JP5177616B2 - Method for producing activated carbon - Google Patents

Method for producing activated carbon Download PDF

Info

Publication number
JP5177616B2
JP5177616B2 JP2006328658A JP2006328658A JP5177616B2 JP 5177616 B2 JP5177616 B2 JP 5177616B2 JP 2006328658 A JP2006328658 A JP 2006328658A JP 2006328658 A JP2006328658 A JP 2006328658A JP 5177616 B2 JP5177616 B2 JP 5177616B2
Authority
JP
Japan
Prior art keywords
activated carbon
alkali metal
metal compound
mixture
producing activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006328658A
Other languages
Japanese (ja)
Other versions
JP2008137878A (en
Inventor
浩章 羽鳥
安正 山下
勝久 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006328658A priority Critical patent/JP5177616B2/en
Publication of JP2008137878A publication Critical patent/JP2008137878A/en
Application granted granted Critical
Publication of JP5177616B2 publication Critical patent/JP5177616B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、賦活剤としてのアルカリ金属の化合物の使用量が少ない条件で活性炭を製造する方法に関する。また、バイオマス、石炭、籾殻粉砕物、フェノール樹脂などの固体有機物とアルカリ金属の化合物との混合物を炭酸ガス雰囲気下に賦活処理することを特徴とする活性炭の製造方法に関する。とくに、前記混合物を炭酸ガス雰囲気下での賦活処理と不活性ガス雰囲気下での賦活処理との2段階賦活処理する活性炭の製造方法に関する。   The present invention relates to a method for producing activated carbon under conditions where the amount of an alkali metal compound used as an activator is small. In addition, the present invention relates to a method for producing activated carbon characterized by activating a mixture of a solid organic substance such as biomass, coal, rice husk pulverized material, or a phenol resin and an alkali metal compound in a carbon dioxide atmosphere. In particular, the present invention relates to a method for producing activated carbon in which the mixture is subjected to a two-stage activation treatment of an activation treatment in a carbon dioxide atmosphere and an activation treatment in an inert gas atmosphere.

活性炭は吸着剤として有用であり、各種方面で利用されているが、そのほか、触媒担体、触媒として利用され、さらには導電材料として、導電性樹脂組成物、二次電池用電極、電気二重層キャパシタ分極性電極等に利用されている。
その活性炭の製法の一例として、乾燥した炭素質物を粒径数mm以下の粒子状に粉砕した後、粉砕した炭素質物を不活性雰囲気下で、600〜900℃の温度範囲で炭化し、次いで、炭化物を水蒸気流入下あるいはリン酸、塩化亜鉛等の薬品を添加混合した状態で賦活処理し、さらにこの賦活物を希塩酸水などで酸洗あるいは水洗し、必要に応じて、篩分けにより夾雑物を取り除き活性炭を得る方法が知られている。この方法で得られる活性炭は比表面積が満足することができる程に高いとはいえず、吸着性能も十分とはいえない。
Activated carbon is useful as an adsorbent and is used in various fields. In addition, it is used as a catalyst carrier and a catalyst. Furthermore, as a conductive material, a conductive resin composition, an electrode for a secondary battery, an electric double layer capacitor. Used for polarizable electrodes.
As an example of the method for producing the activated carbon, the dried carbonaceous material is pulverized into particles having a particle size of several mm or less, and then the pulverized carbonaceous material is carbonized in an inert atmosphere at a temperature range of 600 to 900 ° C., Carbide is activated in a state where steam is added or chemicals such as phosphoric acid and zinc chloride are added and mixed, and this activated product is pickled or washed with dilute hydrochloric acid or the like, and if necessary, impurities are removed by sieving. A method for removing activated carbon to obtain activated carbon is known. The activated carbon obtained by this method is not high enough to satisfy the specific surface area, and the adsorption performance is not sufficient.

その点、炭素質物からの炭化物を水酸化カリウムなどのアルカリ化合物を添加混合した状態で賦活処理する方法は、細孔構造が発達した比表面積が高い活性炭が得られので有利な製法であり、多数の報告がある。
例えば、炭素質物としてピッチから製造された炭素繊維を選び、アルカリ金属化合物の存在下に加熱処理する方法(特許文献1)があり、その方法で得られた活性炭は性能が良く電気二重層キャパシタ用として有効である。しかし、これらの技術では賦活処理剤としてのアルカリ化合物を炭素質物に対して1.5〜4倍量(重量)等の多量添加しなければならないという不都合さがあり、さらなる技術開発が求められている。
In that regard, the method of activating the carbide from the carbonaceous material in a state where an alkali compound such as potassium hydroxide is added and mixed is an advantageous production method because an activated carbon having a developed pore structure and a high specific surface area is obtained. There is a report.
For example, there is a method (Patent Document 1) in which carbon fiber produced from pitch is selected as a carbonaceous material, and heat treatment is performed in the presence of an alkali metal compound. The activated carbon obtained by the method has good performance and is used for electric double layer capacitors. It is effective as However, these techniques have the disadvantage that an alkali compound as an activation treatment agent must be added in a large amount such as 1.5 to 4 times (weight) of the carbonaceous material, and further technical development is required. Yes.

一方、木質系材料を製造原料とし、木質由来の水性ガス及び揮発性炭化水素類により木質の賦活を行う活性炭の製造技術が報告されている(特許文献2)。この技術はアルカリ化合物の添加量が低いという有利さがあり、低分子有機性化合物の吸着効果に優れているものの、この方法で得られる活性炭の比表面積は約1000m/g程度でしかなく、活性炭の応用範囲が狭いという問題点があり、さらに比表面積が高い活性炭を得る技術の開発が求められている。
また、活性炭製造用の炭素質物としてはいろいろと用いられるが、バイオマス、石炭、籾殻粉砕物、フェノール樹脂などの固体有機物を用いて比表面積が高い活性炭を得る技術の開発が求められている。なお、アルカリ化合物存在下では炭酸ガスは性能の良い活性炭を製造する際の賦活剤とはいえないという報告がある(非特許文献1)。
On the other hand, there has been reported an activated carbon production technique in which a wood-based material is used as a production raw material and wood is activated by wood-derived water gas and volatile hydrocarbons (Patent Document 2). Although this technique has the advantage that the addition amount of the alkali compound is low and is excellent in the adsorption effect of the low molecular organic compound, the specific surface area of the activated carbon obtained by this method is only about 1000 m 2 / g, There is a problem that the application range of activated carbon is narrow, and further development of a technique for obtaining activated carbon having a high specific surface area is required.
In addition, various carbonaceous materials are used for the production of activated carbon. However, development of a technique for obtaining activated carbon having a high specific surface area using a solid organic material such as biomass, coal, rice husk pulverized material, or phenol resin is required. In addition, there is a report that carbon dioxide is not an activator when producing activated carbon with good performance in the presence of an alkali compound (Non-Patent Document 1).

特開2004−266101号公報JP 2004-266101 A 特開2003−342014号公報JP 2003-342014 A Carbon 41 267(2003)Carbon 41 267 (2003)

そこで本発明の課題は、アルカリ金属の化合物の添加量を少なくし、しかも比表面積が高い活性炭を得る技術を提供することにある。また、バイオマスや褐炭などの資源を用いて、製造コストを低減し、比表面積が高い活性炭を得る技術を提供することにある。   Accordingly, an object of the present invention is to provide a technique for obtaining an activated carbon having a small specific surface area while reducing the addition amount of an alkali metal compound. Another object of the present invention is to provide a technology for obtaining activated carbon having a high specific surface area by reducing production costs using resources such as biomass and lignite.

