JP5177640B2 - Coil parts - Google Patents

Coil parts Download PDF

Info

Publication number
JP5177640B2
JP5177640B2 JP2008023910A JP2008023910A JP5177640B2 JP 5177640 B2 JP5177640 B2 JP 5177640B2 JP 2008023910 A JP2008023910 A JP 2008023910A JP 2008023910 A JP2008023910 A JP 2008023910A JP 5177640 B2 JP5177640 B2 JP 5177640B2
Authority
JP
Japan
Prior art keywords
coil
hexagonal ferrite
permeability
winding axis
ghz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008023910A
Other languages
Japanese (ja)
Other versions
JP2009188027A (en
Inventor
智紹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008023910A priority Critical patent/JP5177640B2/en
Publication of JP2009188027A publication Critical patent/JP2009188027A/en
Application granted granted Critical
Publication of JP5177640B2 publication Critical patent/JP5177640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コイルを備えたコイル部品に係るもので、例えば数百MHzから数GHzの高周波帯域において使用されるコイル部品に関する。   The present invention relates to a coil component including a coil, and relates to a coil component used in a high frequency band of several hundred MHz to several GHz, for example.

近年、携帯電話や無線LAN、パソコンなどの信号の高周波化に伴い、装置内部で使用される素子もまた高周波で使用可能なものが要求されている。このような要求に対し、電子部品に用いられる磁性材料として、高い周波数まで透磁率を維持することが可能な六方晶フェライトが検討されている。また、六方晶フェライトは磁化容易面を有する磁気異方性を有するため、成形時に磁場配向処理を施すことでバルク状態にて特定方向に更に高い透磁率を発現させることが可能である。例えば特許文献1には配向処理を行うことでZ型フェライトの透磁率が向上する旨の記述がある。   In recent years, with the increase in the frequency of signals from mobile phones, wireless LANs, personal computers, etc., elements used inside the apparatus are also required to be usable at high frequencies. In response to such demands, hexagonal ferrite capable of maintaining magnetic permeability up to a high frequency has been studied as a magnetic material used for electronic components. In addition, since hexagonal ferrite has magnetic anisotropy having an easily magnetized surface, it is possible to develop a higher magnetic permeability in a specific direction in a bulk state by performing a magnetic field orientation process during molding. For example, Patent Document 1 describes that the magnetic permeability of Z-type ferrite is improved by performing the orientation treatment.

特公昭35−11280号公報Japanese Patent Publication No. 35-11280

しかしながら、特許文献1に記載されたZ型フェライトでは、高い透磁率は得られるものの、透磁率を高い周波数まで維持することが出来ない。すなわち、高周波まで使用可能とされているZ型フェライト等の六方晶フェライトであっても、透磁率の周波数依存性を改善することは困難であり、さらに高い周波数まで高インダクタンスを必要とするような素子には適用することができなかった。よって、本発明はこの点を解決することを目的とする。   However, with the Z-type ferrite described in Patent Document 1, although high magnetic permeability can be obtained, the magnetic permeability cannot be maintained up to a high frequency. That is, even with hexagonal ferrite such as Z-type ferrite that can be used up to a high frequency, it is difficult to improve the frequency dependency of the permeability, and a high inductance is required up to a higher frequency. It could not be applied to the device. Therefore, an object of the present invention is to solve this point.

本発明のコイル部品は、磁化容易面を有する六方晶フェライト及び前記六方晶フェライト内部に磁束を発生させるコイルを備え、前記六方晶フェライトは平板状をなし、平板の厚さ方向が前記コイルの巻回軸方向に垂直な方向になるように配置され、かつ前記六方晶フェライト全体が前記コイルの巻回軸方向から見て前記コイルの内側に配置され、前記六方晶フェライトは焼結体または単結晶であり、その磁化容易面が前記巻回軸に平行な状態が優勢な異方性を有することを特徴とする。かかる構成によって、六方晶フェライトの透磁率が減衰する周波数は、通常の六方晶フェライトに比べて高周波側に移り、より高い周波数まで使用可能なコイル部品を提供することができる。磁化容易面が前記巻回軸に平行な状態が優勢な異方性を有するとは、六方晶フェライトが多結晶である場合であれば、ランダムな状態に比べて、磁界容易面であるc面(c軸に垂直な面)がコイルの巻回軸に平行になるように配向した結晶粒が多い状態をいう。一方、六方晶フェライトが単結晶であれば、そのc面が前記巻回軸に平行になるように配置されている状態である。 The coil component of the present invention includes a hexagonal ferrite having an easy magnetization surface and a coil for generating a magnetic flux inside the hexagonal ferrite, and the hexagonal ferrite has a flat plate shape, and the thickness direction of the flat plate is the winding of the coil. The hexagonal ferrite is disposed inside the coil when viewed from the direction of the winding axis of the coil, and the hexagonal ferrite is a sintered body or a single crystal. The easy magnetization surface is parallel to the winding axis and has a dominant anisotropy. With this configuration, the frequency at which the permeability of the hexagonal ferrite is attenuated shifts to the high frequency side as compared with the normal hexagonal ferrite, and a coil component that can be used up to a higher frequency can be provided. The fact that the state where the easy magnetization surface is parallel to the winding axis has a dominant anisotropy means that the c-plane which is a magnetic field easy surface compared to the random state if the hexagonal ferrite is polycrystalline. A state in which there are many crystal grains oriented so that (a plane perpendicular to the c-axis) is parallel to the winding axis of the coil. On the other hand, if the hexagonal ferrite is a single crystal, the c-plane is arranged so as to be parallel to the winding axis.

更に前記コイル部品において、前記六方晶フェライトの透磁率の周波数依存性において、透磁率の虚数部が最大となる周波数をfr(GHz)、前記frを10で除した周波数における透磁率実数部をμ’lfとしたとき、fr・(μ’lf−1)が40GHz以上であることが好ましい。六方晶フェライトも含め、フェライトの場合、一般に透磁率の大きさとその周波数限界とはトレードオフの関係にあるため、高透磁率・高周波化の指標となるfrとμ’lf−1の積fr・(μ’lf−1)を高めることは困難である。従来の概念では想定されなかったfr・(μ’lf−1)が40GHz以上の前記構成とすることで、従来にない高周波特性を有するコイル部品を提供することができる。 Further, in the coil component, in the frequency dependence of the permeability of the hexagonal ferrite, the frequency at which the imaginary part of the permeability is maximized is fr (GHz), and the real part of the permeability at the frequency obtained by dividing the fr by 10 is μ. When “ lf” , fr · (μ ′ lf −1) is preferably 40 GHz or more. In the case of ferrite including hexagonal ferrite, in general, the magnitude of magnetic permeability and its frequency limit are in a trade-off relationship, so the product fr · μ ′ lf −1, which is an index of high permeability and high frequency, is obtained. It is difficult to increase (μ ′ lf −1). By adopting the above-described configuration in which fr · (μ ′ lf −1), which is not assumed in the conventional concept, is 40 GHz or more, a coil component having unprecedented high frequency characteristics can be provided.

更に前記コイル部品において、前記六方晶フェライトがZ型フェライトであり、前記frが3GHz以上であることが好ましい。前記構成によれば、従来の概念では想定されなかった高周波まで高透磁率を利用したコイル部品を提供することができる。 Furthermore, in the coil component, it is preferable that the hexagonal ferrite is Z-type ferrite and the fr is 3 GHz or more. According to the said structure, the coil component using high magnetic permeability to the high frequency which was not assumed by the conventional concept can be provided.

