JP5176096B2 - Bone affinity agent containing carbon nanotubes, and materials and preparations using the same - Google Patents
Bone affinity agent containing carbon nanotubes, and materials and preparations using the same Download PDFInfo
- Publication number
- JP5176096B2 JP5176096B2 JP2006162182A JP2006162182A JP5176096B2 JP 5176096 B2 JP5176096 B2 JP 5176096B2 JP 2006162182 A JP2006162182 A JP 2006162182A JP 2006162182 A JP2006162182 A JP 2006162182A JP 5176096 B2 JP5176096 B2 JP 5176096B2
- Authority
- JP
- Japan
- Prior art keywords
- bone
- artificial
- carbon nanotubes
- affinity agent
- agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Materials For Medical Uses (AREA)
Description
本発明は、患者の損傷した関節又は骨を修復したり補強したり置換したりするために埋め込まれる生体組織代替用骨親和材料や、損傷した骨から新たな骨組織を形成させる医薬製剤のような整形外科用の材料や製剤に含有させて用いられる骨親和剤に関するものである。 The present invention relates to a biocompatible bone substitute material that is implanted to repair, reinforce, or replace a damaged joint or bone of a patient, and a pharmaceutical preparation that forms new bone tissue from damaged bone. The present invention relates to a bone-affinity agent used by being incorporated in a material or formulation for orthopedic surgery.
骨折で骨を損傷した患者に、チタン合金製のプレートや髄内釘やスクリューやワイヤのような骨接合固定具による骨の固定手術が施される。チタン合金製の骨接合固定具は、耐食性・生体適合性・骨親和性に優れる反面、金属疲労により破損したり、薄いプレートや細いスクリュー又はワイヤの強度不足のため破損したりする恐れがある。 Patients who have had their bones damaged by a fracture undergo bone fixation surgery using a titanium alloy plate, an intramedullary nail, an osteosynthesis tool such as a screw or wire. Titanium alloy osteosynthesis fixtures are excellent in corrosion resistance, biocompatibility, and bone compatibility, but may be damaged by metal fatigue or may be damaged due to insufficient strength of thin plates, thin screws, or wires.
又、変形性股関節症や関節リウマチなどの疾患により股関節を損傷した患者に、人工股関節で置換する整形外科手術が施される。このような人工股関節は、例えば骨盤側に取り付けられ球状でセラミックス製又は金属製のヘッド及びそれを覆うポリエチレン製ライナーや金属製ソケットを組み合わせた関節部材と、大腿骨側に取り付けられ関節部材に挿入される金属製のステムとからなるものである。この人工股関節を置換手術した後、数年経過して、その摺動部位でポリエチレン製ライナーが磨耗し骨融解を惹き起こす磨耗粉を生じたり、又は人工股関節が細菌に感染したりすると、再手術が必要となる。人工股関節が、アルミナセラミックスやジルコニアセラミックスのみで作製されていても、ポリエチレンほどではないにしても磨耗粉を生じるうえ、相転移して破損したり細菌に感染したりする。 In addition, orthopedic surgery for replacing the hip joint by a hip joint caused by diseases such as osteoarthritis and rheumatoid arthritis is performed. Such an artificial hip joint is, for example, a spherical joint made of a ceramic or metal head attached to the pelvis side and a polyethylene liner or metal socket covering it, and a femoral joint attached to the femoral side and inserted into the joint member. It consists of a metal stem. Several years after this hip replacement surgery, if the polyethylene liner is worn at the sliding part and wear powder causing osteolysis occurs, or if the hip joint is infected with bacteria, re-operation Is required. Even if the artificial hip joint is made of only alumina ceramics or zirconia ceramics, it generates wear powder even if not as much as polyethylene, and also causes phase transition and breakage or infection with bacteria.
このような人工股関節を骨に固定するために用いられるポリメチルメタクリレートのような骨セメントは、ひび割れや骨セメントと骨との間の緩みを生じたり、固定強度が不十分であったりする。 Bone cement such as polymethylmethacrylate used for fixing such an artificial hip joint to bone may cause cracks, loosening between the bone cement and bone, or insufficient fixing strength.
又、骨欠損部への骨移植や骨折後の骨癒合や脊椎又は橈骨遠位の骨折固定の際に用いられるハイドロキシアパタイトのような骨増量材料は、コンドロイチン硫酸ナトリウムと共に硬化させ骨に類似する無機質状態を形成するものであるが、固定強度が不十分である。 In addition, bone augmentation materials such as hydroxyapatite used for bone transplantation to bone defects, bone fusion after fracture, and fracture fixation at the distal part of the spine or radius are hardened together with sodium chondroitin sulfate and are similar to bone. Although it forms a state, the fixing strength is insufficient.
特許文献1に、生体吸収性有機多孔体と、三燐酸カルシウムやハイドロキシアパタイトのような骨親和性無機材料とが複合化した骨再生用基材が記載されている。一方、非特許文献2に、カーボンナノチューブを含んでいる医療器具のカテーテルが、開示されている。
Patent Document 1 describes a bone regeneration base material in which a bioabsorbable organic porous material is combined with an osteophilic inorganic material such as calcium triphosphate or hydroxyapatite. On the other hand, Non-Patent
骨の治療に用いられるもので、骨親和を有し、しかも骨形成を促進し、安全で早期治癒を可能にする生体組織代替用骨親和材料は、知られておらず、再生医療のためにその開発が望まれていた。 There is no known bone affinity material for bone tissue replacement that is used for bone treatment, has bone affinity, promotes bone formation, and enables safe and early healing. Its development was desired.
本発明は前記の課題を解決するためになされたもので、患者の損傷した骨の治療の際に用いられる生体組織代替用骨親和材料や医薬用製剤に含有させることができる骨親和剤を提供することを、目的とする。さらに、この骨親和剤を含有しており、生体に対する安全性が高く、耐久性・耐摩耗性がある骨親和性の材料や、安全で薬物輸送特性や骨形成性がある骨親和性の製剤を提供することを、目的とする。 The present invention has been made to solve the above-mentioned problems, and provides a bone affinity agent that can be contained in a bone affinity material or a pharmaceutical preparation for replacement of a biological tissue used in the treatment of bone damaged by a patient. The purpose is to do. In addition, this bone-compatible agent contains bone-compatible materials that are highly safe for the body, durable and wear-resistant, and bone-compatible preparations that are safe and have drug transport properties and osteogenic properties. The purpose is to provide
前記の目的を達成するためになされた特許請求の範囲の請求項1の骨親和剤は、カーボンナノチューブとコラーゲンとからなることによって生体の骨形成を促進する骨親和物質を含んでいることを特徴とする。 The bone affinity agent according to claim 1, which has been made to achieve the above object, includes a bone affinity substance that promotes bone formation in a living body by being composed of carbon nanotubes and collagen. And
カーボンナノチューブは、例えば気相法により製造される高結晶性のカーボンナノファイバーの一種で、繊維径1〜数100nmで、繊維長1〜数1000μmの物質である。 A carbon nanotube is a kind of highly crystalline carbon nanofiber produced by, for example, a gas phase method, and is a substance having a fiber diameter of 1 to several 100 nm and a fiber length of 1 to several 1000 μm.
