により更新された後の単鎖核酸の分子数C t+1との差異|C t+1−C |を前記単鎖核酸の種類i毎に算出し、
前記各差異|C t+1−C |に基づき、各単鎖核酸の分子数C の推定結果が収束したか否かを判定する単鎖核酸収束判定部(図3の単鎖核酸収束判定部23)と、
を備えることを特徴とする。
<Single-stranded nucleic acid molecule number estimation apparatus 20 in FIG. 3>
In order to solve the above-described problem, the single-stranded nucleic acid molecule number estimation apparatus of the present invention (single-stranded nucleic acid molecule number apparatus 20 in FIG. 3)
(Component 1) (Refer to Formula (6))
A number of molecules C i t of the first single stranded nucleic acid,
The number of molecules C j t of the second single-stranded nucleic acid that can bind to the first single-stranded nucleic acid to form a double-stranded nucleic acid;
A release rate coefficient β ij , which is a rate at which a double-stranded nucleic acid bound to the first single-stranded nucleic acid and the second single-stranded nucleic acid is released,
Based on the number of molecules M ij t of the double-stranded nucleic acid in which the first single-stranded nucleic acid and the second single-stranded nucleic acid are bound to each other, based on the first single-stranded nucleic acid and the second single-stranded nucleic acid. A double-stranded nucleic acid molecule number updating unit (double-stranded nucleic acid molecule number updating unit 21 in FIG. 3) to be updated for each combination;
(Component 2) (Refer to Formula (7))
The number of molecules M ij t + 1 of each double-stranded nucleic acid updated by the double-stranded nucleic acid molecule number updating unit (double-stranded nucleic acid molecule number updating unit 21 in FIG. 3);
The total number of molecules S i of nucleic acid fragments given from the outside of its own device (single-stranded nucleic acid molecule device 20 in FIG. 3),
Based on the single-stranded nucleic acid molecule number updating unit (single-stranded nucleic acid molecule number updating unit 22 in FIG. 3) for updating the single-stranded nucleic acid molecule number C i t + 1 for each type i of the single-stranded nucleic acid,
(Component 3)
A number of molecules C i t single-stranded nucleic acid before being updated by the single-stranded nucleic acid molecule number updating unit (single-stranded nucleic acid molecule number updating unit 22 of FIG. 3),
The difference | C i t + 1 −C i t | from the molecular number C i t + 1 of the single-stranded nucleic acid after being updated by the single-stranded nucleic acid molecule number updating unit (single-stranded nucleic acid molecule number updating unit 22 in FIG. 3) Calculate for each type i of single-stranded nucleic acid,
Each difference | C i t + 1 -C i t | based on, each single strand single-stranded nucleic convergence determining unit determines whether the estimation result of the number of molecules C i t converges nucleic acid (single-stranded nucleic acid of Figure 3 Convergence determination unit 23);
It is characterized by providing.

<図3の単鎖核酸分子数推定装置20>
また、本発明の前記単鎖核酸分子数推定装置(図3の単鎖核酸分子数推定装置20)は、
(構成要素1)(式(8)参照)
前記単鎖核酸収束判定部(図3の単鎖核酸収束判定部23)が収束していないと判定した場合、
前記単鎖核酸分子数更新部(図3の単鎖核酸分子数更新部22)により更新された各単鎖核酸の分子数C t+1に基づき、
前記二重鎖核酸の種類毎の加速係数sij t+1を算出する加速係数算出部(図3の加速係数算出部24)と、
(構成要素2)(式(6)参照)
前記二重鎖核酸分子数更新部(図3の二重鎖核酸分子数更新部21)は、
前記単鎖核酸分子数更新部(図3の単鎖核酸分子数更新部22)により更新された第1の単鎖核酸の分子数C t+1と、
前記第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の分子数C t+1と、
前記加速係数算出部(図3の加速係数算出部24)により算出された前記第1の単鎖核酸と前記第2の単鎖核酸の組み合わせ毎の加速係数sij t+1と、
前記第1の単鎖核酸と前記第2の単鎖核酸とが結合した二重鎖核酸が離脱する速度である離脱速度係数βijと、
に基づき、二重鎖核酸の分子数Mij t+1を前記第1の単鎖核酸と前記第2の単鎖核酸の組み合わせ毎に更新することを特徴とする。
<Single-stranded nucleic acid molecule number estimation apparatus 20 in FIG. 3>
In addition, the single-stranded nucleic acid molecule number estimating device of the present invention (single-stranded nucleic acid molecule number estimating device 20 in FIG. 3)
(Component 1) (Refer to Formula (8))
When it is determined that the single-stranded nucleic acid convergence determination unit (single-stranded nucleic acid convergence determination unit 23 in FIG. 3) has not converged,
Based on the number of molecules C i t + 1 of each single-stranded nucleic acid updated by the single-stranded nucleic acid molecule number updating unit (single-stranded nucleic acid molecule number updating unit 22 in FIG. 3),
An acceleration coefficient calculator (acceleration coefficient calculator 24 in FIG. 3) that calculates an acceleration coefficient s ij t + 1 for each type of the double-stranded nucleic acid;
(Component 2) (See Equation (6))
The double-stranded nucleic acid molecule number updating unit (double-stranded nucleic acid molecule number updating unit 21 in FIG. 3)
The number of molecules C i t + 1 of the first single-stranded nucleic acid updated by the single-stranded nucleic acid molecule number updating unit (single-stranded nucleic acid molecule number updating unit 22 in FIG. 3);
The number of molecules C j t + 1 of the second single-stranded nucleic acid that can be combined with the first single-stranded nucleic acid to form a double-stranded nucleic acid;
An acceleration coefficient s ij t + 1 for each combination of the first single-stranded nucleic acid and the second single-stranded nucleic acid calculated by the acceleration coefficient calculating section (acceleration coefficient calculating section 24 in FIG. 3);
A release rate coefficient β ij , which is a rate at which a double-stranded nucleic acid bound to the first single-stranded nucleic acid and the second single-stranded nucleic acid is released,
The molecular number M ij t + 1 of the double-stranded nucleic acid is updated for each combination of the first single-stranded nucleic acid and the second single-stranded nucleic acid.

<図2の総分子数推定装置>
また、本発明の総分子数推定装置(図2の総分子数推定装置10)は、
(構成要素1)
二重鎖核酸から単鎖核酸が離脱する離脱速度係数βijを示す情報が該二重鎖核酸の種類毎に記憶されている離脱速度係数記憶部(図2の離脱速度係数記憶部12)と、
(構成要素2)
核酸断片が単鎖状態である単鎖核酸の分子数Cと該単鎖核酸を少なくともひとつ含む二重鎖核酸の分子数(ΣMij(i=1からnまでの和)とMiiとの和)との和である核酸断片の総分子数Sを示す情報が単鎖核酸の種類毎に記憶されている総分子数記憶部(図2の総分子数記憶部11)と、
(構成要素3)(式(6)および式(7)参照)
前記離脱速度係数記憶部から前記離脱速度係数βijを示す情報を読み出し、
前記総分子数記憶部から総分子数S を示す情報を読み出し、
前記読み出された離脱速度係数βijと前記読み出された総分子数S とに基づいて、
溶液中に存在する単鎖核酸の分子数C を前記単鎖核酸分子数推定装置に前記単鎖核酸の種類i毎に推定させる単鎖核酸分子数取得部(図2の単鎖核酸分子数取得部13)と、
(構成要素4)
前記推定された単鎖核酸の分子数C と、
自装置の外部から入力された該単鎖核酸の既知の分子数Cgとの
差異C −Cgを前記単鎖核酸の種類i毎に算出する単鎖核酸差異算出部(図2の単鎖核酸差異算出部14)と、
(構成要素5)
該単鎖核酸の種類i毎の前記差異C −Cgに基づき、前記核酸断片の総分子数Sの推定結果が収束したか否かを判定する総分子数収束判定部(図2の総分子数収束判定部15)と、
(構成要素6)(式(5)参照)
前記総分子数収束判定部が収束していないと判定した場合、
前記離脱速度係数記憶部から前記各離脱速度係数βijを示す情報を読み出し、
該読み出された各離脱速度係数βijと、第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の前記差異C −Cgとに基づき、前記第1の単鎖核酸を少なくとも1つ有する核酸断片の総分子数S を前記単鎖核酸の種類i毎に補正し、補正した総分子数S k+1を示す情報で、前記総分子数記憶部に記憶されている総分子数Sを示す情報を更新する総分子数補正部(図2の総分子数補正部16)を備え、
前記単鎖核酸分子数取得部は、前記総分子数記憶部から前記総分子数補正部により更新された総分子数Sを示す情報を読み出し、該読み出した総分子数S に基づき、前記単鎖核酸の分子数C を前記単鎖核酸分子数推定装置に前記単鎖核酸の種類i毎に推定させることを特徴とする。
<Total Molecular Number Estimator in FIG. 2>
Further, the total molecular number estimation device of the present invention (total molecular number estimation device 10 in FIG. 2)
(Component 1)
A separation rate coefficient storage unit (detachment rate coefficient storage unit 12 in FIG. 2) in which information indicating a separation rate coefficient β ij from which the single-stranded nucleic acid is detached from the double-stranded nucleic acid is stored for each type of the double-stranded nucleic acid; ,
(Component 2)
The number of molecules C i of a single-stranded nucleic acid in which the nucleic acid fragment is in a single-stranded state, the number of molecules of a double-stranded nucleic acid containing at least one single-stranded nucleic acid (ΣM ij (i = 1 to n)) and M ii A total molecular number storage unit (total molecular number storage unit 11 in FIG. 2) in which information indicating the total molecular number S i of the nucleic acid fragment that is the sum of the single-stranded nucleic acid is stored,
(Component 3) (See Equation (6) and Equation (7))
Read the information indicating the separation speed coefficient β ij from the separation speed coefficient storage unit,
Read information indicating the total number of molecules S i k from the total number of molecules storage unit,
The read out on the basis of the read the the dissociation rate coefficient beta ij on the total molecular number S i k,
A single-stranded nucleic acid molecule number acquisition unit (single-stranded nucleic acid molecule of FIG. 2) that causes the single-stranded nucleic acid molecule number estimation device to estimate the number of molecules C i k of the single-stranded nucleic acid existing in the solution for each type i of the single-stranded nucleic acid Number acquisition unit 13),
(Component 4)
The estimated number of molecules C i k of the single-stranded nucleic acid,
Differences C i k a -Cg i is calculated for each type i of the single stranded nucleic acid single-stranded nucleic acid difference calculator with a known number of molecules Cg i of the single-stranded nucleic acid that is input from an external host device (in FIG. 2 A single-stranded nucleic acid difference calculating unit 14),
(Component 5)
Based on the difference C i k -Cg i for each type i of the single-stranded nucleic acid, the total number of molecules convergence determining unit determines whether the estimated result is converged total molecular number S i of the nucleic acid fragment (FIG. 2 A total molecular number convergence determination unit 15) of
(Component 6) (Refer to Formula (5))
When it is determined that the total molecular number convergence determination unit has not converged,
Read out the information indicating each separation speed coefficient β ij from the separation speed coefficient storage unit,
Based on each read out rate coefficient β ij and the difference C j k -Cg j of the second single-stranded nucleic acid that can bind to the first single-stranded nucleic acid to form a double-stranded nucleic acid, in the total number of molecules S i k of the first single stranded nucleic acid having at least one nucleic acid fragment is corrected for each type i of the single-stranded nucleic acid, the information indicating the total number of molecules S i k + 1 obtained by correcting the total molecular A total molecular number correction unit (total molecular number correction unit 16 in FIG. 2) that updates information indicating the total molecular number S i stored in the number storage unit,
The single-stranded nucleic acid molecule number acquisition unit reads information indicating the total molecule number S i updated by the total molecule number correction unit from the total molecule number storage unit, and based on the read total molecule number S i k , The number C i k of the single-stranded nucleic acid is estimated by the single-stranded nucleic acid molecule number estimation apparatus for each type i of the single-stranded nucleic acid.

また、本発明の総分子数推定装置(図2の総分子数推定装置10)における前記単鎖核酸分子数取得部は、前記単鎖核酸分子数推定装置に出力する前記核酸断片の総分子数の初期値S を、外部から入力された単鎖核酸の既知の分子数Cgとすることを特徴とする。 In addition, the single-stranded nucleic acid molecule number acquisition unit in the total molecular number estimation apparatus (total molecular number estimation apparatus 10 in FIG. 2) of the present invention provides the total number of molecules of the nucleic acid fragment to be output to the single-stranded nucleic acid molecule number estimation apparatus. The initial value S i 0 is a known molecular number Cg i of a single-stranded nucleic acid inputted from the outside.

<図1の離脱速度係数算出装置>
また、本発明の離脱速度係数算出装置(図1の離脱速度係数算出装置1)は、
(構成要素1)
二重鎖核酸から単鎖核酸が離脱する速度である離脱速度係数βijのそれぞれと、各単鎖核酸の既知の分子数Cgとに基づき、核酸断片の分子数Sを単鎖核酸の種類毎に推定する総分子数推定装置(図1の総分子数推定装置10)と、
(構成要素2)
前記離脱速度係数βijのそれぞれと、前記推定された各核酸断片の分子数Sとに基づき、単鎖核酸の分子数Cを単鎖核酸の種類毎に推定する単鎖核酸分子数推定装置(図1の単鎖核酸分子数推定装置20)と、
(構成要素3)
前記推定された各単鎖核酸の分子数Cに基づき、前記離脱速度係数βijを前記二重鎖核酸の種類毎に算出する制御部(図1の制御部30)と、
を備えることを特徴とする。
<Separation speed coefficient calculation device in FIG. 1>
In addition, the separation speed coefficient calculation device of the present invention (the separation speed coefficient calculation device 1 in FIG. 1)
(Component 1)
Based on the separation rate coefficient β ij , which is the rate at which the single-stranded nucleic acid is released from the double-stranded nucleic acid, and the known number of molecules Cg i of each single-stranded nucleic acid, the number of molecules S i of the nucleic acid fragment is calculated from the single-stranded nucleic acid. A total number-of-molecules estimation device (total number-of-molecules estimation device 10 in FIG. 1) for each type,
(Component 2)
Wherein the respective dissociation rate coefficient beta ij, wherein based on the number of molecules S i of the estimated each nucleic acid fragments, single chain molecules number C i number single stranded nucleic acid molecule is estimated for each type of single-chain nucleic estimated nucleic acid An apparatus (single-stranded nucleic acid molecule number estimation apparatus 20 in FIG. 1);
(Component 3)
Based on the estimated number of molecules C i of each single-stranded nucleic acid, a control unit (control unit 30 in FIG. 1) that calculates the separation rate coefficient β ij for each type of the double-stranded nucleic acid;
It is characterized by providing.

<図4の制御部>
また、本発明の離脱速度係数算出装置(図1の離脱速度係数算出装置)における前記制御部(図4の制御部30)は、
(構成要素1)
前記総分子数推定装置(図4の総分子数推定装置10)に、前記離脱速度係数βijと前記単鎖核酸の既知の分子数Cgとに基づき、総分子数Sを前記単鎖核酸の種類i毎に推定させ、前記単鎖核酸推定装置に、該総分子数Sに対応する単鎖核酸の分子数Cを前記単鎖核酸の種類i毎に推定させる単鎖核酸取得部(図4の単鎖核酸取得部31)と、
(構成要素2)
前記単鎖核酸の種類i毎に、
前記単鎖核酸取得部(図4の単鎖核酸取得部31)により取得された前記単鎖核酸の分子数C と、
自装置の外部から入力された前記単鎖核酸の既知の分子数Cg
を前記単鎖核酸の種類i毎に比較し、
前記取得された単鎖核酸の分子数Cが入力された該単鎖核酸の既知の分子数Cgより小さい場合、該単鎖核酸の前記離脱速度係数βij を大きくし、
前記取得された単鎖核酸の分子数Cが、入力された該単鎖核酸の既知の分子数Cg以上の場合、該単鎖核酸の前記離脱速度係数βij を小さくする離脱速度係数補正部(図4の離脱速度係数補正部32)と、
を備え、
前記単鎖核酸取得部(図4の単鎖核酸取得部31)は、前記離脱速度係数補正部により補正された後の離脱速度係数β’ij に基づき、前記総分子数推定装置(図4の総分子数推定装置10)に前記総分子数S’を前記単鎖核酸の種類i毎に推定させ、前記単鎖核酸推定装置に該総分子数S’に対応する単鎖核酸の分子数C’ を前記単鎖核酸の種類i毎に推定させ、
前記制御部(図4の制御部30)は、
(構成要素3)
前記単鎖核酸の種類i毎に、前記補正前の単鎖核酸の分子数C と、入力された該単鎖核酸の既知の分子数Cgとの差異を補正前の差異|C −Cg|として算出し、
前記単鎖核酸の種類i毎に、前記補正後の単鎖核酸の分子数C’ と、入力された該単鎖核酸の既知の分子数Cgとの差異を補正後の差異|C’ −Cg|として算出する補正前後差異算出部(図4の補正前後差異算出部34)と、
(構成要素4)
前記補正前の差異|C −Cg|と、前記補正後の差異|C’ −Cg|とを前記単鎖核酸の種類i毎に比較し、前記補正前の差異|C −Cg|が前記補正後の差異|C’ −Cg|より大きい場合、前記離脱速度係数補正部により補正された後の離脱速度係数β´ij を選択し、前記補正前の差異|C −Cg|が前記補正後の差異|C’ −Cg|以下の場合、前記離脱速度係数補正部により補正される前の離脱速度係数βij を選択する離脱速度係数選択部(図4の離脱速度係数選択部35)と、
を更に備えることを特徴とする。
<Control part of FIG. 4>
Further, the control unit (the control unit 30 in FIG. 4) in the separation speed coefficient calculation device (the separation speed coefficient calculation device in FIG. 1) of the present invention includes:
(Component 1)
In the total molecular number estimation device (total molecular number estimation device 10 in FIG. 4), based on the separation rate coefficient β ij and the known molecular number Cg i of the single-stranded nucleic acid, the total molecular number S i is calculated as the single chain. Obtain single-stranded nucleic acid by estimating for each type of nucleic acid i, and causing the single-stranded nucleic acid estimation apparatus to estimate the number of molecules C i of single-stranded nucleic acid corresponding to the total number of molecules S i for each type of single-stranded nucleic acid i Part (single-stranded nucleic acid obtaining unit 31 in FIG. 4);
(Component 2)
For each type i of the single-stranded nucleic acid,
The number of molecules C i l of the single-stranded nucleic acid obtained by the single-stranded nucleic acid obtaining unit (single-stranded nucleic acid obtaining unit 31 in FIG. 4),
A known molecule number Cg i of the single-stranded nucleic acid input from the outside of the device is compared for each type i of the single-stranded nucleic acid,
If known molecular smaller number Cg i of the single strand nucleic acid molecule number C i of the single-stranded nucleic acid has been input the acquired, increasing the dissociation rate coefficient beta ij l of the single-stranded nucleic acid,
When the number of molecules C i of the obtained single-stranded nucleic acid is equal to or larger than the known number of molecules Cg i of the inputted single-stranded nucleic acid, the separation rate coefficient for reducing the separation rate coefficient β ij l of the single-stranded nucleic acid A correction unit (withdrawal speed coefficient correction unit 32 in FIG. 4);
With
The single-stranded nucleic acid acquisition unit (single-stranded nucleic acid acquisition unit 31 in FIG. 4) is based on the separation rate coefficient β ′ ij l corrected by the separation rate coefficient correction unit (see FIG. 4). The total molecular number estimation device 10) estimates the total molecular number S ′ i for each type i of the single-stranded nucleic acid, and the single-stranded nucleic acid estimation device uses the single-stranded nucleic acid corresponding to the total molecular number S ′ i . The number of molecules C ′ i 1 is estimated for each type i of the single-stranded nucleic acid,
The control unit (control unit 30 in FIG. 4)
(Component 3)
For each kind of single-stranded nucleic acid i , the difference between the number of molecules C i l of the single-stranded nucleic acid before correction and the known number of molecules Cg i of the inputted single-stranded nucleic acid is the difference before correction | C i l −Cg i |
For each type i of single-stranded nucleic acid, the difference after correcting for the difference between the corrected number of molecules C ′ i 1 of the single-stranded nucleic acid and the known number of molecules Cg i of the input single-stranded nucleic acid | C a before-and-after-correction difference calculating unit ('before-and-after-correction calculating unit 34 in FIG. 4) that is calculated as' i 1 -Cg i |;
(Component 4)
The difference | C i 1 −Cg i | before correction and the difference | C ′ i 1 −Cg i | after correction are compared for each type i of the single-stranded nucleic acid, and the difference before correction | C i l -Cg i | difference of the corrected | C 'i l -Cg i | is greater than, select dissociation rate coefficient .beta.' ij l after being corrected by the dissociation rate coefficient correction unit, the correction When the previous difference | C i 1 −Cg i | is equal to or smaller than the corrected difference | C ′ i 1 −Cg i |, the separation speed coefficient β ij l before being corrected by the separation speed coefficient correction unit is selected. A separation speed coefficient selection unit (a separation speed coefficient selection unit 35 in FIG. 4),
Is further provided.

<図4の離脱速度係数収束判定部36>
また、本発明の離脱速度係数算出装置(図1の離脱速度係数算出装置)における前記制御部(図4の制御部30)は、
前記離脱速度係数βij毎に、前記離脱速度係数補正部により補正される前の離脱速度係数βij と、前記離脱速度係数選択部(図4の離脱速度係数選択部35)により選択された離脱速度係数(βij またはβ’ij )との差異に基づいて、前記離脱速度係数βijの推定結果が収束したか否かを判定する離脱速度係数収束判定部(図4の離脱速度係数収束判定部36)を備え、
前記単鎖核酸取得部は、前記離脱速度係数収束判定部が収束していないと判定した場合、前記離脱速度係数選択部により選択された各離脱速度係数(βij またはβ’ij )に基づいて、前記単鎖核酸分子数推定装置から各単鎖核酸の分子数Cを取得することを特徴とする。
<Separation Speed Coefficient Convergence Determination Unit 36 in FIG. 4>
Further, the control unit (the control unit 30 in FIG. 4) in the separation speed coefficient calculation device (the separation speed coefficient calculation device in FIG. 1) of the present invention includes:
For each separation speed coefficient β ij , the separation speed coefficient β ij l before being corrected by the separation speed coefficient correction section and the separation speed coefficient selection section (the separation speed coefficient selection section 35 in FIG. 4) are selected. A separation speed coefficient convergence determination unit (the separation speed in FIG. 4) that determines whether or not the estimation result of the separation speed coefficient β ij has converged based on the difference from the separation speed coefficient (β ij l or β ′ ij l ). A coefficient convergence determination unit 36),
When the single-stranded nucleic acid obtaining unit determines that the separation rate coefficient convergence determination unit has not converged, the single-stranded nucleic acid acquisition unit determines each separation rate coefficient (β ij l or β ′ ij l ) selected by the separation rate coefficient selection unit. based on, and acquires the number of molecules C i of each single-stranded nucleic acid from said single-stranded nucleic acid molecule number estimating apparatus.