更に前記コイル部品において、前記六方晶フェライトは、前記巻回軸に対応する方向に印加された静磁界によってもたらされるような異方性を有することが好ましい。かかる構成によれば、透磁率を高周波まで維持する効果が特に大きくなる。   Furthermore, in the coil component, it is preferable that the hexagonal ferrite has anisotropy caused by a static magnetic field applied in a direction corresponding to the winding axis. According to such a configuration, the effect of maintaining the magnetic permeability up to a high frequency is particularly great.

更に前記コイル部品において、前記コイルを流れる信号の周波数が1GHz以上であることが好ましい。本発明に係るコイル部品においては、六方晶フェライトは高い周波数帯まで高透磁率を維持するため、コイルを流れる信号の周波数が1GHz以上である用途に好適である。   Furthermore, in the coil component, it is preferable that a frequency of a signal flowing through the coil is 1 GHz or more. In the coil component according to the present invention, hexagonal ferrite maintains high permeability up to a high frequency band, and therefore is suitable for applications in which the frequency of a signal flowing through the coil is 1 GHz or more.

本発明によれば、透磁率の周波数依存性を改善し、さらに高い周波数まで高インダクタンスを必要とするような用途に好適なコイル部品を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the coil component suitable for the use which improves the frequency dependence of magnetic permeability and requires a high inductance to a still higher frequency can be provided.

以下、本発明の実施形態を図面を参照しつつ具体的に説明するが、本発明はこれらの実施形態によって限定されるものではない。図1(a)はコイル部品の外観の斜視図であり、図1(b)は、かかるコイル部品を図1(a)のコイルの巻回軸方向(図1(a)の矢印の方向)から見た図である。図1に示したコイル部品は、磁化容易面を有する平板状の六方晶フェライト1と、六方晶フェライト1の内部に磁束を発生させるように、巻回軸が矢印の直線方向となるように巻回されたコイル2を備える。さらに磁気回路を構成する六方晶フェライト1の全体がコイル2の巻回軸方向から見てコイル2の内側に配置されている。この場合、六方晶フェライトは開磁路を構成することになる。磁化容易面を有する六方晶フェライトは、100MHzから10GHzまでの周波数範囲で特に優れた特性を示すソフトフェライトであり、例えばZ型フェライト、Y型フェライト、W型フェライトである。このうちZ型フェライトは透磁率の絶対値が高く、高インダクタンスを得るうえで好適である。また、六方晶フェライトはZ型フェライト等の単相の他、これらの混相、さらに異相を含むものでよい。六方晶フェライトは、多結晶、単結晶を問わず、また、焼結体、薄膜などの形態も問わないが、十分なインダクタンスを確保する観点からは焼結体または単結晶が好ましく、量産性の観点からは多結晶である焼結体がより好ましい。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. However, the present invention is not limited to these embodiments. FIG. 1A is a perspective view of the appearance of a coil component, and FIG. 1B shows the coil component in the direction of the winding axis of the coil in FIG. 1A (the direction of the arrow in FIG. 1A). It is the figure seen from. The coil component shown in FIG. 1 has a flat hexagonal ferrite 1 having an easy magnetization surface and a winding axis so that the winding axis is in the linear direction of the arrow so that a magnetic flux is generated inside the hexagonal ferrite 1. A rotated coil 2 is provided. Further, the entire hexagonal ferrite 1 constituting the magnetic circuit is disposed inside the coil 2 when viewed from the winding axis direction of the coil 2. In this case, the hexagonal ferrite constitutes an open magnetic circuit. The hexagonal ferrite having an easy magnetization surface is a soft ferrite exhibiting particularly excellent characteristics in a frequency range from 100 MHz to 10 GHz, such as Z-type ferrite, Y-type ferrite, and W-type ferrite. Among these, Z-type ferrite has a high absolute value of magnetic permeability and is suitable for obtaining high inductance. Further, the hexagonal ferrite may include a single phase such as Z-type ferrite, a mixed phase thereof, and further a different phase. The hexagonal ferrite is not limited to a polycrystal or a single crystal, and may be in any form such as a sintered body or a thin film. However, from the viewpoint of securing sufficient inductance, a sintered body or a single crystal is preferable, and mass production is possible. From the viewpoint, a sintered body that is polycrystalline is more preferable.

本発明において、六方晶フェライトは、磁化容易面であるc面がコイルの巻回軸に平行な状態が優勢な異方性を有する。上述のように、磁化容易面がコイルの巻回軸に平行な状態が優勢な異方性を有するとは、六方晶フェライトが多結晶である場合であれば、ランダムな状態に比べて、c面がコイルの巻回軸に平行になるように配向した結晶粒が多い状態をいう。かかる配向状態は、例えば、六方晶フェライト焼結体の成形工程において、磁界を印加して配向して得られた焼結体を用いて実現することができる。六方晶フェライト粉の成形の際に、一方向の静磁界を印加すれば、結晶粒のc面が磁界印加方向に平行になるように配向した六方晶フェライト得られる(以下、かかる処理を一方向配向ともいう)。この場合、磁化容易面を利用した配向であるため、結晶粒のc面は磁界印加方向には平行であるが、磁界印加方向に垂直な面方向には実質的にランダムに向く。図2の(a)はかかる配向を有する六方晶フェライトの配向状態を示す模式図である。結晶粒5は六角形の平板で示されていて、六角形の面がc面であり、平板状の結晶粒の側面を見た状態は線で表されている。図のY方向が静磁界の磁界印加方向であり、Y方向に垂直な方向では結晶粒5のc面がランダムに向いている。磁界印加方向であるY方向を図中の矢印で表されているコイルの巻回軸方向とすれば、六方晶フェライトが磁化容易面であるc面がコイルの巻回軸に平行な状態が優勢な異方性を有する構成が得られる。また、成形の際に、回転磁界を印加すれば、結晶粒のc面が磁界印加方向(磁界印加面)に平行になるように配向した六方晶フェライト得られる(以下、かかる処理を面配向ともいう)。図2の(b)はかかる配向を有する六方晶フェライトの配向状態を示す模式図である。図のY−Z面方向が回転磁界の磁界印加方向であり、Y−Z面方向に結晶粒5のc面が平行になるように配向している。磁界印加方向であるY−Z面方向を図中の矢印で表されているコイルの巻回軸方向とすれば、六方晶フェライトが磁化容易面であるc面がコイルの巻回軸に平行な状態が優勢な異方性を有する構成が得られる。   In the present invention, the hexagonal ferrite has anisotropy that is dominant when the c-plane, which is the easy magnetization plane, is parallel to the winding axis of the coil. As described above, the state in which the easy magnetization surface is parallel to the winding axis of the coil has a dominant anisotropy is that when the hexagonal ferrite is polycrystalline, c is larger than the random state. A state where there are many crystal grains oriented so that the plane is parallel to the winding axis of the coil. Such an orientation state can be realized, for example, by using a sintered body obtained by applying a magnetic field and orienting in a forming process of a hexagonal ferrite sintered body. When a hexagonal ferrite powder is formed, if a unidirectional static magnetic field is applied, a hexagonal ferrite oriented so that the c-plane of the crystal grains is parallel to the magnetic field application direction can be obtained (hereinafter, this treatment is unidirectional). Also called orientation). In this case, since the orientation is based on the easy magnetization plane, the c-plane of the crystal grains is parallel to the magnetic field application direction, but is substantially random in the plane direction perpendicular to the magnetic field application direction. FIG. 2A is a schematic diagram showing the orientation state of hexagonal ferrite having such an orientation. The crystal grains 5 are shown as hexagonal flat plates, the hexagonal plane is the c plane, and the state of the side faces of the flat crystal grains is represented by lines. The Y direction in the figure is the magnetic field application direction of the static magnetic field, and the c-plane of the crystal grain 5 is randomly oriented in the direction perpendicular to the Y direction. If the Y direction, which is the magnetic field application direction, is the coil winding axis direction indicated by the arrow in the figure, the c-plane, which is the easy magnetization plane of hexagonal ferrite, is predominantly parallel to the coil winding axis. A structure having anisotropy is obtained. Further, when a rotating magnetic field is applied during forming, a hexagonal ferrite oriented so that the c-plane of the crystal grains is parallel to the magnetic field application direction (magnetic field application surface) can be obtained (hereinafter, this treatment is also referred to as plane orientation). Say). FIG. 2B is a schematic diagram showing the orientation state of hexagonal ferrite having such an orientation. The YZ plane direction in the figure is the magnetic field application direction of the rotating magnetic field, and the crystal grains 5 are oriented so that the c-plane is parallel to the YZ plane direction. If the YZ plane direction, which is the magnetic field application direction, is the winding axis direction of the coil represented by the arrow in the figure, the c-plane on which the hexagonal ferrite is easy to magnetize is parallel to the winding axis of the coil. A structure having anisotropy where the state is dominant is obtained.