本発明者らは、上記課題を解決するために鋭意研究する最中、木質系バイオマスを粉砕後、少量の黒液と混合し、熱処理して得た炭素化物に炭酸ガス雰囲気下600〜700℃程度で賦活処理すると、意外にも比表面積が高い活性炭を得ることができるとの知見を得た。その知見に基づきさらに研究を重ねると、前記賦活処理後、さらに窒素ガス雰囲気下900℃で賦活処理するとさらに比表面積が高い活性炭を得ることができるとの知見を得た。それらの知見に基づきさらに研究を重ねついに本発明を完成させた。   During the intensive study to solve the above-mentioned problems, the present inventors pulverized woody biomass, mixed with a small amount of black liquor, and heat-treated carbonized product at 600 to 700 ° C. in a carbon dioxide atmosphere. It was found that activated carbon with a specific surface area can be obtained unexpectedly when activated at a certain level. Further research based on this knowledge has yielded the knowledge that, after the activation treatment, activated carbon having a higher specific surface area can be obtained by further activation treatment at 900 ° C. in a nitrogen gas atmosphere. Based on these findings, the present invention was finally completed through further research.

すなわち、請求項1の発明は、粉砕された固体有機物の粉末にアルカリ金属の化合物を加え、混合して、アルカリ金属濃度が5〜50重量%の混合物を調製する工程A、その工程で得た固体有機物とアルカリ金属の化合物との混合物を不活性ガス雰囲気下にて400〜600℃で熱処理する工程B、及びその熱処理物を炭酸ガス含有ガス雰囲気下にて600〜900℃で賦活処理する工程Cを少なくとも有する活性炭の製造方法であって、前記アルカリ金属の化合物がアルカリ金属の水酸化物、ハロゲン化物、硝酸塩、亜硝酸塩、炭酸塩、重炭酸塩、硫酸塩からなる群より選択される1種又は2種以上であることを特徴とする活性炭の製造方法である。ここで、固体有機物とは炭素質物と類似し、活性炭製造用の原料として機能する有機物を意味する。なお、工程Cを炭酸ガス含有ガス雰囲気下にて600〜750℃で賦活処理する工程とすると活性炭製造コストが低減化され、有利である。 That is, the invention of claim 1 is obtained in step A, in which an alkali metal compound is added to a pulverized solid organic powder and mixed to prepare a mixture having an alkali metal concentration of 5 to 50% by weight. A step B of heat-treating a mixture of a solid organic material and an alkali metal compound in an inert gas atmosphere at 400 to 600 ° C, and a step of activating the heat-treated product in a carbon dioxide-containing gas atmosphere at 600 to 900 ° C. A method for producing activated carbon having at least C , wherein the alkali metal compound is selected from the group consisting of alkali metal hydroxides, halides, nitrates, nitrites, carbonates, bicarbonates, sulfates 1 A method for producing activated carbon, characterized in that it is a seed or two or more . Here, the solid organic substance means an organic substance similar to a carbonaceous substance and functioning as a raw material for producing activated carbon. In addition, when the process C is a process of activation treatment at 600 to 750 ° C. in a carbon dioxide gas-containing gas atmosphere, it is advantageous in that the production cost of activated carbon is reduced.

請求項2の発明は、粉砕された固体有機物の粉末にアルカリ金属の化合物を加え、混合して、アルカリ金属濃度が5〜50重量%の混合物を調製する工程A、その工程で得た固体有機物とアルカリ金属の化合物との混合物を不活性ガス雰囲気下にて400〜600℃で熱処理する工程B、その熱処理物を炭酸ガス含有ガス雰囲気下にて600〜750℃で賦活処理する工程C、及びその賦活処理物を不活性ガス雰囲気下にて750〜900℃で賦活処理する工程Dを少なくとも有する活性炭の製造方法であって、前記アルカリ金属の化合物がアルカリ金属の水酸化物、ハロゲン化物、硝酸塩、亜硝酸塩、炭酸塩、重炭酸塩、硫酸塩からなる群より選択される1種又は2種以上であることを特徴とする活性炭の製造方法である。この活性炭の製造方法を2段賦活方式による活性炭の製造方法ということもできる。 The invention of claim 2 is a process A in which an alkali metal compound is added to a pulverized solid organic powder and mixed to prepare a mixture having an alkali metal concentration of 5 to 50% by weight, and the solid organic substance obtained in the process Step B of heat-treating the mixture of the alkali metal compound and the alkali metal compound in an inert gas atmosphere at 400 to 600 ° C., Step C of activating the heat-treated product in a carbon dioxide-containing gas atmosphere at 600 to 750 ° C., and A method for producing activated carbon having at least a step D of activating the activated product at 750 to 900 ° C. in an inert gas atmosphere , wherein the alkali metal compound is an alkali metal hydroxide, halide, or nitrate. 1 or 2 or more types selected from the group consisting of nitrite, carbonate, bicarbonate and sulfate . This method for producing activated carbon can also be referred to as a method for producing activated carbon by a two-stage activation method.

請求項3の発明は、請求項1又は2の発明において、粉砕された固体有機物の粉末と混合するアルカリ金属の化合物がアルカリ金属の化合物の水溶液とする。
請求項4の発明は、前記アルカリ金属の化合物として、アルカリ金属の水酸化物又は炭酸塩を用いる発明である。アルカリ金属の化合物の代わりに黒液を用いる発明が請求項5の発明である。
The invention of claim 3 is the invention of claim 1 or 2, compounds of alkali metals to be mixed with powder of ground solid organic matter is an aqueous solution of an alkali metal compound.
According to a fourth aspect of the present invention, an alkali metal hydroxide or carbonate is used as the alkali metal compound. The invention according to claim 5 uses black liquor instead of the alkali metal compound.

請求項6の発明は、工程Aでの固体有機物とアルカリ金属の化合物との混合物の水分含量が20重量%以下であることを特徴とする発明である。アルカリ金属の化合物の水溶液の水分量を調節するか、あるいは前記混合物を加熱処理することにより、水分含量が20重量%以下とすることができる。
請求項7の発明は、請求項1〜6記載のいずれかの製造方法により得られる比表面積が1100m/g以上の活性炭に関する発明である。
The invention of claim 6 is characterized in that the water content of the mixture of the solid organic substance and the alkali metal compound in step A is 20% by weight or less. The water content can be reduced to 20% by weight or less by adjusting the water content of the aqueous solution of the alkali metal compound or by heating the mixture.
Invention of Claim 7 is invention regarding the activated carbon whose specific surface area obtained by the manufacturing method in any one of Claims 1-6 is 1100 m < 2 > / g or more.

以下に本発明を詳細に記述する。
固体有機物とは炭素質物と類似し、活性炭製造用の原料として機能する有機物を意味する。とくに生物由来の有機性資源および/または化石資源を活性炭の製造原料とすることが有利である。本発明でいう生物由来の有機性資源とは、各種動植物由来の有機性資源を意味する。上記生物由来の有機性資源としては、林産廃棄物、建築廃棄物などの木質系バイオマス;食品工場などの工場からの各種有機性廃棄物;生ごみ;糞尿などを挙げることができる。上記有機性資源の中では、いわゆるバイオマスあるいは固体有機物がとくに好ましい。具体的には、間伐材、おが屑など林産廃棄物、建築廃棄物、古紙などの木質系バイオマス、ヤシ殻、胡桃殻等の果実殻、コーヒー滓、茶滓、大豆滓、酒粕、酵母類が挙げられ、とくに間伐材、おが屑など林産廃棄物、建築廃棄物などの木質系バイオマスを利用することが有効である。
これら生物由来の有機性資源を乾燥処理、精製処理、破砕処理など各種前処理を施した後に使用することが有効である。例えば、木質系バイオマスでは、10〜60メッシュ程度に粉砕しておくことが有効である。
The present invention is described in detail below.
A solid organic substance is similar to a carbonaceous substance and means an organic substance that functions as a raw material for producing activated carbon. In particular, it is advantageous to use biologically derived organic resources and / or fossil resources as raw materials for the production of activated carbon. The organic resource derived from a living organism in the present invention means an organic resource derived from various animals and plants. Examples of the organic resources derived from living organisms include woody biomass such as forestry waste and construction waste; various organic wastes from factories such as food factories; garbage; manure and the like. Among the organic resources, so-called biomass or solid organic matter is particularly preferable. Specific examples include thinned wood, forest waste such as sawdust, construction waste, woody biomass such as waste paper, fruit husks such as coconut husks and walnut husks, coffee cakes, tea bowls, soybean cakes, sake lees, and yeasts. In particular, it is effective to use woody biomass such as forestry waste such as thinned wood, sawdust, and construction waste.
It is effective to use these organic resources derived from living organisms after various pretreatments such as drying, purification and crushing. For example, in woody biomass, it is effective to grind to about 10 to 60 mesh.