請求項2に記載の骨親和剤は、請求項1に記載されたもので、前記カーボンナノチューブが、0.01〜500mg/mLの濃度で懸濁され、又は0.001〜50重量%の濃度で分散されていることを特徴とする。
The bone affinity agent according to
請求項3に記載の骨親和剤は、請求項1〜2の何れかに記載されたもので、界面活性剤を含んでいることを特徴とする。
請求項4に記載の生体組織代替用骨親和材料は、請求項1〜3の何れかに記載の骨親和剤が、人工関節、人工骨、骨接合固定具、人工歯牙、人工皮膚、人工血管、及び人工体液から選ばれる生体材料に含有され又は付されていることを特徴とする。
A bone affinity agent according to a third aspect is the one according to any one of the first to second aspects, and includes a surfactant.
The bone-compatible material for substitute for biological tissue according to
請求項5に記載の生体組織代替用骨親和材料は、請求項4に記載されたもので、前記生体材料が、前記人工関節、前記人工骨又は前記人工歯牙であって、ポリエチレン、アルミナセラミックス、ジルコニアセラミックス、チタン合金、骨セメント、ハイドロキシアパタイト、リン酸カルシウムセメントから選ばれる少なくとも何れかで、形成されていることを特徴とする。
The bone-compatible material for bone tissue replacement according to claim 5 is the bone affinity material according to
請求項6に記載の製剤は、請求項1〜3の何れかに記載の骨親和剤と、分散剤及び/又は媒質とを含有していることを特徴とする。
A preparation according to
請求項7に記載の製剤は、請求項6に記載されたもので、前記骨親和剤を、生体分解性樹脂粒子、合成樹脂粒子、又はリポソームに含有しており、骨組織に輸送することを特徴とする。
The formulation of claim 7, those described in
請求項8に記載の製剤は、請求項6〜7の何れかに記載されたもので、前記骨親和剤とともに、骨形成剤又は骨形成誘導細胞を含有していることを特徴とする。
The preparation according to
本発明の骨親和剤は、生体安全性が高く、患者の損傷した骨の治療の際に用いられる耐久性・耐摩耗性がある生体組織代替用骨親和材料や薬物輸送製剤に含有させることができる。 The bone-affinity agent of the present invention is highly safe in life and may be contained in a bone-affinity material or a drug transport formulation for replacement of a living tissue that is durable and wear-resistant and used in the treatment of bone damaged by a patient. it can.
それを含む材料や製剤は、損傷した骨の形成を促進して迅速な修復が可能で、長期間使用しても緩んだり破損したりしない。 Materials and formulations containing it can promote the formation of damaged bone and can be quickly repaired, and will not loosen or break even after prolonged use.
以下、本発明の実施例を詳細に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 Examples of the present invention will be described in detail below, but the scope of the present invention is not limited to these examples.
本発明の骨親和剤は、カーボンナノチューブからなる骨親和物質を含む分散液である。 The bone affinity agent of the present invention is a dispersion containing a bone affinity substance composed of carbon nanotubes.
カーボンナノチューブは、平均繊維径80〜150nm、平均繊維長10〜20μmのものが好ましく、具体的には、気相法炭素繊維であって、平均繊維径80nmで平均繊維長10〜20μmであるVGCF、平均繊維径150nmで平均繊維長10〜20μmであるVGCF−H(いずれも昭和電工株式会社製;VGCFは同社の登録商標)が挙げられる。 The carbon nanotube preferably has an average fiber diameter of 80 to 150 nm and an average fiber length of 10 to 20 μm. Specifically, the carbon nanotube is a vapor grown carbon fiber having an average fiber diameter of 80 nm and an average fiber length of 10 to 20 μm. VGCF-H (all manufactured by Showa Denko KK; VGCF is a registered trademark of the same company) having an average fiber diameter of 150 nm and an average fiber length of 10 to 20 μm.
カーボンナノチューブは、微細であって、凝集塊を形成し易いものである。そこで、骨親和剤は、カルボキシメチルセルロースナトリウムのようなイオン性界面活性剤、非イオン性界面活性剤等の界面活性剤を含んだ生理食塩水で、カーボンナノチューブを懸濁させた液状であることが好ましい。骨親和剤中で懸濁しているカーボンナノチューブの濃度は、0.01〜500mg/mLであると一層好ましい。界面活性剤は、細菌培養に影響を及ぼさないように0.04〜1.25重量%のカルボキシメチルセルロースナトリウムであることが好ましい。 Carbon nanotubes are fine and easily form aggregates. Therefore, the bone affinity agent should be a liquid in which carbon nanotubes are suspended in physiological saline containing a surfactant such as an ionic surfactant such as sodium carboxymethylcellulose or a nonionic surfactant. preferable. The concentration of the carbon nanotubes suspended in the bone affinity agent is more preferably 0.01 to 500 mg / mL. The surfactant is preferably 0.04-1.25 wt% sodium carboxymethylcellulose so as not to affect bacterial culture.
骨親和剤は、固体状であって、カーボンナノチューブと、それを分散させている媒質との混合物であってもよい。骨親和剤中で分散しているカーボンナノチューブの濃度は、0.01〜50重量%であることが好ましい。 The osteophilic agent may be a solid and may be a mixture of carbon nanotubes and a medium in which the carbon nanotubes are dispersed. The concentration of the carbon nanotubes dispersed in the bone affinity agent is preferably 0.01 to 50% by weight.
なお、骨親和剤は、カーボンナノチューブである骨親和物質のみからなっていてもよい。 Note that the bone affinity agent may consist only of a bone affinity substance that is a carbon nanotube.
この骨親和物質を媒質例えば賦形剤のような粉末に分散させた粉体であっても、分散させてから成形した成形体であってもよい。このような固体の粉体や成形体中、カーボンナノチューブの濃度は、0.001〜50重量%であることが好ましい。 It may be a powder in which this bone affinity substance is dispersed in a medium, for example, a powder such as an excipient, or may be a molded body that is molded after being dispersed. In such a solid powder or molded body, the concentration of carbon nanotubes is preferably 0.001 to 50% by weight.
本発明の生体組織代替用骨親和材料は、この骨親和剤が、生体材料中に含有されたり、生体表面から一部露出したり、生体材料表面に塗布されて付されたりしたものである。 The bone-compatible material for bone tissue replacement of the present invention is one in which this bone-compatible agent is contained in the biological material, partially exposed from the biological surface, or applied to the surface of the biological material.
人工関節、人工骨、人工歯牙のような生体材料は、強度が強く磨耗粉を生じ難い超高密度ポリエチレン(UHMWPE)、人工関節の摺動面に使用されるアルミナセラミックスやジルコニアセラミックス、人工関節・骨接合材料・脊椎固定材料として用いられる整形外科治療用のTi-6A-4Vのようなチタン合金、人工関節を骨に付けるポリメチルメタクリレートセメントのような骨セメント、骨移植の増量材料・代用材料であるハイドロキシアパタイト、脊椎・橈骨遠位の骨折固定の増量材とするためコンドロイチン硫酸ナトリウムに入れて数分で硬化するリン酸カルシウムセメントが、挙げられる。又、生体材料は、ペースメーカーで例示される人工心臓に用いられる金属や樹脂、人工血管に用いられるポリエステル繊維やポリテトラフルオロエチレンフィルム、人工皮膚に用いられるポリビニルアルコールやコラーゲンも、挙げられる。 Biomaterials such as artificial joints, artificial bones, and artificial teeth are made of ultra-high-density polyethylene (UHMWPE) that is strong and resistant to wear powder, alumina ceramics and zirconia ceramics used for sliding surfaces of artificial joints, artificial joints Titanium alloys such as Ti-6A-4V for orthopedic treatment used as osteosynthesis materials and spinal fixation materials, bone cements such as polymethylmethacrylate cement that attaches artificial joints to bones, bulking materials for bone grafts, and substitute materials Hydroxyapatite, a calcium phosphate cement that hardens in a few minutes when placed in sodium chondroitin sulfate for use as a bulking material for fixation of fractures of the spine and distal radius. Examples of biomaterials include metals and resins used for artificial hearts exemplified by pacemakers, polyester fibers and polytetrafluoroethylene films used for artificial blood vessels, and polyvinyl alcohol and collagen used for artificial skin.