これらの配向は完全である必要はなく、周囲にコイルを配置したときに、結晶粒の磁化容易面が前記巻回軸に平行な状態が優勢になっていればよい。優勢とは、c面の向きがランダムな状態、すなわち等方性である場合に比べて、c面が配向している傾向が見られる状態である。一方、六方晶フェライトが単結晶であれば、そのc面が前記巻回軸に平行になるように配置されている状態である。単結晶の場合は、六方晶フェライト全体の異方性としては、前記面配向の場合と類似の異方性を示す。結晶粒の磁化容易面が前記巻回軸に平行な状態が優勢になっているかは、X線回折によって確認できる。すなわち、コイル部品の巻回軸方向から見た面に相当する面でX線回折を行い、そのX線回折パターンにおいて、指数(00L)以外の面からのピーク(Z型フェライトやY型フェライトであれば(110))に対する、指数(00L)のピーク強度比が等方性である場合に比べて小さいことで前記状態を確認する。等方性である場合のX線回折パターンは、例えば前記X線回折を行った六方晶フェライトを粉末にしてX線回折を行って得ればよい。   These orientations do not need to be perfect, and it is only necessary that the state in which the easy magnetization surface of the crystal grains is parallel to the winding axis is dominant when a coil is disposed around the orientation. “Predominance” is a state in which the orientation of the c-plane is random, that is, a state in which the tendency of the c-plane to be oriented is seen compared to the case where it is isotropic. On the other hand, if the hexagonal ferrite is a single crystal, the c-plane is arranged so as to be parallel to the winding axis. In the case of a single crystal, the anisotropy of the hexagonal ferrite as a whole is similar to that of the plane orientation. It can be confirmed by X-ray diffraction whether the state in which the easy magnetization surface of the crystal grain is parallel to the winding axis is dominant. That is, X-ray diffraction is performed on the surface corresponding to the surface viewed from the winding axis direction of the coil component, and in the X-ray diffraction pattern, a peak from a surface other than the index (00L) (Z-type ferrite or Y-type ferrite). If present, the state is confirmed by the fact that the peak intensity ratio of the index (00L) to (110)) is smaller than that of isotropic. The isotropic X-ray diffraction pattern may be obtained, for example, by performing X-ray diffraction using the hexagonal ferrite subjected to the X-ray diffraction as a powder.

磁化容易面を有する六方晶フェライトでは磁化容易面であるc面方向の透磁率が高くなるため、磁化容易面が前記巻回軸に平行な状態が優勢な異方性を有するとは、閉磁路で測定した材料固有の透磁率において、異方性を有するともいえる。この場合、焼結体であれば、成形時に磁界を印加した方向、すなわちコイルの巻回軸に平行な方向の透磁率が高くなる。   In the hexagonal ferrite having an easy magnetization surface, the permeability in the c-plane direction, which is the easy magnetization surface, is high. Therefore, the state in which the easy magnetization surface is parallel to the winding axis has a dominant anisotropy. It can be said that it has anisotropy in the magnetic permeability intrinsic to the material measured in (1). In this case, in the case of a sintered body, the magnetic permeability in the direction in which a magnetic field is applied during molding, that is, the direction parallel to the winding axis of the coil is increased.

六方晶フェライト1の全体がコイル2の巻回軸方向から見てコイル2の内側に配置され、六方晶フェライトが、その磁化容易面がコイル2の巻回軸に平行な状態が優勢な異方性を有する構成を採用することで、透磁率の周波数特性が格段に向上し、透磁率が大幅に高周波側まで維持される。かかる周波数特性向上の効果は、上記異方性を有する材料を用い、六方晶フェライトの高透磁率方向でもある磁化容易面の配向方向をコイル巻回軸方向に向けて用いることによって顕著になる。逆に、磁化容易面の配向方向(磁界印加方向)に主直な、低透磁率方向をコイル巻回軸方向に向けて用いると、かかる効果は発現しない。また、同様の配向状態を持った六方晶フェライトを用いても、図3にように、それが閉磁路を構成するリング形状であると前記効果は発現しない。図3(a)はコイル部品の外観の斜視図であり、図3(b)は図3(a)のコイルの巻回軸方向(図3(a)の矢印の方向)から見た図である。なお、図3(b)における点線はコイル部分での六方晶フェライトの側面の位置を便宜的に表したものである。図3の場合、六方晶フェライト3は、コイル4の巻回軸方向から見てコイル4からはみ出している状態である。さらに、リング形状にギャップを設けた構成のような開磁路であっても、六方晶フェライトの全体がコイルの巻回軸方向から見てコイルの内側に配置される構成が発揮するような効果は発現しない。   The entire hexagonal ferrite 1 is arranged inside the coil 2 when viewed from the winding axis direction of the coil 2, and the hexagonal ferrite is anisotropic in which the easy magnetization surface is parallel to the winding axis of the coil 2. By adopting the configuration having the property, the frequency characteristic of the magnetic permeability is remarkably improved, and the magnetic permeability is significantly maintained up to the high frequency side. The effect of improving the frequency characteristics becomes remarkable by using the material having the above anisotropy and using the orientation direction of the easy magnetization surface, which is also the high permeability direction of the hexagonal ferrite, in the direction of the coil winding axis. On the contrary, when the low magnetic permeability direction, which is straight in the orientation direction (magnetic field application direction) of the easy magnetization surface, is used in the direction of the coil winding axis, such an effect does not appear. Further, even if hexagonal ferrite having the same orientation state is used, the effect is not manifested if the ring shape forms a closed magnetic circuit as shown in FIG. 3A is a perspective view of the appearance of the coil component, and FIG. 3B is a view as seen from the winding axis direction of the coil in FIG. 3A (the direction of the arrow in FIG. 3A). is there. In addition, the dotted line in FIG.3 (b) represents the position of the side surface of the hexagonal ferrite in a coil part for convenience. In the case of FIG. 3, the hexagonal ferrite 3 is in a state of protruding from the coil 4 when viewed from the winding axis direction of the coil 4. Furthermore, even in an open magnetic path such as a configuration in which a gap is provided in the ring shape, an effect that the configuration in which the entire hexagonal ferrite is arranged inside the coil when viewed from the coil winding axis direction is exhibited. Is not expressed.