本発明でいう生物由来の化石資源は、長期間にわたって、動植物が地中の熱や圧力など、各種分解作用やなどによって変化(変質作用)し、炭素が濃縮されてできたものを意味する。具体的には、瀝青炭、褐炭、亜炭、泥炭、コークス、チャーなどが挙げられる。
これら化石資源を乾燥処理、破砕処理など各種前処理を施した後に使用することが有効である。例えば、10〜60メッシュ程度に粉砕しておくことが有効である。
The bio-derived fossil resource as used in the present invention means a product obtained by enriching carbon by changing (changing action) the animals and plants by various decomposition actions such as underground heat and pressure over a long period of time. Specific examples include bituminous coal, lignite, lignite, peat, coke, and char.
It is effective to use these fossil resources after various pretreatments such as drying and crushing. For example, it is effective to grind to about 10 to 60 mesh.

本発明では、上記固体有機物100重量部にアルカリ金属の化合物を10〜100重量部加え、混合する工程Aが必須の工程である。なお、固体有機物100重量部にアルカリ金属の化合物を10〜45重量部加え、混合する工程でも、比表面積の高い、性能が優れた活性炭を得ることが出来る。さらに、固体有機物100重量部にアルカリ金属の化合物を20〜45重量部加え、混合する工程とすると、比表面積がより高く、性能が優れた活性炭を得ることが出来る。十分本発明ではアルカリ金属の化合物の添加量を固体有機物とアルカリ金属の化合物との合計量を基準としてアルカリ金属濃度として5〜50重量%となるようにすることができる。
前記アルカリ金属の化合物はリチウム化合物、ナトリウム化合物、カリウム化合物、ルビジウム化合物及びセシウム化合物から選ばれた1種又は2種以上を用いる。すなわち、それらアルカリ金属の水酸化物、ハロゲン化物、硝酸塩、亜硝酸塩、炭酸塩、重炭酸塩、硫酸塩などが挙げられる。それらの中では、アルカリ金属の水酸化物又は炭酸塩が好ましい。さらに、ナトリウム化合物及びカリウム化合物が好ましく、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムが特に好ましい。
In the present invention, Step A, in which 10 to 100 parts by weight of an alkali metal compound is added to 100 parts by weight of the solid organic matter and mixed, is an essential step. Even in the step of adding and mixing 10 to 45 parts by weight of an alkali metal compound to 100 parts by weight of the solid organic matter, activated carbon having a high specific surface area and excellent performance can be obtained. Furthermore, when the step of adding 20 to 45 parts by weight of an alkali metal compound to 100 parts by weight of the solid organic matter and mixing them, activated carbon having a higher specific surface area and excellent performance can be obtained. In the present invention, the addition amount of the alkali metal compound can be made 5 to 50% by weight as the alkali metal concentration based on the total amount of the solid organic substance and the alkali metal compound.
As the alkali metal compound, one or more selected from lithium compounds, sodium compounds, potassium compounds, rubidium compounds and cesium compounds are used. That is, these alkali metal hydroxides, halides, nitrates, nitrites, carbonates, bicarbonates, sulfates and the like can be mentioned. Of these, alkali metal hydroxides or carbonates are preferred. Furthermore, a sodium compound and a potassium compound are preferable, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate are particularly preferable.

それら、アルカリ金属の化合物を固体有機物と混合する方法は特に制限されないのであって、乾式混合法や湿式混合法等を適宜採用できるが、本発明では特にアルカリ金属の化合物の水溶液を固体有機物に適用する方法を採用することが好ましい。アルカリ金属の化合物の水溶液の濃度はとくに制限されない。アルカリ金属の化合物の水溶液が高濃度であると水分含量が少なくなるので、その点では有利であるが、固体有機物に均一に分散させることができにくくなる。   The method of mixing the alkali metal compound with the solid organic material is not particularly limited, and a dry mixing method, a wet mixing method, or the like can be appropriately employed. In the present invention, however, an aqueous solution of the alkali metal compound is applied to the solid organic material. It is preferable to adopt the method to do. The concentration of the aqueous solution of the alkali metal compound is not particularly limited. If the concentration of the aqueous solution of the alkali metal compound is high, the water content decreases, which is advantageous in that respect, but it is difficult to uniformly disperse the solid organic matter.