前記離脱速度係数補正部は、乱数を用いて前記離脱速度係数を補正することを特徴とする。   The separation speed coefficient correction unit corrects the separation speed coefficient using a random number.

前記離脱速度係数の初期値βij は、新たな前記単鎖核酸の既知の分子数が得られた場合に、自装置でそれまでに得られている離脱速度係数であることを特徴とする。 The initial value β ij 0 of the release rate coefficient is a release rate coefficient that has been obtained so far in its own device when a new known number of molecules of the single-stranded nucleic acid is obtained. .

前記離脱速度係数の初期値βij は、自装置でそれまでに得られている離脱速度係数がない場合には、第1の単鎖核酸の配列と第2の単鎖核酸の配列の一致箇所の長さに依存した値であることを特徴とする。 The initial value β ij 0 of the release rate coefficient is the same as the sequence of the first single-stranded nucleic acid and the sequence of the second single-stranded nucleic acid when there is no release rate coefficient obtained so far in the device. The value is dependent on the length of the part.

<単鎖核酸分子数推定方法>
また、本発明の単鎖核酸分子数推定方法は、単鎖核酸分子数推定装置(図3の単鎖核酸分子数推定装置20)が実行する単鎖核酸分子数推定方法であって、
(構成要素1)(式(6)参照)
第1の単鎖核酸の分子数C と、
該第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の分子数C と、
前記第1の単鎖核酸と前記第2の単鎖核酸とが結合した二重鎖核酸が離脱する速度である離脱速度係数βijと、
に基づき、前記第1の単鎖核酸と前記第2の単鎖核酸とが結合した二重鎖核酸の分子数Mij を前記第1の単鎖核酸と前記第2の単鎖核酸との組み合わせ毎に更新する二重鎖核酸分子数更新手順と、
(構成要素2)(式(7)参照)
前記二重鎖核酸分子数更新手順により更新された各二重鎖核酸の分子数Mij t+1と、
前記単鎖核酸分子数推定装置(図3の単鎖核酸分子装置20)の外部より与えられた核酸断片の総分子数Sと、
に基づいて、前記単鎖核酸の分子数C t+1を前記単鎖核酸の種類i毎に更新する単鎖核酸分子数更新手順と、
(構成要素3)
前記単鎖核酸分子数更新手順により更新される前の単鎖核酸の分子数C と、
前記単鎖核酸分子数更新手順により更新された後の単鎖核酸の分子数C t+1との差異|C t+1−C |を前記単鎖核酸の種類i毎に算出し、
前記各差異|C t+1−C |に基づき、各単鎖核酸の分子数C の推定結果が収束したか否かを判定する単鎖核酸収束判定手順と、
を有することを特徴とする。
<Method for estimating the number of single-stranded nucleic acid molecules>
The single-stranded nucleic acid molecule number estimation method of the present invention is a single-stranded nucleic acid molecule number estimation method executed by a single-stranded nucleic acid molecule number estimation device (single-stranded nucleic acid molecule number estimation device 20 in FIG. 3),
(Component 1) (Refer to Formula (6))
A number of molecules C i t of the first single stranded nucleic acid,
The number of molecules C j t of the second single-stranded nucleic acid that can bind to the first single-stranded nucleic acid to form a double-stranded nucleic acid;
A release rate coefficient β ij , which is a rate at which a double-stranded nucleic acid bound to the first single-stranded nucleic acid and the second single-stranded nucleic acid is released,
Based on the number of molecules M ij t of the double-stranded nucleic acid in which the first single-stranded nucleic acid and the second single-stranded nucleic acid are bound to each other, based on the first single-stranded nucleic acid and the second single-stranded nucleic acid. A procedure for updating the number of double-stranded nucleic acid molecules to be updated for each combination;
(Component 2) (Refer to Formula (7))
The number of molecules M ij t + 1 of each double-stranded nucleic acid updated by the double-stranded nucleic acid molecule number updating procedure;
The total number of molecules S i of nucleic acid fragments given from outside the single-stranded nucleic acid molecule number estimating device (single-stranded nucleic acid molecule device 20 in FIG. 3);
A single-stranded nucleic acid molecule number updating procedure for updating the single-stranded nucleic acid molecule number C i t + 1 for each type i of the single-stranded nucleic acid,
(Component 3)
A number of molecules C i t single-stranded nucleic acid before being updated by the single-stranded nucleic acid molecule number updating procedure,
The difference | C i t + 1 −C i t | from the number of molecules C i t + 1 of the single-stranded nucleic acid after being updated by the single-stranded nucleic acid molecule number updating procedure is calculated for each type i of the single-stranded nucleic acid,
Each difference | C i t + 1 -C i t | based on a single-stranded nucleic convergence determination procedure for determining whether the converged estimation result of the number of molecules C i t of each single-stranded nucleic acid,
It is characterized by having.

<総分子数推定方法>
また、本発明の総分子数推定方法は、二重鎖核酸から単鎖核酸が離脱する離脱速度係数βijを示す情報が該二重鎖核酸の種類毎に記憶されている離脱速度係数記憶部(図2の離脱速度係数記憶部12)と、核酸断片が単鎖状態である単鎖核酸の分子数Cと該単鎖核酸を少なくともひとつ含む二重鎖核酸の分子数の和である核酸断片の総分子数Sを示す情報が単鎖核酸の種類毎に記憶されている総分子数記憶部(図2の総分子数記憶部11)と、を備える総分子数推定装置が実行する総分子数推定方法であって、
(構成要素1)(式(6)および式(7)参照)
前記離脱速度係数記憶部から前記離脱速度係数βijを示す情報を読み出し、
前記総分子数記憶部から総分子数S を示す情報を読み出し、
前記読み出された離脱速度係数βijと前記読み出された総分子数S とに基づいて、
溶液中に存在する単鎖核酸の分子数C を前記単鎖核酸分子数推定装置に前記単鎖核酸の種類i毎に推定させる単鎖核酸分子数取得手順と、
(構成要素2)
前記推定された単鎖核酸の分子数C と、
自装置の外部から入力された該単鎖核酸の既知の分子数Cgとの
差異C −Cgを前記単鎖核酸の種類i毎に算出する単鎖核酸差異算出手順と、
(構成要素3)
該単鎖核酸の種類i毎の前記差異C −Cgに基づき、前記核酸断片の総分子数Sの推定結果が収束したか否かを判定する総分子数収束判定手順と、
(構成要素4)(式(5)参照)
前記総分子数収束判定部手順が収束していないと判定した場合、
前記離脱速度係数記憶部から前記各離脱速度係数βijを示す情報を読み出し、
該読み出された各離脱速度係数βijと、第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の前記差異C −Cgとに基づき、前記第1の単鎖核酸を少なくとも1つ有する核酸断片の総分子数S を前記単鎖核酸の種類i毎に補正し、補正した総分子数S k+1を示す情報で、前記総分子数記憶部に記憶されている総分子数Sを示す情報を更新する総分子数補正手順と、
を有し、
前記単鎖核酸分子数取得手順は、前記総分子数記憶部から前記総分子数補正手順により更新された総分子数Sを示す情報を読み出し、該読み出した総分子数S に基づき、前記単鎖核酸の分子数C を前記単鎖核酸分子数推定装置に前記単鎖核酸の種類i毎に推定させることを特徴とする。
<Total number of molecules estimation method>
In addition, the method for estimating the total number of molecules of the present invention includes a separation rate coefficient storage unit in which information indicating a separation rate coefficient β ij at which a single-stranded nucleic acid is detached from a double-stranded nucleic acid is stored for each type of the double-stranded nucleic acid. and (dissociation rate coefficient storage unit 12 of FIG. 2), nucleic acid fragment is a sum of the number of molecules of double-stranded nucleic acid comprising at least one molecular number C i and the single stranded nucleic acids single-stranded nucleic acid which is a single-stranded state A total molecular number estimation device comprising: a total molecular number storage unit (total molecular number storage unit 11 in FIG. 2) in which information indicating the total molecular number S i of a fragment is stored for each type of single-stranded nucleic acid A method for estimating the total number of molecules,
(Component 1) (See Equation (6) and Equation (7))
Read the information indicating the separation speed coefficient β ij from the separation speed coefficient storage unit,
Read information indicating the total number of molecules S i k from the total number of molecules storage unit,
The read out on the basis of the read the the dissociation rate coefficient beta ij on the total molecular number S i k,
A single chain number nucleic acid molecule acquisition procedure for estimating the number of molecules C i k single-stranded nucleic acid present in the solution for each type i of the single stranded nucleic acid to said single-stranded nucleic acid molecule number estimating apparatus,
(Component 2)
The estimated number of molecules C i k of the single-stranded nucleic acid,
A single-stranded nucleic acid difference computation steps a difference C i k -Cg i with known molecular number Cg i is calculated for each type i of the single-stranded nucleic acid of the single-stranded nucleic acid that is input from an external of the apparatus,
(Component 3)
Based on the difference C i k -Cg i for each type i of the single-stranded nucleic acid, the total number of molecules convergence determination procedure for determining whether estimation result or not convergence of the total number of molecules S i of the nucleic acid fragments,
(Component 4) (Refer to Formula (5))
When it is determined that the total molecular number convergence determination unit procedure has not converged,
Read out the information indicating each separation speed coefficient β ij from the separation speed coefficient storage unit,
Based on each read out rate coefficient β ij and the difference C j k -Cg j of the second single-stranded nucleic acid that can bind to the first single-stranded nucleic acid to form a double-stranded nucleic acid, in the total number of molecules S i k of the first single stranded nucleic acid having at least one nucleic acid fragment is corrected for each type i of the single-stranded nucleic acid, the information indicating the total number of molecules S i k + 1 obtained by correcting the total molecular A total molecular number correction procedure for updating the information indicating the total molecular number S i stored in the number storage unit;
Have
The single-stranded nucleic acid molecule number acquisition procedure reads information indicating the total molecular number S i updated by the total molecular number correction procedure from the total molecular number storage unit, and based on the read total molecular number S i k , The number C i k of the single-stranded nucleic acid is estimated by the single-stranded nucleic acid molecule number estimation apparatus for each type i of the single-stranded nucleic acid.

<離脱速度係数算出方法>
本発明の離脱速度係数算出装置(図1の離脱速度係数算出装置1)が実行する離脱速度係数算出方法は、
(構成要素1)
二重鎖核酸から単鎖核酸が離脱する速度である離脱速度係数βijのそれぞれと、各単鎖核酸の既知の分子数Cgとに基づき、核酸断片の分子数Sを単鎖核酸の種類毎に推定する前記総分子数推定方法と、
(構成要素2)
前記離脱速度係数βijのそれぞれと、前記推定された各核酸断片の分子数Sとに基づき、単鎖核酸の分子数Cを単鎖核酸の種類毎に推定する前記単鎖核酸分子数推定方法と、
(構成要素3)
前記推定された各単鎖核酸の分子数Cに基づき、前記離脱速度係数βijを前記二重鎖核酸の種類毎に算出する制御手順と、
を有することを特徴とする。
<How to calculate the separation speed coefficient>
The separation speed coefficient calculation method executed by the separation speed coefficient calculation apparatus of the present invention (the separation speed coefficient calculation apparatus 1 in FIG. 1)
(Component 1)
Based on the separation rate coefficient β ij , which is the rate at which the single-stranded nucleic acid is released from the double-stranded nucleic acid, and the known number of molecules Cg i of each single-stranded nucleic acid, the number of molecules S i of the nucleic acid fragment is calculated from the single-stranded nucleic acid. The total number-of-molecules estimation method for estimating each type;
(Component 2)
The number of single-stranded nucleic acid molecules for estimating the number of molecules C i of single-stranded nucleic acids for each type of single-stranded nucleic acid based on each of the separation rate coefficients β ij and the estimated number of molecules S i of each nucleic acid fragment An estimation method;
(Component 3)
A control procedure for calculating the separation rate coefficient β ij for each type of the double-stranded nucleic acid based on the estimated number C i of each single-stranded nucleic acid;
It is characterized by having.

<単鎖核酸分子数推定プログラム>
また、本発明の単鎖核酸分子数推定プログラムは、単鎖核酸分子数推定装置(図3の離脱速度係数算出装置13)であるコンピュータに、
(構成要素1)(式(6)参照)
第1の単鎖核酸の分子数C と、
該第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の分子数C と、
前記第1の単鎖核酸と前記第2の単鎖核酸とが結合した二重鎖核酸が離脱する速度である離脱速度係数βijと、
に基づき、前記第1の単鎖核酸と前記第2の単鎖核酸とが結合した二重鎖核酸の分子数Mij を前記第1の単鎖核酸と前記第2の単鎖核酸との組み合わせ毎に更新する二重鎖核酸分子数更新ステップと、
(構成要素2)(式(7)参照)
前記二重鎖核酸分子数更新ステップにより更新された各二重鎖核酸の分子数Mij t+1と、
前記単鎖核酸分子数推定装置(図3の単鎖核酸分子装置20)の外部より与えられた核酸断片の総分子数Sと、
に基づいて、前記単鎖核酸の分子数C t+1を前記単鎖核酸の種類i毎に更新する単鎖核酸分子数更新ステップと、
(構成要素3)
前記単鎖核酸分子数更新ステップにより更新される前の単鎖核酸の分子数C と、
前記単鎖核酸分子数更新ステップにより更新された後の単鎖核酸の分子数C t+1との差異|C t+1−C |を前記単鎖核酸の種類i毎に算出し、
前記各差異|C t+1−C |に基づき、各単鎖核酸の分子数C の推定結果が収束したか否かを判定する単鎖核酸収束判定ステップと、
を実行させるための単鎖核酸分子数推定プログラムである。
<Single-stranded nucleic acid molecule number estimation program>
Moreover, the single-stranded nucleic acid molecule number estimation program of the present invention is stored in a computer which is a single-stranded nucleic acid molecule number estimation device (detachment rate coefficient calculation device 13 in FIG.
(Component 1) (Refer to Formula (6))
A number of molecules C i t of the first single stranded nucleic acid,
The number of molecules C j t of the second single-stranded nucleic acid that can bind to the first single-stranded nucleic acid to form a double-stranded nucleic acid;
A release rate coefficient β ij , which is a rate at which a double-stranded nucleic acid bound to the first single-stranded nucleic acid and the second single-stranded nucleic acid is released,
Based on the number of molecules M ij t of the double-stranded nucleic acid in which the first single-stranded nucleic acid and the second single-stranded nucleic acid are bound to each other, based on the first single-stranded nucleic acid and the second single-stranded nucleic acid. A step of updating the number of double-stranded nucleic acid molecules to be updated for each combination;
(Component 2) (Refer to Formula (7))
The number of molecules M ij t + 1 of each double-stranded nucleic acid updated by the double-stranded nucleic acid molecule number updating step;
The total number of molecules S i of nucleic acid fragments given from outside the single-stranded nucleic acid molecule number estimating device (single-stranded nucleic acid molecule device 20 in FIG. 3);
A single-stranded nucleic acid molecule number updating step for updating the single-stranded nucleic acid molecule number C i t + 1 for each type i of the single-stranded nucleic acid,
(Component 3)
A number of molecules C i t single-stranded nucleic acid before being updated by the single-stranded nucleic acid molecule number updating step,
The difference | C i t + 1 −C i t | from the number of molecules C i t + 1 of the single-stranded nucleic acid after updated by the step of updating the number of single-stranded nucleic acid molecules is calculated for each type i of the single-stranded nucleic acid,
Each difference | C i t + 1 -C i t | based on a single-stranded nucleic convergence determination step of determining whether the estimated result is converged molecular number C i t of each single-stranded nucleic acid,
Is a program for estimating the number of single-stranded nucleic acid molecules.

<総分子数推定プログラム>
また、本発明の総分子数推定プログラムは、二重鎖核酸から単鎖核酸が離脱する離脱速度係数βijを示す情報が該二重鎖核酸の種類毎に記憶されている離脱速度係数記憶部(図2の離脱速度係数記憶部12)と、核酸断片が単鎖状態である単鎖核酸の分子数Cと該単鎖核酸を少なくともひとつ含む二重鎖核酸の分子数の和である核酸断片の総分子数Sを示す情報が単鎖核酸の種類毎に記憶されている総分子数記憶部(図2の総分子数記憶部11)と、を備える総分子数推定装置としてのコンピュータに、
(構成要素1)(式(6)および式(7)参照)
前記離脱速度係数記憶部から前記離脱速度係数βijを示す情報を読み出し、
前記総分子数記憶部から総分子数S を示す情報を読み出し、
前記読み出された離脱速度係数βijと前記読み出された総分子数S とに基づいて、
溶液中に存在する単鎖核酸の分子数C を前記単鎖核酸分子数推定装置に前記単鎖核酸の種類i毎に推定させる単鎖核酸分子数取得手順と、
(構成要素2)
前記推定された単鎖核酸の分子数C と、
自装置の外部から入力された該単鎖核酸の既知の分子数Cgとの
差異C −Cgを前記単鎖核酸の種類i毎に算出する単鎖核酸差異算出手順と、
(構成要素3)
該単鎖核酸の種類i毎の前記差異C −Cgに基づき、前記核酸断片の総分子数Sの推定結果が収束したか否かを判定する総分子数収束判定手順と、
(構成要素4)(式(5)参照)
前記総分子数収束判定部手順が収束していないと判定した場合、
前記離脱速度係数記憶部から前記各離脱速度係数βijを示す情報を読み出し、
該読み出された各離脱速度係数βijと、第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の前記差異C −Cgとに基づき、前記第1の単鎖核酸を少なくとも1つ有する核酸断片の総分子数S を前記単鎖核酸の種類i毎に補正し、補正した総分子数S k+1を示す情報で、前記総分子数記憶部に記憶されている総分子数Sを示す情報を更新する総分子数補正手順と、
を実行させるための総分子数推定プログラムであって、
前記単鎖核酸分子数取得手順は、前記総分子数記憶部から前記総分子数補正手順により更新された総分子数Sを示す情報を読み出し、該読み出した総分子数S に基づき、前記単鎖核酸の分子数C を前記単鎖核酸分子数推定装置に前記単鎖核酸の種類i毎に推定させることを特徴とする総分子数推定プログラムである。
<Total number of molecules estimation program>
Further, the total molecular number estimation program of the present invention includes a separation rate coefficient storage unit in which information indicating a separation rate coefficient β ij at which a single-stranded nucleic acid is detached from a double-stranded nucleic acid is stored for each type of the double-stranded nucleic acid. and (dissociation rate coefficient storage unit 12 of FIG. 2), nucleic acid fragment is a sum of the number of molecules of double-stranded nucleic acid comprising at least one molecular number C i and the single stranded nucleic acids single-stranded nucleic acid which is a single-stranded state A computer as a total number-of-molecules estimation device comprising: a total number-of-molecules storage unit (total number-of-molecules storage unit 11 in FIG. 2) in which information indicating the total number of molecules S i of fragments is stored for each type of single-stranded nucleic acid In addition,
(Component 1) (See Equation (6) and Equation (7))
Read the information indicating the separation speed coefficient β ij from the separation speed coefficient storage unit,
Read information indicating the total number of molecules S i k from the total number of molecules storage unit,
The read out on the basis of the read the the dissociation rate coefficient beta ij on the total molecular number S i k,
A single chain number nucleic acid molecule acquisition procedure for estimating the number of molecules C i k single-stranded nucleic acid present in the solution for each type i of the single stranded nucleic acid to said single-stranded nucleic acid molecule number estimating apparatus,
(Component 2)
The estimated number of molecules C i k of the single-stranded nucleic acid,
A single-stranded nucleic acid difference computation steps a difference C i k -Cg i with known molecular number Cg i is calculated for each type i of the single-stranded nucleic acid of the single-stranded nucleic acid that is input from an external of the apparatus,
(Component 3)
Based on the difference C i k -Cg i for each type i of the single-stranded nucleic acid, the total number of molecules convergence determination procedure for determining whether estimation result or not convergence of the total number of molecules S i of the nucleic acid fragments,
(Component 4) (Refer to Formula (5))
When it is determined that the total molecular number convergence determination unit procedure has not converged,
Read out the information indicating each separation speed coefficient β ij from the separation speed coefficient storage unit,
Based on each read out rate coefficient β ij and the difference C j k -Cg j of the second single-stranded nucleic acid that can bind to the first single-stranded nucleic acid to form a double-stranded nucleic acid, in the total number of molecules S i k of the first single stranded nucleic acid having at least one nucleic acid fragment is corrected for each type i of the single-stranded nucleic acid, the information indicating the total number of molecules S i k + 1 obtained by correcting the total molecular A total molecular number correction procedure for updating the information indicating the total molecular number S i stored in the number storage unit;
A total molecular number estimation program for executing
The single-stranded nucleic acid molecule number acquisition procedure reads information indicating the total molecular number S i updated by the total molecular number correction procedure from the total molecular number storage unit, and based on the read total molecular number S i k , A total molecular number estimation program for causing the single-stranded nucleic acid molecule number estimation apparatus to estimate the number of molecules C i k of the single-stranded nucleic acid for each type i of the single-stranded nucleic acid.

<離脱速度係数算出プログラム>
また、本発明の離脱速度係数算出プログラムは、離脱速度係数算出装置(図1の離脱速度係数算出装置1)であるコンピュータに、
(構成要素1)
二重鎖核酸から単鎖核酸が離脱する速度である離脱速度係数βijのそれぞれと、各単鎖核酸の既知の分子数Cgとに基づき、核酸断片の分子数Sを単鎖核酸の種類毎に推定する前記総分子数推定プログラムと、
(構成要素2)
前記離脱速度係数βijのそれぞれと、前記推定された各核酸断片の分子数Sとに基づき、単鎖核酸の分子数Cを単鎖核酸の種類毎に推定する前記単鎖核酸分子数推定プログラムと、
(構成要素3)
前記推定された各単鎖核酸の分子数Cに基づき、前記離脱速度係数βijを前記二重鎖核酸の種類毎に算出する制御ステップと、
を実行させるための離脱速度係数算出プログラムである。
<Separation speed coefficient calculation program>
Further, the separation speed coefficient calculation program of the present invention is applied to a computer which is a separation speed coefficient calculation apparatus (the separation speed coefficient calculation apparatus 1 in FIG. 1).
(Component 1)
Based on the separation rate coefficient β ij , which is the rate at which the single-stranded nucleic acid is released from the double-stranded nucleic acid, and the known number of molecules Cg i of each single-stranded nucleic acid, the number of molecules S i of the nucleic acid fragment is determined as The total number-of-molecules estimation program for estimating each type;
(Component 2)
The number of single-stranded nucleic acid molecules for estimating the number of molecules C i of single-stranded nucleic acids for each type of single-stranded nucleic acid based on each of the separation rate coefficients β ij and the estimated number of molecules S i of each nucleic acid fragment An estimation program;
(Component 3)
A control step of calculating the separation rate coefficient β ij for each type of the double-stranded nucleic acid based on the estimated number C i of each single-stranded nucleic acid;
Is a separation speed coefficient calculation program.