また、コイル部品を構成する際、巻回軸に対応する方向に印加された静磁界によってもたらされるような異方性を有する六方晶フェライトを用いると、上述の透磁率の周波数特性向上の効果が顕著になる。かかる異方性は、一軸性の静磁界を印加して結晶粒を配向し、成形して得られた六方晶フェライトが持つ異方性である。かかる六方晶フェライトでは、結晶粒のc面は磁界印加方向に平行になるように配向するとともに、磁界印加方向に直交する面方向には実質的にランダムに向く。その結果、磁界印加方向の透磁率が高く、それに直交する面方向の透磁率が低くなる。かかる、巻回軸に対応する方向に印加された静磁界によってもたらされるような異方性を有する六方晶フェライトは、簡易な磁界中成形で作製できるため、生産性の観点からも好ましい形態である。   Further, when the hexagonal ferrite having anisotropy such as that caused by the static magnetic field applied in the direction corresponding to the winding axis is used when configuring the coil component, the effect of improving the frequency characteristics of the magnetic permeability described above can be obtained. Become prominent. Such anisotropy is the anisotropy of hexagonal ferrite obtained by orienting crystal grains by applying a uniaxial static magnetic field and shaping. In such hexagonal ferrite, the c-plane of crystal grains is oriented so as to be parallel to the magnetic field application direction, and is oriented substantially randomly in the plane direction perpendicular to the magnetic field application direction. As a result, the magnetic permeability in the magnetic field application direction is high, and the magnetic permeability in the plane direction perpendicular thereto is low. Such a hexagonal ferrite having anisotropy brought about by a static magnetic field applied in the direction corresponding to the winding axis is a preferable form from the viewpoint of productivity because it can be produced by simple forming in a magnetic field. .

上述のように六方晶フェライト1の全体がコイル2の巻回軸方向から見てコイル2の内側に配置され、六方晶フェライトが、その磁化容易面がコイル2の巻回軸に平行な状態が優勢な異方性を有する構成を採用することで、透磁率の周波数特性が格段に向上し、透磁率の周波数依存性において、透磁率の虚数部が最大となる周波数をfr(GHz)、前記frを10で除した周波数における透磁率実数部をμ’lfとしたとき、40GHz以上のfr・(μ’lf−1)が実現可能となる。かかる水準は従来の構成では得られない、または想定できない水準である。かかる特性を備えることによって、透磁率が低下するために適用できなかった、または透磁率は低下しないが透磁率の絶対値が低くて適用できなかった用途にコイル部品を適用することが可能となる。fr・(μ’lf−1)は、より好ましくは50GHz以上、さらに好ましくは60GHz以上である。特にfrを3GHz以上とすれば、従来の概念では想定されなかった高周波まで高透磁率を利用したコイル部品が提供可能である。例えば、従来の構成を前提とした場合では、該周波数帯域は、Z型フェライトでは透磁率が大きく減少してしまい、高インダクタンスが得られない帯域であり、本発明に係る構成は、かかる帯域で高インダクタンスを有するコイル部品を提供することが可能となる。例えば、本発明に係る構成は、コイル部品の使用帯域、特にコイルを流れる信号等の周波数が1GHz以上、さらには2GHz以上、特に3GHz以上の領域にかかる用途に好適である。なお、透磁率は初透磁率であり、比透磁率で表される。また、μ’lf−1は磁化率に相当し、fr・(μ’lf−1)はいわゆるスネーク積に相当するものである。なお、透磁率実数部は、fr近傍では周波数に対する透磁率実数部の変動が大きいため、frを10で除した周波数における値を用いている。 As described above, the entire hexagonal ferrite 1 is disposed inside the coil 2 when viewed from the winding axis direction of the coil 2, and the hexagonal ferrite has a state in which the easy magnetization surface is parallel to the winding axis of the coil 2. By adopting the configuration having the dominant anisotropy, the frequency characteristic of the permeability is remarkably improved, and the frequency at which the imaginary part of the permeability is maximum in the frequency dependence of the permeability is fr (GHz), When the real part of the magnetic permeability at a frequency obtained by dividing fr by 10 is μ ′ lf , fr · (μ ′ lf −1) of 40 GHz or more can be realized. Such a level cannot be obtained or assumed by the conventional configuration. By providing such a characteristic, it is possible to apply the coil component to an application that cannot be applied because the magnetic permeability is decreased, or that cannot be applied because the magnetic permeability is not decreased but the absolute value of the magnetic permeability is low. . fr · (μ ′ lf −1) is more preferably 50 GHz or more, and further preferably 60 GHz or more. In particular, if fr is set to 3 GHz or more, it is possible to provide a coil component using a high magnetic permeability up to a high frequency that was not assumed in the conventional concept. For example, in the case where the conventional configuration is assumed, the frequency band is a band in which the magnetic permeability of the Z-type ferrite is greatly reduced and a high inductance cannot be obtained, and the configuration according to the present invention is such a band. It is possible to provide a coil component having a high inductance. For example, the configuration according to the present invention is suitable for applications in which the use band of the coil component, in particular, the frequency of a signal or the like flowing through the coil is 1 GHz or more, further 2 GHz or more, particularly 3 GHz or more. The magnetic permeability is the initial magnetic permeability and is represented by the relative magnetic permeability. Further, μ ′ lf −1 corresponds to a magnetic susceptibility, and fr · (μ ′ lf −1) corresponds to a so-called snake product. The real part of the magnetic permeability uses a value at a frequency obtained by dividing fr by 10 because the variation of the real part of the magnetic permeability with respect to the frequency is large in the vicinity of fr.

コイル部品は、磁化容易面を有する六方晶フェライト及び前記六方晶フェライト内部に磁束を発生させるコイルを備えるものであれば、これを特に限定するものではないが、例えば、チョークコイル、インダクタ、トランス、アンテナ等である。また、コイルは六方晶フェライトに導線を直接巻回して設けても良いし、ボビンに巻回して構成してもよい。後者の場合は、該ボビンとコアとなる六方晶フェライトとを組み合わせることでコイル部品を構成する。また、六方晶フェライトの表面に印刷やスパッタ等電極パターンを形成し、該電極パターンによってコイルを構成してもよい。コイルの巻き数も特に限定するものではなく、1ターンでもよいし、複数ターンでもよい。また、六方晶フェライトの形状は、六方晶フェライト全体がコイルの巻回軸方向から見てコイルの内側に配置できる形状であればよい。例えば、直方体、円柱、平板等の形状を用いることができる。六方晶フェライトの巻回軸方向の反磁界係数も特に限定するものではないが、より高透磁率を得る観点からは、0.1以下であることが好ましい。かかる範囲とすれば、反磁界係数0のリング形状の場合の透磁率に比べて該方向の透磁率70%以上を確保することが可能である。なお、本発明では六方晶フェライトは開磁路を構成するため、反磁界係数は0超である。   The coil component is not particularly limited as long as it includes a hexagonal ferrite having an easy magnetization surface and a coil that generates a magnetic flux inside the hexagonal ferrite. For example, a choke coil, an inductor, a transformer, Such as an antenna. The coil may be provided by winding a conductive wire directly around hexagonal ferrite, or may be formed by winding it around a bobbin. In the latter case, a coil component is configured by combining the bobbin and the hexagonal ferrite that forms the core. Further, an electrode pattern such as printing or sputtering may be formed on the surface of the hexagonal ferrite, and the coil may be constituted by the electrode pattern. The number of turns of the coil is not particularly limited, and may be one turn or a plurality of turns. Further, the shape of the hexagonal ferrite may be a shape that allows the entire hexagonal ferrite to be disposed inside the coil when viewed from the winding axis direction of the coil. For example, shapes such as a rectangular parallelepiped, a cylinder, and a flat plate can be used. The demagnetizing factor in the winding axis direction of the hexagonal ferrite is not particularly limited, but is preferably 0.1 or less from the viewpoint of obtaining higher magnetic permeability. With such a range, it is possible to ensure a permeability of 70% or more in this direction as compared with the permeability in the case of a ring shape with a demagnetizing factor of 0. In the present invention, since the hexagonal ferrite forms an open magnetic circuit, the demagnetizing field coefficient is more than zero.