本発明では上記アルカリ金属の化合物の代わりに黒液を用いてもよい。本発明でいう黒液は、パルプ製造時に副生される廃棄物であり、黒液はパルプの製造条件によって異なるが、有機質としてリグニンを多量に含むほか、無機質として水酸化ナトリウムや炭酸ナトリウムを含む。本発明では、室温で液状の黒液をそのまま用いてもよいが、黒液に酸を加えて沈殿する固形分を乾燥処理した固形物を用いてもよい。
この黒液を上記固体有機物中に、ナトリウム濃度として10〜50重量%となるように加え、その後、均一な混合物となるよう混合、乾燥処理することが好ましい。この黒液を上記固体有機物中に、ナトリウム濃度として10〜40重量%となるように加え、混合する工程でも、比表面積の高い、品質が優れた活性炭を得ることが出来る。さらに、固体有機物中に黒液をナトリウム濃度として15〜35重量%となるように加え、混合、乾燥処理する、比表面積がより高く、性能が優れた活性炭を得ることが出来る。なお、黒液のみで上記ナトリウム濃度を達成できないときには、前記アルカリ金属の化合物を添加することにより、上記アルカリ濃度を調整してもよい。
上記ナトリウム濃度の算出法は、通常行われる方法を採用すればよい。本発明では下記の式を用いて、ナトリウム濃度を算出する。
ナトリウム濃度=A/(B+A)×100
式中、Aは固体有機物と黒液との混合物中のナトリウム含量、Bは固体有機物と黒液との混合物中の有機成分量を示す。黒液中のナトリウム含量の測定は、黒液の有機成分を燃焼し、残渣(灰分)を塩酸で溶かした溶液を作り、その中に含まれるナトリウム量を求める。ナトリウム量は、例えばICP発光分析装置を用いて知ることが出来る。固体有機物のナトリウム含量は前記黒液のナトリウム含量の測定法と同じ方法を用いることが出来る。なお、通常固体有機物のナトリウム含量は極めて低いので、個体有機物のナトリウム含量を無視してもよい。
黒液の有機成分量の測定法は、黒液を塩酸で中和し、沈殿した有機物質量を乾燥して求める。固体有機物の有機成分量は、固体有機物を燃焼させ、灰成分量を測定し、固体有機物量と灰成分量との差を有機成分量とする。
固体有機物に黒液を添加・混合する手段は、一般的な手段を採用すればよい。
本発明では、前記黒液とアルカリ金属の化合物とを併用してもよい。
In the present invention, black liquor may be used instead of the alkali metal compound. The black liquor in the present invention is a waste produced as a by-product during pulp production, and the black liquor varies depending on the pulp production conditions, but contains a large amount of lignin as an organic substance and also contains sodium hydroxide and sodium carbonate as an inorganic substance. . In the present invention, a liquid black liquor that is liquid at room temperature may be used as it is, but a solid obtained by drying a solid content that is precipitated by adding an acid to the black liquor may be used.
It is preferable to add this black liquor to the solid organic substance so as to have a sodium concentration of 10 to 50% by weight, and then to mix and dry it so as to form a uniform mixture. Even in the step of adding and mixing the black liquor in the solid organic substance so that the sodium concentration is 10 to 40% by weight, activated carbon having a high specific surface area and excellent quality can be obtained. Furthermore, activated carbon having a higher specific surface area and excellent performance can be obtained by adding black liquor to the solid organic substance so as to have a sodium concentration of 15 to 35% by weight, mixing and drying. When the sodium concentration cannot be achieved with black liquor alone, the alkali concentration may be adjusted by adding the alkali metal compound.
As a method for calculating the sodium concentration, a commonly performed method may be employed. In the present invention, the sodium concentration is calculated using the following formula.
Sodium concentration = A / (B + A) × 100
In the formula, A represents the sodium content in the mixture of the solid organic matter and black liquor, and B represents the amount of the organic component in the mixture of the solid organic matter and black liquor. The sodium content in the black liquor is measured by burning the organic components of the black liquor, making a solution in which the residue (ash) is dissolved in hydrochloric acid, and determining the amount of sodium contained therein. The amount of sodium can be known using, for example, an ICP emission spectrometer. The sodium content of the solid organic material can be the same as the method for measuring the sodium content of the black liquor. In addition, since the sodium content of solid organic matter is usually very low, the sodium content of solid organic matter may be ignored.
The method for measuring the amount of organic component in the black liquor is obtained by neutralizing the black liquor with hydrochloric acid and drying the amount of the precipitated organic substance. The organic component amount of the solid organic matter is obtained by burning the solid organic matter, measuring the ash component amount, and taking the difference between the solid organic matter amount and the ash component amount as the organic component amount.
As a means for adding and mixing the black liquor to the solid organic matter, a general means may be adopted.
In the present invention, the black liquor and an alkali metal compound may be used in combination.

かくして、活性炭製造用の固体有機物とアルカリ金属の化合物との混合物を調製することができる。この混合物を不活性ガス雰囲気下にて400〜600℃で熱処理する工程Bを設けることが、品質が高い活性炭を得るために必要な工程である。なお、この工程Bの処理を行うまえに、前記混合物の水分含量を予め20重量%以下としておくことが有利である。例えば、前記混合物を100℃で乾燥処理し、水分含量を2〜3%、あるいはそれ以下とすることが有利である。
前記不活性ガス雰囲気における不活性ガスは、活性炭製造の際に多用される不活性ガスであれば特に制限されないのであり、通常窒素ガスが用いられる。なお、熱処理により活性炭製造原料からガスが発生する可能性があり、不活性ガスと共存することがある。
工程Bにおいて、400〜600℃で熱処理する時間は、用いる有機固体物の性状と量、用いるアルカリ金属の化合物の種類や量、工程Aの混合物の性状、調製する活性炭の性状などにより変動するので一概に規定することが出来ないが、通常60分以下とすることが多い。
Thus, a mixture of a solid organic material for producing activated carbon and an alkali metal compound can be prepared. Providing the process B which heat-processes this mixture at 400-600 degreeC under inert gas atmosphere is a process required in order to obtain activated carbon with high quality. It is advantageous that the water content of the mixture is set to 20% by weight or less in advance before performing the process B. For example, it is advantageous to dry the mixture at 100 ° C. and to have a moisture content of 2-3% or less.
The inert gas in the inert gas atmosphere is not particularly limited as long as it is an inert gas frequently used in the production of activated carbon, and nitrogen gas is usually used. In addition, gas may generate | occur | produce from an activated carbon manufacturing raw material by heat processing, and it may coexist with an inert gas.
In Step B, the heat treatment time at 400 to 600 ° C. varies depending on the properties and amount of the organic solid used, the type and amount of the alkali metal compound used, the properties of the mixture in Step A, the properties of the activated carbon to be prepared, and the like. Although it cannot be generally specified, it is usually 60 minutes or less in many cases.

本発明では、工程Bでの熱処理物を炭酸ガス含有ガス雰囲気下に600〜900℃で賦活処理する工程Cに一つの大きな特徴がある。
前記工程Cの炭酸ガス含有ガス雰囲気下における炭酸ガス含有ガスとは、炭酸ガスのみ、及び炭酸ガスとそれ以外のガスを含む混合ガスの両方を意味する。前記混合ガスとしては、炭酸ガスと水蒸気との混合物が好ましい。なお、工程Bでの熱処理により、タール分や各種ガスの発生が少なくなっているが、工程Cでも少量ではあるが発生することがある。
工程Cにおいて、600〜900℃で熱処理する時間は、用いる有機固体物の性状と量、用いるアルカリ金属の化合物の種類や量、工程Bでの熱処理物の性状、希望する活性炭の性状などにより変動するので一概に規定することが出来ないが、例えば60分以下とすることが可能である。
In the present invention, there is one major feature in the process C in which the heat treatment product in the process B is activated at 600 to 900 ° C. in a carbon dioxide-containing gas atmosphere.
The carbon dioxide-containing gas in the carbon dioxide-containing gas atmosphere in Step C means both carbon dioxide and a mixed gas containing carbon dioxide and other gases. As the mixed gas, a mixture of carbon dioxide gas and water vapor is preferable. In addition, although the generation | occurrence | production of a tar part and various gas has decreased by the heat processing in the process B, it may generate | occur | produce in the process C though it is a small amount.
In Step C, the time for heat treatment at 600 to 900 ° C. varies depending on the properties and amount of the organic solid used, the type and amount of the alkali metal compound used, the properties of the heat treated product in Step B, the properties of the desired activated carbon, etc. For this reason, it is not possible to define it generally, but for example, it can be 60 minutes or less.

本発明では、所謂2段賦活法を採用することが出来る。すなわち、工程Bでの熱処理物を炭酸ガス含有ガス雰囲気下に600〜750℃で賦活処理する工程Cに引き続き、工程Cでの賦活処理物をさらに不活性ガス雰囲気下にて750〜900℃で賦活処理する工程Dを設けて活性炭を製造することも出来る。工程Dでの不活性ガス雰囲気における不活性ガスは、活性炭製造の際に多用される不活性ガスであれば特に制限されないのであり、通常窒素ガスが用いられる。工程Dにおいて、750〜900℃で熱処理する時間は、用いる有機固体物の性状と量、用いるアルカリ金属の化合物の種類や量、工程BやDでの混合物の性状、希望する活性炭の性状などにより変動するので一概に規定することが出来ないが、例えば60分以下とすることが可能である。   In the present invention, a so-called two-stage activation method can be employed. That is, following the process C in which the heat treatment product in the process B is activated at 600 to 750 ° C. in a carbon dioxide gas atmosphere, the activation product in the process C is further in an inert gas atmosphere at 750 to 900 ° C. Activated carbon can also be produced by providing a process D for activation treatment. The inert gas in the inert gas atmosphere in step D is not particularly limited as long as it is an inert gas frequently used in the production of activated carbon, and nitrogen gas is usually used. In step D, the time for heat treatment at 750 to 900 ° C. depends on the properties and amount of the organic solid used, the type and amount of the alkali metal compound used, the properties of the mixture in steps B and D, the properties of the desired activated carbon, etc. Since it fluctuates, it cannot be defined generally, but for example, it can be 60 minutes or less.