本発明によれば、各単鎖核酸の分子数を精度良く推定することができる。また、推定各核酸断片の総分子数を推定することができるので、単鎖核酸の分子数と、核酸断片の総分子数とを明確に区別して推定することができる。   According to the present invention, the number of molecules of each single-stranded nucleic acid can be estimated with high accuracy. Further, since the total number of molecules of each estimated nucleic acid fragment can be estimated, the number of molecules of single-stranded nucleic acid and the total number of molecules of nucleic acid fragments can be clearly distinguished and estimated.

本発明の実施形態における離脱速度係数算出装置のブロック構成図である。It is a block block diagram of the separation speed coefficient calculation apparatus in embodiment of this invention. 総分子数推定装置のブロック構成図である。It is a block block diagram of a total molecule number estimation apparatus. 単鎖核酸分子数推定装置のブロック構成図である。It is a block block diagram of a single strand nucleic acid molecule number estimation apparatus. 制御部のブロック構成図である。It is a block block diagram of a control part. 離脱速度係数算出装置による離脱速度係数の推定の処理の流れを示したフローチャートである。It is the flowchart which showed the flow of the process of estimation of the separation speed coefficient by the separation speed coefficient calculation apparatus. 図5のステップS102またはステップS105における各単鎖核酸の分子数の取得の処理の流れを示したフローチャートである。6 is a flowchart showing a flow of processing for obtaining the number of molecules of each single-stranded nucleic acid in step S102 or step S105 of FIG. 図6のステップS201における総分子数推定装置による各核酸断片の総分子数の推定の処理の流れを示したフローチャートである。It is the flowchart which showed the flow of the process of estimation of the total molecule number of each nucleic acid fragment by the total molecule number estimation apparatus in FIG. 図6のステップS202または図7のステップS303における単鎖核酸分子数推定装置による各単鎖核酸の分子数の推定の処理の流れを示したフローチャートである。FIG. 8 is a flowchart showing the flow of processing for estimating the number of molecules of each single-stranded nucleic acid by the single-stranded nucleic acid molecule number estimating apparatus in step S202 of FIG. 6 or step S303 of FIG.

本発明(競合的ハイブリダイゼーションにおける遺伝子データの補正方法及び補正装置)の一実施形態である、単鎖核酸分子数推定装置、総分子数推定装置、離脱速度係数算出装置、単鎖核酸分子数推定方法、総分子数推定方法、離脱速度係数算出方法、単鎖核酸分子数推定プログラム、総分子数推定プログラムおよび離脱速度係数算出プログラムについて説明する。   One embodiment of the present invention (method and apparatus for correcting gene data in competitive hybridization), single-stranded nucleic acid molecule number estimating apparatus, total molecular number estimating apparatus, withdrawal rate coefficient calculating apparatus, single-stranded nucleic acid molecule number estimating A method, a total molecule number estimation method, a withdrawal rate coefficient calculation method, a single-stranded nucleic acid molecule number estimation program, a total molecule number estimation program, and a withdrawal rate coefficient calculation program will be described.

以下、本発明の実施形態について、図面を参照して詳細に説明する。まず、本発明の概要について説明する。核酸断片は、主に、単鎖の状態と、相補的な塩基配列を持つ核酸鎖とが結合した二重鎖の状態で存在する。単鎖と二重鎖は物理化学的に平衡状態にあり、溶液の温度や塩濃度等とその塩基配列に基づく結合定数(離脱速度定数)に依存して、それぞれの割合が定まる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, an outline of the present invention will be described. The nucleic acid fragment exists mainly in a single-stranded state and a double-stranded state in which a nucleic acid strand having a complementary base sequence is bound. The single chain and the double chain are in physicochemical equilibrium, and their ratios are determined depending on the temperature and salt concentration of the solution and the binding constant (detachment rate constant) based on the base sequence.

単鎖の結合は対になる核酸断片の塩基配列が完全に相補的な場合だけでなく、部分的な相補性であっても結合状態が生じ得るが、核酸を構成し相補性の要となる塩基は4種類しかなく、その配列パターンは核酸断片の長さが短ければ短いほど少なくなるため、部分的な相補鎖が偶然存在し、部分的な核酸断片結合が極めて発生し易くなる。従って、様々な塩基配列をもつ多数の核酸断片が同時に存在する系においては、完全特異的な核酸断片結合はむしろ少数で、部分特異的な核酸断片結合が大量に発生している。   Single-stranded bonds can form a binding state not only when the nucleotide sequences of the paired nucleic acid fragments are completely complementary, but also with partial complementarity. Since there are only four types of bases, and the sequence pattern becomes shorter as the length of the nucleic acid fragment is shorter, partial complementary strands are present by chance, and partial nucleic acid fragment binding is very likely to occur. Therefore, in a system in which a large number of nucleic acid fragments having various base sequences are present simultaneously, the number of completely specific nucleic acid fragment bonds is rather small, and a large amount of partially specific nucleic acid fragment bonds are generated.

ある特定の核酸断片(ターゲット)の総分子数を測定する場合に、塩基配列が特異的(相補的)な核酸断片対が結合して二重鎖を形成させるなどの方法による単鎖核酸の量を計測する装置を用いると、溶液中において、完全特異的ならびに部分特異的な結合により、二重鎖核酸を形成し単鎖核酸の存在量が減少するため、既存のターゲットの総分子数を単鎖核酸の量と同一視する測定方法では、測定結果の定量性を低下させる。   When measuring the total number of molecules of a specific nucleic acid fragment (target), the amount of single-stranded nucleic acid by a method such as a pair of nucleic acid fragments that have specific (complementary) base sequences bind to form a duplex Using a device that measures the total number of molecules in an existing target, a double-stranded nucleic acid is formed in solution due to the formation of double-stranded nucleic acids due to complete and partial specific binding. In the measurement method that equates with the amount of strand nucleic acid, the quantitativeness of the measurement result is lowered.

本発明では、溶液中における核酸断片の完全特異的ならびに部分特異的な結合により、二重鎖が形成されることによる影響を補正して、測定対象の核酸断片の存在量を高精度に測定することを可能とする単鎖核酸分子数推定装置、総分子数推定装置、離脱速度係数算出装置、単鎖核酸分子数推定方法、総分子数推定方法、離脱速度係数算出方法、単鎖核酸分子数推定プログラム、総分子数推定プログラムおよび離脱速度係数算出プログラムを提供する。   In the present invention, the abundance of the nucleic acid fragment to be measured is measured with high accuracy by correcting the influence of double strand formation by completely specific and partial specific binding of the nucleic acid fragment in solution. Single-stranded nucleic acid molecule number estimation device, total molecular number estimation device, separation rate coefficient calculation device, single-stranded nucleic acid molecule number estimation method, total molecule number estimation method, separation rate coefficient calculation method, single-stranded nucleic acid molecule number An estimation program, a total molecular number estimation program, and a withdrawal rate coefficient calculation program are provided.

<理論>
続いて、本発明の基礎となる理論について説明する。複数種類の単鎖核酸を含む溶液中では、単鎖核酸同士が結合していると考えられる。結合により増加する二重鎖核酸の量は、二つの単鎖核酸が遭遇する確率に依存し、それぞれの単鎖核酸の濃度に比例すると考えられる。
<Theory>
Next, the theory that forms the basis of the present invention will be described. In a solution containing a plurality of types of single-stranded nucleic acids, it is considered that single-stranded nucleic acids are bound to each other. The amount of double-stranded nucleic acid that increases due to binding depends on the probability that two single-stranded nucleic acids are encountered and is thought to be proportional to the concentration of each single-stranded nucleic acid.

Figure 0005177712
Figure 0005177712

ここで、Mijは、i(iは1からnまでの整数)番目の単鎖核酸とj(jは1からnまでの整数)番目の単鎖核酸が結合した二重鎖核酸の分子数を表し、C、Cは、それぞれi番目の単鎖核酸の分子数およびj番目の単鎖核酸の分子数を表す。ここで、Kは、結合の速度を表す定数であり、Vは溶液の体積である。単鎖核酸に解離することにより減少する二重鎖核酸の量は、核酸断片間の結合力に依存すると考えられ、減少する二重鎖核酸の量は、以下の式で表される。 Here, M ij is the number of molecules of the double-stranded nucleic acid in which the i (i is an integer from 1 to n) -th single-stranded nucleic acid and the j (j is an integer from 1 to n) -th single-stranded nucleic acid are combined. C i and C j represent the number of molecules of the i-th single-stranded nucleic acid and the number of molecules of the j-th single-stranded nucleic acid, respectively. Here, K is a constant representing the rate of binding, and V is the volume of the solution. The amount of double-stranded nucleic acid that decreases by dissociating into single-stranded nucleic acid is considered to depend on the binding force between the nucleic acid fragments, and the amount of double-stranded nucleic acid that decreases is expressed by the following equation.

Figure 0005177712
Figure 0005177712

ここで、βijは、上述したようにi番目の種類の単鎖核酸とj番目の種類の単鎖核酸とが結合した二重鎖核酸が解離する速度を示す離脱速度係数である。混合前のi番目の単鎖核酸単体の分子数をSとすると、i番目の種類の単鎖核酸の分子数Cは、以下の式により表される。 Here, β ij is a detachment rate coefficient indicating the rate at which the double-stranded nucleic acid in which the i-th type single-stranded nucleic acid and the j-th type single-stranded nucleic acid are combined is dissociated as described above. When the number of molecules of the i-th single-stranded nucleic acid before mixing is S i , the number of molecules C i of the i-th type single-stranded nucleic acid is expressed by the following equation.

Figure 0005177712
Figure 0005177712

ここで、右辺の第3項は、二重鎖核酸が同じ単鎖核酸の結合である場合に必要となる項である。すなわち、同じ単鎖核酸が結合して二重鎖核酸が生成されるときには、それと同時に、その単鎖核酸が2個減少するので、右辺には第3項の減算が必要となる。
混合後、十分な時間を経た後は平衡状態にあると考えられ、式(1)の右辺と式(2)の右辺が等しくなるので、以下の式が成立する。
Here, the third term on the right side is a term that is required when the double-stranded nucleic acid is a bond of the same single-stranded nucleic acid. That is, when the same single-stranded nucleic acid is combined to produce a double-stranded nucleic acid, at the same time, the number of the single-stranded nucleic acid is reduced by two, so the third term needs to be subtracted on the right side.
After mixing, after a sufficient time, the state is considered to be in an equilibrium state, and the right side of equation (1) is equal to the right side of equation (2), so the following equation is established.

Figure 0005177712
Figure 0005177712

<離脱速度係数算出装置>
続いて、本発明の実施形態における離脱速度係数算出装置1について、図1を用いて説明する。図1は、本発明の実施形態における離脱速度係数算出装置1のブロック構成図である。離脱速度係数算出装置1は、総分子数推定装置10と、単鎖核酸分子数推定装置20と、制御部30とを備える。
<Separation speed coefficient calculation device>
Next, the separation speed coefficient calculation device 1 according to the embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram of a separation speed coefficient calculation device 1 according to an embodiment of the present invention. The withdrawal rate coefficient calculation device 1 includes a total molecular number estimation device 10, a single-stranded nucleic acid molecule number estimation device 20, and a control unit 30.

制御部30は、離脱速度係数算出装置1の外部から入力された各単鎖核酸の既知の分子数Cg(iは単鎖核酸の種類を示すインデックスで、1からnまでの整数)を示す情報と、各離脱速度係数の初期値βij を示す情報とに基づいて、総分子数推定装置10に各単鎖核酸の既知の分子数Cgを示す情報と、各離脱速度係数βijを示す情報を出力する。制御部30は、総分子数推定装置10に上記出力した情報に基づいて、単鎖核酸の分子数Cを単鎖核酸の種類毎に算出させる。 The control unit 30 indicates the known number of molecules Cg i of each single-stranded nucleic acid (i is an index indicating the type of single-stranded nucleic acid) and is an integer from 1 to n input from the outside of the separation rate coefficient calculating device 1 Based on the information and the information indicating the initial value β ij 0 of each separation rate coefficient, the total molecular number estimation device 10 indicates information indicating the known number of molecules Cg i of each single-stranded nucleic acid and each separation rate coefficient β ij. The information indicating is output. The control unit 30 causes the total number-of-molecules estimation apparatus 10 to calculate the number of molecules C i of the single-stranded nucleic acid for each type of single-stranded nucleic acid based on the output information.

制御部30は、単鎖核酸分子数推定装置20から各単鎖核酸の分子数Cを示す情報を取得し、取得した各単鎖核酸の分子数Cを示す情報に基づいて、各離脱速度係数βijを算出し、算出した各離脱速度係数βijを示す情報を離脱速度係数算出装置1の外部へ出力する。 Control unit 30, based on the information acquired information indicating the number of molecules C i of each single-stranded nucleic acid from single-stranded nucleic acid molecule number estimating device 20 indicates the number of molecules C i of each single-stranded nucleic acid obtained, each withdrawal The speed coefficient β ij is calculated, and information indicating each calculated separation speed coefficient β ij is output to the outside of the separation speed coefficient calculation apparatus 1.

総分子数推定装置10は、制御部30から入力された単鎖核酸の既知の分子数Cgを示す情報と、離脱速度係数βijを示す情報とに基づいて、核酸断片の総分子数Sを単鎖核酸の種類毎に算出する。 Total molecular number estimation device 10 receives the information indicating the known number of molecules Cg i single-stranded nucleic acid that is input from the control unit 30, based on the information indicating the dissociation rate coefficient beta ij, the total number of molecules of the nucleic acid fragment S i is calculated for each type of single-stranded nucleic acid.

総分子数推定装置10は、離脱速度係数βijを示す情報と算出された核酸断片の総分子数Sを示す情報とを単鎖核酸分子数推定装置20に出力し、単鎖核酸分子数推定装置20に上記出力した情報に基づいて、単鎖核酸の分子数Cを単鎖核酸の種類毎に算出させる。
単鎖核酸分子数推定装置20は、算出した各単鎖核酸の分子数Cを示す情報を制御部30に出力する。
The total number-of-molecules estimation apparatus 10 outputs information indicating the separation rate coefficient β ij and information indicating the calculated total number of molecules S i of nucleic acid fragments to the single-stranded nucleic acid molecule number estimation apparatus 20, and the number of single-stranded nucleic acid molecules based on the output information to the estimation device 20, the number of molecules C i of the single-stranded nucleic acid is calculated for each type of single-chain nucleic acids.
Single-stranded nucleic acid molecule number estimating device 20 outputs information indicating the number of molecules C i of each single-stranded nucleic acid that is calculated in the control unit 30.

単鎖核酸分子数推定装置20は、総分子数推定装置10から入力された離脱速度係数βijを示す情報と核酸断片の総分子数Sを示す情報とに基づいて、単鎖核酸の分子数Cを単鎖核酸の種類毎に算出する。単鎖核酸分子数推定装置20は、算出した各単鎖核酸の分子数Cを示す情報を総分子数推定装置10と制御部30とへ出力する。 The single-stranded nucleic acid molecule number estimation device 20 is based on the information indicating the withdrawal rate coefficient β ij and the information indicating the total number of molecules S i of the nucleic acid fragments input from the total molecule number estimation device 10. the number C i is calculated for each type of single-chain nucleic acids. Single-stranded nucleic acid molecule number estimating device 20 outputs to the calculated respective single chain molecular number C i total molecular number estimating apparatus information indicating a 10 nucleic acid control unit 30.

以上の処理をまとめると、離脱速度係数算出装置1の総分子数推定装置10は、二重鎖核酸から単鎖核酸が離脱する速度である離脱速度係数βijのそれぞれと、各単鎖核酸の既知の分子数Cgとに基づき、各核酸断片の分子数Sを単鎖核酸の種類毎に推定する。単鎖核酸分子数推定装置20は、前記離脱速度係数βijのそれぞれと、前記推定された各核酸断片の分子数Sとに基づき、単鎖核酸の分子数Cを単鎖核酸の種類毎に推定する。制御部30は、前記推定された各単鎖核酸の分子数Cに基づき、前記離脱速度係数βijを前記二重鎖核酸の種類毎に算出する。 Summarizing the above processing, the total number-of-molecules estimation device 10 of the separation rate coefficient calculation device 1 has a separation rate coefficient β ij , which is a rate at which a single-stranded nucleic acid is detached from a double-stranded nucleic acid, and each single-stranded nucleic acid. Based on the known number of molecules Cg i , the number of molecules S i of each nucleic acid fragment is estimated for each type of single-stranded nucleic acid. The single-stranded nucleic acid molecule number estimating device 20 calculates the molecular number C i of the single-stranded nucleic acid based on each of the above-mentioned withdrawal rate coefficient β ij and the estimated molecular number S i of each nucleic acid fragment, and the kind of single-stranded nucleic acid. Estimate every time. Based on the estimated number C i of each single-stranded nucleic acid, the control unit 30 calculates the separation rate coefficient β ij for each type of the double-stranded nucleic acid.

<総分子数推定装置10>
続いて、図2を用いて、総分子数推定装置10を説明する。図2は、総分子数推定装置10のブロック構成図である。総分子数推定装置10は、総分子数記憶部11と、離脱速度係数記憶部12と、単鎖核酸分子数取得部13と、単鎖核酸差異算出部14と、総分子数収束判定部15と、総分子数補正部16とを備える。
<Total number of molecules estimation apparatus 10>
Next, the total molecular number estimation apparatus 10 will be described with reference to FIG. FIG. 2 is a block configuration diagram of the total number-of-molecules estimation apparatus 10. The total molecular number estimation device 10 includes a total molecular number storage unit 11, a withdrawal rate coefficient storage unit 12, a single-stranded nucleic acid molecule number acquisition unit 13, a single-stranded nucleic acid difference calculation unit 14, and a total molecular number convergence determination unit 15. And a total molecular number correction unit 16.

総分子数記憶部11には、2回目以降のステップk(k≧1)では、総分子数補正部16により記憶させられることにより、補正後の各核酸断片の総分子数を示す情報S が記憶されている。 The total molecular number storage unit 11, the second and subsequent step k (k ≧ 1), by being allowed to store the total molecular number correction section 16, the information S i indicating the total number of molecules of each nucleic acid fragment of the corrected k is stored.

換言すると、総分子数記憶部11には、核酸断片が単鎖状態である単鎖核酸の分子数Cと該単鎖核酸を少なくともひとつ含む二重鎖核酸の分子数(MijとMiiとの和)との和である核酸断片の総分子数Sを示す情報が単鎖核酸の種類毎に記憶されている。
離脱速度係数記憶部12には、制御部30により記憶させられることにより、二重鎖核酸から単鎖核酸が離脱する離脱速度係数βijを示す情報が該二重鎖核酸の種類毎に記憶されている。
In other words, the total number-of-molecules storage unit 11 includes the number of molecules C i of a single-stranded nucleic acid whose nucleic acid fragment is in a single-stranded state and the number of molecules of a double-stranded nucleic acid containing at least one single-stranded nucleic acid (M ij and M ii information indicating the total number of molecules S i of the nucleic acid fragments are stored for each type of single-stranded nucleic acid which is the sum of the sum) between.
The separation rate coefficient storage unit 12 stores information for each type of double-stranded nucleic acid that is stored by the control unit 30 and indicates the separation rate coefficient β ij from which the single-stranded nucleic acid is detached from the double-stranded nucleic acid. ing.

単鎖核酸分子数取得部13は、離脱速度係数記憶部12から各離脱速度係数βijを示す情報を読み出す。
単鎖核酸分子数取得部13は、最初のステップ(k=0、kはステップ数)では、制御部30から入力された各単鎖核酸の既知の分子数Cgを示す情報を取得する。単鎖核酸分子数取得部13は、各単鎖核酸の既知の分子数Cgを、各核酸断片の総分子数を示す情報(iは単鎖核酸の種類を示すインデックスで1からnまでの整数)とする。
The single-stranded nucleic acid molecule number acquisition unit 13 reads information indicating each separation rate coefficient β ij from the separation rate coefficient storage unit 12.
Single-stranded nucleic acid molecule number obtaining unit 13, the first step (k = 0, k is the number of steps), the obtaining information indicating a known number of molecules Cg i of each single-stranded nucleic acid that is input from the control unit 30. Single-stranded nucleic acid molecule number obtaining unit 13, the known number of molecules Cg i of each single-stranded nucleic acid, the information (i indicating the total number of molecules of each nucleic acid fragments from 1 an index indicating the type of single-stranded nucleic acids to n Integer).

単鎖核酸分子数取得部13は、2回目以降(k≧1)のステップにおいて、総分子数記憶部11から各核酸断片の総分子数Sを示す情報を各核酸断片の総分子数S を示す情報として読み出す。 Single-stranded nucleic acid molecule number obtaining unit 13, in step the second and subsequent (k ≧ 1), the total number of molecules of the total molecular number of S i each nucleic acid fragment information indicating for each nucleic acid fragment from the total molecular number storage unit 11 S Read out as information indicating i k .

単鎖核酸分子数取得部13は、各離脱速度係数βijを示す情報と、各核酸断片の総分子数を示す情報Sとを示す情報とを単鎖核酸分子数推定装置20に出力することにより、単鎖核酸分子数推定装置20に各単鎖核酸の分子数Cを算出させる。
また、単鎖核酸分子数取得部13は、2回目以降のステップk(k≧1)では、総分子数記憶部11から後述する総分子数補正部16により更新された各総分子数Sを示す情報を読み出し、該読み出した各総分子数S に基づき、単鎖核酸分子数推定装置20に単鎖核酸の分子数C を単鎖核酸の種類i毎に推定させる。
The single-stranded nucleic acid molecule number acquisition unit 13 outputs information indicating each withdrawal rate coefficient β ij and information indicating information S i indicating the total number of molecules of each nucleic acid fragment to the single-stranded nucleic acid molecule number estimation device 20. it allows to calculate the number of molecules C i of each single-stranded nucleic acid to single stranded nucleic acid molecule number estimation device 20.
Further, the single-stranded nucleic acid molecule number acquisition unit 13 in the second and subsequent steps k (k ≧ 1), each total molecule number S i updated from the total molecule number storage unit 11 by the total molecule number correction unit 16 described later. And the single-stranded nucleic acid molecule number estimation device 20 is made to estimate the number of single-stranded nucleic acid molecules C i k for each type of single-stranded nucleic acid i based on the read total number of molecules S i k .

単鎖核酸分子数取得部13は、単鎖核酸分子数推定装置20により算出された各単鎖核酸の分子数Cを示す情報を取得し、取得した各単鎖核酸の分子数C を示す情報を単鎖核酸差異算出部14に出力する。 Single-stranded nucleic acid molecule number obtaining unit 13 obtains information indicating the number of molecules C i of each single-stranded nucleic acid that is calculated by the single-stranded nucleic acid molecule number estimating device 20, the number of molecules C i k of each single-stranded nucleic acid obtained Is output to the single-stranded nucleic acid difference calculation unit 14.