本発明の製剤は、前記の骨親和剤と、分散剤及び/又は媒質とを含有したもので、液剤、顆粒剤、錠剤、散剤であってもよい。 The preparation of the present invention contains the above-mentioned bone affinity agent and a dispersant and / or medium, and may be a liquid, granule, tablet, or powder.
この製剤は、コラーゲン、懸濁させたポリ乳酸のような生体分解性樹脂粒子、ポリエチレンビーズのような合成樹脂粒子、脂肪やリン脂質でできたリポソームに、含有されたもので、カーボンナノチューブを内包したり、一部露出させたりしたもので、骨形成剤を治療すべき骨損傷部位へ特異的に輸送する製剤であってもよい。 This preparation is contained in collagen, biodegradable resin particles such as suspended polylactic acid, synthetic resin particles such as polyethylene beads, and liposomes made of fat and phospholipid. Or a partially exposed preparation that specifically transports the osteogenic agent to the site of bone injury to be treated.
この製剤は、前記の骨親和剤とともに、骨形成タンパク(BMP)のような骨形成剤や、幹細胞のような骨形成誘導細胞を含有していてもよい。さらにコラーゲンを有していてもよい。液状であってもよく、それを凍結乾燥して粉末状又はペレット状にしたものであってもよい。 This preparation may contain an osteogenic agent such as a bone morphogenetic protein (BMP) and an osteogenesis-inducing cell such as a stem cell together with the bone affinity agent. Furthermore, you may have collagen. It may be liquid, or may be lyophilized to form a powder or pellet.
以下に、本発明を適用する骨親和剤、それを用いた材料及び製剤を試作した例について説明する。 Below, the bone affinity agent to which this invention is applied, the material and formulation which used it are demonstrated as an example.
先ず、本発明を適用するカーボンナノチューブを含む液剤である骨親和剤の試験液と、本発明を適用外の製剤の比較試験液とを調製し、それを皮下組織に埋め込む生体適合性試験を行った例を示す。 First, a bone affinity test solution, which is a solution containing carbon nanotubes to which the present invention is applied, and a comparison test solution of a formulation to which the present invention is not applied are prepared, and a biocompatibility test is performed in which the test solution is embedded in subcutaneous tissue An example is shown.
(生体適合性試験用の骨親和剤の試験液及び比較試験液の調製例)
平均繊維径80nmで平均繊維長10〜20μmのカーボンナノチューブであるVGCF(昭和電工株式会社製)と、生理食塩水とを混合し、1体積%の骨親和剤の試験液を調製した。又、カーボンナノチューブに代えて、それとおよそ同じ大きさの径100nmで、骨親和性に優れると言われているアルミナセラミックス(タイミクロン;大明化学工業株式会社製)を用いたこと以外は、同様にして本発明外の製剤の比較試験液を調製した。
(Preparation example of bone affinity test solution and comparative test solution for biocompatibility test)
VGCF (manufactured by Showa Denko KK), which is a carbon nanotube having an average fiber diameter of 80 nm and an average fiber length of 10 to 20 μm, and physiological saline were mixed to prepare a test solution of 1% by volume of a bone affinity agent. Also, instead of carbon nanotubes, alumina ceramics (Tymicron; manufactured by Daimei Chemical Co., Ltd.), which is said to be about 100 nm in diameter and excellent in bone affinity, were used in the same manner. Thus, comparative test solutions for preparations other than the present invention were prepared.
なお、調製した各液は、オートクレーブにより121℃で15分間加熱滅菌され、1mL注射器で18ゲージ(G)の針を介し注入して、投与される。以下の液も同様である。 Each of the prepared solutions is sterilized by heating at 121 ° C. for 15 minutes by an autoclave, and is injected and injected through an 18 gauge (G) needle with a 1 mL syringe. The same applies to the following liquids.
(生体適合性試験)
6週齢ddyマウスを、10匹づつ3群に分けた。マウスの右背部に約1cmの縦切開を入れ、皮下組織を剥離し、試験液を移植するため深さ約3mmのポケットを作製した。
(Biocompatibility test)
Six-week-old ddy mice were divided into three groups of 10 mice. A longitudinal incision of about 1 cm was made in the right back of the mouse, the subcutaneous tissue was exfoliated, and a pocket with a depth of about 3 mm was made to implant the test solution.
第1群のマウスのポケットに、カーボンナノチューブを含有する骨親和剤の試験液5μLを注入し、試験群とした。第2群のマウスのポケットにアルミナセラミックスを含有する製剤の比較試験液5μLを注入し、コントロール群とした。第3群のマウスにポケットを作製した後、皮膚を縫合し、シャムオペレーション群とした。各群とも、1週間後と4週間後とに、5匹ずつから、ポケット周囲組織と共に皮下組織を摘出した。摘出した皮下組織を、固定、包埋後、ヘマトキシリンエオジン染色して組織標本を作製し、光学顕微鏡で観察した。さらに、同様にして作成した切片に、F4/80免疫染色を行い、マクロファージの集積を観察した。 A test group was prepared by injecting 5 μL of a bone affinity test solution containing carbon nanotubes into the pockets of the first group of mice. A control test group was prepared by injecting 5 μL of a comparative test solution of a preparation containing alumina ceramics into the pocket of the second group of mice. After creating a pocket in the third group of mice, the skin was sutured to form a sham operation group. In each group, subcutaneous tissues were removed together with the tissues around the pockets from 5 animals at 1 week and 4 weeks later. The excised subcutaneous tissue was fixed and embedded, and then stained with hematoxylin and eosin to prepare a tissue specimen and observed with an optical microscope. Furthermore, F4 / 80 immunostaining was performed on the sections prepared in the same manner, and accumulation of macrophages was observed.
その結果、コントロール群では、アルミナセラミックスの生体親和性が高いことに起因して、1週間後に、急性炎症細胞が殆ど認められず、マクロファージがアルミナセラミックスの周囲に僅かしか認められなかった。又、4週間後に、炎症細胞が殆ど認められなかった。 As a result, in the control group, due to the high biocompatibility of the alumina ceramics, almost no acute inflammatory cells were observed after one week, and only a few macrophages were observed around the alumina ceramics. Further, after 4 weeks, almost no inflammatory cells were observed.