本発明では、熱処理する手段は一般的な手段を採用すればよい。例えば一般的なロータリーキルン、電気炉等の温度制御の可能な加熱・焼成手段を用いればよい。賦活処理する手段も一般的な手段を採用すればよい。   In the present invention, general means may be adopted as the means for heat treatment. For example, a heating / baking means capable of temperature control such as a general rotary kiln or electric furnace may be used. A general means may be adopted as the means for the activation treatment.

本発明によれば、固体有機物から比表面積が高い活性炭が得られる。例えば、比表面積が1100m/g以上の活性炭が得られる。さらに、比表面積が1300m/g以上の活性炭が得られる。この活性炭は細孔径が大きいので、大きなイオン径をもつ有機系電解質イオンを用いるキャパシタにも応用することができる。更に比表面積が1400m/g以上の活性炭がより好ましい性質を持ち、比表面積が1500m/g以上の活性炭はより好ましい性質を持ち、キャパシタなどに十分対応でき、しかも細孔径が大きいので極めて有利である。
また特に、固体有機物として、生物由来の有機性資源および/または化石資源を用いると、比表面積が高い活性炭が安価に得られることになる。この活性炭は吸着剤として使用できるが、触媒担体、触媒として利用され、さらには導電材料として、導電性樹脂組成物、二次電池用電極、電気二重層キャパシタ分極性電極等に利用されることができる。
なお、本発明での比表面積は活性炭の分野で常用されるBET法による比表面積を意味する。その測定法もこの分野で常用される方法を用いる。
According to the present invention, activated carbon having a high specific surface area can be obtained from solid organic matter. For example, activated carbon having a specific surface area of 1100 m 2 / g or more is obtained. Furthermore, activated carbon having a specific surface area of 1300 m 2 / g or more is obtained. Since this activated carbon has a large pore diameter, it can be applied to a capacitor using an organic electrolyte ion having a large ion diameter. Furthermore, activated carbon having a specific surface area of 1400 m 2 / g or more has more preferable properties, activated carbon having a specific surface area of 1500 m 2 / g or more has more preferable properties, can sufficiently handle capacitors, etc., and is extremely advantageous because of its large pore diameter. It is.
In particular, when biological organic resources and / or fossil resources are used as the solid organic matter, activated carbon having a high specific surface area can be obtained at a low cost. Although this activated carbon can be used as an adsorbent, it can be used as a catalyst carrier or catalyst, and further as a conductive material, such as a conductive resin composition, a secondary battery electrode, or an electric double layer capacitor polarizable electrode. it can.
In addition, the specific surface area in this invention means the specific surface area by BET method normally used in the field | area of activated carbon. As the measurement method, a method commonly used in this field is used.

発明の実施をするときの最良の形態Best Mode for Carrying Out the Invention

以下に、本発明を実施例に基づいて詳細に説明する。本発明はこれらの実施例になんら限定されない。
(実施例1a)試料の調製
粒径1mm以下に粉砕した杉の粉末に黒液(固形分約23%含む水溶液であり、固形分は有機質34%、無機質66%からなる)を加え、ナトリウム濃度が23重量%の混合物を調製した。この混合物を100℃で乾燥処理し、窒素ガス雰囲気下に昇温速度3℃/minで600℃まで熱処理し、試料を得た。
(実施例1b)活性炭の調製
その試料1gを秤量し、38×50mmのアルミナ製皿に均等に分散させ、直径40mmのアルミナ管横型管状炉に収め、窒素ガス雰囲気下上昇温速度3℃/minで630℃まで昇温した。次いで、雰囲気を炭酸ガスに切り替え、3℃/minで660℃まで昇温し、60分間保持し、活性炭を得た(収率25.8%)。活性炭の比表面積(BET比表面積)は1,331m/gであった。
Hereinafter, the present invention will be described in detail based on examples. The present invention is not limited to these examples.
(Example 1a) Preparation of sample Black liquor (an aqueous solution containing about 23% solid content, solid content consisting of 34% organic and 66% inorganic) is added to cedar powder pulverized to a particle size of 1 mm or less, and the sodium concentration A 23% by weight mixture was prepared. The mixture was dried at 100 ° C., and heat-treated at a heating rate of 3 ° C./min to 600 ° C. in a nitrogen gas atmosphere to obtain a sample.
(Example 1b) Preparation of activated carbon 1 g of the sample was weighed, uniformly dispersed in a 38 × 50 mm alumina dish, placed in an alumina tube horizontal tubular furnace having a diameter of 40 mm, and the temperature rising rate was 3 ° C./min in a nitrogen gas atmosphere. The temperature was raised to 630 ° C. Subsequently, the atmosphere was switched to carbon dioxide gas, the temperature was raised to 660 ° C. at 3 ° C./min, and held for 60 minutes to obtain activated carbon (yield 25.8%). The specific surface area (BET specific surface area) of the activated carbon was 1,331 m 2 / g.

(実施例2a)試料の調製
粒径1mm以下に粉砕した杉の粉末に1mol濃度のNaCO水溶液を加え、ナトリウム濃度が23重量%の混合物を調製した。この混合物を100℃で乾燥処理し、窒素ガス雰囲気下に昇温速度3℃/minで600℃まで熱処理し、試料を得た。
(実施例2b)活性炭の調製
その試料1gを秤量し、38×50mmのアルミナ製皿に均等に分散させ、直径40mmのアルミナ管横型管状炉に収め、窒素ガス雰囲気下上昇温速度3℃/minで650℃まで昇温した。次いで、雰囲気を炭酸ガスに切り替え、3℃/minで680℃まで昇温し、60分間保持し、活性炭を得た(収率12.2%)。活性炭の比表面積(BET比表面積)は1,207m/gであった。
(Example 2a) Preparation of sample A 1 mol Na 2 CO 3 aqueous solution was added to cedar powder pulverized to a particle size of 1 mm or less to prepare a mixture having a sodium concentration of 23% by weight. The mixture was dried at 100 ° C., and heat-treated at a heating rate of 3 ° C./min to 600 ° C. in a nitrogen gas atmosphere to obtain a sample.
(Example 2b) Preparation of activated carbon 1 g of the sample was weighed, uniformly dispersed in a 38 × 50 mm alumina dish, placed in an alumina tube horizontal tubular furnace having a diameter of 40 mm, and the temperature rising rate was 3 ° C./min in a nitrogen gas atmosphere. The temperature was raised to 650 ° C. Subsequently, the atmosphere was switched to carbon dioxide gas, the temperature was raised to 680 ° C. at 3 ° C./min, and held for 60 minutes to obtain activated carbon (yield 12.2%). The specific surface area (BET specific surface area) of the activated carbon was 1,207 m 2 / g.