本発明に用いる六方晶フェライトは、ソフトフェライトの製造に適用される通常の粉末冶金的方法によって製造することができる。通常の粉末冶金的方法とは以下のとおりである。例えば素原料を湿式のボールミルにて混合し、電気炉などを用いて仮焼することにより仮焼粉を得る。また得られた仮焼粉を湿式のボールミルなどを用いて粉砕し、得られた粉砕粉をプレス機により成形し、例えば電気炉などを用いて焼成を行い、六方晶フェライト焼結体を得る。成形を磁界中で行うことによって配向した六方晶フェライトが得られる。磁界の印加方法は、上述のように一軸性の静磁界、または回転磁界などを用いればよい。また、成形は、乾粉状の粉末を用いる乾式成形で行うことも可能であるが、配向性を上げるためには、六方晶フェライト粉末を水などの媒体と混合して得られたスラリーを用いる湿式成形で行うことが好ましい。   The hexagonal ferrite used in the present invention can be produced by an ordinary powder metallurgical method applied to the production of soft ferrite. The usual powder metallurgy method is as follows. For example, raw materials are mixed in a wet ball mill and calcined using an electric furnace or the like to obtain calcined powder. Further, the obtained calcined powder is pulverized using a wet ball mill or the like, and the obtained pulverized powder is molded by a press machine and fired using, for example, an electric furnace to obtain a hexagonal ferrite sintered body. Oriented hexagonal ferrite is obtained by forming in a magnetic field. As a method for applying the magnetic field, a uniaxial static magnetic field or a rotating magnetic field may be used as described above. Molding can also be performed by dry molding using dry powder, but in order to improve the orientation, a slurry obtained by mixing hexagonal ferrite powder with a medium such as water is used. It is preferable to carry out by wet molding.

実施例1〜6および比較例3〜12は12Fe・3BaO・2CoOの割合となるよう、Fe、BaCO及びCoOを秤量し、湿式ボールミルにて16時間混合した。混合後、酸素雰囲気中1340℃で仮焼した。仮焼後の仮焼粉をボールミルにて粉砕し、湿式スラリーを作製した。作製したZ型フェライト粉を含有するスラリーを磁場中で湿式成形した。このとき面配向及び一方向配向の2種類の配向処理を行い得られた成形体を酸素雰囲気中1300℃で焼結した。以降これらの材料をそれぞれ面配向材、一方向配向材と呼ぶ。また、磁界を印加せず、無配向Z型フェライトも作製した(No13)。比較例1及び2のNi−Znフェライトは透磁率が15程度になるような組成を選びFe、NiOおよびZnOを混合、仮焼し、仮焼粉を粉砕後、造粒および成形を行い、大気中で焼結を行った。上記により得られたZ型フェライトの面配向材、Z型フェライトの一方向配向材およびNi−Znフェライトの焼結体は、5mm×5mmの正方形の板面および0.2〜0.9mmの厚さを持つ板状、又は外径6.8mm、内径3.2、厚さ1mmのリング形状へと加工した。加工を行う際、以下に述べる配向方向との方位関係が成り立つようにした。 In Examples 1 to 6 and Comparative Examples 3 to 12, Fe 2 O 3 , BaCO 3 and CoO were weighed so as to have a ratio of 12Fe 2 O 3 .3BaO.2CoO, and mixed in a wet ball mill for 16 hours. After mixing, it was calcined at 1340 ° C. in an oxygen atmosphere. The calcined powder after calcining was pulverized with a ball mill to prepare a wet slurry. The slurry containing the produced Z-type ferrite powder was wet-molded in a magnetic field. At this time, the molded body obtained by performing two kinds of orientation treatments of plane orientation and unidirectional orientation was sintered in an oxygen atmosphere at 1300 ° C. Hereinafter, these materials are referred to as a plane orientation material and a unidirectional orientation material, respectively. Further, non-oriented Z-type ferrite was also produced without applying a magnetic field (No 13). For the Ni—Zn ferrites of Comparative Examples 1 and 2, the composition was selected so that the magnetic permeability was about 15, and Fe 2 O 3 , NiO and ZnO were mixed, calcined, the calcined powder was pulverized, and granulated and molded. And sintering in the atmosphere. The Z-type ferrite plane orientation material, the Z-type ferrite unidirectional orientation material and the Ni-Zn ferrite sintered body obtained as described above have a square plate surface of 5 mm x 5 mm and a thickness of 0.2 to 0.9 mm. It was processed into a plate shape having a thickness or a ring shape having an outer diameter of 6.8 mm, an inner diameter of 3.2, and a thickness of 1 mm. When processing, the orientation relationship with the orientation direction described below was established.

面配向材は各結晶のc軸が特定方向に揃った配向状態となっており、該方向に垂直な面をc面配向面と呼ぶ。この時、リング試料はその周方向が配向面内に収まるようにリング試料を切り出した。また、面配向材から上記の板状試料を切り出す場合、板面(5mm×5mmの面)の直交する2辺に沿った方向がそれぞれc面配向面内方向およびc面配向面の垂直方向となるように切り出した。一方向配向材の場合は後述する。   The plane orientation material is in an orientation state in which the c-axis of each crystal is aligned in a specific direction, and a plane perpendicular to the direction is called a c-plane orientation plane. At this time, the ring sample was cut out so that the circumferential direction was within the orientation plane. When the plate-like sample is cut out from the plane-oriented material, the directions along two orthogonal sides of the plate surface (5 mm × 5 mm surface) are the c-plane orientation plane direction and the c-plane orientation plane vertical direction, respectively. It cut out so that it might become. The case of the unidirectionally oriented material will be described later.

加工後の板状焼結体を図1(a)のように用いてコイル部品を構成した場合の特性を評価するため、キーコム社製高周波透磁率測定機を用いて0.1GHz〜10GHzまでの複素透磁率を評価した。なお、実施例のコイル部品では、六方晶フェライトが、その磁化容易面がコイルの巻回軸に平行な状態が優勢な異方性を有することをX線回折によって確認した。また比較例として図2のようにコイル部品を構成した場合の特性を評価するため上記によって加工されたリング形状の焼結体をインピーダンスメータ4291B(Agilent社製)にてTESTFIXTURE16454を用いて10MHz〜1.8GHzまでの複素透磁率の周波数特性を測定した。上記キーコム社製高周波透磁率測定機はコイルによって磁性体を一方向の高周波磁界によって磁化させた場合の透磁率を測定でき、4291Bではリング形状の周方向に沿った方向の高周波磁界を印加して磁化させた場合の透磁率を測定できる。このとき前者の評価では前述した板状試料の板面の直交する2辺それぞれと高周波磁界印加方向が平行となるように2通りの測定をした。コイルの巻き数は1ターンとした。このとき磁界印加方向の逆向きに反磁界を生じさせる有限の反磁界係数が発生することになるため、以下の方法を用いて、前記焼結体の形状ごとに反磁界係数を算出した。正方形板状のフェライトに対し、辺に沿った方向(測定方向)の長さをLとし、板面の厚みをTとしたとき評価方向の反磁界係数をNとして、
N=T/(L×(1+(2×T)/L))
から反磁界係数Nを算出する。本関係式を用いることにより例えば薄い直方体板、直方体などの反磁界係数を算出することができる(参考文献:Journal of Applied Physics, Volume 94, Number 6, P4013-4017)。
In order to evaluate the characteristics in the case where a coil component is configured using the processed plate-like sintered body as shown in FIG. 1A, the frequency is measured from 0.1 GHz to 10 GHz using a high frequency permeability measuring machine manufactured by Keycom. The complex permeability was evaluated. In the coil component of the example, it was confirmed by X-ray diffraction that the hexagonal ferrite had anisotropy in which the easy magnetization surface was parallel to the winding axis of the coil. Further, as a comparative example, in order to evaluate the characteristics when the coil component is configured as shown in FIG. 2, the ring-shaped sintered body processed as described above is 10 MHz to 1 using a TESTFIXTURE 16454 with an impedance meter 4291B (manufactured by Agilent). The frequency characteristics of the complex permeability up to .8 GHz were measured. The above-mentioned high frequency magnetic permeability measuring machine manufactured by Keycom can measure the magnetic permeability when a magnetic body is magnetized by a high frequency magnetic field in one direction with a coil. In 4291B, a high frequency magnetic field in the direction along the circumferential direction of the ring shape is applied. The magnetic permeability when magnetized can be measured. At this time, in the former evaluation, two kinds of measurements were performed so that each of the two orthogonal sides of the plate surface of the plate-like sample described above was parallel to the high-frequency magnetic field application direction. The number of turns of the coil was one turn. At this time, since a finite demagnetizing factor that generates a demagnetizing field in the opposite direction of the magnetic field application direction is generated, the demagnetizing factor was calculated for each shape of the sintered body using the following method. For a square plate-shaped ferrite, the length in the direction along the side (measurement direction) is L, the thickness of the plate surface is T, and the demagnetizing factor in the evaluation direction is N.
N = T / (L × (1+ (2 × T) / L))
To calculate the demagnetizing factor N. By using this relational expression, for example, the demagnetizing factor of a thin rectangular parallelepiped plate or a rectangular parallelepiped can be calculated (reference: Journal of Applied Physics, Volume 94, Number 6, P4013-4017).

表1に評価結果を示す。比較例1および2はNi−Znフェライトからリング形状および5mm×5mm×0.5mmの板状試料を作製し、前述の手法により評価した結果を示したものである。Ni−Znフェライトは等方性である。このNi−Znフェライトの場合、リング形状で周方向に高周波磁界を印加して評価した場合に対して、板形状で一方向に高周波磁界を印加した場合はfrは高周波側に移り、fr・(μ’lf−1)は増加しているものの、その値は20GHzと小さい値に留まり、高周波用のコイル部品としては十分でないことが分かる。比較例3はZ型フェライトの面配向材リング試料での評価結果であり、(μ’lf−1)は37.5と高く、fr・(μ’lf−1)も35.3GHzと、無配向のNo13に比べて高い値を示している。これはc軸が配向し、リング試料の周方向のいずれの方向でも配向処理を行わなかった場合に比べ高い透磁率を示したためである。しかし、無配向である比較例13と比べてfrは変化していない。frは1GHz未満であり、1GHz以上で使用されるコイル部品として好適とはいえない。比較例4は上記比較例3で評価を行ったリング形状の試料に磁路を切断するギャップを導入して評価を行った結果である。ギャップを導入することで磁界印加方向に反磁界が生じる。この時の反磁界係数を算出するため以下に示す算出式(1)を用いた(「磁気工学の基礎II」;太田恵造著;P.389;共立全書 )。ここでlは磁性体部の平均磁路長であり、lgはギャップ長を表すものとする。
反磁界係数=lg/(l+lg) −−−(1)
比較例4は比較例3に比べ、(μ’lf−1)が低下し、且つfrが向上しているが、fr・(μ’lf−1)はほとんど増加せず、透磁率の周波数特性改善の効果は見られない。すなわち、比較例3および4の構成では、面配向した六方晶フェライトを用いても、fr・(μ’lf−1)は40GHzには満たない。
Table 1 shows the evaluation results. Comparative Examples 1 and 2 show the results of making a ring-shaped and 5 mm × 5 mm × 0.5 mm plate sample from Ni—Zn ferrite and evaluating them by the method described above. Ni-Zn ferrite is isotropic. In the case of this Ni—Zn ferrite, when the high frequency magnetic field is applied in the circumferential direction in the ring shape, when the high frequency magnetic field is applied in one direction in the plate shape, fr moves to the high frequency side, and fr · ( Although μ ′ lf −1) is increasing, the value remains as small as 20 GHz, which indicates that it is not sufficient as a high-frequency coil component. Comparative Example 3 is an evaluation result of a Z-type ferrite surface-oriented material ring sample, (μ ′ lf −1) is as high as 37.5, and fr · (μ ′ lf −1) is also 35.3 GHz. It shows a higher value than the orientation No13. This is because the c-axis is oriented and the magnetic permeability is higher than that in the case where the orientation treatment is not performed in any of the circumferential directions of the ring sample. However, fr does not change as compared with the non-oriented Comparative Example 13. fr is less than 1 GHz, and is not suitable as a coil component used at 1 GHz or more. Comparative Example 4 is the result of evaluation by introducing a gap for cutting the magnetic path into the ring-shaped sample evaluated in Comparative Example 3 above. By introducing a gap, a demagnetizing field is generated in the magnetic field application direction. In order to calculate the demagnetizing factor at this time, the following calculation formula (1) was used ("Magnetic Engineering Fundamentals II" by Ota Keizo; P.389; Kyoritsu Zensho). Here, l is the average magnetic path length of the magnetic part, and lg represents the gap length.
Demagnetizing factor = lg / (l + lg) --- (1)
In Comparative Example 4, (μ ′ lf −1) is decreased and fr is improved as compared with Comparative Example 3, but fr · (μ ′ lf −1) is hardly increased, and the frequency characteristics of the magnetic permeability. There is no improvement effect. That is, in the configurations of Comparative Examples 3 and 4, even when plane-oriented hexagonal ferrite is used, fr · (μ ′ lf −1) is less than 40 GHz.

実施例1は面配向材から5mm×5mm×0.2mmの板状試料を切り出し、板面の直交する2辺に平行な方向のうち、C面配向面内方向と高周波磁界印加方向とを一致させるようにして評価した結果である。配向状態とコイルの巻回軸方向との関係は図2(b)に示す関係である。実施例1では、frは2.93GHzであり、比較例3のfrの3倍以上、比較例2のfrの1.5倍以上、高周波側にシフトしていることが分かる。また、fr・(μ’lf−1)も50GHz以上に大幅に増加しており、同材質との比較において実施例1の構成が比較例3、4の構成に比べ高周波用途に好適であることがわかる。 Example 1 cuts out a plate sample of 5 mm × 5 mm × 0.2 mm from a surface alignment material, and in the direction parallel to two orthogonal sides of the plate surface, the C-plane alignment in-plane direction and the high-frequency magnetic field application direction coincide with each other. This is the result of evaluation. The relationship between the orientation state and the winding axis direction of the coil is the relationship shown in FIG. In Example 1, fr is 2.93 GHz, which is found to be shifted to the high frequency side by 3 times or more of fr of Comparative Example 3 and 1.5 times or more of fr of Comparative Example 2. In addition, fr · (μ ′ lf −1) is also greatly increased to 50 GHz or more. Compared with the same material, the configuration of Example 1 is more suitable for high frequency applications than the configurations of Comparative Examples 3 and 4. I understand.