未投与のシャムオペレーション群では、1週間後に急性炎症を示す好中球、リンパ球などの集積が殆ど認められなかった。又、4週間後に慢性炎症を示すリンパ球などの集積が殆ど認められなかった。 In the unadministered sham operation group, accumulation of neutrophils and lymphocytes showing acute inflammation after 1 week was hardly observed. In addition, accumulation of lymphocytes showing chronic inflammation was hardly observed after 4 weeks.
一方、カーボンナノチューブを含んだ骨親和剤を用いた試験群では、コントロール群やシャムオペレーション群と同様に、1週間後に皮下組織での急性、及び4週間後に慢性の炎症反応を惹起しておらず、異物反応が弱いことが分かった。マクロファージもコントロール群とほぼ同様に僅かである。従って、この骨親和剤は、安全性が高いものである。 On the other hand, in the test group using the bone affinity agent containing carbon nanotubes, as in the control group and the sham operation group, the acute inflammation in the subcutaneous tissue after 1 week and the chronic inflammatory reaction after 4 weeks were not induced. The foreign body reaction was weak. There are few macrophages in the same manner as in the control group. Therefore, this bone affinity agent has high safety.
次に骨親和剤中のカーボンナノチューブと骨との親和性を調べるため、骨親和剤をマウスの頭蓋骨の骨膜下へ埋め込む骨親和性試験を行った例を示す。 Next, in order to investigate the affinity between the carbon nanotubes in the bone affinity agent and the bone, an example of a bone affinity test in which the bone affinity agent is implanted under the periosteum of the skull of a mouse is shown.
(骨親和性試験)
前記の生体適合性試験用の骨親和剤と同様にして、カーボンナノチューブを含む骨親和剤の試験液を調製した。又、その試験液と同様にして、アルミナセラミックスを含むネガティブ比較試験液を調製した。さらに、それとおよそ同じ大きさの径100nmのラテックスビーズポリスチレン(Sigma社製)のものであって骨親和性が悪いと言われているポリスチレンビーズを同濃度含むポジティブ比較試験液を調製した。
(Bone affinity test)
A bone affinity test solution containing carbon nanotubes was prepared in the same manner as the biocompatible test bone affinity agent. Moreover, the negative comparison test liquid containing an alumina ceramic was prepared like the test liquid. Furthermore, a positive comparative test solution containing the same concentration of polystyrene beads, which are about the same size as that of latex bead polystyrene (manufactured by Sigma) and are said to have poor bone affinity, was prepared.
6週齢ddyマウスを、10匹づつ4群に分けた。マウスの頭頂部に1cmの横切開を入れ、頭蓋骨を露出し、頭蓋骨正中部の骨膜を剥離して、深さ約5mmのポケットを作製した。 Six-week-old ddy mice were divided into four groups of 10 mice. A 1 cm lateral incision was made at the top of the mouse to expose the skull, and the periosteum at the midline of the skull was peeled to create a pocket having a depth of about 5 mm.
第1群のマウスのポケットに、カーボンナノチューブを含有する骨親和剤の試験液5μLを注入し、試験群とした。第2群のマウスのポケットに、アルミナセラミックスを含むネガティブ比較試験液5μLを注入し、ネガティブコントロール群とした。第3群のマウスのポケットに、ポリスチレンビーズを含むポジティブ比較試験液5μLを注入し、ポジティブコントロール群とした。第4群のマウスのポケットを作製した後、皮膚を縫合し、シャムオペレーション群とした。各群とも、1週間後と4週間後とに、5匹ずつから、ポケット周囲組織と共に頭蓋骨を摘出した。摘出した頭蓋骨を、固定、包埋後、ヘマトキシリンエオジン染色して組織標本を作製し、光学顕微鏡で観察した。さらに、同様にして作成した切片にF4/80免疫染色を行い、マクロファージの集積を観察した。なお、バックをヘマトキシリン染色した。 A test group was prepared by injecting 5 μL of a bone affinity test solution containing carbon nanotubes into the pockets of the first group of mice. A negative control group was injected by injecting 5 μL of a negative comparison test solution containing alumina ceramics into the pockets of the second group of mice. A positive control group was injected by injecting 5 μL of a positive comparison test solution containing polystyrene beads into the pocket of the third group of mice. After creating the pockets of the fourth group of mice, the skin was sutured to form a sham operation group. In each group, skulls were extracted from the 5 animals at 1 week and 4 weeks together with tissues around the pockets. The extracted skull was fixed and embedded, and then stained with hematoxylin and eosin to prepare a tissue specimen and observed with an optical microscope. Furthermore, F4 / 80 immunostaining was performed on the sections prepared in the same manner, and accumulation of macrophages was observed. The back was stained with hematoxylin.
その結果、未投与のシャムオペレーション群では、皮質骨が保たれ、1週間で骨膜組織がほぼ修復されており、急性炎症を示す好中球、リンパ球などの集積が殆ど認められなかった。4週間で骨膜組織は完全に修復されていた。 As a result, in the unadministered sham operation group, cortical bone was maintained, and the periosteal tissue was almost repaired in one week, and accumulation of neutrophils, lymphocytes and the like showing acute inflammation was hardly observed. In 4 weeks, the periosteal tissue was completely repaired.
ポリスチレンビーズを含むポジティブ比較試験液によるポジティブコントロール群では、1週間後に骨膜の骨形成層が破壊され、皮質骨の表面がすでに侵食されており、4週間後に骨膜の骨形成層である骨組織が大きく破壊され、皮質骨の表面が侵食された部分に破骨細胞と多くの炎症細胞とが認められた。 In the positive control group with a positive comparative test solution containing polystyrene beads, the bone formation layer of the periosteum was destroyed after 1 week, the surface of the cortical bone was already eroded, and the bone tissue that was the bone formation layer of the periosteum after 4 weeks. Osteoclasts and many inflammatory cells were found in the area where the surface of the cortical bone was eroded and was greatly destroyed.
アルミナセラミックスを含むネガティブ比較試験液によるネガティブコントロール群では、直下の皮質骨は保たれ、1週間後及び4週間後とも、アルミナセラミックスが骨膜下に留まり、骨形成層や皮質骨を侵食していなかった。4週間後に、内部へアルミナセラミックスが入った状態で、骨膜が修復されていた。 In the negative control group with a negative comparative test solution containing alumina ceramics, the cortical bone directly below was maintained, and after 1 and 4 weeks, the alumina ceramics remained under the periosteum and did not erode the bone formation layer or cortical bone. It was. Four weeks later, the periosteum was repaired with alumina ceramic inside.
一方、カーボンナノチューブを含んだ骨親和剤を用いた試験群では、アルミナセラミックスの場合と同様に、1週間後、直下の皮質骨は保たれ、カーボンナノチューブが骨膜下に留まり、4週間で骨膜組織は正常に修復され、骨膜下にカーボンナノチューブが入り込んで、骨組織と接するようになり、又、骨形成層や皮質骨を侵食しておらず、骨組織に何の影響も及ぼしていなかった。 On the other hand, in the test group using the bone affinity agent containing carbon nanotubes, as in the case of alumina ceramics, after 1 week, the cortical bone immediately below was kept, and the carbon nanotubes remained under the periosteum, and in 4 weeks, the periosteal tissue Was repaired normally, carbon nanotubes entered under the periosteum and came into contact with the bone tissue, and did not erode the bone-forming layer or cortical bone, and had no effect on the bone tissue.