(実施例3a)試料の調製
粒径1mm以下に粉砕した檜の粉末を用い、それ以外は実施例1aと同様に操作し、試料を得た。
(実施例3b)活性炭の調製
その試料1gを秤量し、38×50mmのアルミナ製皿に均等に分散させ、直径40mmのアルミナ管横型管状炉に収め、窒素ガス雰囲気下上昇温速度3℃/minで640℃まで昇温した。次いで、雰囲気を炭酸ガスに切り替え、3℃/minで670℃まで昇温し、60分間保持した。次いで、雰囲気を窒素ガスに切り替え、3℃/minで800℃まで昇温し、60分間保持し、活性炭を得た(収率10.4%)。活性炭の比表面積(BET比表面積)は1,635m/gであった。
(Example 3a) Preparation of sample A sample was obtained by operating in the same manner as in Example 1a, except that powder of koji pulverized to a particle size of 1 mm or less was used.
(Example 3b) Preparation of activated carbon 1 g of the sample was weighed, uniformly dispersed in a 38 × 50 mm alumina dish, and placed in an alumina tube horizontal tubular furnace having a diameter of 40 mm, and the temperature rising rate was 3 ° C./min in a nitrogen gas atmosphere. The temperature was raised to 640 ° C. Subsequently, the atmosphere was switched to carbon dioxide gas, the temperature was raised to 670 ° C. at 3 ° C./min, and held for 60 minutes. Subsequently, the atmosphere was switched to nitrogen gas, the temperature was raised to 800 ° C. at 3 ° C./min, and held for 60 minutes to obtain activated carbon (yield 10.4%). The specific surface area (BET specific surface area) of the activated carbon was 1,635 m 2 / g.

(実施例4a)試料の調製
粒径1mm以下に粉砕した杉の粉末に2mol濃度のNaOH水溶液を加え、ナトリウム濃度が23重量%の混合物を調製した。この混合物を100℃で乾燥処理し、窒素ガス雰囲気下に昇温速度3℃/minで600℃まで熱処理し、試料を得た。
(実施例4b)活性炭の調製
その試料1gを秤量し、38×50mmのアルミナ製皿に均等に分散させ、直径40mmのアルミナ管横型管状炉に収め、窒素ガス雰囲気下上昇温速度3℃/minで650℃まで昇温した。次いで、雰囲気を炭酸ガスに切り替え、3℃/minで680℃まで昇温し、60分間保持した。次いで、雰囲気を窒素ガスに切り替え、3℃/minで900℃まで昇温し、60分間保持し、活性炭を得た(収率4.9%)。活性炭の比表面積(BET比表面積)は1,840m/gであった。)
Example 4a Sample Preparation A 2 mol NaOH aqueous solution was added to cedar powder pulverized to a particle size of 1 mm or less to prepare a mixture having a sodium concentration of 23% by weight. The mixture was dried at 100 ° C., and heat-treated at a heating rate of 3 ° C./min to 600 ° C. in a nitrogen gas atmosphere to obtain a sample.
(Example 4b) Preparation of activated carbon 1 g of the sample was weighed, uniformly dispersed in a 38 × 50 mm alumina dish, placed in an alumina tube horizontal tubular furnace having a diameter of 40 mm, and the temperature rising rate was 3 ° C./min in a nitrogen gas atmosphere. The temperature was raised to 650 ° C. Subsequently, the atmosphere was switched to carbon dioxide gas, the temperature was raised to 680 ° C. at 3 ° C./min, and the temperature was maintained for 60 minutes. Subsequently, the atmosphere was switched to nitrogen gas, the temperature was raised to 900 ° C. at 3 ° C./min, and held for 60 minutes to obtain activated carbon (yield 4.9%). The specific surface area (BET specific surface area) of the activated carbon was 1,840 m 2 / g. )

(実施例5)活性炭の調製
実施例2aの試料1gを秤量し、それ以外は実施例4bと同様に操作し、活性炭を得た(収率7.6%)。活性炭の比表面積(BET比表面積)は2,000m/gであった。)
(Example 5) Preparation of activated carbon 1 g of the sample of Example 2a was weighed, and other operations were carried out in the same manner as in Example 4b to obtain activated carbon (yield 7.6%). The specific surface area (BET specific surface area) of the activated carbon was 2,000 m 2 / g. )

(実施例6a)試料の調製
粒径1mm以下に粉砕した杉の粉末に黒液(固形分約23%含む水溶液であり、固形分は有機質34%、無機質66%からなる)を加え、ナトリウム濃度が15重量%の混合物を調製した。この混合物を100℃で乾燥処理し、窒素ガス雰囲気下に昇温速度3℃/minで600℃まで熱処理し、試料を得た。
(実施例6b)活性炭の調製
その試料1gを秤量し、実施例4bと同様に操作し、活性炭を得た(収率6.4%)。活性炭の比表面積(BET比表面積)は1,689m/gであった。
(Example 6a) Preparation of sample Black liquor (an aqueous solution containing about 23% solid content, solid content consisting of 34% organic and 66% inorganic) was added to cedar powder pulverized to a particle size of 1 mm or less, and the sodium concentration A 15% by weight mixture was prepared. The mixture was dried at 100 ° C., and heat-treated at a heating rate of 3 ° C./min to 600 ° C. in a nitrogen gas atmosphere to obtain a sample.
(Example 6b) Preparation of activated carbon 1 g of the sample was weighed and operated in the same manner as in Example 4b to obtain activated carbon (yield 6.4%). The specific surface area (BET specific surface area) of the activated carbon was 1,689 m 2 / g.

(比較例1)活性炭の調製
実施例6aの試料1gを秤量し、38×50mmのアルミナ製皿に均等に分散させ、直径40mmのアルミナ管横型管状炉に収め、窒素ガス雰囲気下上昇温速度3℃/minで900℃まで昇温し、60分間保持し、活性炭を得た(収率33.6%)。活性炭の比表面積(BET比表面積)は823m/gであった。
(Comparative Example 1) Preparation of activated carbon 1 g of the sample of Example 6a was weighed and uniformly dispersed in a 38 × 50 mm alumina dish, placed in an alumina tube horizontal tubular furnace having a diameter of 40 mm, and the temperature rising rate 3 in a nitrogen gas atmosphere. The temperature was raised to 900 ° C. at a rate of ° C./min and held for 60 minutes to obtain activated carbon (yield 33.6%). The specific surface area (BET specific surface area) of the activated carbon was 823 m 2 / g.

(実施例7)活性炭の調製
実施例1aの試料1gを秤量し、38×50mmのアルミナ製皿に均等に分散させ、直径40mmのアルミナ管横型管状炉に収め、窒素ガス雰囲気下上昇温速度3℃/minで630℃まで昇温した。次いで、雰囲気を炭酸ガスに切り替え、3℃/minで660℃まで昇温し、60分間保持した。次いで、雰囲気を窒素ガスに切り替え、3℃/minで900℃まで昇温し、60分間保持し、活性炭を得た(収率13.7%)。活性炭の比表面積(BET比表面積)は1,731m/gであった。
(Example 7) Preparation of activated carbon 1 g of the sample of Example 1a was weighed and uniformly dispersed in a 38 × 50 mm alumina dish, and placed in an alumina tube horizontal tubular furnace having a diameter of 40 mm. The temperature was raised to 630 ° C at a rate of ° C / min. Subsequently, the atmosphere was switched to carbon dioxide gas, the temperature was raised to 660 ° C. at 3 ° C./min, and held for 60 minutes. Subsequently, the atmosphere was switched to nitrogen gas, the temperature was raised to 900 ° C. at 3 ° C./min, and held for 60 minutes to obtain activated carbon (yield 13.7%). The specific surface area (BET specific surface area) of the activated carbon was 1,731 m 2 / g.

(実施例8)活性炭の調製
実施例1aの試料1gを秤量し、窒素ガス雰囲気下で650℃まで昇温し、炭酸ガス雰囲気下で680℃まで昇温し、それ以外は実施例1bと同様に操作し、活性炭を得た(収率26.9%)。活性炭の比表面積(BET比表面積)は1,106m/gであった。
(Example 8) Preparation of activated carbon 1 g of the sample of Example 1a was weighed, heated to 650 ° C. in a nitrogen gas atmosphere, heated to 680 ° C. in a carbon dioxide atmosphere, and otherwise the same as in Example 1b To obtain activated carbon (yield 26.9%). The specific surface area (BET specific surface area) of the activated carbon was 1,106 m 2 / g.