単鎖核酸差異算出部14は、制御部30から、自装置の外部から入力された各単鎖核酸の既知の分子数Cgを示す情報を受け取る。単鎖核酸差異算出部14は、単鎖核酸分子数推定装置20により推定された単鎖核酸の分子数C と、自装置の外部から入力された該単鎖核酸の既知の分子数Cgとの差異C −Cgを単鎖核酸の種類i毎に算出する。単鎖核酸差異算出部14は、算出した差異C −Cgを示す情報を総分子数収束判定部15に出力する。 Single-stranded nucleic acid difference calculation unit 14, the control unit 30 receives information indicating a known number of molecules Cg i of each single-stranded nucleic acid that is input from an external of the apparatus. The single-stranded nucleic acid difference calculating unit 14 calculates the number of molecules C i k of the single-stranded nucleic acid estimated by the single-stranded nucleic acid molecule number estimation device 20 and the known number of molecules Cg of the single-stranded nucleic acid input from the outside of the device. the difference C i k -Cg i and i is calculated for each type of single-chain nucleic acid i. Single-stranded nucleic acid difference calculating unit 14 outputs information indicating the calculated difference C i k -Cg i the total number of molecules convergence determination unit 15.

総分子数収束判定部15は、単鎖核酸の種類毎の上記差異C −Cgに基づき、前記核酸断片の総分子数Sの推定結果が収束したか否かを判定するSの推定結果が収束したか否かを判定する。 Total molecular number of the convergence determination unit 15, based on the difference C i k -Cg i for each type of single-stranded nucleic acid, S i determines whether the estimation result of the total number of molecules S i of the nucleic acid fragment has converged It is determined whether or not the estimation result has converged.

具体的には、例えば、総分子数収束判定部15は、単鎖核酸の種類毎の差異C −Cgの絶対値が全て所定の閾値以下である場合、核酸断片の総分子数の推定結果が収束したと判定する。一方、総分子数収束判定部15は、単鎖核酸の種類毎の差異C −Cgの絶対値のうち1つでも所定の閾値を超える場合、核酸断片の総分子数の推定結果が収束していないと判定する。 Specifically, for example, the total number of molecules convergence determination unit 15, when the absolute value of the difference C i k -Cg i for each type of single-stranded nucleic acid are all less than a predetermined threshold value, the total number of molecules of the nucleic acid fragments It is determined that the estimation result has converged. On the other hand, the total number of molecules convergence determination unit 15, if it exceeds a predetermined threshold value, even one of the absolute value of the difference C i k -Cg i for each type of single-stranded nucleic acid, the estimation result of the total number of molecules of the nucleic acid fragment Judge that it has not converged.

総分子数収束判定部15は、核酸断片の総分子数の推定結果が収束したと判定した場合、総分子数記憶部11から各核酸断片の総分子数Sを示す情報を読み出し、読み出した各核酸断片の総分子数Sを示す情報として出力する。
一方、総分子数収束判定部15は、核酸断片の総分子数の推定結果が収束していないと判定した場合、総分子数の推定結果が収束していない旨を示す情報を総分子数補正部16に出力する。
Total molecular number of the convergence determination unit 15, when the estimated result the total number of molecules of the nucleic acid fragment is determined to have converged, reads information indicating the total number of molecules S i of each nucleic acid fragments from the total molecular number storage unit 11, the read and outputs as the information indicating the total number of molecules S i of each nucleic acid fragment.
On the other hand, when the total molecular number convergence determination unit 15 determines that the estimation result of the total number of molecules of the nucleic acid fragment has not converged, information indicating that the estimation result of the total number of molecules has not converged is corrected for the total number of molecules. To the unit 16.

なお、総分子数収束判定部15は、ステップ数が予め決められた所定の数に到達すれば、各核酸断片の総分子数S の推定結果が収束したと判定してもよい。これにより、総分子数推定装置10は、全ての差異C −Cgが所定の閾値以下にならなくてもステップ数が所定の数に到達すれば収束したと判定するので、計算時間を予め決められた所定の範囲に収めることができる。 The total number of molecules convergence determination unit 15, when it reaches a predetermined number the number predetermined step may determine that the estimation result of the total number of molecules S i k of each nucleic acid fragment has converged. Thus, the total number of molecules estimating apparatus 10, since it is determined that all differences C i k -Cg i is the number of steps without fall below a predetermined threshold value has converged if reaches a predetermined number, the computation time It can be within a predetermined range.

総分子数補正部16は、総分子数収束判定部15から総分子数の推定結果が収束していない旨を示す情報を受け取った場合、すなわち、総分子数収束判定部15が収束していないと判定した場合、前記離脱速度係数記憶部から前記各離脱速度係数βijを示す情報を読み出す。
総分子数補正部16は、該読み出された各離脱速度係数βijと、第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の前記差異C −Cgとに基づき、前記第1の単鎖核酸を少なくとも1つ有する核酸断片の総分子数S を前記単鎖核酸の種類i毎に補正し、補正した総分子数S k+1を示す情報で、総分子数記憶部11に記憶されている総分子数Sを示す情報を更新する。
The total molecular number correction unit 16 receives information indicating that the estimation result of the total molecular number has not converged from the total molecular number convergence determination unit 15, that is, the total molecular number convergence determination unit 15 has not converged. If it is determined, information indicating each separation speed coefficient β ij is read from the separation speed coefficient storage unit.
The total number-of-molecules correction unit 16 determines the difference C j between each read-out rate coefficient β ij and the second single-stranded nucleic acid that can be combined with the first single-stranded nucleic acid to form a double-stranded nucleic acid. Based on k− Cg j , the total number of molecules S i k of the nucleic acid fragment having at least one first single-stranded nucleic acid is corrected for each type i of the single-stranded nucleic acid, and the corrected total number of molecules S i k + 1 The information indicating the total number of molecules S i stored in the total number-of-molecules storage unit 11 is updated.

具体的には、例えば、総分子数補正部16は、以下の式に従って、k番目のステップにおける単鎖核酸の種類iの単鎖核酸を含む核酸断片の総分子数の補正量ΔS を算出し、算出した補正量ΔS で、単鎖核酸の種類iの核酸断片の総分子数S を補正する。 Specifically, for example, the total molecular number correction unit 16 calculates the correction amount ΔS i k of the total number of molecules of the nucleic acid fragment including the single-stranded nucleic acid of the single-stranded nucleic acid type i in the k-th step according to the following formula. The total number of molecules S i k of the single-stranded nucleic acid type i nucleic acid fragment is corrected with the calculated correction amount ΔS i k .

Figure 0005177712
Figure 0005177712

ここで、sは所定の値であり、C はk番目のステップにおいて推定されたj番目の単鎖核酸の分子数、Cgはj番目の単鎖核酸の既知の分子数である。 Here, s is a predetermined value, C j k is the number of molecules of the j-th single-stranded nucleic acid estimated in the k-th step, and Cg j is the known number of molecules of the j-th single-stranded nucleic acid.

<単鎖核酸分子数推定装置>
続いて、単鎖核酸分子数推定装置20について、図3を用いて説明する。図3は、単鎖核酸分子数推定装置20のブロック構成図である。単鎖核酸分子数推定装置20は、二重鎖核酸分子数更新部21と、単鎖核酸分子数更新部22と、単鎖核酸収束判定部23と、加速係数算出部24と、単鎖核酸分子数記憶部25と、二重鎖核酸分子数記憶部26とを備える。
<Single-stranded nucleic acid molecule number estimation device>
Next, the single-stranded nucleic acid molecule number estimation apparatus 20 will be described with reference to FIG. FIG. 3 is a block configuration diagram of the single-stranded nucleic acid molecule number estimation apparatus 20. The single-stranded nucleic acid molecule number estimation device 20 includes a double-stranded nucleic acid molecule number update unit 21, a single-stranded nucleic acid molecule number update unit 22, a single-stranded nucleic acid convergence determination unit 23, an acceleration coefficient calculation unit 24, a single-stranded nucleic acid A molecular number storage unit 25 and a double-stranded nucleic acid molecule number storage unit 26 are provided.

最初のステップ(t=0、tはステップ数を表す整数)において、二重鎖核酸分子数更新部21は、単鎖核酸分子数取得部13から単鎖核酸の種類毎の総分子数の初期値Sを示す情報と各離脱速度係数を示す情報とを取得する。最初のステップ(t=0)では、溶液中には、各二重鎖核酸が存在せず、各単鎖核酸のみが存在している。すなわち、各総分子数の初期値Sは、それぞれの単鎖核酸の分子数である。従って、最初のステップ(t=0)において、二重鎖核酸分子数更新部21は、単鎖核酸の分子数の初期値C をSに設定する。また、二重鎖核酸分子数更新部21は、各二重鎖核酸の分子数の初期値Mij を0に設定する。 In the first step (t = 0, t is an integer representing the number of steps), the double-stranded nucleic acid molecule number updating unit 21 receives the initial number of total molecules for each type of single-stranded nucleic acid from the single-stranded nucleic acid molecule number acquiring unit 13. Information indicating the value S i and information indicating each separation speed coefficient are acquired. In the first step (t = 0), each double-stranded nucleic acid does not exist in the solution, and only each single-stranded nucleic acid exists. That is, the initial value S i for numbers of total molecular is the number of molecules of each single-stranded nucleic acid. Therefore, in the first step (t = 0), the double-stranded nucleic acid molecule number updating unit 21 sets the initial value C i 0 of the number of molecules of the single-stranded nucleic acid to S i . The double-stranded nucleic acid molecule number updating unit 21 sets the initial value M ij 0 of the number of molecules of each double-stranded nucleic acid to 0.

2回目以降のステップでは、二重鎖核酸分子数更新部21は、各二重鎖核酸の分子数Mij を示す情報を二重鎖核酸分子数記憶部26から読み出す。また、二重鎖核酸分子数更新部21は、加速係数算出部24により算出された収束計算を加速するための加速係数sij を示す情報を取得する。 In the second and subsequent steps, the double-stranded nucleic acid molecule number updating unit 21 reads information indicating the number of molecules M ij t of each double-stranded nucleic acid from the double-stranded nucleic acid molecule number storage unit 26. Further, the double-stranded nucleic acid molecule number updating unit 21 acquires information indicating the acceleration coefficient s ij t for accelerating the convergence calculation calculated by the acceleration coefficient calculating unit 24.

また、二重鎖核酸分子数更新部21は、後述する単鎖核酸収束判定部23により更新された第1の種類iの単鎖核酸の分子数Cを示す情報を、t番目のステップの第1の種類iの単鎖核酸の分子数C を示す情報として、単鎖核酸分子数記憶部25から読み出す。二重鎖核酸分子数更新部21は、後述する単鎖核酸収束判定部23により更新された第2の種類jの単鎖核酸の分子数Cを示す情報を、t番目のステップの第2の種類jの単鎖核酸の分子数C を示す情報として、単鎖核酸分子数記憶部25から読み出す。 In addition, the double-stranded nucleic acid molecule number updating unit 21 obtains information indicating the molecular number C i of the first type i single-stranded nucleic acid updated by the single-stranded nucleic acid convergence determining unit 23 described later, in the t-th step. as information indicating the number of molecules C i t single-stranded nucleic acid of the first type i, read from a single-stranded nucleic acid molecule number storage unit 25. The double-stranded nucleic acid molecule number updating unit 21 obtains information indicating the molecular number C j of the second-type j single-stranded nucleic acid updated by the single-stranded nucleic acid convergence determining unit 23, which will be described later, in the second t-th step. Is read from the single-stranded nucleic acid molecule number storage unit 25 as information indicating the number of molecules C j t of the single-stranded nucleic acid of type j.

二重鎖核酸分子数更新部21は、下記の式に従って、t+1番目のステップにおける各二重鎖核酸の分子数Mij t+1を算出する。 The double-stranded nucleic acid molecule number updating unit 21 calculates the number of molecules M ij t + 1 of each double-stranded nucleic acid in the t + 1-th step according to the following formula.

Figure 0005177712
Figure 0005177712

ここで、sij は、収束計算を加速するための加速係数であり、sij の算出方法については、後述することとする。
二重鎖核酸分子数更新部21は、全てのiとjの組み合わせ分、式(6)に従って、各二重鎖核酸の分子数Mij t+1を算出する。
Here, s ij t is an acceleration coefficient for accelerating the convergence calculation, and a calculation method of s ij t will be described later.
The double-stranded nucleic acid molecule number updating unit 21 calculates the number of molecules M ij t + 1 of each double-stranded nucleic acid according to the formula (6) for all i and j combinations.

最初のステップ(t=0)においては、上式(6)において、右辺第1項のMij が0であり、C およびC がSであるから、二重鎖核酸分子数更新部21は、各二重鎖核酸の分子数をMij =sij ×K×(S×S)/βijに従い、算出する。 In the first step (t = 0), in the above formula (6), M ij t in the first term on the right side is 0, and C j t and C j t are S i. The number updating unit 21 calculates the number of molecules of each double-stranded nucleic acid according to M ij 1 = s ij t × K × (S i × S i ) / β ij .

上記処理についてまとめると、二重鎖核酸分子数更新部21は、第1の単鎖核酸の分子数C と、該第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の分子数C と、前記第1の単鎖核酸と前記第2の単鎖核酸とが結合した二重鎖核酸が離脱する速度である離脱速度係数βijと、に基づき、前記第1の単鎖核酸と前記第2の単鎖核酸とが結合した二重鎖核酸の分子数Mij を前記第1の単鎖核酸と前記第2の単鎖核酸との組み合わせ毎に更新する。 To summarize the above process, double-stranded nucleic acid molecule number updating unit 21, and the number of molecules C i t of the first single stranded nucleic acid to form a duplex nucleic acid binding to a single stranded nucleic acid of the first The number of molecules C j t of the second single-stranded nucleic acid, and a removal rate coefficient β ij , which is the rate at which the double-stranded nucleic acid bound to the first single-stranded nucleic acid and the second single-stranded nucleic acid is released; Based on the number of molecules M ij t of the double-stranded nucleic acid in which the first single-stranded nucleic acid and the second single-stranded nucleic acid are bound to each other, based on the first single-stranded nucleic acid and the second single-stranded nucleic acid. Update for each combination.

また、二重鎖核酸分子数更新部21は、単鎖核酸分子数更新部22により更新された第1の単鎖核酸の分子数C t+1と、第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の分子数C t+1と、加速係数算出部24により算出された第1の単鎖核酸と第2の単鎖核酸の組み合わせ毎の加速係数sij t+1と、第1の単鎖核酸と第2の単鎖核酸とが結合した二重鎖核酸が離脱する速度である離脱速度係数βijと、に基づき、二重鎖核酸の分子数Mij t+1を第1の単鎖核酸と第2の単鎖核酸の組み合わせ毎に更新する。 The double-stranded nucleic acid molecule number updating unit 21 combines the first single-stranded nucleic acid molecule number C i t + 1 updated by the single-stranded nucleic acid molecule number updating unit 22 with the first single-stranded nucleic acid. The number of molecules C j t + 1 of the second single-stranded nucleic acid that can form the heavy chain nucleic acid, and the acceleration coefficient s for each combination of the first single-stranded nucleic acid and the second single-stranded nucleic acid calculated by the acceleration coefficient calculating unit 24 Based on ij t + 1 and the release rate coefficient β ij , which is the rate at which the double-stranded nucleic acid bound to the first single-stranded nucleic acid and the second single-stranded nucleic acid is released, the number of molecules of the double-stranded nucleic acid M ij t + 1 is updated for each combination of the first single-stranded nucleic acid and the second single-stranded nucleic acid.

二重鎖核酸分子数更新部21は、更新した各二重鎖核酸の分子数Mij t+1を示す情報を単鎖核酸分子数更新部22に出力する。また、二重鎖核酸分子数更新部21は、更新した各二重鎖核酸の分子数Mij t+1を示す情報を二重鎖核酸分子数記憶部26に記憶させる。 The double-stranded nucleic acid molecule number updating unit 21 outputs information indicating the updated molecular number M ij t + 1 of each double-stranded nucleic acid to the single-stranded nucleic acid molecule number updating unit 22. In addition, the double-stranded nucleic acid molecule number updating unit 21 causes the double-stranded nucleic acid molecule number storage unit 26 to store information indicating the updated molecule number M ij t + 1 of each double-stranded nucleic acid.

単鎖核酸分子数更新部22は、二重鎖核酸分子数更新部21により更新された各二重鎖核酸の分子数Mij t+1と、単鎖核酸分子装置20の外部より与えられた核酸断片の総分子数Sと、に基づいて、単鎖核酸の分子数C t+1を単鎖核酸の種類i毎に更新する。 The single-stranded nucleic acid molecule number updating unit 22 includes the number of molecules M ij t + 1 of each double-stranded nucleic acid updated by the double-stranded nucleic acid molecule number updating unit 21 and a nucleic acid fragment given from the outside of the single-stranded nucleic acid molecule device 20. Based on the total number of molecules S i , the number of molecules C i t + 1 of the single-stranded nucleic acid is updated for each type i of the single-stranded nucleic acid.

具体的には、例えば、単鎖核酸分子数更新部22は、各核酸断片の総分子数Sを示す情報を単鎖核酸分子数取得部13から読み出す。単鎖核酸分子数更新部22は、式(3)に基づく以下の式に従って、単鎖核酸の分子数C を単鎖核酸の種類i毎に更新する。 Specifically, for example, single chain number nucleic acid molecule updating unit 22 reads information indicating the total number of molecules S i of each nucleic acid fragments from a single chain nucleic acid molecule number obtaining unit 13. Single-stranded nucleic acid molecule number updating unit 22 according to the following equation based on the equation (3), and updates the number of molecules C i t single-stranded nucleic acid for each type of single-chain nucleic acid i.

Figure 0005177712
Figure 0005177712

すなわち、単鎖核酸分子数更新部22は、単鎖核酸の種類iの核酸断片の総分子数Sから、その単鎖核酸の種類iの単鎖核酸を少なくともひとつ含む二重鎖核酸の分子数(ΣMij(i=1からnまでの和)とMiiとの和)を減算することにより、その単鎖核酸の種類iの単鎖核酸の分子数C t+1を算出する。単鎖核酸分子数更新部22は、単鎖核酸の種類i全部について、上記算出を行うことにより各単鎖核酸の分子数C t+1を算出する。 That is, a single-stranded nucleic acid molecule number updating unit 22, from the total number of molecules S i of the nucleic acid fragments of type i in the single-stranded nucleic acids, double stranded nucleic acid comprising at least one single-stranded nucleic acid of the type i of the single-stranded nucleic acid molecule By subtracting the number (ΣM ij (sum of i = 1 to n) and M ii ), the number of molecules C i t + 1 of the single-stranded nucleic acid of type i of the single-stranded nucleic acid is calculated. The single-stranded nucleic acid molecule number updating unit 22 calculates the number of molecules C i t + 1 of each single-stranded nucleic acid by performing the above calculation for all types i of single-stranded nucleic acids.

単鎖核酸分子数更新部22は、更新した各単鎖核酸の分子数C t+1を示す情報を単鎖核酸収束判定部23に出力する。 The single-stranded nucleic acid molecule number updating unit 22 outputs information indicating the updated molecular number C i t + 1 of each single-stranded nucleic acid to the single-stranded nucleic acid convergence determining unit 23.

単鎖核酸収束判定部23は、単鎖核酸分子数更新部22により更新される前の単鎖核酸の分子数C と、単鎖核酸分子数更新部22により更新された後の単鎖核酸の分子数C t+1との差異|C t+1−C |を単鎖核酸の種類i毎に算出する。
単鎖核酸収束判定部23は、各差異|C t+1−C |に基づき、各単鎖核酸の分子数C の推定結果が収束したか否かを判定する。
Single stranded nucleic convergence determination unit 23, the number of molecules C i t single-stranded nucleic acid before being updated by the single-stranded nucleic acid molecule number updating section 22, a single chain after being updated by the single-stranded nucleic acid molecule number updating section 22 The difference | C i t + 1 −C i t | from the number of nucleic acid molecules C i t + 1 is calculated for each type i of single-stranded nucleic acid.
The single-stranded nucleic acid convergence determination unit 23 determines whether or not the estimation result of the number of molecules C i t of each single-stranded nucleic acid has converged based on each difference | C i t + 1 −C i t |.

具体的には、例えば、単鎖核酸収束判定部23は、全ての差異|C t+1−C |が所定の閾値以下の場合、各単鎖核酸の分子数C の推定結果が収束したと判定する。そして、単鎖核酸収束判定部23は、更新された各単鎖核酸の分子数C t+1を示す情報を単鎖核酸分子数取得部13に出力する。 Specifically, for example, a single-stranded nucleic acid convergence determination unit 23, all differences | estimation results in the case is less than a predetermined threshold value, the number of molecules C i t of each single-stranded nucleic acid | C i t + 1 -C i t Determined to have converged. Then, the single-stranded nucleic acid convergence determining unit 23 outputs information indicating the updated number of molecules C i t + 1 of each single-stranded nucleic acid to the single-stranded nucleic acid molecule number acquiring unit 13.

一方、差異|C t+1−C |のうちいずれかひとつでも所定の閾値を超える場合、各単鎖核酸の分子数C の推定結果が収束していないと判定する。そして、単鎖核酸収束判定部23は、更新した各単鎖核酸の分子数C t+1を示す情報を加速係数算出部24に出力する。また、単鎖核酸収束判定部23は、更新した各単鎖核酸の分子数C t+1を示す情報を各単鎖核酸の分子数Cとして単鎖核酸分子数記憶部25に記憶させる。 On the other hand, the difference | determines that exceed the predetermined threshold value even any one of the estimation result of the number of molecules C i t of each single-stranded nucleic acid is not converged | C i t + 1 -C i t. Then, the single-stranded nucleic acid convergence determination unit 23 outputs information indicating the updated number of molecules C i t + 1 of each single-stranded nucleic acid to the acceleration coefficient calculation unit 24. In addition, the single-stranded nucleic acid convergence determining unit 23 stores the updated information indicating the number of molecules C i t + 1 of each single-stranded nucleic acid in the single-stranded nucleic acid molecule number storage unit 25 as the number of molecules C i of each single-stranded nucleic acid.

なお、単鎖核酸収束判定部23は、ステップ数が予め決められた所定の数に到達すれば、各単鎖核酸の分子数C の推定結果が収束したと判定してもよい。これにより、単鎖核酸分子数推定装置20は、全ての差異|C t+1−C |が所定の閾値以下にならなくてもステップ数が所定の数に到達すれば収束したと判定するので、計算時間を予め決められた所定の範囲に収めることができる。 Incidentally, single-stranded nucleic convergence determination unit 23, when it reaches a predetermined number the number predetermined step may determine that the estimation result of the number of molecules C i t of each single-stranded nucleic acid has converged. Thereby, the single-stranded nucleic acid molecule number estimation device 20 determines that the convergence has been achieved if the number of steps reaches a predetermined number even if all the differences | C i t + 1 −C i t | do not fall below a predetermined threshold. Therefore, the calculation time can be kept within a predetermined range.