従って、この骨親和剤のカーボンナノチューブは、骨組織との親和性が極めて良い。 Therefore, the carbon nanotube of this bone affinity agent has extremely good affinity with bone tissue.
次に、骨親和剤中のカーボンナノチューブによる骨組織の修復に及ぼす影響を調べるため、骨親和剤をマウスの脛骨の骨欠損部に埋め込む骨修復性試験を行った例を示す。 Next, in order to examine the effect of carbon nanotubes in a bone affinity agent on the repair of bone tissue, an example of a bone repairability test in which a bone affinity agent is implanted in a bone defect portion of a mouse tibia will be shown.
(骨修復性試験)
前記の生体適合性試験用の骨親和剤と同様にして、カーボンナノチューブを含む骨親和剤の試験液を調製した。又、その比較試験液と同様にして、アルミナセラミックスを含むネガティブ比較試験液とを調製した。さらに、同サイズで同濃度の前記と同種のポリスチレンビーズを含むポジティブ比較試験液を調製した。
(Bone repair test)
A bone affinity test solution containing carbon nanotubes was prepared in the same manner as the biocompatible test bone affinity agent. Further, in the same manner as the comparative test solution, a negative comparative test solution containing alumina ceramics was prepared. Furthermore, a positive comparison test solution containing the same kind of polystyrene beads of the same size and concentration as described above was prepared.
6週齢ddyマウスを、10匹づつ4群に分けた。マウスの右下腿前面に、約1cmの縦切開を入れ、脛骨前面を露出し、右脛骨の骨幹部に、直径0.7mmのK−ワイヤで、深さ1.5mmの骨孔を開けた。 Six-week-old ddy mice were divided into four groups of 10 mice. A longitudinal incision of about 1 cm was made in the front surface of the right lower leg of the mouse, the front surface of the tibia was exposed, and a bone hole having a depth of 1.5 mm was opened in the diaphysis of the right tibia with a K-wire having a diameter of 0.7 mm.
第1群のマウスの骨孔に、含有する骨親和剤の試験液5μLを注入し、試験群とした。第2群のマウスの骨孔に、アルミナセラミックスを含むネガティブ比較試験液5μLを注入し、ネガティブコントロール群とした。第3群のマウスの骨孔に、ポリスチレンビーズを含むポジティブ比較試験液5μLを注入し、ポジティブコントロール群とした。第4群のマウスに骨孔を開けた後、皮膚を縫合し、シャムオペレーション群とした。各群とも、1週間後と4週間後とに、5匹ずつから、周囲組織と共に脛骨を摘出した。摘出した脛骨を、固定、包埋後、ヘマトキシリンエオジン染色して組織標本を作製し、光学顕微鏡で観察した。さらに、4週後の骨修復部の電子顕微鏡用標本を作製し、透過型電子顕微鏡で、骨組織の接合部を観察した。 A test group was prepared by injecting 5 μL of the bone affinity test solution contained in the bone hole of the first group of mice. 5 μL of negative comparative test solution containing alumina ceramics was injected into the bone hole of the second group of mice to form a negative control group. A 5 μL positive comparison test solution containing polystyrene beads was injected into the bone hole of the third group of mice to form a positive control group. After making a bone hole in the fourth group of mice, the skin was sutured to form a sham operation group. In each group, the tibia was removed together with the surrounding tissue from 5 animals at 1 week and 4 weeks later. The excised tibia was fixed and embedded, and then stained with hematoxylin and eosin to prepare a tissue specimen and observed with an optical microscope. Furthermore, a specimen for an electron microscope of a bone repair part after 4 weeks was prepared, and a joint part of the bone tissue was observed with a transmission electron microscope.
その結果、未投与のシャムオペレーション群では、1週間後、欠損部に旺盛な骨形成を示し、4週間後には、骨修復が完成し、骨皮質が形成され、骨髄腔が連続してほぼ正常な脛骨に修復されていた。 As a result, the untreated sham operation group showed vigorous bone formation in the defect after 1 week, and after 4 weeks, bone repair was completed, bone cortex was formed, and the bone marrow cavity was continuously normal. The tibia was repaired.
ポリスチレンビーズを含むポジティブ比較試験液によるポジティブコントロール群では、1週間後、骨欠損部にリンパ球など多くの急性炎症細胞を認め、新生骨が少なく、骨修復は遅延しており、4週間後に、骨孔が修復されておらず、骨新生が中断して、炎症細胞を伴う肉芽組織で埋まっていた。 In the positive control group with a positive comparative test solution containing polystyrene beads, after one week, many acute inflammatory cells such as lymphocytes were observed in the bone defect, there were few new bones, bone repair was delayed, and after 4 weeks, The bone hole was not repaired and bone formation was interrupted and buried with granulation tissue with inflammatory cells.
アルミナセラミックスを含むネガティブ比較試験液によるネガティブコントロール群では、シャムオペレーション群と同様、1週間後に欠損部に骨修復を認め、骨修復が進行し、アルミナセラミックスが形成された新生骨と直接結合して骨内に封入されていた。4週間後に、欠損部の骨修復が完成し、修復された骨皮質にアルミナセラミックスが入り込み、骨組織に直接結合していた。骨皮質も骨髄腔も連続して形成され、アルミナセラミックスが、形成された皮質骨の骨組織に直接結合して、骨内に封入されていた。 In the negative control group with a negative comparison test solution containing alumina ceramics, bone repair was observed in the defect after one week, as in the sham operation group, bone repair progressed, and it joined directly to the new bone formed with alumina ceramics. Encapsulated in bone. Four weeks later, the bone repair of the defect was completed, and alumina ceramics entered the repaired bone cortex and was directly bonded to the bone tissue. Both the bone cortex and bone marrow cavity were formed continuously, and alumina ceramics were directly bound to the bone tissue of the formed cortical bone and enclosed in the bone.
一方、カーボンナノチューブを含んだ骨親和剤を用いた試験群では、1週間後に炎症細胞は認められず、旺盛な骨修復像を認め、カーボンナノチューブが新生骨に取り込まれていた。カーボンナノチューブは形成された骨組織と直接結合して、骨内に封入されていた。4週間で皮質骨と骨髄腔とが完全に修復され、カーボンナノチューブが骨組織に取り込まれていた。カーボンナノチューブは、骨組織に直接結合し、骨内に封入されていた。電子顕微鏡での観察でもカーボンナノチューブと骨組織の間に空隙を認めず、完全に一体化していた。 On the other hand, in the test group using the bone affinity agent containing carbon nanotubes, no inflammatory cells were observed after 1 week, and a vigorous bone repair image was observed, and the carbon nanotubes were taken into the new bone. The carbon nanotubes were directly bound to the formed bone tissue and enclosed in the bone. In 4 weeks, the cortical bone and bone marrow cavity were completely repaired, and carbon nanotubes were taken into the bone tissue. The carbon nanotubes were directly bonded to the bone tissue and encapsulated in the bone. Even when observed with an electron microscope, no gaps were observed between the carbon nanotubes and the bone tissue, and they were completely integrated.