(実施例9)活性炭の調製
実施例1aの試料1gを秤量し、実施例4bと同様に操作し、活性炭を得た(収率10.3%)。活性炭の比表面積(BET比表面積)は1,629m/gであった。
(Example 9) Preparation of activated carbon 1 g of the sample of Example 1a was weighed and operated in the same manner as in Example 4b to obtain activated carbon (yield 10.3%). The specific surface area (BET specific surface area) of the activated carbon was 1,629 m 2 / g.

(比較例2)活性炭の調製
実施例1aの試料1gを秤量し、38×50mmのアルミナ製皿に均等に分散させ、直径40mmのアルミナ管横型管状炉に収め、窒素ガス雰囲気下上昇温速度3℃/minで900℃まで昇温し、60分間保持し、活性炭を得た(収率35.2%)。活性炭の比表面積(BET比表面積)は1,265m/gであった。
(Comparative Example 2) Preparation of activated carbon 1 g of the sample of Example 1a was weighed and uniformly dispersed in a 38 × 50 mm alumina dish, placed in an alumina tube horizontal tubular furnace having a diameter of 40 mm, and the temperature rising rate 3 in a nitrogen gas atmosphere. The temperature was raised to 900 ° C. at a rate of ° C./min and held for 60 minutes to obtain activated carbon (yield 35.2%). The specific surface area (BET specific surface area) of the activated carbon was 1,265 m 2 / g.

(比較例3)活性炭の調製
実施例1aの試料1gを秤量し、38×50mmのアルミナ製皿に均等に分散させ、直径40mmのアルミナ管横型管状炉に収め、窒素ガス雰囲気下上昇温速度3℃/minで750℃まで昇温し、60分間保持し、活性炭を得た(収率44.9%)。活性炭の比表面積(BET比表面積)は859m/gであった。
(Comparative Example 3) Preparation of activated carbon 1 g of the sample of Example 1a was weighed and uniformly dispersed in a 38 × 50 mm alumina dish, placed in an alumina tube horizontal tubular furnace having a diameter of 40 mm, and the temperature rising rate 3 in a nitrogen gas atmosphere. The temperature was raised to 750 ° C. at a rate of ° C./min and held for 60 minutes to obtain activated carbon (yield 44.9%). The specific surface area (BET specific surface area) of the activated carbon was 859 m 2 / g.

試験法1 細孔径分布の測定
実施例8、実施例9、比較例2それぞれの活性炭の細孔容積(分布)を下記方法により測定した。測定結果を図1に示した。図1の縦軸の微分細孔容積(ΔV/ΔR)は、細孔容積の変化量ΔVを細孔半径の変化量ΔRで割ったものであり、試料重量当たりの細孔容積mm/gを半径nmで割った数値を示すので、図1の縦軸の単位は(mm/g)/nmである。横軸の細孔半径の単位はnmである。
この図1から、本件発明の活性炭は、比較例1の活性炭に比べて、細孔径が大きいことがわかる。キャパシタにおいては、大きなイオン径をもつ有機系電解質イオンを用いることから、電極となる活性炭の細孔はこれらイオンの拡散が容易な大きさでなくてはならず、直径2nm以上の細孔の存在が重要である。
(細孔径分布の測定)
自動吸着測定装置(BELSORP28A:日本ベル社製)を使用して、77Kでの窒素吸着等温線を測定し、これを同装置に付属の解析システムを用いてDollimore-Heal(DH)法によって解析する。
Test Method 1 Measurement of Pore Diameter Distribution The pore volume (distribution) of each activated carbon in Examples 8, 9, and Comparative Example 2 was measured by the following method. The measurement results are shown in FIG. The differential pore volume (ΔV / ΔR) on the vertical axis in FIG. 1 is the pore volume change ΔV divided by the pore radius change ΔR, and the pore volume mm 3 / g per sample weight. 1 is divided by the radius nm, and the unit of the vertical axis in FIG. 1 is (mm 3 / g) / nm. The unit of pore radius on the horizontal axis is nm.
1 that the activated carbon of the present invention has a larger pore diameter than the activated carbon of Comparative Example 1. Since the capacitor uses organic electrolyte ions with a large ion diameter, the pores of the activated carbon that serves as the electrode must have a size that allows easy diffusion of these ions, and there are pores with a diameter of 2 nm or more. is important.
(Measurement of pore size distribution)
Using an automatic adsorption measurement device (BELSORP28A: Nippon Bell Co., Ltd.), measure the nitrogen adsorption isotherm at 77K, and analyze this by the Dollimore-Heal (DH) method using the analysis system attached to the device. .

試験法1 静電容量の測定
実施例9、比較例2及び市販電極用の活性炭のそれぞれの静電容量を下記方法により測定した。測定結果を図2に示した。
この図2から、本件発明の活性炭が、比較例2や市販電極用の活性炭に比べて、高速充放電特性に優れていることが分かった。これは、活性炭の細孔径分布によるものである。すなわち、本件発明の活性炭は細孔分布特性において優れており、優れた特性を有する活性炭であると言える。
電極の静電容量の測定は、「日本電子機械工業会規格 EIAJ RC−2377」に従って行った。電極材料となる活性炭をシート化成型した2枚の電極を厚さ100μmのグラスフィルターを挟んで対向させ、これをさらに2枚の白金製の集電体で挟んで、2極式キャパシタセルを作製した。ついで、乾燥アルゴン雰囲気下、グローブボックス内で、上記セルを減圧下1モル濃度のテトラエチルアンモニウムフルオロボレート/プロピレンカーボネート溶液に投入した。電池・キャパシタ用総合性能試験装置(VMP2:BioLogic社製)を使用して、定電流充放電試験を行った。
図2は、電流密度毎に実測した静電容量を、電流密度に対してプロットしたものであり、電流密度が大きくなっても、静電容量が減少しない電極が高速充放電に優れた電極と言える。
Test Method 1 Measurement of Capacitance The respective capacities of Example 9, Comparative Example 2, and activated carbon for commercial electrodes were measured by the following method. The measurement results are shown in FIG.
From FIG. 2, it was found that the activated carbon of the present invention was superior in high-speed charge / discharge characteristics as compared with Comparative Example 2 and activated carbon for commercial electrodes. This is due to the pore size distribution of the activated carbon. That is, the activated carbon of the present invention is excellent in pore distribution characteristics and can be said to be an activated carbon having excellent characteristics.
The measurement of the capacitance of the electrode was performed in accordance with “Japan Electronic Machinery Association Standard EIAJ RC-2377”. A bipolar capacitor cell is fabricated by placing two electrodes made of activated carbon used as an electrode material into a sheet, facing each other with a glass filter with a thickness of 100 μm, and sandwiching them with two platinum current collectors. did. The cell was then charged into a 1 molar tetraethylammonium fluoroborate / propylene carbonate solution under reduced pressure in a glove box under a dry argon atmosphere. A constant current charge / discharge test was conducted using a battery / capacitor comprehensive performance tester (VMP2: manufactured by BioLogic).
FIG. 2 is a plot of the measured capacitance for each current density against the current density. An electrode whose capacitance does not decrease even when the current density increases is an electrode excellent in high-speed charge / discharge. I can say that.

本件発明の活性炭(実施例8及び9)の半径と微分細孔容積の測定結果を示す。The measurement result of the radius and differential pore volume of the activated carbon (Examples 8 and 9) of the present invention is shown. 本件発明の活性炭(実施例9)の電流密度と静電容量の測定結果を示す。The measurement result of the current density and electrostatic capacitance of activated carbon (Example 9) of this invention is shown.