続いて、加速係数sij について説明する。核酸断片同士の結合力が弱いために、平衡後でも単鎖核酸の濃度が初期濃度との差が小さい場合には、各単鎖核酸の分子数C t+1は、速やかに収束する。しかし、核酸断片同士の結合力が強いために、平衡後における単鎖核酸の濃度と初期濃度との差が大きく二重鎖核酸の割合が高い場合には、単鎖核酸の分子数の推定過程で単鎖核酸の分子数がある値を中心として振動するといった現象が発生し易くなる。その振動を抑制するために、加速係数算出部24は、各単鎖核酸の分子数が少なくなるほど、式(6)中の加速係数sij を小さくする。 Subsequently, the acceleration coefficient s ij t will be described. Since the binding force between the nucleic acid fragments is weak, the number of molecules C i t + 1 of each single-stranded nucleic acid converges quickly when the concentration of the single-stranded nucleic acid is small from the initial concentration even after equilibration. However, the process of estimating the number of molecules of single-stranded nucleic acid is difficult when the difference between the concentration of single-stranded nucleic acid after equilibration is high and the percentage of double-stranded nucleic acid is high due to the strong binding force between nucleic acid fragments. Thus, the phenomenon that the number of molecules of single-stranded nucleic acid oscillates around a certain value is likely to occur. In order to suppress the vibration, the acceleration coefficient calculation unit 24 decreases the acceleration coefficient s ij t in Equation (6) as the number of molecules of each single-stranded nucleic acid decreases.

加速係数算出部24は、単鎖核酸収束判定部23が収束していないと判定した場合、単鎖核酸分子数更新部22により更新された各単鎖核酸の分子数C t+1に基づき、二重鎖核酸の種類毎の加速係数sij t+1を算出する。
具体的には、加速係数算出部24は、単鎖核酸収束判定部23から更新された各単鎖核酸の分子数C t+1を示す情報を受け取ると、各単鎖核酸の分子数C t+1に基づき、各加速係数sij t+1をそれぞれ算出する。例えば、加速係数算出部24は、以下の式に従って、各加速係数sij を算出する。
If the single-stranded nucleic acid convergence determination unit 23 determines that the single-stranded nucleic acid convergence determination unit 23 has not converged, the acceleration coefficient calculation unit 24 calculates the number of molecules C i t + 1 of each single-stranded nucleic acid updated by the single-stranded nucleic acid molecule number update unit 22 based on two An acceleration coefficient s ij t + 1 is calculated for each type of heavy chain nucleic acid.
Specifically, the acceleration coefficient calculation unit 24 receives the information indicating the number of molecules C i t + 1 of each single-stranded nucleic acid that is updated from a single-stranded nucleic acid convergence determination unit 23, the number of molecules C i t + 1 of each single-stranded nucleic acid Based on the above, each acceleration coefficient s ij t + 1 is calculated. For example, the acceleration coefficient calculation unit 24 calculates each acceleration coefficient s ij t according to the following equation.

Figure 0005177712
Figure 0005177712

ここで、Sは単鎖核酸の種類iの単鎖核酸の総分子数であり、Sは単鎖核酸の種類jの単鎖核酸の総分子数である。加速係数sij は、最初のステップ(t=0)では1である。
加速係数算出部24は、式(8)に従い、種類iの単鎖核酸の分子数Cまたは種類jの単鎖核酸の分子数Cが少なくなるほど、加速係数sij を小さくする。
Here, S i is the total number of molecules of single-stranded nucleic acid of type i of single-stranded nucleic acid, and S j is the total number of molecules of single-stranded nucleic acid of type j of single-stranded nucleic acid. The acceleration coefficient s ij t is 1 in the first step (t = 0).
Acceleration coefficient calculation unit 24, in accordance with the equation (8), as the number of molecules C j of a single-stranded nucleic acid molecule number C i or type j of single-stranded nucleic acid of type i is reduced to reduce the acceleration coefficient s ij t.

これにより、加速係数sij が小さくなるほど、式(6)の右辺の第2項の数が小さくなるので、二重鎖核酸分子数更新部21による二重鎖核酸の分子数Mijの変更量が減少する。その結果、二重鎖核酸の分子数Mijの変更量が減少すると、単鎖核酸分子数更新部22による単鎖核酸の分子数の変更量も小さくなるので、単鎖核酸の分子数の推定過程で単鎖核酸の分子数がある値を中心として振動するのを抑えることができる。 Thereby, as the acceleration coefficient s ij t becomes smaller, the number of the second term on the right side of the equation (6) becomes smaller. Therefore, the double-stranded nucleic acid molecule number updating unit 21 changes the molecular number M ij of the double-stranded nucleic acid. The amount decreases. As a result, when the amount of change in the number of molecules M ij of the double-stranded nucleic acid is reduced, the amount of change in the number of molecules of the single-stranded nucleic acid by the single-stranded nucleic acid molecule number updating unit 22 is also reduced. In the process, it can be suppressed that the number of single-stranded nucleic acid molecules vibrates around a certain value.

なお、加速係数算出部24は、各単鎖核酸の分子数Cと、単鎖核酸同士の結合速度を示す結合速度定数Kの関係に基づき、加速係数sij を調整してもよい。
加速係数算出部24は、算出した各加速係数sij を示す情報を二重核酸分子数更新部21に出力する。
The acceleration coefficient calculation unit 24 may adjust the acceleration coefficient s ij t based on the relationship between the number C i of each single-stranded nucleic acid and the binding rate constant K indicating the binding rate between the single-stranded nucleic acids.
The acceleration coefficient calculation unit 24 outputs information indicating each calculated acceleration coefficient s ij t to the double nucleic acid molecule number updating unit 21.

<制御部>
続いて、制御部30の処理について説明する。図4は、制御部30のブロック構成図である。制御部30は、単鎖核酸取得部31と、離脱速度係数補正部32と、離脱係数記憶部33と、補正前後差異算出部34と、離脱速度係数選択部35と、離脱速度係数収束判定部36とを備える。
<Control unit>
Subsequently, processing of the control unit 30 will be described. FIG. 4 is a block configuration diagram of the control unit 30. The control unit 30 includes a single-stranded nucleic acid acquisition unit 31, a detachment rate coefficient correction unit 32, a detachment coefficient storage unit 33, a before / after correction difference calculation unit 34, a detachment rate coefficient selection unit 35, and a detachment rate coefficient convergence determination unit. 36.

単鎖核酸取得部31は、総分子数推定装置10に、離脱速度係数βijと単鎖核酸の既知の分子数Cgとに基づき、核酸断片の総分子数Sを単鎖核酸の種類i毎に推定させ、単鎖核酸推定装置20に、該核酸断片の総分子数Sに対応する単鎖核酸の分子数Cを単鎖核酸の種類i毎に推定させる。 The single-stranded nucleic acid obtaining unit 31 uses the total number-of-molecules estimation apparatus 10 to calculate the total number of molecules S i of the nucleic acid fragments based on the separation rate coefficient β ij and the known number of molecules Cg i of the single-stranded nucleic acid. For each i, the single-stranded nucleic acid estimation apparatus 20 is made to estimate the number of molecules C i of the single-stranded nucleic acid corresponding to the total number of molecules S i of the nucleic acid fragments for each type i of the single-stranded nucleic acid.

具体的には、例えば、最初のステップ(l=0)では、単鎖核酸取得部31は、離脱速度係数算出装置1の外部から各離脱速度係数の初期値βij を示す情報と、各単鎖核酸の既知の分子数Cgを取得する。そして、単鎖核酸取得部31は、各離脱速度係数の初期値βij を各離脱速度係数βijを示す情報として、各単鎖核酸の既知の分子数Cgとともに総分子数推定装置10に出力する。 Specifically, for example, in the first step (l = 0), the single-stranded nucleic acid acquisition unit 31 receives information indicating the initial value β ij 0 of each separation rate coefficient from the outside of the separation rate coefficient calculation device 1, and each obtaining a known number of molecules Cg i single-stranded nucleic acid. Then, the single-stranded nucleic acid acquisition unit 31 uses the initial value β ij 0 of each separation rate coefficient as information indicating each separation rate coefficient β ij , together with the known number of molecules Cg i of each single-stranded nucleic acid, the total number-of-molecules estimation device 10 Output to.

単鎖核酸取得部31は、その各離脱速度係数βijと各単鎖核酸の既知の分子数Cgとに基づき、総分子数推定装置10に、各単鎖核酸の種類毎の核酸断片の総分子数Sを算出させる。
また、単鎖核酸取得部31は、離脱速度係数収束判定部36が収束していないと判定した場合、離脱速度係数選択部35により選択された各離脱速度係数βij l+1に基づいて、単鎖核酸分子数推定装置20から各単鎖核酸の分子数Cを取得する。
Single-stranded nucleic acid acquiring unit 31, based on the known number of molecules Cg i of the respective dissociation rate coefficient beta ij and each single strand nucleic acid, the total number of molecules estimating apparatus 10, the nucleic acid fragments of each type of single-stranded nucleic acid The total number of molecules S i is calculated.
In addition, when the single-stranded nucleic acid acquisition unit 31 determines that the separation rate coefficient convergence determination unit 36 has not converged, the single-stranded nucleic acid acquisition unit 31 is based on each separation rate coefficient β ij l + 1 selected by the separation rate coefficient selection unit 35. from the nucleic acid molecule number estimating device 20 obtains the number of molecules C i of each single-stranded nucleic acid.

具体的には、例えば、離脱速度係数収束判定部36が収束していないと判定した場合、単鎖核酸取得部31は、離脱速度係数選択部35により選択された各離脱速度係数
βij l+1を示す情報を、離脱速度係数収束部26から受け取ると、選択された各離脱速度係数βij l+1を示す情報を、各離脱速度係数βijを示す情報として、各単鎖核酸の既知の分子数Cgとともに総分子数推定装置10に出力し、総分子数推定装置10に、各単鎖核酸の種類毎の核酸断片の総分子数Sを算出させる。
Specifically, for example, when it is determined that the separation rate coefficient convergence determination unit 36 has not converged, the single-stranded nucleic acid acquisition unit 31 sets each separation rate coefficient β ij l + 1 selected by the separation rate coefficient selection unit 35. When the information indicating the separation rate coefficient β ij 1 + 1 is received from the separation rate coefficient convergence unit 26, the information indicating the separation rate coefficient β ij is used as information indicating each separation rate coefficient β ij. i is output to the total number-of-molecules estimation device 10 together with i , and the total number-of-molecules estimation device 10 is caused to calculate the total number of molecules S i of nucleic acid fragments for each type of single-stranded nucleic acid.

2回目以降のステップ(l≧1)では、単鎖核酸取得部31は、離脱速度係数収束判定部から入力された各離脱速度係数βij l+1を示す情報を、各離脱速度係数βijを示す情報として、各単鎖核酸の既知の分子数Cgとともに総分子数推定装置10に出力する。 In the second and subsequent steps (l ≧ 1), the single-stranded nucleic acid acquisition unit 31 indicates information indicating each separation speed coefficient β ij l + 1 input from the separation speed coefficient convergence determination unit, and indicates each separation speed coefficient β ij . information as outputs with known molecular number Cg i the total number of molecules estimating apparatus 10 of each single-stranded nucleic acid.

単鎖核酸取得部31は、単鎖核酸分子数推定装置20に、算出された各核酸断片の総分子数Sと、各離脱速度係数βijとに基づいて、各単鎖核酸の分子数Cを算出させる。
単鎖核酸取得部31は、単鎖核酸分子数推定装置20から算出された各単鎖核酸の分子数Cを示す情報を取得する。
The single-stranded nucleic acid acquisition unit 31 causes the single-stranded nucleic acid molecule number estimation device 20 to calculate the number of molecules of each single-stranded nucleic acid based on the calculated total number of molecules S i of each nucleic acid fragment and each separation rate coefficient β ij. C i is calculated.
Single-stranded nucleic acid acquiring unit 31 acquires information indicating the number of molecules C i of each single-stranded nucleic acid that is calculated from the single-stranded nucleic acid molecule number estimation device 20.

単鎖核酸取得部31は、単鎖核酸分子数推定装置20から取得した各単鎖核酸の分子数Cを示す情報を補正前の単鎖核酸の分子数C を示す情報として補正速度係数補正部32と補正前後差異算出部34とに出力する。また、単鎖核酸取得部31は、各離脱速度係数βij を示す情報を補正速度係数補正部32に出力する。 The single-stranded nucleic acid acquisition unit 31 uses the information indicating the number of molecules C i of each single-stranded nucleic acid acquired from the single-stranded nucleic acid molecule number estimation device 20 as information indicating the number of molecules C i l of the single-stranded nucleic acid before correction. It outputs to the coefficient correction part 32 and the difference calculation part 34 before and behind correction | amendment. In addition, the single-stranded nucleic acid acquisition unit 31 outputs information indicating each separation rate coefficient β ij l to the correction rate coefficient correction unit 32.

また、単鎖核酸取得部31は、離脱速度係数補正部32により補正された後の離脱速度係数β’ij に基づき、総分子数推定装置10に総分子数S’を単鎖核酸の種類i毎に推定させ、単鎖核酸推定装置20に該総分子数S’に対応する単鎖核酸の分子数C’ を単鎖核酸の種類i毎に推定させる。 The single-stranded nucleic acid acquisition unit 31 also sets the total number of molecules S ′ i to the total number-of-molecules estimation device 10 based on the separation rate coefficient β ′ ij l corrected by the separation rate coefficient correction unit 32. For each type i, the single-stranded nucleic acid estimation apparatus 20 is made to estimate the number of single-stranded nucleic acids C ′ i 1 corresponding to the total number of molecules S ′ i for each type i of single-stranded nucleic acids.

具体的には、例えば、単鎖核酸取得部31は、離脱速度係数補正部32から、離脱速度係数補正部32により補正された各離脱速度係数β´ijを取得する。単鎖核酸取得部31は、離脱速度係数補正部32により補正された各離脱速度係数β´ijを示す情報を、各離脱速度係数βijを示す情報として、各単鎖核酸の既知の分子数Cgとともに総分子数推定装置10に出力する。単鎖核酸取得部31は、その各離脱速度係数βijと各単鎖核酸の既知の分子数Cgとに基づき、総分子数推定装置10に、各単鎖核酸の種類毎の核酸断片の総分子数Sを算出させる。 Specifically, for example, the single-stranded nucleic acid acquisition unit 31 acquires each separation rate coefficient β ′ ij corrected by the separation rate coefficient correction unit 32 from the separation rate coefficient correction unit 32. Single-stranded nucleic acid acquisition unit 31, information indicating each dissociation rate coefficient .beta. 'Ij corrected by dissociation rate coefficient correcting unit 32, as information indicating the respective dissociation rate coefficient beta ij, known number of molecules of each single-stranded nucleic acid outputs with cg i the total number of molecules estimating device 10. Single-stranded nucleic acid acquiring unit 31, based on the known number of molecules Cg i of the respective dissociation rate coefficient beta ij and each single strand nucleic acid, the total number of molecules estimating apparatus 10, the nucleic acid fragments of each type of single-stranded nucleic acid The total number of molecules S i is calculated.

単鎖核酸取得部31は、単鎖核酸分子数推定装置20に、算出された各核酸断片の総分子数Sと、各離脱速度係数βijとに基づいて、各単鎖核酸の分子数Cを算出させる。単鎖核酸取得部31は、単鎖核酸分子数推定装置20から算出された各単鎖核酸の分子数Cを示す情報を取得する。 The single-stranded nucleic acid acquisition unit 31 causes the single-stranded nucleic acid molecule number estimation device 20 to calculate the number of molecules of each single-stranded nucleic acid based on the calculated total number of molecules S i of each nucleic acid fragment and each separation rate coefficient β ij. C i is calculated. Single-stranded nucleic acid acquiring unit 31 acquires information indicating the number of molecules C i of each single-stranded nucleic acid that is calculated from the single-stranded nucleic acid molecule number estimation device 20.

単鎖核酸取得部31は、単鎖核酸分子数推定装置20から取得した各単鎖核酸の分子数Cを示す情報を、補正後の単鎖核酸の分子数C’ を示す情報として補正前後差異算出部34に出力する。 The single-stranded nucleic acid acquisition unit 31 uses the information indicating the molecular number C i of each single-stranded nucleic acid acquired from the single-stranded nucleic acid molecule number estimation apparatus 20 as information indicating the corrected molecular number C ′ i l of the single-stranded nucleic acid. The result is output to the difference calculation unit 34 before and after correction.

離脱速度係数補正部32は、単鎖核酸取得部31により取得された単鎖核酸の分子数C を示す情報を受け取る。離脱速度係数補正部32は、単鎖核酸の種類i毎に、単鎖核酸取得部31により取得された単鎖核酸の分子数C と、自装置の外部から入力された単鎖核酸の既知の分子数Cgとを前記単鎖核酸の種類i毎に比較する。 The withdrawal rate coefficient correction unit 32 receives information indicating the number of molecules C i l of the single-stranded nucleic acid acquired by the single-stranded nucleic acid acquisition unit 31. For each type i of single-stranded nucleic acid, the detachment rate coefficient correction unit 32 determines the number of molecules C i l of the single-stranded nucleic acid acquired by the single-stranded nucleic acid acquisition unit 31 and the single-stranded nucleic acid input from the outside of the device. The known molecular number Cg i is compared for each type i of the single-stranded nucleic acid.

離脱速度係数補正部32は、取得された単鎖核酸の分子数Cが入力された該単鎖核酸の既知の分子数Cgより小さい場合、該単鎖核酸の前記離脱速度係数βij を大きくし、取得された単鎖核酸の分子数Cが、入力された該単鎖核酸の既知の分子数Cg以上の場合、該単鎖核酸の離脱速度係数βij を小さくする。 When the number of molecules C i of the obtained single-stranded nucleic acid is smaller than the known number of molecules Cg i of the input single-stranded nucleic acid, the separation rate coefficient correcting unit 32 determines the above-mentioned separation rate coefficient β ij l of the single-stranded nucleic acid. When the number of molecules C i of the obtained single-stranded nucleic acid is equal to or greater than the known number of molecules Cg i of the inputted single-stranded nucleic acid, the separation rate coefficient β ij l of the single-stranded nucleic acid is reduced.

なお、離脱速度係数補正部32は、乱数を用いて離脱速度係数を補正してもよい。その場合、例えば、離脱速度係数補正部32は、取得された単鎖核酸の分子数Cが入力された該単鎖核酸の既知の分子数Cgより小さい場合、該単鎖核酸の前記離脱速度係数βij に所定の値と乱数とを加算する。一方、取得された単鎖核酸の分子数Cが、入力された該単鎖核酸の既知の分子数Cg以上の場合、離脱速度係数補正部32は、該単鎖核酸の離脱速度係数βij を所定の値で減算し、乱数を加算する。
これにより、離脱速度係数補正部32は、離脱速度係数βij に更に乱数を加算することにより、離脱速度係数βij が局所的に最適な値に陥ることを防ぐことができる。
Note that the separation speed coefficient correction unit 32 may correct the separation speed coefficient using a random number. In that case, for example, dissociation rate coefficient correcting unit 32, if known molecular smaller number Cg i of the single strand nucleic acid molecule number C i of the single-stranded nucleic acid has been input is acquired, the withdrawal of the single-stranded nucleic acid A predetermined value and a random number are added to the speed coefficient β ij l . On the other hand, when the molecular number C i of the obtained single-stranded nucleic acid is equal to or larger than the known molecular number Cg i of the inputted single-stranded nucleic acid, the separation rate coefficient correction unit 32 determines the separation rate coefficient β of the single-stranded nucleic acid. ij l is subtracted by a predetermined value and a random number is added.
Thus, dissociation rate coefficient correcting unit 32, by adding a further random number to dissociation rate coefficient beta ij l, dissociation rate coefficient beta ij l can be prevented from falling into a local optimum value.

離脱速度係数補正部32は、補正された後の離脱速度係数β’ij を示す情報を単鎖核酸取得部31に出力する。これにより、単鎖核酸取得部31は、補正された後の離脱速度係数β’ij に基づき、単鎖核酸分子数推定装置20に補正後の各単鎖核酸の分子数C’ を示す情報を推定させることができる。 The separation speed coefficient correction unit 32 outputs information indicating the corrected separation speed coefficient β ′ ij l to the single-stranded nucleic acid acquisition unit 31. As a result, the single-stranded nucleic acid acquisition unit 31 uses the corrected withdrawal rate coefficient β ′ ij l to give the single-stranded nucleic acid molecule number estimation device 20 the corrected molecular number C ′ i l of each single-stranded nucleic acid. The information shown can be estimated.

また、離脱速度係数補正部32は、補正される前の離脱速度係数β’ij を示す情報と、補正された後の離脱速度係数β’ij を示す情報とを離脱速度係数記憶部33に記憶させる。 Also, the separation speed coefficient correction unit 32 includes information indicating the separation speed coefficient β ′ ij l before correction and information indicating the correction speed separation coefficient β ′ ij l after correction. Remember me.

離脱速度係数記憶部33には、離脱速度係数算出装置1の外部から入力された離脱速度係数の初期値βij を示す情報が記憶される。離脱速度係数の初期値βij は、新たな前記単鎖核酸の既知の分子数が得られた場合に、自装置でそれまでに得られている離脱速度係数である。前記離脱速度係数の初期値βij は、自装置でそれまでに得られている離脱速度係数がない場合には、第1の単鎖核酸の配列と第2の単鎖核酸の配列の一致箇所の長さに依存した値である。 The separation speed coefficient storage unit 33 stores information indicating the initial value β ij 0 of the separation speed coefficient input from the outside of the separation speed coefficient calculation device 1. The initial value β ij 0 of the separation rate coefficient is a separation rate coefficient that has been obtained so far by the device itself when a new known number of molecules of the single-stranded nucleic acid is obtained. The initial value β ij 0 of the release rate coefficient is the same as the sequence of the first single-stranded nucleic acid and the sequence of the second single-stranded nucleic acid when there is no release rate coefficient obtained so far in the device. The value depends on the length of the part.

補正前後差異算出部34は、前記単鎖核酸の種類i毎に、前記補正前の単鎖核酸の分子数C と、離脱速度係数算出装置1の外部から入力された該単鎖核酸の既知の分子数Cgとの差異を補正前の差異|C −Cg|として算出する。また、補正前後差異算出部34は、単鎖核酸の種類i毎に、補正後の単鎖核酸の分子数C’ と、離脱速度係数算出装置1の外部から入力された該単鎖核酸の既知の分子数Cgとの差異を補正後の差異|C’ −Cg|として算出する。 The before-and-after-difference difference calculation unit 34 for each type i of the single-stranded nucleic acid, the number of molecules C i l of the single-stranded nucleic acid before correction and the single-stranded nucleic acid input from the outside of the separation rate coefficient calculating device 1. The difference from the known number of molecules Cg i is calculated as a difference | C i 1 −Cg i | before correction. Further, the difference calculation unit 34 before and after correction, for each type i of single-stranded nucleic acid, the number of molecules C ′ i 1 of the single-stranded nucleic acid after correction and the single-stranded nucleic acid input from the outside of the separation rate coefficient calculating device 1. is calculated as | of the difference between the known number of molecules Cg i differences corrected | C 'i l -Cg i.

補正前後差異算出部34は、算出した補正前の差異|C −Cg|を示す情報と、補正後の差異|C’ −Cg|を示す情報と、を離脱速度係数選択部35に出力する。 The before-and-after-correction difference calculating unit 34 selects the information indicating the calculated difference | C i 1 −Cg i | before correction and the information indicating the corrected difference | C ′ i 1 −Cg i | To the unit 35.

離脱速度係数選択部35は、補正前の差異|C −Cg|と、補正後の差異|C’ −Cg|とを単鎖核酸の種類i毎に比較する。補正前の差異|C −Cg|が補正後の差異|C’ −Cg|より大きい場合、離脱速度係数選択部35は、単鎖核酸の種類iの単鎖核酸が二重鎖核酸から離脱する離脱速度係数βi1、…、βinとして、それぞれ離脱速度係数補正部32により補正された後の各離脱速度係数β’i1 、…、β’in を単鎖核酸の種類i毎に選択する。 The separation rate coefficient selection unit 35 compares the difference | C i 1 −Cg i | before correction with the difference after correction | C ′ i 1 −Cg i | for each type i of single-stranded nucleic acid. When the difference | C i 1 −Cg i | before correction is larger than the difference after correction | C ′ i 1 −Cg i | dissociation rate coefficient beta i1 to leave from the heavy chain nucleic acid, ..., as beta in, the dissociation rate coefficient beta after being corrected by the respective dissociation rate coefficient correcting unit 32 'i1 l, ..., β ' single chain nucleic acids in l For each type i.

一方、補正前の差異|C −Cg|が補正後の差異|C’ −Cg|以下の場合、離脱速度係数選択部35は、単鎖核酸の種類iの単鎖核酸が二重鎖核酸から離脱する離脱速度係数βi1、…、βinとして、それぞれ離脱速度係数補正部32により補正される前の離脱速度係数βi1 、…、βin を単鎖核酸の種類i毎に選択する。 On the other hand, when the difference | C i 1 −Cg i | before correction is equal to or less than the difference after correction | C ′ i 1 −Cg i |, the separation rate coefficient selection unit 35 selects the single-stranded nucleic acid of type i of the single-stranded nucleic acid dissociation rate coefficient beta i1 but to leave the double-stranded nucleic acid, ..., as beta in, dissociation rate coefficient beta i1 l before being corrected by the respective dissociation rate coefficient correcting unit 32, ..., beta in l a single-stranded nucleic acid Select for each type i.

離脱速度係数選択部35は、補正される前の離脱速度係数βij を選択したか補正された後の離脱速度係数β´ij 選択したかを示す選択情報を離脱速度係数収束判定部36に出力する。 Dissociation rate coefficient selecting unit 35, dissociation rate coefficient after correction has been selected dissociation rate coefficient beta ij l before being corrected .beta. 'Ij l leaving the selection information indicating the selected rate coefficient convergence determination unit 36 Output to.

離脱速度係数収束判定部36は、離脱速度係数選択部35から入力された選択情報に基づき、離脱速度係数選択部35が選択した方の離脱速度係数(βij またはβ’ij )を示す情報を読み出す。
離脱速度係数収束判定部36は、離脱速度係数βij毎に、離脱速度係数補正部32により補正される前の離脱速度係数βij と、離脱速度係数選択部35により選択された離脱速度係数(βij またはβ’ij )との差異に基づいて、離脱速度係数βijの推定結果が収束したか否かを判定する。
The separation speed coefficient convergence determination unit 36 indicates the separation speed coefficient (β ij l or β ′ ij l ) selected by the separation speed coefficient selection unit 35 based on the selection information input from the separation speed coefficient selection unit 35. Read information.
The separation speed coefficient convergence determination unit 36 for each separation speed coefficient β ij , the separation speed coefficient β ij l before being corrected by the separation speed coefficient correction unit 32, and the separation speed coefficient selected by the separation speed coefficient selection unit 35. Based on the difference from (β ij l or β ′ ij l ), it is determined whether or not the estimation result of the separation speed coefficient β ij has converged.

具体的には、例えば、離脱速度係数収束判定部36は、離脱速度係数補正部32により補正される前の離脱速度係数βij と、離脱速度係数選択部35により選択された離脱速度係数(βij またはβ’ij )との差異の全てが所定の閾値より小さい場合、離脱速度係数収束判定部36は、離脱速度係数βijの推定結果が収束したと判定する。そして、離脱速度係数収束判定部36は、離脱速度係数選択部35により選択された離脱速度係数(βij またはβ’ij )を、離脱速度係数βijを示す情報として、離脱速度係数算出装置1の外部に出力する。 Specifically, for example, the separation speed coefficient convergence determination unit 36 determines the separation speed coefficient β ij l before being corrected by the separation speed coefficient correction unit 32 and the separation speed coefficient selected by the separation speed coefficient selection unit 35 ( When all of the differences from β ij l or β ′ ij l ) are smaller than a predetermined threshold, the departure speed coefficient convergence determination unit 36 determines that the estimation result of the separation speed coefficient β ij has converged. Then, the separation speed coefficient convergence determination unit 36 calculates the separation speed coefficient using the separation speed coefficient (β ij l or β ′ ij l ) selected by the separation speed coefficient selection unit 35 as information indicating the separation speed coefficient β ij. Output to the outside of the device 1.

一方、離脱速度係数収束判定部36は、離脱速度係数補正部32により補正される前の離脱速度係数βij と、離脱速度係数選択部35により選択された離脱速度係数(βij またはβ’ij )との差異のいずれか1つでも所定の閾値以上の場合、離脱速度係数収束判定部36は、離脱速度係数βijの推定結果が収束していないと判定する。そして、離脱速度係数収束判定部36は、離脱速度係数選択部35により選択された離脱速度係数(βij またはβ’ij )を、次のステップ(l+1)における離脱速度係数βij l+1を示す情報として、単鎖核酸取得部31に出力する。 On the other hand, the separation speed coefficient convergence determination unit 36 has a separation speed coefficient β ij l before being corrected by the separation speed coefficient correction unit 32 and a separation speed coefficient (β ij l or β β selected by the separation speed coefficient selection unit 35. If any one of the differences from ' ij l ) is equal to or greater than the predetermined threshold, the departure speed coefficient convergence determination unit 36 determines that the estimation result of the separation speed coefficient β ij has not converged. The dissociation rate coefficient convergence determination unit 36, dissociation rate coefficient selected by the dissociation rate coefficient selecting section 35 (beta ij l or β 'ij l), the dissociation rate coefficient β ij l + 1 in the next step (l + 1) Information to be output is output to the single-stranded nucleic acid acquisition unit 31.

図5は、離脱速度係数算出装置1による離脱速度係数の推定の処理の流れを示したフローチャートである。まず、離脱速度係数算出装置1の制御部30は、各離脱速度係数の初期値βij を示す情報と各単鎖核酸の既知の分子数Cgを示す情報を離脱速度係数算出装置1の外部から取得する(ステップS101)。
次に、単鎖核酸取得部31は、補正前の各単鎖核酸の分子数C を取得する(ステップS102)。次に、補正前後差異算出装置34は、各補正前の差異|C −Cg|を算出する(ステップS103)。
FIG. 5 is a flowchart showing the flow of the estimation process of the separation speed coefficient by the separation speed coefficient calculation apparatus 1. First, the control unit 30 of the separation rate coefficient calculation device 1 uses information indicating the initial value β ij 0 of each separation rate coefficient and information indicating the known number of molecules Cg i of each single-stranded nucleic acid of the separation rate coefficient calculation device 1. Obtained from the outside (step S101).
Next, the single-stranded nucleic acid acquisition unit 31 acquires the number of molecules C i 1 of each single-stranded nucleic acid before correction (step S102). Next, the difference calculator 34 before and after correction calculates a difference | C i 1 −Cg i | before each correction (step S103).

次に、離脱速度係数補正部32は、離脱速度係数を補正する(ステップS104)。次に、単鎖核酸取得部31は、補正後の各単鎖核酸の分子数C’ を取得する(ステップS105)。次に、補正前後差異算出装置34は、各補正後の差異|C’ −Cg|を算出する(ステップS106)。 Next, the separation speed coefficient correction unit 32 corrects the separation speed coefficient (step S104). Next, the single-stranded nucleic acid acquisition unit 31 acquires the corrected molecular number C ′ i 1 of each single-stranded nucleic acid (step S105). Next, the difference calculator 34 before and after correction calculates a difference | C ′ i 1 −Cg i | after each correction (step S106).

次に、離脱速度係数選択部35は、補正後の差異が補正前の差異より小さくなったか否か判定する(ステップS107)。補正前の差異より補正後の差異が小さくなった場合(ステップS107 YES)、離脱速度係数選択部35は、単鎖核酸の種類iの単鎖核酸が二重鎖核酸から離脱する離脱速度係数βi1、…、βinとして、それぞれ補正後の離脱速度係数β’i1 、…、β’in を選択し、ステップS110の処理に進む(ステップS108)。 Next, the separation speed coefficient selection unit 35 determines whether or not the difference after correction is smaller than the difference before correction (step S107). When the difference after correction becomes smaller than the difference before correction (YES in step S107), the separation rate coefficient selecting unit 35 causes the separation rate coefficient β at which the single-stranded nucleic acid of type i of the single-stranded nucleic acid is detached from the double-stranded nucleic acid. i1, ..., as beta in, dissociation rate coefficient after each correction β 'i1 l, ..., β ' select in l, the process proceeds to step S110 (step S108).

一方、補正後の差異が補正前の差異以上の場合(ステップS107 NO)、離脱速度係数選択部35は、単鎖核酸の種類iの単鎖核酸が二重鎖核酸から離脱する離脱速度係数βi1、…、βinとして、それぞれ補正前の離脱速度係数βi1 、…、βin を選択し、ステップS110の処理に進む(ステップS109)。 On the other hand, if the difference after correction is equal to or greater than the difference before correction (NO in step S107), the separation rate coefficient selection unit 35 separates the single-stranded nucleic acid of type i from single-stranded nucleic acid from the double-stranded nucleic acid β. i1, ..., as beta in, dissociation rate coefficient before each correction β i1 l, ..., select beta in l, the process proceeds to step S110 (step S109).

次に、離脱速度係数選択部35は、全ての単鎖核酸の種類iで補正前の差異と補正後の差異とを比較したか否か判定する(ステップS110)。全ての単鎖核酸の種類iで補正前の差異と補正後の差異とを比較していない場合(ステップS110 NO)、離脱速度係数選択部35は、iを1増やして、ステップS107の処理に戻る。
一方、全ての単鎖核酸の種類iで補正前の差異|C −Cg|と補正後の差異|C’ −Cg|とを比較した場合(ステップS110 YES)、離脱速度係数収束判定部36は、補正前の差異|C −Cg|と補正後の差異|C’ −Cg|との差が、全ての単鎖核酸の種類iで所定の閾値以下か否か判定する(ステップS112)。
Next, the separation rate coefficient selection unit 35 determines whether or not the difference before correction and the difference after correction have been compared for all types of single-stranded nucleic acids i (step S110). When the difference before correction and the difference after correction are not compared for all types of single-stranded nucleic acids i (NO in step S110), the separation rate coefficient selection unit 35 increments i by one and performs the process of step S107. Return.
On the other hand, when the difference | C i 1 −Cg i | and the difference after correction | C ′ i 1 −Cg i | are compared for all types of single-stranded nucleic acid i (YES in step S110), the withdrawal speed The coefficient convergence determination unit 36 determines that the difference between the difference before correction | C i 1 −Cg i | and the difference after correction | C ′ i 1 −Cg i | is a predetermined threshold value for all types of single-stranded nucleic acids i. It is determined whether it is below (step S112).

離脱速度係数収束判定部36は、補正前の差異|C −Cg|と補正後の差異|C’ −Cg|との差が、全ての単鎖核酸の種類iで所定の閾値以下でない場合(ステップS112 NO)、離脱速度係数収束判定部36は、単鎖核酸取得部31が保持する離脱速度係数βijを選択した離脱速度係数βij l+1で更新し(ステップS113)、ステップS102の処理に戻る。 The separation rate coefficient convergence determination unit 36 determines that the difference between the difference before correction | C i l −Cg i | and the difference after correction | C ′ i l −Cg i | is predetermined for all types of single-stranded nucleic acids i. If it is not less than the threshold value (NO in step S112), the separation rate coefficient convergence determination unit 36 updates the separation rate coefficient β ij held by the single-stranded nucleic acid acquisition unit 31 with the selected separation rate coefficient β ij l + 1 (step S113). The process returns to step S102.

離脱速度係数収束判定部36は、補正前の差異|C −Cg|と補正後の差異|C’ −Cg|との差が、全ての単鎖核酸の種類iで所定の閾値以下である場合(ステップS112 YES)、離脱速度係数収束判定部36は、各離脱速度係数βijを外部へ出力する(ステップS114)。以上で、本フローチャートの処理を終了する。 The separation rate coefficient convergence determination unit 36 determines that the difference between the difference before correction | C i l −Cg i | and the difference after correction | C ′ i l −Cg i | Is equal to or less than the threshold value (YES in step S112), the separation speed coefficient convergence determination unit 36 outputs each separation speed coefficient βij to the outside (step S114). Above, the process of this flowchart is complete | finished.

図6は、図5のステップS102またはステップS105における各単鎖核酸の分子数の取得の処理の流れを示したフローチャートである。まず、総分子数推定装置10は各核酸断片の総分子数Sを推定する(ステップS201)。次に、推定された各核酸断片の総分子数Sに基づいて、単鎖核酸分子数推定装置20は、各単鎖核酸の分子数Cを推定し、単鎖核酸取得部31に各単鎖核酸の分子数Cを示す情報を出力する(ステップS202)。以上で、本フローチャートの処理を終了する。 FIG. 6 is a flowchart showing the flow of processing for obtaining the number of molecules of each single-stranded nucleic acid in step S102 or step S105 of FIG. First, the total number of molecules estimating device 10 estimates the total number of molecules S i of each nucleic acid fragment (step S201). Next, based on the estimated total number of molecules S i of each nucleic acid fragment, the single-stranded nucleic acid molecule number estimation device 20 estimates the number of molecules C i of each single-stranded nucleic acid, and outputs information indicating the number of molecules C i of the single-stranded nucleic acid (step S202). Above, the process of this flowchart is complete | finished.

以上により、本実施形態における離脱速度係数算出装置1は、総分子数推定装置10と、単鎖核酸分子数推定装置20とを使う構成にすることにより、各単鎖核酸の分子数Cを取得することができ、その各単鎖核酸の分子数Cを用いて、各離脱速度係数βijを推定することができるので、ゲノミクス解析を飛躍的に効率化し、かつ精密化することができる。 By the above, dissociation rate coefficient calculating apparatus 1 of this embodiment, the total molecular number estimating apparatus 10, by a configuration that uses a single-stranded nucleic acid molecule number estimating device 20, the number of molecules C i of each single-stranded nucleic acid Since each separation rate coefficient β ij can be estimated using the number of molecules C i of each single-stranded nucleic acid, genomics analysis can be remarkably improved in efficiency and precision. .

また、算出した各離脱速度係数βijを総分子数推定装置10が各核酸断片の総分子数Sを推定する際に用いるこることができるので、総分子数推定装置10は、精度良く各核酸断片の総分子数Sを推定することができる。
同様に、算出した各離脱速度係数βijを単鎖核酸分子数推定装置20が各単鎖核酸の分子数Cを推定する際に用いるこることができるので、単鎖核酸分子数推定装置20は、精度良く各単鎖核酸の分子数Cを推定することができる。
In addition, since the total number-of-molecules estimation device 10 can use the calculated separation rate coefficients β ij when estimating the total number of molecules S i of each nucleic acid fragment, the total number-of-molecules estimation device 10 can accurately it is possible to estimate the total number of molecules S i of nucleic acid fragments.
Similarly, each calculated rate-of-detachment coefficient β ij can be used when the single-stranded nucleic acid molecule number estimating device 20 estimates the number of molecules C i of each single-stranded nucleic acid, so that the single-stranded nucleic acid molecule number estimating device 20 it can be estimated accurately molecular number C i of each single-stranded nucleic acid.

図7は、図6のステップS201における総分子数推定装置10による各核酸断片の総分子数の推定の処理の流れを示したフローチャートである。まず、単鎖核酸分子数取得部13は、離脱速度係数記憶部12から各離脱速度係数βijを読み出す(ステップS301)。次に、単鎖核酸分子数取得部13は、一例として制御部30から入力された各単鎖核酸の既知の分子数Cgを各核酸断片の総分子数Sとして取得する(ステップS302)。 FIG. 7 is a flowchart showing the flow of processing for estimating the total number of molecules of each nucleic acid fragment by the total number-of-molecules estimation apparatus 10 in step S201 of FIG. First, the single-stranded nucleic acid molecule number acquisition unit 13 reads each separation rate coefficient β ij from the separation rate coefficient storage unit 12 (step S301). Next, single-stranded nucleic acid molecule number obtaining unit 13 obtains the known number of molecules Cg i of each single-stranded nucleic acid that is input from the control unit 30 as an example as the total number of molecules S i of each nucleic acid fragments (Step S302) .

次に、単鎖核酸分子数推定装置20が、各単鎖核酸の分子数Cを推定する(ステップS303)。次に、単鎖核酸差異算出部14は、単鎖核酸分子数推定装置20により推定された各単鎖核酸の分子数Cと、各単鎖核酸の既知の分子数Cgとの差異を算出する(ステップS304)。 Next, single-stranded nucleic acid molecule number estimating device 20 estimates the number of molecules C i of each single-stranded nucleic acid (step S303). Next, the single-stranded nucleic acid difference calculation unit 14 calculates the difference between the number of molecules C i of each single-stranded nucleic acid estimated by the single-stranded nucleic acid molecule number estimation device 20 and the known number of molecules Cg i of each single-stranded nucleic acid. Calculate (step S304).

総分子数収束判定部15は、算出された差異の全てが所定の閾値以下であるか否か判定する(ステップS305)。算出された差異の全てが所定の閾値以下でない場合(ステップS305 NO)、総分子数補正部16は、各核酸断片の総分子数を補正し、ステップS303の処理に戻る。
一方、算出された差異の全てが所定の閾値以下の場合(ステップS305 YES)、総分子数収束判定部15は、各核酸断片の総分子数を示す情報を外部へ出力する(ステップS307)。以上で、本フローチャートの処理を終了する。
The total molecular number convergence determination unit 15 determines whether all of the calculated differences are equal to or less than a predetermined threshold (step S305). If all of the calculated differences are not less than or equal to the predetermined threshold (NO in step S305), the total molecular number correction unit 16 corrects the total number of molecules of each nucleic acid fragment, and returns to the process of step S303.
On the other hand, when all the calculated differences are equal to or smaller than the predetermined threshold (YES in step S305), the total molecular number convergence determination unit 15 outputs information indicating the total number of molecules of each nucleic acid fragment to the outside (step S307). Above, the process of this flowchart is complete | finished.

以上により、本実施形態における総分子数推定装置10は、単鎖核酸分子数推定装置20を使うことにより各単鎖核酸の分子数を取得し、取得した各単鎖核酸の分子数を用いて、各核酸断片の総分子数Sを推定する。このような構成を取ることにより、単鎖核酸分子数推定装置20は、単鎖核酸分子数推定装置20により推定された各単鎖核酸の分子数と、既知の単鎖核酸の分子数との差異を小さくするように各核酸断片の総分子数Sを補正することにより、各核酸断片の総分子数Sを精度良く推定することができるので、ゲノミクス解析を飛躍的に効率化し、かつ精密化することができる。 As described above, the total number-of-molecules estimation apparatus 10 in the present embodiment acquires the number of molecules of each single-stranded nucleic acid by using the single-stranded nucleic acid molecule number estimation apparatus 20, and uses the acquired number of molecules of each single-stranded nucleic acid. , to estimate the total number of molecules S i of each nucleic acid fragment. By adopting such a configuration, the single-stranded nucleic acid molecule number estimating device 20 is configured to calculate the number of molecules of each single-stranded nucleic acid estimated by the single-stranded nucleic acid molecule number estimating device 20 and the number of known single-stranded nucleic acid molecules. by correcting the total number of molecules S i of each nucleic acid fragment so as to reduce the difference, since the total number of molecules S i of each nucleic acid fragment can be accurately estimated, dramatically streamline genomics analysis, and Can be refined.

図8は、図6のステップS202または図7のステップS303における単鎖核酸分子数推定装置20による各単鎖核酸の分子数の推定の処理の流れを示したフローチャートである。まず、二重鎖核酸分子数更新部21は、各二重鎖核酸分子数を更新する(ステップS401)。次に、単鎖核酸分子数更新部22は、各単鎖核酸分子数を更新する(ステップS402)。次に、単鎖核酸収束判定部23は、単鎖核酸分子数更新部22における各単鎖核酸の分子数の変更量の全てが所定の閾値以下か否か判定する(ステップS403)。   FIG. 8 is a flowchart showing the flow of the process of estimating the number of molecules of each single-stranded nucleic acid by the single-stranded nucleic acid molecule number estimating apparatus 20 in step S202 of FIG. 6 or step S303 of FIG. First, the double-stranded nucleic acid molecule number updating unit 21 updates the number of each double-stranded nucleic acid molecule (step S401). Next, the single-stranded nucleic acid molecule number updating unit 22 updates the number of each single-stranded nucleic acid molecule (step S402). Next, the single-stranded nucleic acid convergence determining unit 23 determines whether or not all the amount of change in the number of molecules of each single-stranded nucleic acid in the single-stranded nucleic acid molecule number updating unit 22 is equal to or less than a predetermined threshold (step S403).

各単鎖核酸の分子数の変更量が1つでも所定の閾値を超える場合(ステップS403 NO)、加速係数算出部24は、加速係数を更新し(ステップS404)、単鎖核酸分子数推定装置20は、ステップS401の処理に戻る。
一方、単鎖核酸分子数更新部22における各単鎖核酸の分子数の変更量の全てが所定の閾値以下の場合(ステップS403 YES)、単鎖核酸分子数推定装置20は、各単鎖核酸の分子数を示す情報を外部へ出力する(ステップS405)。以上で、本フローチャートの処理を終了する。
When even one change amount of the number of molecules of each single-stranded nucleic acid exceeds a predetermined threshold (NO in step S403), the acceleration coefficient calculation unit 24 updates the acceleration coefficient (step S404), and the single-stranded nucleic acid molecule number estimation device 20 returns to the process of step S401.
On the other hand, when all of the amount of change in the number of molecules of each single-stranded nucleic acid in the single-stranded nucleic acid molecule number updating unit 22 is equal to or less than a predetermined threshold (YES in step S403), the single-stranded nucleic acid molecule number estimating device 20 The information indicating the number of molecules is output to the outside (step S405). Above, the process of this flowchart is complete | finished.

以上により、本実施形態における単鎖核酸分子数推定装置20は、各二重鎖核酸の分子数を更新し、更新した二重鎖核酸の分子数に基づいて各単鎖核酸の分子数を更新し、その更新の際の単鎖核酸分子数の変更量に基づいて、各単鎖核酸の分子数の推定が収束したか否か判定することにより、各単鎖核酸の分子数を推定することができる。このような構成を取ることにより、各単鎖核酸の分子数の推定が収束するまで、各二重鎖核酸の分子数の更新し各単鎖核酸の分子数を更新するので、各単鎖核酸の分子数を精度良く推定することができる。これにより、ゲノミクス解析を飛躍的に効率化し、かつ精密化することができる。   As described above, the single-stranded nucleic acid molecule number estimation device 20 in the present embodiment updates the number of molecules of each double-stranded nucleic acid, and updates the number of molecules of each single-stranded nucleic acid based on the updated number of molecules of double-stranded nucleic acid. And estimating the number of molecules of each single-stranded nucleic acid by determining whether the estimation of the number of molecules of each single-stranded nucleic acid has converged based on the amount of change in the number of single-stranded nucleic acid molecules at the time of the update. Can do. By adopting such a configuration, the number of molecules of each double-stranded nucleic acid is updated and the number of molecules of each single-stranded nucleic acid is updated until the estimation of the number of molecules of each single-stranded nucleic acid converges. It is possible to accurately estimate the number of molecules. Thereby, genomics analysis can be remarkably improved in efficiency and refined.

以上、本発明によれば、本実施形態で示した多溶質結合平衡式を利用して、既存の測定データを対象に、元のデータに含まれる目的外の核酸断片結合に起因して発生する誤差を除去して、各単鎖核酸の分子数および各核酸断片の分子数を高精度に得ることができる。
また、特に先行技術が対応できなかった、複雑系での飽和現象による誤差補正や、クロスハイブリダイゼーションに起因する誤差の影響が大きかった少量しか存在しない核酸断片の定量性能の著しい向上が可能となる。
As described above, according to the present invention, by using the polysolute binding equilibrium equation shown in the present embodiment, the existing measurement data is generated due to the non-target nucleic acid fragment binding included in the original data. By removing the error, the number of molecules of each single-stranded nucleic acid and the number of molecules of each nucleic acid fragment can be obtained with high accuracy.
In addition, error correction due to saturation phenomenon in complex systems, which could not be dealt with by the prior art, and the quantitative performance of nucleic acid fragments that are present only in small amounts that were greatly affected by errors due to cross-hybridization can be significantly improved. .

これにより先行技術では成し得なかった高精度の定量を行うことができ、医学・生物学の分野ではゲノミクス解析を飛躍的に効率化し、精密化する。さらに、効果および安全性の高い核酸医薬や遺伝子治療法の開発・臨床応用を強力に推進するほか、情報工学の分野においても次世代の超並列計算機の開発に寄与することができる。   This makes it possible to perform highly accurate quantification that could not be achieved with the prior art, and in the fields of medicine and biology, genomics analysis is dramatically improved and refined. In addition to strongly promoting the development and clinical application of highly effective and safe nucleic acid drugs and gene therapy methods, it can also contribute to the development of next-generation massively parallel computers in the field of information engineering.

また、本発明の実施形態における離脱速度係数算出装置1、総分子数推定装置10または単鎖核酸分子数推定装置20の機能またはその機能の一部をコンピュータで実現するようにしてもよい。この場合、その機能を実現するためのコンピュータプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたコンピュータプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OS(Operating System)や周辺機器のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、光ディスク、メモリカード等の可搬型記録媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバーやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定期間プログラムを保持するものを含んでもよい。また上記のコンピュータプログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているコンピュータプログラムとの組み合わせにより実現するものであってもよい。   Moreover, you may make it implement | achieve the function of the withdrawal rate coefficient calculation apparatus 1, the total number-of-molecules estimation apparatus 10, or the single-stranded nucleic acid molecule number estimation apparatus 20 in the embodiment of the present invention or a part of the functions by a computer. In this case, the computer program for realizing the function may be recorded on a computer-readable recording medium, and the computer program recorded on the recording medium may be read by the computer system and executed. Here, the “computer system” includes an OS (Operating System) and hardware of peripheral devices. The “computer-readable recording medium” refers to a portable recording medium such as a flexible disk, a magneto-optical disk, an optical disk, and a memory card, and a storage device such as a hard disk built in the computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in the computer system that becomes a server or a client in that case may be included and a program that holds a program for a certain period. Further, the above computer program may be for realizing a part of the above-described functions, and further realizing the above functions by a combination with a computer program already recorded in the computer system. Also good.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。   As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The design etc. of the range which does not deviate from the summary of this invention are included.

1 離脱速度係数算出装置
10 総分子数推定装置
11 総分子数記憶部
12 離脱速度係数記憶部
13 単鎖核酸分子数取得部
14 単鎖核酸差異算出部
15 総分子数収束判定部
16 総分子数補正部
20 単鎖核酸分子数推定装置
21 二重鎖核酸分子数更新部
22 単鎖核酸分子数更新部
23 単鎖核酸収束判定部
24 加速係数算出部
25 単鎖核酸分子数記憶部
30 制御部
31 単鎖核酸取得部
32 離脱速度係数補正部
33 離脱速度係数記憶部
34 補正前後差異算出部
35 離脱速度係数選択部
36 離脱速度係数収束判定部
DESCRIPTION OF SYMBOLS 1 Separation rate coefficient calculation device 10 Total molecule number estimation device 11 Total molecule number storage unit 12 Separation rate coefficient storage unit 13 Single strand nucleic acid molecule number acquisition unit 14 Single strand nucleic acid difference calculation unit 15 Total molecule number convergence determination unit 16 Total number of molecules Correction unit 20 Single-stranded nucleic acid molecule number estimation device 21 Double-stranded nucleic acid molecule number update unit 22 Single-stranded nucleic acid molecule number update unit 23 Single-stranded nucleic acid convergence determination unit 24 Acceleration coefficient calculation unit 25 Single-stranded nucleic acid molecule number storage unit 30 Control unit 31 Single-stranded nucleic acid acquisition unit 32 Separation rate coefficient correction unit 33 Separation rate coefficient storage unit 34 Pre-correction difference calculation unit 35 Separation rate coefficient selection unit 36 Separation rate coefficient convergence determination unit

Claims (16)

第1の単鎖核酸の分子数と、該第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の分子数と、前記第1の単鎖核酸と前記第2の単鎖核酸とが結合した二重鎖核酸が離脱する速度である離脱速度係数と、に基づき、前記第1の単鎖核酸と前記第2の単鎖核酸とが結合した二重鎖核酸の分子数を前記第1の単鎖核酸と前記第2の単鎖核酸との組み合わせ毎に更新する二重鎖核酸分子数更新部と、
前記二重鎖核酸分子数更新部により更新された各二重鎖核酸の分子数と、自装置の外部より与えられた核酸断片の総分子数と、に基づいて、前記単鎖核酸の分子数を前記単鎖核酸の種類毎に更新する単鎖核酸分子数更新部と、
前記単鎖核酸分子数更新部により更新される前の単鎖核酸の分子数と、
前記単鎖核酸分子数更新部により更新された後の単鎖核酸の分子数との差異を前記単鎖核酸の種類毎に算出し、前記各差異に基づき、各単鎖核酸の分子数の推定結果が収束したか否かを判定する単鎖核酸収束判定部と、
を備えることを特徴とする単鎖核酸分子数推定装置。
The number of molecules of the first single-stranded nucleic acid, the number of molecules of the second single-stranded nucleic acid that can bind to the first single-stranded nucleic acid to form a double-stranded nucleic acid, the first single-stranded nucleic acid, and the A double strand in which the first single-stranded nucleic acid and the second single-stranded nucleic acid are bound to each other based on a separation rate coefficient that is a rate at which the double-stranded nucleic acid bound to the second single-stranded nucleic acid is detached. A double-stranded nucleic acid molecule number updating unit for updating the number of nucleic acid molecules for each combination of the first single-stranded nucleic acid and the second single-stranded nucleic acid;
The number of molecules of the single-stranded nucleic acid based on the number of molecules of each double-stranded nucleic acid updated by the double-stranded nucleic acid molecule number updating unit and the total number of molecules of nucleic acid fragments given from the outside of the device A single-stranded nucleic acid molecule number updating unit for updating each single-stranded nucleic acid type,
The number of single-stranded nucleic acid molecules before being updated by the single-stranded nucleic acid molecule number updating unit,
The difference between the number of single-stranded nucleic acid molecules updated by the single-stranded nucleic acid molecule number updating unit is calculated for each type of single-stranded nucleic acid, and the number of molecules of each single-stranded nucleic acid is estimated based on each difference. A single-stranded nucleic acid convergence determination unit for determining whether the result has converged, and
An apparatus for estimating the number of single-stranded nucleic acid molecules.
前記単鎖核酸収束判定部が収束していないと判定した場合、前記単鎖核酸分子数更新部により更新された各単鎖核酸の分子数に基づき、前記二重鎖核酸の種類毎の加速係数を算出する加速係数算出部と、
前記二重鎖核酸分子数更新部は、前記単鎖核酸分子数更新部により更新された第1の単鎖核酸の分子数と、前記第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の分子数と、前記加速係数算出部により算出された前記第1の単鎖核酸と前記第2の単鎖核酸の組み合わせ毎の加速係数と、前記第1の単鎖核酸と前記第2の単鎖核酸とが結合した二重鎖核酸が離脱する速度である離脱速度係数と、に基づき、二重鎖核酸の分子数を前記第1の単鎖核酸と前記第2の単鎖核酸の組み合わせ毎に更新することを特徴とする請求項1に記載の単鎖核酸分子数推定装置。
When it is determined that the single-stranded nucleic acid convergence determination unit has not converged, based on the number of molecules of each single-stranded nucleic acid updated by the single-stranded nucleic acid molecule number update unit, an acceleration factor for each type of double-stranded nucleic acid An acceleration coefficient calculation unit for calculating
The double-stranded nucleic acid molecule number updating unit binds the first single-stranded nucleic acid and the number of molecules of the first single-stranded nucleic acid updated by the single-stranded nucleic acid molecule number updating unit. The number of molecules of the second single-stranded nucleic acid that can be formed, the acceleration coefficient for each combination of the first single-stranded nucleic acid and the second single-stranded nucleic acid calculated by the acceleration coefficient calculating unit, and the first Based on the separation rate coefficient, which is the rate at which the double-stranded nucleic acid bound to the single-stranded nucleic acid and the second single-stranded nucleic acid is separated, the number of molecules of the double-stranded nucleic acid is determined from the first single-stranded nucleic acid and the above-mentioned The apparatus for estimating the number of single-stranded nucleic acid molecules according to claim 1, wherein the number of single-stranded nucleic acid molecules is updated for each combination of second single-stranded nucleic acids.
二重鎖核酸から単鎖核酸が離脱する離脱速度係数を示す情報が該二重鎖核酸の種類毎に記憶されている離脱速度係数記憶部と、
核酸断片が単鎖状態である単鎖核酸の分子数と該単鎖核酸を少なくともひとつ含む二重鎖核酸の分子数との和である核酸断片の総分子数を示す情報が単鎖核酸の種類毎に記憶されている総分子数記憶部と、
前記離脱速度係数記憶部から前記離脱速度係数を示す情報を読み出し、前記総分子数記憶部から総分子数を示す情報を読み出し、前記読み出された離脱速度係数と前記読み出された総分子数とに基づいて、溶液中に存在する単鎖核酸の分子数を請求項1または請求項2に記載の単鎖核酸分子数推定装置に前記単鎖核酸の種類毎に推定させる単鎖核酸分子数取得部と、
前記推定された単鎖核酸の分子数と、自装置の外部から入力された該単鎖核酸の既知の分子数との差異を前記単鎖核酸の種類毎に算出する単鎖核酸差異算出部と、
該単鎖核酸の種類毎の前記差異に基づき、前記核酸断片の総分子数の推定結果が収束したか否かを判定する総分子数収束判定部と、
前記総分子数収束判定部が収束していないと判定した場合、前記離脱速度係数記憶部から前記各離脱速度係数を示す情報を読み出し、該読み出された各離脱速度係数と、第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の前記差異とに基づき、前記第1の単鎖核酸を少なくとも1つ有する核酸断片の総分子数を前記単鎖核酸の種類毎に補正し、該補正した総分子数を示す情報で、前記総分子数記憶部に記憶されている総分子数を示す情報を更新する総分子数補正部と、
を備え、
前記単鎖核酸分子数取得部は、前記総分子数記憶部から前記総分子数補正部により更新された総分子数を示す情報を読み出し、該読み出した総分子数に基づき、前記単鎖核酸の分子数を前記単鎖核酸分子数推定装置に前記単鎖核酸の種類毎に推定させることを特徴とする総分子数推定装置。
Information indicating a separation rate coefficient at which the single-stranded nucleic acid is detached from the double-stranded nucleic acid is stored for each type of the double-stranded nucleic acid,
Information indicating the total number of nucleic acid fragments, which is the sum of the number of molecules of a single-stranded nucleic acid in which the nucleic acid fragment is in a single-stranded state and the number of molecules of a double-stranded nucleic acid containing at least one single-stranded nucleic acid is the type of single-stranded nucleic acid A total molecular number storage unit stored for each;
The information indicating the separation rate coefficient is read from the separation rate coefficient storage unit, the information indicating the total number of molecules is read from the total molecule number storage unit, the read separation rate coefficient and the total number of molecules read out Based on the above, the number of single-stranded nucleic acid molecules that cause the single-stranded nucleic acid molecule number estimation device according to claim 1 to estimate the number of molecules of the single-stranded nucleic acid in the solution for each type of the single-stranded nucleic acid An acquisition unit;
A single-stranded nucleic acid difference calculating unit that calculates the difference between the estimated number of molecules of the single-stranded nucleic acid and the number of known molecules of the single-stranded nucleic acid input from the outside of the device for each type of the single-stranded nucleic acid; ,
Based on the difference for each type of the single-stranded nucleic acid, a total molecular number convergence determination unit that determines whether or not the estimation result of the total number of molecules of the nucleic acid fragment has converged,
When it is determined that the total molecular number convergence determination unit has not converged, information indicating the respective separation rate coefficients is read from the separation rate coefficient storage unit, and each of the read separation rate coefficients and the first unit Based on the difference of the second single-stranded nucleic acid that can form a double-stranded nucleic acid by binding to a strand nucleic acid, the total number of nucleic acid fragments having at least one first single-stranded nucleic acid is calculated as the single-stranded nucleic acid. A total molecular number correction unit that updates the information indicating the total number of molecules stored in the total molecular number storage unit with information indicating the corrected total number of molecules.
With
The single-stranded nucleic acid molecule number acquisition unit reads information indicating the total number of molecules updated by the total molecular number correction unit from the total molecular number storage unit, and based on the read total number of molecules, An apparatus for estimating the total number of molecules, wherein the number of molecules is estimated for each kind of the single-stranded nucleic acid by the single-stranded nucleic acid molecule number estimating apparatus.
前記単鎖核酸分子数取得部は、前記単鎖核酸分子数推定装置に出力する前記核酸断片の総分子数の初期値を、外部から入力された単鎖核酸の既知の分子数とすることを特徴とする請求項3に記載の総分子数推定装置。   The single-stranded nucleic acid molecule number acquisition unit sets an initial value of the total number of molecules of the nucleic acid fragment to be output to the single-stranded nucleic acid molecule number estimation device as a known number of molecules of single-stranded nucleic acid input from the outside. The total number-of-molecules estimation apparatus according to claim 3, 二重鎖核酸から単鎖核酸が離脱する速度である離脱速度係数のそれぞれと、各単鎖核酸の既知の分子数とに基づき、核酸断片の分子数を単鎖核酸の種類毎に推定する請求項3または請求項4に記載の総分子数推定装置と、
前記離脱速度係数のそれぞれと、前記推定された各核酸断片の分子数とに基づき、単鎖核酸の分子数を単鎖核酸の種類毎に推定する請求項1または請求項2に記載の単鎖核酸分子数推定装置と、
前記推定された各単鎖核酸の分子数に基づき、前記離脱速度係数を前記二重鎖核酸の種類毎に算出する制御部と、
を備えることを特徴とする離脱速度係数算出装置。
A request to estimate the number of molecules of a nucleic acid fragment for each type of single-stranded nucleic acid based on each of the separation rate coefficients, which are the rates at which single-stranded nucleic acids are released from double-stranded nucleic acids, and the known number of molecules of each single-stranded nucleic acid The total number-of-molecules estimation apparatus according to Item 3 or Claim 4,
The single strand according to claim 1 or 2, wherein the number of molecules of single-stranded nucleic acid is estimated for each kind of single-stranded nucleic acid based on each of the separation rate coefficients and the estimated number of molecules of each nucleic acid fragment. An apparatus for estimating the number of nucleic acid molecules;
Based on the estimated number of molecules of each single-stranded nucleic acid, a controller that calculates the separation rate coefficient for each type of double-stranded nucleic acid,
A separation speed coefficient calculating device comprising:
前記制御部は、
請求項3または請求項4に記載の総分子数推定装置に、前記離脱速度係数と前記単鎖核酸の既知の分子数とに基づき、総分子数を前記単鎖核酸の種類毎に推定させ、請求項1または請求項2に記載の単鎖核酸推定装置に、該総分子数に対応する単鎖核酸の分子数を前記単鎖核酸の種類毎に推定させる単鎖核酸取得部と、
前記単鎖核酸の種類毎に、前記単鎖核酸取得部により取得された前記単鎖核酸の分子数と、自装置の外部から入力された前記単鎖核酸の既知の分子数とを前記単鎖核酸の種類毎に比較し、前記取得された単鎖核酸の分子数が入力された該単鎖核酸の既知の分子数より小さい場合、該単鎖核酸の前記離脱速度係数を大きくし、前記取得された単鎖核酸の分子数が、入力された該単鎖核酸の既知の分子数以上の場合、該単鎖核酸の前記離脱速度係数を小さくする離脱速度係数補正部と、
を備え、
前記単鎖核酸取得部は、前記離脱速度係数補正部により補正された後の離脱速度係数に基づき、請求項3または請求項4に記載の総分子数推定装置に前記総分子数を前記単鎖核酸の種類毎に推定させ、請求項1または請求項2に記載の単鎖核酸推定装置に該総分子数に対応する単鎖核酸の分子数を前記単鎖核酸の種類毎に推定させ、
前記制御部は、
前記単鎖核酸の種類毎に、前記補正前の単鎖核酸の分子数と、入力された該単鎖核酸の既知の分子数との差異を補正前の差異として算出し、前記単鎖核酸の種類毎に、前記補正後の単鎖核酸の分子数と、入力された該単鎖核酸の既知の分子数との差異を補正後の差異として算出する補正前後差異算出部と、
前記補正前の差異と、前記補正後の差異とを前記単鎖核酸の種類i毎に比較し、前記補正前の差異が前記補正後の差異より大きい場合、前記離脱速度係数補正部により補正された後の離脱速度係数を選択し、前記補正前の差異が前記補正後の差異以下の場合、前記離脱速度係数補正部により補正される前の離脱速度係数を選択する離脱速度係数選択部と、
を更に備えることを特徴とする請求項5に記載の離脱速度係数算出装置。
The controller is
The total molecular number estimation apparatus according to claim 3 or 4, wherein the total number of molecules is estimated for each type of the single-stranded nucleic acid based on the separation rate coefficient and the known number of molecules of the single-stranded nucleic acid, A single-stranded nucleic acid obtaining unit that causes the single-stranded nucleic acid estimation apparatus according to claim 1 or 2 to estimate the number of molecules of a single-stranded nucleic acid corresponding to the total number of molecules for each type of the single-stranded nucleic acid,
For each type of single-stranded nucleic acid, the number of molecules of the single-stranded nucleic acid obtained by the single-stranded nucleic acid obtaining unit and the known number of molecules of the single-stranded nucleic acid input from the outside of the device are the single strand. When the number of molecules of the obtained single-stranded nucleic acid is smaller than the known number of molecules of the inputted single-stranded nucleic acid, compared with each type of nucleic acid, the separation rate coefficient of the single-stranded nucleic acid is increased and the obtained When the number of molecules of the single-stranded nucleic acid is equal to or greater than the known number of molecules of the input single-stranded nucleic acid, a separation rate coefficient correction unit that reduces the separation rate coefficient of the single-stranded nucleic acid,
With
5. The single-stranded nucleic acid acquisition unit calculates the total number of molecules in the total number-of-molecules estimation apparatus according to claim 3 or 4 based on the separation rate coefficient corrected by the separation rate coefficient correction unit. Estimating for each type of nucleic acid, causing the single-stranded nucleic acid estimation apparatus according to claim 1 or claim 2 to estimate the number of molecules of single-stranded nucleic acid corresponding to the total number of molecules for each type of single-stranded nucleic acid,
The controller is
For each type of single-stranded nucleic acid, the difference between the number of molecules of the single-stranded nucleic acid before correction and the number of known molecules of the input single-stranded nucleic acid is calculated as a difference before correction, For each type, a difference calculation unit before and after correction that calculates the difference between the number of molecules of the corrected single-stranded nucleic acid and the number of known molecules of the input single-stranded nucleic acid as a corrected difference;
The difference before correction and the difference after correction are compared for each type i of the single-stranded nucleic acid, and when the difference before correction is larger than the difference after correction, the difference is corrected by the detachment speed coefficient correction unit. A separation speed coefficient selection unit that selects a separation speed coefficient before being corrected by the separation speed coefficient correction unit when the difference before correction is equal to or less than the difference after correction;
The separation speed coefficient calculating device according to claim 5, further comprising:
前記制御部は、
前記離脱速度係数毎に、前記離脱速度係数補正部により補正される前の離脱速度係数と、前記離脱速度係数選択部により選択された離脱速度係数との差異に基づいて、前記離脱速度係数の推定結果が収束したか否かを判定する離脱速度係数収束判定部を備え、
前記単鎖核酸取得部は、前記離脱速度係数収束判定部が収束していないと判定した場合、前記離脱速度係数選択部により選択された各離脱速度係数に基づいて、前記単鎖核酸分子数推定装置から各単鎖核酸の分子数を取得することを特徴とする請求項6に記載の離脱速度係数算出装置。
The controller is
For each separation speed coefficient, the separation speed coefficient is estimated based on the difference between the separation speed coefficient before being corrected by the separation speed coefficient correction section and the separation speed coefficient selected by the separation speed coefficient selection section. A separation speed coefficient convergence determination unit that determines whether or not the result has converged,
When the single-stranded nucleic acid acquisition unit determines that the separation rate coefficient convergence determination unit has not converged, the number of single-stranded nucleic acid molecules is estimated based on each separation rate coefficient selected by the separation rate coefficient selection unit. The separation rate coefficient calculation apparatus according to claim 6, wherein the number of molecules of each single-stranded nucleic acid is obtained from the apparatus.
前記離脱速度係数補正部は、乱数を用いて前記離脱速度係数を補正することを特徴とする請求項6または請求項7に記載の離脱速度係数算出装置。   The separation speed coefficient calculation device according to claim 6 or 7, wherein the separation speed coefficient correction unit corrects the separation speed coefficient using a random number. 前記離脱速度係数の初期値は、新たな前記単鎖核酸の既知の分子数が得られた場合に、自装置でそれまでに得られている離脱速度係数であることを特徴とする請求項5から請求項8のいずれか1項に記載の離脱速度係数算出装置。   6. The initial value of the separation rate coefficient is a separation rate coefficient that has been obtained so far in the device itself when a new known number of molecules of the single-stranded nucleic acid is obtained. The separation speed coefficient calculation device according to any one of claims 1 to 8. 前記離脱速度係数の初期値は、自装置でそれまでに得られている離脱速度係数がない場合には、第1の単鎖核酸の配列と第2の単鎖核酸の配列の一致箇所の長さに依存した値であることを特徴とする請求項5から請求項8のいずれか1項に記載の離脱速度係数算出装置。   The initial value of the separation rate coefficient is the length of the coincidence between the sequence of the first single-stranded nucleic acid and the sequence of the second single-stranded nucleic acid when there is no separation rate coefficient obtained so far in the apparatus. The separation speed coefficient calculation device according to any one of claims 5 to 8, wherein the value is a value depending on the height. 単鎖核酸分子数推定装置が実行する単鎖核酸分子数推定方法であって、
第1の単鎖核酸の分子数と、該第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の分子数と、前記第1の単鎖核酸と前記第2の単鎖核酸とが結合した二重鎖核酸が離脱する速度である離脱速度係数と、に基づき、前記第1の単鎖核酸と前記第2の単鎖核酸とが結合した二重鎖核酸の分子数を前記第1の単鎖核酸と前記第2の単鎖核酸との組み合わせ毎に更新する二重鎖核酸分子数更新手順と、
前記二重鎖核酸分子数更新手順により更新された各二重鎖核酸の分子数と、前記単鎖核酸分子推定装置の外部より与えられた核酸断片の総分子数と、に基づいて、前記単鎖核酸の分子数を前記単鎖核酸の種類毎に更新する単鎖核酸分子数更新手順と、
前記単鎖核酸分子数更新手順により更新される前の単鎖核酸の分子数と、
前記単鎖核酸分子数更新手順により更新された後の単鎖核酸の分子数との差異を前記単鎖核酸の種類毎に算出し、前記各差異に基づき、各単鎖核酸の分子数の推定結果が収束したか否かを判定する単鎖核酸収束判定手順と、
を有することを特徴とする単鎖核酸分子数推定方法。
A single-stranded nucleic acid molecule number estimation method executed by a single-stranded nucleic acid molecule number estimation apparatus,
The number of molecules of the first single-stranded nucleic acid, the number of molecules of the second single-stranded nucleic acid that can bind to the first single-stranded nucleic acid to form a double-stranded nucleic acid, the first single-stranded nucleic acid, and the A double strand in which the first single-stranded nucleic acid and the second single-stranded nucleic acid are bound to each other based on a separation rate coefficient that is a rate at which the double-stranded nucleic acid bound to the second single-stranded nucleic acid is detached. A double-stranded nucleic acid molecule number updating procedure for updating the number of molecules of nucleic acid for each combination of the first single-stranded nucleic acid and the second single-stranded nucleic acid;
Based on the number of molecules of each double-stranded nucleic acid updated by the update procedure of the number of double-stranded nucleic acid molecules and the total number of molecules of nucleic acid fragments given from the outside of the single-stranded nucleic acid molecule estimation device, Updating the number of single-stranded nucleic acid molecules for each type of single-stranded nucleic acid,
The number of single-stranded nucleic acid molecules before being updated by the single-stranded nucleic acid molecule number updating procedure;
The difference from the number of molecules of the single-stranded nucleic acid after being updated by the procedure for updating the number of single-stranded nucleic acid molecules is calculated for each type of the single-stranded nucleic acid, and the number of molecules of each single-stranded nucleic acid is estimated based on each difference. A single-stranded nucleic acid convergence determination procedure for determining whether the result has converged, and
A method for estimating the number of single-stranded nucleic acid molecules.
二重鎖核酸から単鎖核酸が離脱する速度である離脱速度係数を示す情報が前記二重鎖核酸の種類毎に記憶されている離脱速度係数記憶部と、単鎖核酸の分子数と、該単鎖核酸と結合して二重鎖核酸を形成し得る単鎖核酸の分子数と、前記単鎖核酸と前記の単鎖核酸とが結合した二重鎖核酸の分子数の和である該核酸の総分子数を示す情報が単鎖核酸の種類毎に記憶されている総分子数記憶部と、を備える総分子数推定装置が実行する総分子数推定方法であって、
前記離脱速度係数記憶部から前記離脱速度係数を示す情報を読み出し、前記総分子数記憶部から総分子数を示す情報を読み出し、前記読み出された離脱速度係数と前記読み出された総分子数とに基づいて、溶液中に存在する単鎖核酸の分子数を請求項11に記載の単鎖核酸分子数推定方法により前記単鎖核酸の種類毎に推定させる単鎖核酸分子数取得手順と、
前記推定された単鎖核酸の分子数と、自装置の外部から入力された該単鎖核酸の既知の分子数との差異を前記単鎖核酸の種類毎に算出する単鎖核酸差異算出手順と、
該単鎖核酸の種類毎の前記差異に基づき、前記核酸断片の総分子数の推定結果が収束したか否かを判定する総分子数収束判定手順と、
前記総分子数収束判定手順が収束していないと判定した場合、前記離脱速度係数記憶部から前記各離脱速度係数を示す情報を読み出し、該読み出された各離脱速度係数と、第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の前記差異とに基づき、前記第1の単鎖核酸を少なくとも1つ有する核酸断片の総分子数を前記単鎖核酸の種類毎に補正し、該補正した総分子数を示す情報で、前記総分子数記憶部に記憶されている総分子数を示す情報を更新する総分子数補正手順と、
を有し、
前記単鎖核酸分子数取得手順は、前記総分子数記憶部から前記総分子数補正手順により更新された総分子数を示す情報を読み出し、該読み出した総分子数に基づき、前記単鎖核酸の分子数を前記単鎖核酸分子数推定装置に前記単鎖核酸の種類毎に推定させることを特徴とする総分子数推定方法。
Information indicating a separation rate coefficient, which is a rate at which a single-stranded nucleic acid is separated from a double-stranded nucleic acid, is stored for each type of the double-stranded nucleic acid, the number of molecules of the single-stranded nucleic acid, The nucleic acid that is the sum of the number of molecules of a single-stranded nucleic acid that can be combined with a single-stranded nucleic acid to form a double-stranded nucleic acid and the number of molecules of a double-stranded nucleic acid in which the single-stranded nucleic acid and the single-stranded nucleic acid are combined A total molecular number estimation method that is executed by a total molecular number estimation device including a total molecular number storage unit in which information indicating the total number of molecules is stored for each type of single-stranded nucleic acid,
The information indicating the separation rate coefficient is read from the separation rate coefficient storage unit, the information indicating the total number of molecules is read from the total molecule number storage unit, the read separation rate coefficient and the total number of molecules read out Based on the above, a single-stranded nucleic acid molecule number obtaining procedure for estimating the number of single-stranded nucleic acid molecules present in a solution for each kind of single-stranded nucleic acid by the single-stranded nucleic acid molecule number estimating method according to claim 11;
A single-stranded nucleic acid difference calculation procedure for calculating, for each type of single-stranded nucleic acid, a difference between the estimated number of molecules of the single-stranded nucleic acid and the known number of molecules of the single-stranded nucleic acid input from the outside of the device; ,
Based on the difference for each type of the single-stranded nucleic acid, a total molecular number convergence determination procedure for determining whether or not the estimation result of the total number of molecules of the nucleic acid fragment has converged,
When it is determined that the total number-of-molecules convergence determination procedure has not converged, information indicating each of the separation speed coefficients is read from the separation speed coefficient storage unit, and each of the read separation speed coefficients and the first unit Based on the difference of the second single-stranded nucleic acid that can form a double-stranded nucleic acid by binding to a strand nucleic acid, the total number of nucleic acid fragments having at least one first single-stranded nucleic acid is calculated as the single-stranded nucleic acid. And a total molecule number correction procedure for updating the information indicating the total number of molecules stored in the total molecule number storage unit with information indicating the corrected total number of molecules.
Have
The single-stranded nucleic acid molecule number acquisition procedure reads information indicating the total number of molecules updated by the total molecular number correction procedure from the total molecular number storage unit, and based on the read total number of molecules, A method for estimating the total number of molecules, comprising causing the single-stranded nucleic acid molecule number estimating apparatus to estimate the number of molecules for each type of the single-stranded nucleic acid.
離脱速度係数算出装置が実行する離脱速度係数算出方法であって、
二重鎖核酸から単鎖核酸が離脱する速度である離脱速度係数のそれぞれと、各単鎖核酸の既知の分子数とに基づき、核酸断片の分子数を単鎖核酸の種類毎に推定する請求項12に記載の総分子数推定方法と、
前記離脱速度係数のそれぞれと、前記推定された各核酸断片の分子数とに基づき、単鎖核酸の分子数を単鎖核酸の種類毎に推定する請求項11に記載の単鎖核酸分子数推定方法と、
前記推定された各単鎖核酸の分子数に基づき、前記離脱速度係数を前記二重鎖核酸の種類毎に算出する制御手順と、
を有することを特徴とする離脱速度係数算出方法。
A separation speed coefficient calculation method executed by the separation speed coefficient calculation device,
A request to estimate the number of molecules of a nucleic acid fragment for each type of single-stranded nucleic acid based on each of the separation rate coefficients, which are the rates at which single-stranded nucleic acids are released from double-stranded nucleic acids, and the known number of molecules of each single-stranded nucleic acid Item 12. The total molecular number estimation method according to Item 12,
12. The number of single-stranded nucleic acid molecules according to claim 11, wherein the number of molecules of single-stranded nucleic acid is estimated for each type of single-stranded nucleic acid based on each of the separation rate coefficients and the estimated number of molecules of each nucleic acid fragment. Method and
Based on the estimated number of molecules of each single-stranded nucleic acid, a control procedure for calculating the separation rate coefficient for each type of the double-stranded nucleic acid,
A method of calculating a separation speed coefficient, comprising:
単鎖核酸分子数推定装置であるコンピュータに、
第1の単鎖核酸の分子数と、該第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の分子数と、前記第1の単鎖核酸と前記第2の単鎖核酸とが結合した二重鎖核酸が離脱する速度である離脱速度係数と、に基づき、前記第1の単鎖核酸と前記第2の単鎖核酸とが結合した二重鎖核酸の分子数を前記第1の単鎖核酸と前記第2の単鎖核酸との組み合わせ毎に更新する二重鎖核酸分子数更新ステップと、
前記二重鎖核酸分子数更新ステップにより更新された各二重鎖核酸の分子数と、前記単鎖核酸分子推定装置の外部より与えられた核酸断片の総分子数と、に基づいて、前記単鎖核酸の分子数を前記単鎖核酸の種類毎に更新する単鎖核酸分子数更新ステップと、
前記単鎖核酸分子数更新ステップにより更新される前の単鎖核酸の分子数と、
前記単鎖核酸分子数更新ステップにより更新された後の単鎖核酸の分子数との差異を前記単鎖核酸の種類毎に算出し、前記各差異に基づき、各単鎖核酸の分子数の推定結果が収束したか否かを判定する単鎖核酸収束判定ステップと、
を実行させるための単鎖核酸分子数推定プログラム。
In a computer that is an apparatus for estimating the number of single-stranded nucleic acid molecules,
The number of molecules of the first single-stranded nucleic acid, the number of molecules of the second single-stranded nucleic acid that can bind to the first single-stranded nucleic acid to form a double-stranded nucleic acid, the first single-stranded nucleic acid, and the A double strand in which the first single-stranded nucleic acid and the second single-stranded nucleic acid are bound to each other based on a separation rate coefficient that is a rate at which the double-stranded nucleic acid bound to the second single-stranded nucleic acid is detached. A double-stranded nucleic acid molecule number updating step of updating the number of molecules of nucleic acid for each combination of the first single-stranded nucleic acid and the second single-stranded nucleic acid;
Based on the number of molecules of each double-stranded nucleic acid updated in the double-stranded nucleic acid molecule number updating step and the total number of molecules of nucleic acid fragments given from the outside of the single-stranded nucleic acid molecule estimation device, Updating the number of single-stranded nucleic acid molecules for each type of single-stranded nucleic acid;
The number of single-stranded nucleic acid molecules before being updated by the single-stranded nucleic acid molecule number updating step;
The difference from the number of molecules of the single-stranded nucleic acid after being updated by the single-stranded nucleic acid molecule number updating step is calculated for each type of the single-stranded nucleic acid, and the number of molecules of each single-stranded nucleic acid is estimated based on each difference. A single-stranded nucleic acid convergence determination step for determining whether the result has converged, and
A program for estimating the number of single-stranded nucleic acid molecules.
二重鎖核酸から単鎖核酸が離脱する速度である離脱速度係数を示す情報が前記二重鎖核酸の種類毎に記憶されている離脱速度係数記憶部と、単鎖核酸の分子数と、該単鎖核酸と結合して二重鎖核酸を形成し得る単鎖核酸の分子数と、前記単鎖核酸と前記の単鎖核酸とが結合した二重鎖核酸の分子数の和である該核酸の総分子数を示す情報が単鎖核酸の種類毎に記憶されている総分子数記憶部と、を備える総分子数推定装置としてのコンピュータに、
前記離脱速度係数記憶部から前記離脱速度係数を示す情報を読み出し、前記総分子数記憶部から総分子数を示す情報を読み出し、前記読み出された離脱速度係数と前記読み出された総分子数とに基づいて、溶液中に存在する単鎖核酸の分子数を請求項14に記載の単鎖核酸分子数推定プログラムにより前記単鎖核酸の種類毎に推定させる単鎖核酸分子数取得ステップと、
前記推定された単鎖核酸の分子数と、自装置の外部から入力された該単鎖核酸の既知の分子数との差異を前記単鎖核酸の種類毎に算出する単鎖核酸差異算出ステップと、
該単鎖核酸の種類毎の前記差異に基づき、前記核酸断片の総分子数の推定結果が収束したか否かを判定する総分子数収束判定ステップと、
前記総分子数収束判定ステップが収束していないと判定した場合、前記離脱速度係数記憶部から前記各離脱速度係数を示す情報を読み出し、該読み出された各離脱速度係数と、第1の単鎖核酸と結合して二重鎖核酸を形成し得る第2の単鎖核酸の前記差異とに基づき、前記第1の単鎖核酸を少なくとも1つ有する核酸断片の総分子数を前記単鎖核酸の種類毎に補正し、該補正した総分子数を示す情報で、前記総分子数記憶部に記憶されている総分子数を示す情報を更新する総分子数補正ステップと、
を実行させるための総分子数推定プログラムであって、
前記単鎖核酸分子数取得ステップは、前記総分子数記憶部から前記総分子数補正手順により更新された総分子数を示す情報を読み出し、該読み出した総分子数に基づき、前記単鎖核酸の分子数を前記単鎖核酸分子数推定装置に前記単鎖核酸の種類毎に推定させることを特徴とする総分子数推定プログラム。
Information indicating a separation rate coefficient, which is a rate at which a single-stranded nucleic acid is separated from a double-stranded nucleic acid, is stored for each type of the double-stranded nucleic acid, the number of molecules of the single-stranded nucleic acid, The nucleic acid that is the sum of the number of molecules of a single-stranded nucleic acid that can be combined with a single-stranded nucleic acid to form a double-stranded nucleic acid and the number of molecules of a double-stranded nucleic acid in which the single-stranded nucleic acid and the single-stranded nucleic acid are combined A computer as a total molecular number estimation device comprising a total molecular number storage unit storing information indicating the total number of molecules for each type of single-stranded nucleic acid,
The information indicating the separation rate coefficient is read from the separation rate coefficient storage unit, the information indicating the total number of molecules is read from the total molecule number storage unit, the read separation rate coefficient and the total number of molecules read out A single-stranded nucleic acid molecule number obtaining step for estimating the number of single-stranded nucleic acid molecules present in the solution for each type of single-stranded nucleic acid by the single-stranded nucleic acid molecule number estimation program according to claim 14,
A single-stranded nucleic acid difference calculating step for calculating, for each type of single-stranded nucleic acid, a difference between the estimated number of molecules of the single-stranded nucleic acid and the known number of molecules of the single-stranded nucleic acid input from the outside of the device; ,
Based on the difference for each type of the single-stranded nucleic acid, a total molecular number convergence determination step for determining whether or not the estimation result of the total number of molecules of the nucleic acid fragment has converged;
When it is determined that the total molecular number convergence determination step has not converged, information indicating each of the separation speed coefficients is read from the separation speed coefficient storage unit, and each of the read separation speed coefficients and the first unit Based on the difference of the second single-stranded nucleic acid that can form a double-stranded nucleic acid by binding to a strand nucleic acid, the total number of nucleic acid fragments having at least one first single-stranded nucleic acid is calculated as the single-stranded nucleic acid. A total molecule number correction step for updating the information indicating the total number of molecules stored in the total molecule number storage unit with information indicating the corrected total number of molecules,
A total molecular number estimation program for executing
The single-stranded nucleic acid molecule number acquisition step reads information indicating the total number of molecules updated by the total number-of-molecules correction procedure from the total number-of-molecules storage unit, and based on the read total number of molecules, A program for estimating the total number of molecules, which causes the single-stranded nucleic acid molecule number estimation apparatus to estimate the number of molecules for each type of single-stranded nucleic acid.
離脱速度係数算出装置としてのコンピュータに、
二重鎖核酸から単鎖核酸が離脱する速度である離脱速度係数のそれぞれと、各単鎖核酸の既知の分子数とに基づき、核酸断片の分子数を単鎖核酸の種類毎に推定する請求項15に記載の総分子数推定プログラムと、
前記離脱速度係数のそれぞれと、前記推定された各核酸断片の分子数とに基づき、単鎖核酸の分子数を単鎖核酸の種類毎に推定する請求項14に記載の単鎖核酸分子数推定プログラムと、
前記推定された各単鎖核酸の分子数に基づき、前記離脱速度係数を前記二重鎖核酸の種類毎に算出する制御ステップと、
を実行させるための離脱速度係数算出プログラム。
In the computer as the separation speed coefficient calculation device,
A request to estimate the number of molecules of a nucleic acid fragment for each type of single-stranded nucleic acid based on each of the separation rate coefficients, which are the rates at which single-stranded nucleic acids are released from double-stranded nucleic acids, and the known number of molecules of each single-stranded nucleic acid Item 15. The total molecular number estimation program according to Item 15,
The number of single-stranded nucleic acid molecules according to claim 14, wherein the number of single-stranded nucleic acids is estimated for each type of single-stranded nucleic acid based on each of the separation rate coefficients and the estimated number of molecules of each nucleic acid fragment. Program and
Based on the estimated number of molecules of each single-stranded nucleic acid, a control step for calculating the separation rate coefficient for each type of the double-stranded nucleic acid,
Detachment speed coefficient calculation program for executing
JP2010294175A 2010-12-28 2010-12-28 Method and apparatus for correcting gene data in competitive hybridization Active JP5177712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010294175A JP5177712B2 (en) 2010-12-28 2010-12-28 Method and apparatus for correcting gene data in competitive hybridization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010294175A JP5177712B2 (en) 2010-12-28 2010-12-28 Method and apparatus for correcting gene data in competitive hybridization

Publications (2)

Publication Number Publication Date
JP2012139168A JP2012139168A (en) 2012-07-26
JP5177712B2 true JP5177712B2 (en) 2013-04-10

Family

ID=46676117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010294175A Active JP5177712B2 (en) 2010-12-28 2010-12-28 Method and apparatus for correcting gene data in competitive hybridization

Country Status (1)

Country Link
JP (1) JP5177712B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003207611B2 (en) * 2002-01-18 2008-05-08 Syngenta Participations Ag Probe correction for gene expression level detection
JP4250554B2 (en) * 2003-04-02 2009-04-08 キヤノン株式会社 DNA probe design apparatus and information processing method for DNA probe design
JP2006236011A (en) * 2005-02-24 2006-09-07 Tomokazu Konishi Information processing method and device for transcriptome
JP2006302064A (en) * 2005-04-22 2006-11-02 Sony Corp Biological information processing apparatus and method, program, recording medium, and dna chip

Also Published As

Publication number Publication date
JP2012139168A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
Giraldez et al. Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling
Bushmanova et al. rnaQUAST: a quality assessment tool for de novo transcriptome assemblies
Maretty et al. Bayesian transcriptome assembly
Tilgner et al. Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events
Horner et al. Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing
Ozsolak et al. RNA sequencing: advances, challenges and opportunities
Hu et al. OSA: a fast and accurate alignment tool for RNA-Seq
Li et al. Transcriptome assembly and isoform expression level estimation from biased RNA-Seq reads
CN103930569B (en) Genome sequence alignment apparatus and method
Lin et al. AGORA: assembly guided by optical restriction alignment
JP7357023B2 (en) Method and system for generating non-coding-coding gene co-expression networks
JPWO2006004182A1 (en) Sequence prediction system
Ghafari et al. Inferring transmission bottleneck size from viral sequence data using a novel haplotype reconstruction method
KR20190082854A (en) How to Sequence Data Read Rearrangement
Tárraga et al. Acceleration of short and long DNA read mapping without loss of accuracy using suffix array
Soldatov et al. RNASurface: fast and accurate detection of locally optimal potentially structured RNA segments
JP2015519662A (en) Systems and methods for generating and using optimized nucleotide flow sequences
Mirauta et al. Parseq: reconstruction of microbial transcription landscape from RNA-Seq read counts using state-space models
WO2017079398A1 (en) A system and method for compensating noise in sequence data for improved accuracy and sensitivity of dna testing
Dawson et al. A method for finding optimal RNA secondary structures using a new entropy model (vsfold)
US20150142328A1 (en) Calculation method for interchromosomal translocation position
JP5177712B2 (en) Method and apparatus for correcting gene data in competitive hybridization
JP6423426B2 (en) Transcript determination method
Hamada Fighting against uncertainty: an essential issue in bioinformatics
Kato et al. An accessibility-incorporated method for accurate prediction of RNA–RNA interactions from sequence data

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5177712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250