従って、この骨親和剤のカーボンナノチューブは、骨修復を阻害せず、むしろ骨修復を促進するものである。しかも、骨親和剤のカーボンナノチューブは、骨組織と直接結合して骨に取り込まれるので、骨組織に固定する生体材料に含ませると、骨形成に極めて有効であることが示された。 Therefore, the carbon nanotube of this bone affinity agent does not inhibit bone repair, but rather promotes bone repair. In addition, since the carbon nanotube of the bone affinity agent is directly bound to the bone tissue and taken into the bone, it has been shown that it is extremely effective for bone formation when included in a biomaterial fixed to the bone tissue.
次に、骨親和剤中のカーボンナノチューブとコラーゲンとの複合体を、骨組織への骨親和剤輸送製剤として調製し、それを用いて骨形成タンパク(BMP)によるマウス背筋内での異所骨形成性試験を行った例を示す。 Next, a composite of a carbon nanotube and collagen in a bone affinity agent is prepared as a bone affinity agent transport formulation to bone tissue, and using this, an ectopic bone in the back muscle of the mouse by bone morphogenetic protein (BMP) is used. The example which performed the formation test is shown.
(骨親和剤輸送製剤の試験製剤及び比較試験製剤の調製例)
液状のI型アテロコラーゲン(セルマトリックス)(新田ゼラチン株式会社製)の2mgと、カーボンナノチューブVGCF(昭和電工株式会社製;登録商標)の0.75μgからなる骨親和剤とを10μLの1%界面活性剤入り生理食塩水に混合し、さらに骨形成タンパクrhBMP−2(BMP)(Genetics社製)の5μgを混合した後、凍結乾燥して、骨親和剤輸送製剤をペレットとして調製した。なお、カーボンナノチューブを用いないこと以外は同様にして、対照の製剤を作製した。
(Examples of preparation of bone affinity transport drug test preparation and comparative test preparation)
10 μL of 1% interface between 2 mg of liquid type I atelocollagen (cell matrix) (Nitta Gelatin Co., Ltd.) and 0.75 μg of carbon nanotube VGCF (Showa Denko Co., Ltd .; registered trademark) The mixture was mixed with physiological saline containing an active agent, and further 5 μg of the bone morphogenetic protein rhBMP-2 (BMP) (manufactured by Genetics) was mixed, followed by lyophilization to prepare a bone affinity transporting preparation as a pellet. A control preparation was prepared in the same manner except that no carbon nanotube was used.
(異所骨形成性試験)
6週齢オスddyマウスを、10匹づつ2群に分けた。マウス背中の正中に約1.5cmの縦切開を入れ、左背筋筋膜を切開し、筋膜下に、長さ6mmで深さ8mmのポケットを作成した。この骨親和剤輸送製剤及び対照の製剤を、各群のマウスのポケットに埋め込み、3週間後に、背筋内に形成された異所骨を周辺組織と共に摘出した。
(Ectopic bone formation test)
Six-week-old male ddy mice were divided into two groups of 10 mice. A longitudinal incision of about 1.5 cm was made in the middle of the back of the mouse, the left back fascia was incised, and a 6 mm long and 8 mm deep pocket was created under the fascia. The osteophilic agent transport preparation and the control preparation were embedded in the pockets of each group of mice, and 3 weeks later, the ectopic bone formed in the back muscle was removed together with the surrounding tissues.
骨親和剤輸送製剤を用いた異所骨は、対照の製剤を用いた異所骨よりも、粒径の大きな骨が形成されていた。又、摘出した異所骨を、軟X線撮影装置(SOFTEX社製、製品番号:ソフロンSRO-M50)により軟X線写真像を撮影し、観察した。さらに摘出した異所骨を、固定、包埋後、ヘマトキシリンエオジン染色して組織標本を作製し、光学顕微鏡で観察した。その組織像は、カーボンナノチューブを含む骨親和剤輸送製剤及びそれを含まない対照の製剤を用いた両群のマウスとも、正常な骨梁と造血性の骨髄からなる正常な骨組織であることを示していた。骨親和剤輸送製剤を用いた場合の方が、対照の製剤と比べて骨梁が太く密であった。又、骨親和剤輸送製剤を用いた場合、カーボンナノチューブが骨梁内に入り込み、一体化している像が認められた。しかも、炎症は認めらない。 In the ectopic bone using the bone affinity transport preparation, bone having a larger particle diameter was formed than the ectopic bone using the control preparation. Further, the extracted ectopic bone was observed by observing a soft X-ray photograph image with a soft X-ray imaging apparatus (manufactured by SOFTEX, product number: Soflon SRO-M50). Further, the removed ectopic bone was fixed and embedded, and then stained with hematoxylin and eosin to prepare a tissue specimen and observed with an optical microscope. The histology shows that both groups of mice using a bone-affinity agent transport formulation containing carbon nanotubes and a control formulation not containing it have normal bone tissue consisting of normal trabecular bone and hematopoietic bone marrow. Was showing. The bone trabecula transported preparation was thicker and denser than the control preparation. In addition, when the bone affinity transporting preparation was used, an image in which the carbon nanotubes entered the trabecular bone and were integrated was observed. Moreover, no inflammation is observed.
さらに、摘出した異所骨の新生骨の骨塩量及び骨密度を骨塩定量装置(ALOKA社製、製品番号:DCS-600)により計測し、骨面積をスキャンエリアのプロッティングにより計測した。その結果を図1に示す。 Further, the bone mineral content and bone density of the removed new bone of the ectopic bone were measured with a bone mineral meter (ALOKA, product number: DCS-600), and the bone area was measured by scanning area plotting. The result is shown in FIG.
図1から明らかなように、カーボンナノチューブを含む骨親和剤輸送製剤は、それを含まない対照の製剤よりも、骨塩量、骨密度、骨面積ともに、高値を示していた。 As is apparent from FIG. 1, the bone affinity transport composition containing carbon nanotubes showed higher values for bone mineral content, bone density, and bone area than the control preparation containing no carbon nanotube.
これらのことから、カーボンナノチューブはBMPとコラーゲンとによる異所性骨形成を促進し、大きく密度の高い骨を作ることが明らかになった。 From these facts, it has been clarified that carbon nanotubes promote ectopic bone formation by BMP and collagen and produce large and dense bones.
その理由の詳細は必ずしも明らかではなく今後、更に検討すべきであるが、カーボンナノチューブが、コラーゲンのもつBMPを保持して徐放するという薬物輸送剤としての能力を増幅したため、又はカーボンナノチューブそのものがBMPを保持し徐放する能力を有しているため、又はカーボンナノチューブにより骨形成の足場が強化されたため、又は骨形成に重要な血管新生に好影響を及ぼしたためと、推察される。 The details of the reason are not necessarily clear and should be further studied in the future. However, because carbon nanotubes have amplified the ability as a drug transporter to hold and release BMP of collagen, or the carbon nanotubes themselves It is inferred that it has the ability to retain and release BMP, or because the bone formation scaffold was strengthened by carbon nanotubes, or because it had a positive effect on angiogenesis that is important for bone formation.
次に骨親和剤の抗菌性を調べるため、本発明を適用する骨親和剤の試験液と、本発明を適用外の骨親和剤の比較試験液とを調製し、抗菌性試験を行った例を、示す。 Next, in order to investigate the antibacterial properties of the bone affinity agent, an antibacterial property test was conducted by preparing a bone affinity agent test solution to which the present invention was applied and a bone affinity comparison test solution to which the present invention was not applied. Is shown.
カーボンナノチューブVGCF又はVGCF−H(いずれも昭和電工株式会社製)の8mg、40mg及び200mgを、夫々生理食塩水の10mLに懸濁させ、カーボンナノチューブVGCF又はVGCF−Hの試験液を調製した。 8 mg, 40 mg and 200 mg of carbon nanotube VGCF or VGCF-H (all manufactured by Showa Denko KK) were suspended in 10 mL of physiological saline, respectively, to prepare a test solution for carbon nanotube VGCF or VGCF-H.
一方、生理食塩水に代えて、0.05重量%のカルボキシメチルセルロース(CMC)含有生理食塩水の10mLを用いたこと以外はVGCF又はVGCF−Hの試験液と同様にしてカーボンナノチューブVGCF又はVGCF−H及びCMCの試験液を調製した。VGCFに代えて、平均粒径100nmのアルミナセラミックス(タイミクロン;大明化学工業株式会社製)を用いたこと以外はVGCFの試験液と同様にしてアルミナセラミックスの比較試験液を調製した。又、生理食塩水に代えて、0.05重量%のカルボキシメチルセルロース含有生理食塩水の10mLを用いたこと以外はVGCFの試験液と同様にしてアルミナセラミッスク及びCMCの比較試験液を得た。VGCFと生理食塩水とに代えて、Mueller Hinton培養液(栄研化学株式会社製)を用いたこと以外はVGCFの試験液と同様にして、対照液を得た。 On the other hand, carbon nanotubes VGCF or VGCF- were used in the same manner as the test solution for VGCF or VGCF-H except that 10 mL of 0.05% by weight carboxymethylcellulose (CMC) -containing physiological saline was used instead of physiological saline. Test solutions for H and CMC were prepared. A comparative test solution for alumina ceramics was prepared in the same manner as the test solution for VGCF except that alumina ceramics (Tymicron; manufactured by Daimei Chemical Co., Ltd.) having an average particle size of 100 nm were used instead of VGCF. Further, a comparative test solution of alumina ceramics and CMC was obtained in the same manner as the test solution of VGCF except that 10 mL of 0.05% by weight carboxymethylcellulose-containing physiological saline was used instead of physiological saline. A control solution was obtained in the same manner as the VGCF test solution, except that Mueller Hinton broth (Eiken Chemical Co., Ltd.) was used instead of VGCF and physiological saline.
得られた骨親和剤の試験液と対照液とを、夫々50μLづつ培養プレートのホールに加えた。細菌である黄色ブドウ球菌(Staphylococcus aureus)を20時間、前培養し、9.0×108cell/mLとした後、Mueller Hinton培養液で、2.0×107cell/mLに希釈し、細菌培養液とした。細菌培養液の50μLを、前記培養プレートの各ホールに添加し、夫々合計で100μLにした後、8時間インキュベーションを行った。さらに前記培養プレートの各ホールに、生存する細菌が細菌数に比例して産生するATPに濃度依存して発光する薬剤であるBacTiter-GLO(プロメガ株式会社製;商品名)を、100μLづつ加えた。撹拌後、遠心分離器にかけて、カーボンナノチューブ又はアルミナセラミックスと細菌とを沈殿させ、上澄液の発光度を測定した。夫々試験検体数n=3で行った。なお、比較のため、対照液を用い細菌培養液を添加しなかったこと以外は同様にして、発光度を測定した。その結果を図2に纏めて示す。 The obtained bone affinity test solution and control solution were added to the holes of the culture plate by 50 μL each. The bacteria Staphylococcus aureus was pre-cultured for 20 hours to 9.0 × 10 8 cells / mL, then diluted to 2.0 × 10 7 cells / mL with Mueller Hinton medium, A bacterial culture was used. 50 μL of the bacterial culture was added to each hole of the culture plate to make a total of 100 μL, followed by incubation for 8 hours. Furthermore, 100 μL of BacTiter-GLO (Promega Co., Ltd .; trade name), a drug that emits light depending on the concentration of ATP produced by living bacteria in proportion to the number of bacteria, was added to each hole of the culture plate. . After stirring, the mixture was centrifuged to precipitate carbon nanotubes or alumina ceramics and bacteria, and the luminescence of the supernatant was measured. Each was performed with the number of test samples n = 3. For comparison, the luminescence was measured in the same manner except that the control solution was used and no bacterial culture was added. The results are summarized in FIG.
図2から明らかな通り、カーボンナノチューブを含む骨親和剤である試験液は、カーボンナノチューブの濃度に依存して、優れた抗菌性を示した。特に界面活性剤としてカルボキシメチルセルロースナトリウムを共存させると、抗菌性が一層増強する。それに対し、アルミナセラミックスを含む比較試験液では、抗菌性を示さなかった。 As is clear from FIG. 2, the test solution which is a bone affinity agent containing carbon nanotubes showed excellent antibacterial properties depending on the concentration of carbon nanotubes. In particular, the presence of sodium carboxymethylcellulose as a surfactant further enhances antibacterial properties. On the other hand, the comparative test solution containing alumina ceramics did not show antibacterial properties.
骨親和剤が抗菌作用を発現する作用機序の詳細は必ずしも明らかでないが、カーボンナノチューブが、細菌を吸着して不活性化したり、細菌の繁殖に必要な栄養を吸着して細菌の増殖を抑制したりするためであると、推察される。 Although the details of the mechanism of action of bone affinity agents are not always clear, carbon nanotubes adsorb bacteria and inactivate them, or adsorb nutrients necessary for bacterial growth and suppress bacterial growth It is guessed that it is to do.
前記のような各試験により、カーボンナノチューブは、生体内で炎症反応を惹起しないばかりでなく、異物反応が少ないこと、骨組織との適合性がよく骨融解など骨に悪い影響を与えないこと、骨修復を阻害せず骨組織と直接結合して骨に取り込まれること、BMPによる骨形成を促進すること、さらに抗菌性を有することの多様な薬理作用を有しているということが明らかになった。 By each test as described above, the carbon nanotubes not only cause an inflammatory reaction in the living body, but also have little foreign body reaction, good compatibility with bone tissue and no adverse effects on bone such as osteolysis, It has been revealed that it has various pharmacological actions such as being directly incorporated into bone tissue without inhibiting bone repair, being taken into bone, promoting bone formation by BMP, and having antibacterial properties. It was.
カーボンナノチューブを単独又は複合体にして含んでいる骨親和剤は、体内に埋め込むタイプのペースメーカー、人工関節、人工骨、骨接合固定具、人工骨、人工皮膚、人工血管、及び人工体液様々な生体組織代替用骨親和材料に含有させて用いることができる。 The bone affinity agent containing carbon nanotubes alone or in combination is a type of pacemaker implanted in the body, artificial joints, artificial bones, osteosynthesis fixtures, artificial bones, artificial skins, artificial blood vessels, and artificial body fluids. It can be used by being contained in a bone-compatible material for tissue replacement.
この骨親和剤は、カーボンナノチューブと骨組織との適合性がよく、骨融解などのような骨への悪影響を与えないことから、骨組織と接する生体材料である骨折治療用のプレートやスクリュー等の骨接合固定具、人工関節、人工骨、人工骨などに含有させて用いることができる。 This bone affinity agent has good compatibility between carbon nanotubes and bone tissue, and does not adversely affect bones such as osteolysis. Therefore, plates and screws for fracture treatment, which are biomaterials that come into contact with bone tissue, etc. It can be used by being incorporated in an osteosynthesis fixture, artificial joint, artificial bone, artificial bone or the like.
又、骨親和剤は、カーボンナノチューブが骨修復を阻害せずに、骨組織と直接結合して骨に取り込まれ骨組織の修復や新生骨の形成を促進するから、これらの生体材料に含有させて骨折治癒を早めるプレートやスクリュー、周囲の骨欠損を骨としっかり固定して緩まない人工関節などに利用できる。 In addition, the bone affinity agent is incorporated into these biomaterials because the carbon nanotubes are directly incorporated into the bone tissue without inhibiting the bone repair and are taken into the bone to promote the repair of the bone tissue and the formation of new bone. It can be used for plates and screws that accelerate fracture healing and artificial joints that do not loosen by firmly fixing the surrounding bone defect to the bone.
さらに、この骨親和剤は、BMPによる異所性骨形成を促進するから、骨の再生医療を行うために、BMPなどのサイトカインによる骨再生、幹細胞などを用いた細胞治療、さらに遺伝子治療などを行う際、カーボンナノチューブを単独で用いたりコラーゲンなどとの複合体にして用い、骨形成を促進する足場を形成する医薬製剤として、又薬物輸送剤として、利用できる。 Furthermore, since this bone affinity agent promotes ectopic bone formation by BMP, in order to perform bone regenerative medicine, bone regeneration by cytokines such as BMP, cell therapy using stem cells, etc., gene therapy, etc. When performing, carbon nanotubes can be used alone or in a complex with collagen or the like, and can be used as a pharmaceutical preparation for forming a scaffold for promoting bone formation or as a drug transporter.
この骨親和剤を含有する機能性材料や生体材料を用いた生体組織代替用骨親和材料や医薬用製剤は、骨代謝異常診療や整形外科診療の際に施される再生医療、とりわけ骨組織再生医療に、有用である。 Bone-compatible materials and pharmaceutical preparations for replacement of biological tissues using functional materials and biomaterials containing this bone-compatible agent are used in regenerative medicine, especially bone tissue regeneration, which is performed during bone metabolism abnormalities and orthopedics. Useful for medical care.
Claims (8)
The preparation according to any one of claims 6 to 7, comprising an osteogenic agent or osteogenesis-inducing cells together with the osteophilic agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006162182A JP5176096B2 (en) | 2006-06-12 | 2006-06-12 | Bone affinity agent containing carbon nanotubes, and materials and preparations using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006162182A JP5176096B2 (en) | 2006-06-12 | 2006-06-12 | Bone affinity agent containing carbon nanotubes, and materials and preparations using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007330308A JP2007330308A (en) | 2007-12-27 |
JP5176096B2 true JP5176096B2 (en) | 2013-04-03 |
Family
ID=38930355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006162182A Active JP5176096B2 (en) | 2006-06-12 | 2006-06-12 | Bone affinity agent containing carbon nanotubes, and materials and preparations using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5176096B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007332040A (en) * | 2006-06-12 | 2007-12-27 | Shinshu Univ | Microbicide containing carbon nanotube and material and pharmaceutical preparation using the same |
KR101393592B1 (en) | 2012-03-06 | 2014-05-14 | 한양대학교 산학협력단 | Artificial bone having excellent duration and manufacturing method for the same |
CN103007357B (en) * | 2012-12-25 | 2014-04-16 | 福建省博特生物科技有限公司 | Application of carbon nano tube/collagen based composite material |
CN109053939B (en) * | 2018-07-04 | 2020-11-10 | 许昌学院 | Nano composite bone cement and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1141980C (en) * | 2002-05-10 | 2004-03-17 | 清华大学 | Nano carbon tube reinforced high-molecular composition for repairing bone |
CN1453420A (en) * | 2003-05-30 | 2003-11-05 | 武汉大学 | Cotton fabric capable of isolating and killing virus and bacteria and its making process and use |
JP2006219307A (en) * | 2005-02-08 | 2006-08-24 | Mitsubishi Rayon Co Ltd | Porous calcium phosphate ceramic/carbon nanotube composition and method for producing the same |
JP4238367B2 (en) * | 2005-04-05 | 2009-03-18 | 国立大学法人東北大学 | Composite material comprising carbon nanotube and hydroxyapatite and method for producing the same |
JP2007332040A (en) * | 2006-06-12 | 2007-12-27 | Shinshu Univ | Microbicide containing carbon nanotube and material and pharmaceutical preparation using the same |
-
2006
- 2006-06-12 JP JP2006162182A patent/JP5176096B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007330308A (en) | 2007-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | In vitro and in vivo study of 3D-printed porous tantalum scaffolds for repairing bone defects | |
Hasan et al. | Advances in osteobiologic materials for bone substitutes | |
Liu et al. | Development of clinically relevant scaffolds for vascularised bone tissue engineering | |
von Wilmowsky et al. | Implants in bone: Part I. A current overview about tissue response, surface modifications and future perspectives | |
Elmengaard et al. | In vivo effects of RGD‐coated titanium implants inserted in two bone‐gap models | |
Simske et al. | Porous materials for bone engineering | |
Elmengaard et al. | In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants | |
Fada et al. | Mechanical properties improvement and bone regeneration of calcium phosphate bone cement, Polymethyl methacrylate and glass ionomer | |
Walsh et al. | The in vivo response to a novel Ti coating compared with polyether ether ketone: evaluation of the periphery and inner surfaces of an implant | |
Drnovšek et al. | Bioactive glass enhances bone ingrowth into the porous titanium coating on orthopaedic implants | |
Rammelt et al. | In vivo effects of coating loaded and unloaded Ti implants with collagen, chondroitin sulfate, and hydroxyapatite in the sheep tibia | |
Gao et al. | Nanotechnology for treating osteoporotic vertebral fractures | |
Guo et al. | Study of bone regeneration and osteointegration effect of a novel selective laser-melted titanium-tantalum-niobium-zirconium alloy scaffold | |
JP2007332040A (en) | Microbicide containing carbon nanotube and material and pharmaceutical preparation using the same | |
Kawai et al. | Bone-bonding properties of Ti metal subjected to acid and heat treatments | |
Bandopadhyay et al. | Current research perspectives of orthopedic implant materials | |
Szivek et al. | Mesenchymal stem cell seeded, biomimetic 3D printed scaffolds induce complete bridging of femoral critical sized defects | |
Agrawal et al. | Osteoinductive and osteoconductive biomaterials | |
Filardo et al. | Vegetable hierarchical structures as template for bone regeneration: New bio‐ceramization process for the development of a bone scaffold applied to an experimental sheep model | |
Zhang et al. | Biomaterials for interbody fusion in bone tissue engineering | |
JP5176096B2 (en) | Bone affinity agent containing carbon nanotubes, and materials and preparations using the same | |
Fendi et al. | Development and application of hydroxyapatite-based scaffolds for bone tissue regeneration: A systematic literature review | |
Williams et al. | The 5 hallmarks of biomaterials success: an emphasis on orthopaedics | |
Lange et al. | Granular tricalcium phosphate in large cancellous defects | |
O’Sullivan et al. | Inorganic biomaterials to support the formation and repair of bone tissue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120313 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120510 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120612 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120912 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20121016 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121211 |