上記の実施例1と同様な評価を、試料の厚さを0.3mm、0.5mm、0.7mmおよび0.9mmへと変化させて行った(実施例2〜5)。反磁界係数および評価結果を表1に示した。反磁界係数が0.15以下の実施例1〜5では(μ’lf−1)は10以上である。また、反磁界係数が0.1以下である実施例1〜3の(μ’lf−1)は反磁界係数が0であるリング形状の比較例3の(μ’lf−1)の70%以上を確保している。一方、高周波磁界印加方向の反磁界係数が増加するに伴ってfrは更に高周波側に変化し、反磁界係数が0.15以上である実施例5では6.0GHz以上の高周波側に変化した。frは反磁界係数の増加に伴って高周波側にシフトしていくため、更に高い周波数側まで移動させることが可能である。但し、反磁界係数が大きすぎると、(μ’lf−1)の絶対値が小さくなるため、反磁界係数は0.2以下が好ましい。 The same evaluation as in Example 1 was performed by changing the thickness of the sample to 0.3 mm, 0.5 mm, 0.7 mm, and 0.9 mm (Examples 2 to 5). The demagnetizing factor and the evaluation results are shown in Table 1. In Examples 1 to 5 in which the demagnetizing factor is 0.15 or less, (μ ′ lf −1) is 10 or more. Further, (μ ′ lf −1) of Examples 1 to 3 having a demagnetizing factor of 0.1 or less is 70% of (μ ′ lf −1) of Comparative Example 3 of the ring shape having a demagnetizing factor of 0. The above is secured. On the other hand, as the demagnetizing field coefficient in the high frequency magnetic field application direction increased, fr further changed to the high frequency side, and in Example 5 where the demagnetizing field coefficient was 0.15 or more, it changed to the high frequency side of 6.0 GHz or more. Since fr shifts to the high frequency side as the demagnetizing factor increases, it can be moved to a higher frequency side. However, if the demagnetizing factor is too large, the absolute value of (μ ′ lf −1) becomes small. Therefore , the demagnetizing factor is preferably 0.2 or less.

上記の実施例1〜5の評価を、高周波磁界印加方向がc面配向面面内方向からc面配向面垂直方向になるように構成を変更した場合の評価結果を比較例5〜9として示した。配向状態とコイルの巻回軸方向との関係は図2(c)に示す関係である。(μ’lf−1)は3.8〜4.3と実施例1〜5に比べて低く、またfrも形状によってほとんど変わらず最も高い比較例9でも1.35GHzと低い。また、比較例5〜9のfr・(μ’lf−1)は同材質、同形状の実施例1〜5に比べ10分の1以下である。比較例5〜9の構成、すなわち高周波磁界を透磁率の低い方向に印加した場合は透磁率の周波数特性改善の効果は見られず、かかる構成は高周波用コイル部品として適さないものとなった。かかる結果から、透磁率を低くすれば単純に周波数特性が改善されるものではなく、本願発明に係る顕著な効果が、配向状態と密接に関連して得られていることがわかる。 The evaluation results of the above Examples 1 to 5 are shown as Comparative Examples 5 to 9 when the configuration is changed so that the high-frequency magnetic field application direction is changed from the c-plane orientation plane in-plane direction to the c-plane orientation plane perpendicular direction. It was. The relationship between the orientation state and the winding axis direction of the coil is the relationship shown in FIG. (Μ ′ lf −1) is 3.8 to 4.3, which is lower than those of Examples 1 to 5, and fr is almost unchanged depending on the shape, and even the highest comparative example 9 is as low as 1.35 GHz. Moreover, fr * (( micro | micron | mu) '-1) of Comparative Examples 5-9 is 1/10 or less compared with Examples 1-5 of the same material and the same shape. When the configurations of Comparative Examples 5 to 9, that is, when a high frequency magnetic field was applied in the direction of low magnetic permeability, the effect of improving the frequency characteristics of the magnetic permeability was not observed, and such a configuration was not suitable as a high frequency coil component. From these results, it is understood that if the magnetic permeability is lowered, the frequency characteristics are not simply improved, and the remarkable effect according to the present invention is obtained in close relation to the orientation state.

前記一方向配向材の静磁界印加方向がリング面方向に含まれるようにして作製したリング試料を用いた場合(比較例10)と、静磁界印加方向がリング面に直交する厚さ方向となるようにして作製したリング試料を用いた場合(比較例11)は、fr、(μ’lf−1)とも低く、fr・(μ’lf−1)はいずれも20GHz未満である。比較例10のように、一方向配向材でリング形状を構成してしまうと、静磁界印加された、透磁率の高い方向の成分だけでなく、静磁界印加方向に直交する方向の成分も含まれてしまうため、透磁率が低くなってしまう。これに対して、板面(5mm×5mmの面)の直交する2辺のうち一方に沿った方向が磁界印加方向となるように5mm×5mm×0.3mmに切り出した六方晶フェライトを用い、かかる磁界印加方向がコイルの巻回軸方向となるようにしてコイル部品を構成した(実施例6)。配向状態とコイルの巻回軸方向との関係は図2(a)に示す関係である。この実施例6ではfrは4GHz以上であるとともに、fr・(μ’lf−1)は70GHz以上となり、透磁率の周波数特性向上の効果が特に著しいことがわかる。一方、同じ六方晶フェライトの板面の直交する他の辺方向がコイルの巻回軸方向となるようにしてコイル部品を構成した比較例12では、fr、fr・(μ’lf−1)とも低い値となった。 When a ring sample manufactured so that the static magnetic field application direction of the unidirectionally oriented material is included in the ring surface direction (Comparative Example 10), the static magnetic field application direction is a thickness direction orthogonal to the ring surface. When the ring sample produced as described above was used (Comparative Example 11), both fr and (μ ′ lf −1) were low, and both fr · (μ ′ lf −1) were less than 20 GHz. If a ring shape is formed of a unidirectionally oriented material as in Comparative Example 10, not only a component in a direction with a high magnetic permeability, but also a component in a direction orthogonal to the direction of applying a static magnetic field is included. Therefore, the magnetic permeability is lowered. On the other hand, using hexagonal ferrite cut into 5 mm × 5 mm × 0.3 mm so that the direction along one of the two orthogonal sides of the plate surface (5 mm × 5 mm surface) is the magnetic field application direction, The coil component was configured such that the magnetic field application direction was the coil winding axis direction (Example 6). The relationship between the orientation state and the winding axis direction of the coil is the relationship shown in FIG. In Example 6, fr is 4 GHz or more and fr · (μ ′ lf −1) is 70 GHz or more, which shows that the effect of improving the frequency characteristics of the magnetic permeability is particularly remarkable. On the other hand, in Comparative Example 12 in which the coil part is configured such that the other side direction of the same hexagonal ferrite plate surface is orthogonal to the winding axis direction of the coil, both fr and fr · (μ ′ lf −1) The value was low.

Figure 0005177640
Figure 0005177640

本発明に係るコイル部品の実施形態を示す図である。It is a figure which shows embodiment of the coil components which concern on this invention. 六方晶フェライトの配向の形態を示す模式図である。It is a schematic diagram which shows the form of the orientation of hexagonal ferrite. 従来のコイル部品の実施形態を示す図である。It is a figure which shows embodiment of the conventional coil components.

符号の説明Explanation of symbols

1、3:六方晶フェライト
2、4:コイル
5:結晶粒
1, 3: Hexagonal ferrite 2, 4: Coil 5: Crystal grain

Claims (4)

磁化容易面を有する六方晶フェライト及び前記六方晶フェライト内部に磁束を発生させるコイルを備え、
前記六方晶フェライトは平板状をなし、平板の厚さ方向が前記コイルの巻回軸方向に垂直な方向になるように配置され、かつ前記六方晶フェライト全体が前記コイルの巻回軸方向から見て前記コイルの内側に配置され、前記六方晶フェライトは焼結体または単結晶であり、その磁化容易面が前記巻回軸に平行な状態が優勢な異方性を有し、
前記六方晶フェライトの透磁率の周波数依存性において、透磁率の虚数部が最大となる周波数をfr(GHz)、前記frを10で除した周波数における透磁率実数部をμ’ lf としたとき、fr・(μ’ lf −1)が40GHz以上であることを特徴とするコイル部品。
A hexagonal ferrite having an easy magnetization surface and a coil for generating a magnetic flux inside the hexagonal ferrite,
The hexagonal ferrite has a flat plate shape and is arranged so that the thickness direction of the flat plate is perpendicular to the winding axis direction of the coil, and the entire hexagonal ferrite is viewed from the winding axis direction of the coil. wherein disposed inside the coil, the hexagonal ferrite is a sintered body or a single crystal, the easy magnetization plane is parallel to the said winding shaft have a dominant anisotropy Te,
In the frequency dependence of the permeability of the hexagonal ferrite, when the frequency at which the imaginary part of the permeability is maximum is fr (GHz), and the real part of the permeability at the frequency obtained by dividing the fr by 10 is μ ′ lf , A coil component, wherein fr · (μ ′ lf −1) is 40 GHz or more .
磁化容易面を有する六方晶フェライト及び前記六方晶フェライト内部に磁束を発生させるコイルを備え、
前記六方晶フェライトは平板状をなし、平板の厚さ方向が前記コイルの巻回軸方向に垂直な方向になるように配置され、かつ前記六方晶フェライト全体が前記コイルの巻回軸方向から見て前記コイルの内側に配置され、前記六方晶フェライトは焼結体または単結晶であり、その磁化容易面が前記巻回軸に平行な状態が優勢な異方性を有し、
前記六方晶フェライトの透磁率の周波数依存性において、透磁率の虚数部が最大となる周波数をfr(GHz)、前記frを10で除した周波数における透磁率実数部をμ’ lf としたとき、fr・(μ’ lf −1)が40GHz以上であり、
前記六方晶フェライトがZ型フェライトであり、前記frが3GHz以上であることを特徴とするコイル部品。
A hexagonal ferrite having an easy magnetization surface and a coil for generating a magnetic flux inside the hexagonal ferrite,
The hexagonal ferrite has a flat plate shape and is arranged so that the thickness direction of the flat plate is perpendicular to the winding axis direction of the coil, and the entire hexagonal ferrite is viewed from the winding axis direction of the coil. The hexagonal ferrite is a sintered body or a single crystal, and has an anisotropy in which the easy magnetization surface is parallel to the winding axis,
In the frequency dependence of the permeability of the hexagonal ferrite, when the frequency at which the imaginary part of the permeability is maximum is fr (GHz), and the real part of the permeability at the frequency obtained by dividing the fr by 10 is μ ′ lf , fr · (μ ′ lf −1) is 40 GHz or more,
The coil component, wherein the hexagonal ferrite is Z-type ferrite, and the fr is 3 GHz or more .
前記六方晶フェライトは、前記巻回軸に対応する方向に印加された静磁界によってもたらされるような異方性を有することを特徴とする請求項1または2に記載のコイル部品。 The coil component according to claim 1 or 2 , wherein the hexagonal ferrite has anisotropy caused by a static magnetic field applied in a direction corresponding to the winding axis . 前記コイルを流れる信号の周波数が1GHz以上であることを特徴とする請求項1〜3のいずれかに記載のコイル部品。 The frequency of the signal which flows through the said coil is 1 GHz or more, The coil components in any one of Claims 1-3 characterized by the above-mentioned.
JP2008023910A 2008-02-04 2008-02-04 Coil parts Active JP5177640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023910A JP5177640B2 (en) 2008-02-04 2008-02-04 Coil parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023910A JP5177640B2 (en) 2008-02-04 2008-02-04 Coil parts

Publications (2)

Publication Number Publication Date
JP2009188027A JP2009188027A (en) 2009-08-20
JP5177640B2 true JP5177640B2 (en) 2013-04-03

Family

ID=41071009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023910A Active JP5177640B2 (en) 2008-02-04 2008-02-04 Coil parts

Country Status (1)

Country Link
JP (1) JP5177640B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252107A (en) * 1990-03-01 1991-11-11 Tdk Corp Ferrite chip-shaped electronic part and manufacture thereof
JPH09205031A (en) * 1996-01-24 1997-08-05 Tokin Corp Production of multilayered inductance element
JP2001110622A (en) * 1999-10-14 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> Magnetic material with aspherical magnetic material phase
JP3551863B2 (en) * 1999-10-27 2004-08-11 株式会社村田製作所 Composite magnetic material and inductor element
WO2006064839A1 (en) * 2004-12-17 2006-06-22 Hitachi Metals, Ltd. Hexagonal ferrite, and antenna and communication equipment using the same
JP4844866B2 (en) * 2005-10-31 2011-12-28 日立金属株式会社 Ferrite sintered body
WO2007111122A1 (en) * 2006-03-29 2007-10-04 Hitachi Metals, Ltd. Coil component and its manufacturing method

Also Published As

Publication number Publication date
JP2009188027A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
Zhang et al. Magnetic properties of Co–Ti substituted barium hexaferrite
Bsoul et al. Magnetic and structural properties of BaFe12− xGaxO19 nanoparticles
Hossain et al. Structural, electrical transport, and magnetic properties of Ni1− xZnxFe2O4
Verma et al. Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn–Zn and Ni–Zn ferrites synthesized by the citrate precursor technique
US9338932B2 (en) Magnetoplumbite-type hexagonal ferrite
Singh et al. Hysteresis analysis of Co–Ti substituted M-type Ba–Sr hexagonal ferrite
Haque et al. Influence of CuO and sintering temperature on the microstructure and magnetic properties of Mg–Cu–Zn ferrites
Kumar et al. Effect of annealing temperature and preparation condition on magnetic anisotropy in nanocrystalline cobalt ferrite
Babu et al. Effect of zinc substitution on the structural, electrical and magnetic properties of nano-structured Ni0. 5Co0. 5Fe2O4 ferrites
Liu et al. Microstructure and magnetic properties of M-type strontium hexagonal ferrites with Y-Co substitution
JP2008133166A (en) Hexagonal z-type ferrite sintered body and manufacturing method thereof
Peng et al. Magnetic, electrical, and dielectric properties of La–Cu substituted Sr-hexaferrites for use in microwave LTCC devices
Costa et al. Microstructure and magnetic properties of Ni 1− x Zn x Fe 2 O 4 synthesized by combustion reaction
Zhang et al. Effect of doping MnO2 on magnetic properties for M-type barium ferrite
Iqbal et al. An investigation of the titanium effect on the structural and magnetic properties of BaNi2 based W-type hexaferrites
Zhong et al. Synergetic effect of site-controlled two-step Ca doping on magnetic and electrical properties of M-type strontium hexaferrites
Verma et al. Structural, magnetic and Mössbauer spectral studies of aluminum substituted Mg–Mn–Ni ferrites (Mg0. 2Mn0. 5Ni0. 3AlyFe2− yO4)
Ismail et al. Dependence of magnetic properties and microstructure of mechanically alloyed Ni0. 5Zn0. 5Fe2O4 on soaking time
Rane et al. Ultra-High-Frequency Behavior of BaFe $ _ {12} $ O $ _ {19} $ Hexaferrite for LTCC Substrates
JP2007088215A (en) Magnetic substance material and its manufacturing method
JP5177640B2 (en) Coil parts
Suryanarayana et al. Synthesis and magnetic studies of Ni-Cu-Zn ferrite nanocrystals
JP2010225866A (en) Inductance element
Jia et al. Effects of different sintering temperature and Nb2O5 content on structural and magnetic properties of Z-type hexaferrites
US20160322142A1 (en) Development of nanocrystalline magnesium ferrites and methods for preparing same from steel rolling mill by-product millscale

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5177640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350