Claims (6)

粉砕された固体有機物の粉末にアルカリ金属の化合物を加え、混合して、アルカリ金属濃度が5〜50重量%の混合物を調製する工程A、工程Aの固体有機物とアルカリ金属の化合物との混合物を不活性ガス雰囲気下にて400〜600℃で熱処理する工程B、及び工程Bの熱処理物を炭酸ガス含有ガス雰囲気下にて600〜900℃で賦活処理する工程Cを少なくとも有する活性炭の製造方法であって、前記アルカリ金属の化合物がアルカリ金属の水酸化物、ハロゲン化物、硝酸塩、亜硝酸塩、炭酸塩、重炭酸塩、硫酸塩からなる群より選択される1種又は2種以上であることを特徴とする活性炭の製造方法。 Step A in which an alkali metal compound is added to the pulverized solid organic powder and mixed to prepare a mixture having an alkali metal concentration of 5 to 50% by weight. A mixture of the solid organic substance and the alkali metal compound in Step A is prepared. A process for producing activated carbon having at least Step B for heat treatment at 400 to 600 ° C. in an inert gas atmosphere and Step C for activation treatment of the heat treated product in Step B at 600 to 900 ° C. in a carbon dioxide-containing gas atmosphere. The alkali metal compound is one or more selected from the group consisting of alkali metal hydroxides, halides, nitrates, nitrites, carbonates, bicarbonates and sulfates. A method for producing activated charcoal. 粉砕された固体有機物の粉末にアルカリ金属の化合物を加え、混合して、アルカリ金属濃度が5〜50重量%の混合物を調製する工程A、工程Aの固体有機物とアルカリ金属の化合物との混合物を不活性ガス雰囲気下にて400〜600℃で熱処理する工程B、工程Bの熱処理物を炭酸ガス含有ガス雰囲気下にて600〜750℃で賦活処理する工程C、及び工程Cの賦活処理物を不活性ガス雰囲気下にて750〜900℃で賦活処理する工程Dを少なくとも有する活性炭の製造方法であって、前記アルカリ金属の化合物がアルカリ金属の水酸化物、ハロゲン化物、硝酸塩、亜硝酸塩、炭酸塩、重炭酸塩、硫酸塩からなる群より選択される1種又は2種以上であることを特徴とする活性炭の製造方法。 Step A in which an alkali metal compound is added to the pulverized solid organic powder and mixed to prepare a mixture having an alkali metal concentration of 5 to 50% by weight. A mixture of the solid organic substance and the alkali metal compound in Step A is prepared. Step B for heat treatment at 400 to 600 ° C. in an inert gas atmosphere, Step C for heat treatment at 600 to 750 ° C. in a carbon dioxide-containing gas atmosphere, and Step C activation treatment product A method for producing activated carbon having at least a step D of activation treatment at 750 to 900 ° C. in an inert gas atmosphere , wherein the alkali metal compound is an alkali metal hydroxide, halide, nitrate, nitrite, carbonic acid A method for producing activated carbon, which is one or more selected from the group consisting of a salt, bicarbonate, and sulfate . 粉砕された固体有機物の粉末と混合するアルカリ金属の化合物がアルカリ金属の化合物の水溶液である請求項1又は2記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1 or 2, wherein the alkali metal compound to be mixed with the pulverized solid organic powder is an aqueous solution of an alkali metal compound. アルカリ金属の化合物がアルカリ金属の水酸化物又は炭酸塩である請求項1〜3記載のいずれかの活性炭の製造方法。   The method for producing activated carbon according to claim 1, wherein the alkali metal compound is an alkali metal hydroxide or carbonate. アルカリ金属の化合物の代わりに黒液を用いることを特徴とする請求項1又は2記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1 or 2, wherein black liquor is used in place of the alkali metal compound. 工程Aでの混合物の水分含量が20重量%以下であることを特徴とする請求項1〜5記載のいずれかの活性炭の製造方法。   6. The method for producing activated carbon according to claim 1, wherein the water content of the mixture in step A is 20% by weight or less.
JP2006328658A 2006-12-05 2006-12-05 Method for producing activated carbon Expired - Fee Related JP5177616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006328658A JP5177616B2 (en) 2006-12-05 2006-12-05 Method for producing activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006328658A JP5177616B2 (en) 2006-12-05 2006-12-05 Method for producing activated carbon

Publications (2)

Publication Number Publication Date
JP2008137878A JP2008137878A (en) 2008-06-19
JP5177616B2 true JP5177616B2 (en) 2013-04-03

Family

ID=39599744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006328658A Expired - Fee Related JP5177616B2 (en) 2006-12-05 2006-12-05 Method for producing activated carbon

Country Status (1)

Country Link
JP (1) JP5177616B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178641A (en) * 2010-03-03 2011-09-15 Tokyo Metropolitan Industrial Technology Research Institute Activated carbon and process of producing the same
CN113816374B (en) * 2021-09-29 2022-12-27 海南金海浆纸业有限公司 Method for preparing high-adsorption-performance activated carbon by using pulping black liquor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8723447D0 (en) * 1987-10-06 1987-11-11 Johnson & Johnson Ltd Wound dressing
JP3952806B2 (en) * 2002-02-28 2007-08-01 石川島播磨重工業株式会社 Gasification treatment method of organic matter
JP4108422B2 (en) * 2002-09-17 2008-06-25 本田技研工業株式会社 Method for producing activated carbon and electric double layer capacitor using the same
JP4101681B2 (en) * 2003-02-28 2008-06-18 財団法人石油産業活性化センター Method for producing activated carbon fiber for capacitor electrode and electric double layer capacitor

Also Published As

Publication number Publication date
JP2008137878A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
Ravichandran et al. Optimizing the route for production of activated carbon from Casuarina equisetifolia fruit waste
Sujiono et al. Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application
KR102400001B1 (en) Activated carbon with large surface area and method for manufacturing the same
CN108117073B (en) Method for preparing porous carbon material by using water hyacinth and application
Reddy et al. A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits
CN105645408B (en) A kind of utilization jujube core prepares the technique of nitrogen-doped porous carbon material and the preparation method of electrode of super capacitor
US7947246B2 (en) Electrochemical capacitor, carbonized biopolymers and carbonization process
CN104071787B (en) A kind of preparation method of biomass-based gac
JP6553307B2 (en) Carbonaceous material and method for producing the same
CN107814385B (en) Method for treating industrial wastewater and preparing graphite type porous carbon material by using biomass coke
KR20150100636A (en) Electrode material for secondary batteries, method for producing same, and secondary battery
CN110302751A (en) Composite biomass charcoal material and preparation method and application thereof
TWI760334B (en) Carbonaceous material, method for producing the same, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor, and electric double layer capacitor containing the carbonaceous material
CN107445163A (en) A kind of preparation method of bacteriostatic activated carbon
CN108455603A (en) Rich in mesoporous biological charcoal and preparation method thereof
Lobato-Peralta et al. Polymer superabsorbent from disposable diaper as a sustainable precursor for the development of stable supercapacitor electrode
JPWO2018155648A1 (en) Carbonaceous material and method for producing the same
Palanisamy et al. Synthesis of activated carbon from black liquor for the application of supercapacitor
Ngan et al. Production, characterization and alternative applications of biochar
Anis et al. Production of rubber seed pericarp based activated carbon using microwave-induced different chemical activating agent
Fu et al. Understanding evolution of the products and emissions during chemical activation of furfural residue with varied potassium salts
Sengottian et al. Optimization of alkali catalyzed hydrothermal carbonization of Prosopis juliflora woody biomass to biochar for copper and zinc adsorption and its application in supercapacitor
JP4919253B2 (en) Biological organic resource processing method and system
JP5177616B2 (en) Method for producing activated carbon
Bedane et al. Textural characteristics of activated carbons prepared from agricultural residues‐review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5177616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees