JP5173782B2 - Groundwater flow conservation method - Google Patents

Groundwater flow conservation method Download PDF

Info

Publication number
JP5173782B2
JP5173782B2 JP2008323953A JP2008323953A JP5173782B2 JP 5173782 B2 JP5173782 B2 JP 5173782B2 JP 2008323953 A JP2008323953 A JP 2008323953A JP 2008323953 A JP2008323953 A JP 2008323953A JP 5173782 B2 JP5173782 B2 JP 5173782B2
Authority
JP
Japan
Prior art keywords
opening
groundwater
well structure
well
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008323953A
Other languages
Japanese (ja)
Other versions
JP2010007449A (en
Inventor
信章 高坂
昇 櫟原
晋一 西村
正州 江頭
茂 所崎
一実 大沢
孝志 新坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2008323953A priority Critical patent/JP5173782B2/en
Publication of JP2010007449A publication Critical patent/JP2010007449A/en
Application granted granted Critical
Publication of JP5173782B2 publication Critical patent/JP5173782B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

本発明は、構築した土留め壁で遮断される地下水を土留め壁に設けた井戸構造で集水及び/又は涵養して地下水の流動を確保する地下水流動保全工法に関する。   The present invention relates to a groundwater flow maintenance method for securing groundwater flow by collecting and / or recharging groundwater blocked by a constructed retaining wall in a well structure provided on the retaining wall.

従来、例えば、図8に示すように地下鉄や地下道路等の地下構造物1を構築する際に、構築予定位置の両側に地中連続壁などからなる土留め壁2を構築し、その間を掘削して地下構造物1を構築する、いわゆる開削工法が多用されている。   Conventionally, for example, when constructing an underground structure 1 such as a subway or an underground road as shown in FIG. 8, a retaining wall 2 composed of a continuous underground wall or the like is constructed on both sides of the planned construction position and excavated between them. Thus, a so-called open-cut method for constructing the underground structure 1 is frequently used.

一方、土留め壁2によって帯水層3の地下水流T(地下水の流動)が遮断され、土留め壁2の上流側では地下水位が上昇し、下流側では地下水位が低下して、井戸枯れや地盤沈下、あるいは生態系の変化や地下水の汚染などの被害を発生させることがある。   On the other hand, the groundwater flow T (groundwater flow) of the aquifer 3 is blocked by the earth retaining wall 2, the groundwater level rises on the upstream side of the earth retaining wall 2, the groundwater level falls on the downstream side, and the well withers. And subsidence, or ecosystem changes and groundwater contamination.

これに対し、図8及び図9に示すように、土留め壁2に井戸構造を有する装置を設置したり、アブレシブジェットを用いて土留め壁2を部分的に破壊しスリット状の開口部(井戸構造5)を設けるなどして、土留め壁2で遮断された地下水の集水及び/又は涵養を井戸構造5の開口部5aを介して行い、地下水の流動を確保することが提案、実施されている(例えば、特許文献1、特許文献2、特許文献3参照)。   On the other hand, as shown in FIGS. 8 and 9, a device having a well structure is installed in the retaining wall 2, or the retaining wall 2 is partially broken using an abrasive jet to form a slit-like opening ( Proposal and implementation of groundwater collection and / or recharge through the opening 5a of the well structure 5 by providing a well structure 5), etc., and collecting groundwater blocked by the retaining wall 2 (For example, see Patent Document 1, Patent Document 2, and Patent Document 3).

そして、このような地下水流動保全工法においては、図9に示すように、地下水を集水及び/又は涵養を行うための開口部5aの幅(B)を決める際に(井戸構造5を設計する際に)、一般に、この開口部の幅(B)と等価な周辺長をもつ井戸の等価井戸半径(r)に置き換え、式1で算定した等価井戸半径(r)を用いるようにしている(非特許文献1参照)。 And in such a groundwater flow maintenance construction method, as shown in FIG. 9, when determining the width | variety ( Bw ) of the opening part 5a for collecting and / or recharging groundwater (designing the well structure 5) In general, the equivalent well radius (r w ) calculated by Equation 1 is used instead of the equivalent well radius (r w ) of a well having a peripheral length equivalent to the width (B w ) of the opening. (See Non-Patent Document 1).

Figure 0005173782
Figure 0005173782
特開2000−87385号公報JP 2000-87385 A 特開2001−317045号公報JP 2001-317045 A 特開2004−232306号公報Japanese Patent Laid-Open No. 2004-232306 「地盤工学・実務シリーズ19 地下水流動保全のための環境影響評価と対策 −調査・設計・施工から管理まで−」、社団法人地盤工学会、平成16年10月15日、p.146"Geotechnical engineering / practical series 19 Environmental impact assessment and countermeasures for groundwater flow conservation-from survey, design, construction to management", Geotechnical Society of Japan, October 15, 2004, p. 146

しかしながら、この式1の適用性、妥当性が十分に確認されていないために、土留め壁2に設けた井戸構造5によって地下水の集水及び/又は涵養を好適に行うことができず、好適に地下水流動の確保を図ることができないおそれがあった。すなわち、土留め壁2に設置する井戸構造5の設計を適切に行うことができないという問題があった。   However, since the applicability and validity of Formula 1 are not sufficiently confirmed, groundwater cannot be collected and / or recharged properly by the well structure 5 provided on the retaining wall 2. However, there was a risk that groundwater flow could not be secured. That is, there was a problem that the well structure 5 installed on the retaining wall 2 could not be properly designed.

これに対し、本願の発明者らは、地下水を集水及び/又は涵養する井戸構造の開口部の幅(B)と、この開口部と等価な性能を有する井戸の等価井戸半径(r)との関係式として式2を導き出し、その妥当性を確認した上で、式2を用いることにより土留め壁に設ける井戸構造の設計を適切に行うことが可能であることを見出した。 On the other hand, the inventors of the present application have described the width (B w ) of the opening of a well structure for collecting and / or recharging groundwater, and the equivalent well radius (r w ) of a well having performance equivalent to this opening. ) Was derived as a relational expression, and after confirming its validity, it was found that the well structure provided on the retaining wall can be appropriately designed by using Expression 2.

Figure 0005173782
ここで、r:井戸構造の開口部と等価な性能を有する井戸の等価井戸半径 [m]
:井戸構造の開口部の幅 [m]
Figure 0005173782
Here, r w : equivalent well radius of a well having performance equivalent to that of an opening of a well structure [m]
B w : width of the opening of the well structure [m]

しかしながら、式2は、井戸構造の開口部の透水性が十分に確保されている理想的な状態を想定したものである。このため、実際の現場において、開口部に透水性の低い材料が充填された場合に井戸構造の集水性能及び/又は涵養性能が低下するが、このような状況を評価し設計に反映することができず、井戸構造の集水性能及び/又は涵養性能を適切に評価して設計に反映させ、あるいは設計の目標を明確にした上で施工管理を行うという課題が残されていた。   However, Formula 2 assumes an ideal state in which the water permeability of the opening of the well structure is sufficiently secured. For this reason, the water collection performance and / or recharge performance of the well structure deteriorates when the opening is filled with a material with low water permeability. However, this situation should be evaluated and reflected in the design. However, the water collection performance and / or recharge performance of the well structure is appropriately evaluated and reflected in the design, or the construction management is performed after clarifying the design goal.

本発明は、上記事情に鑑み、土留め壁に設けた井戸構造の開口部の透水性を反映させて、井戸構造の設計を適切に行うことができ、好適な地下水流動の確保を図ることが可能な地下水流動保全工法を提供することを目的とする。   In view of the above circumstances, the present invention can appropriately design the well structure by reflecting the water permeability of the opening of the well structure provided in the retaining wall, and can ensure a suitable groundwater flow. The purpose is to provide a possible groundwater flow protection method.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の地下水流動保全工法は、構築した土留め壁で遮断された地下水を前記土留め壁に設けたスリット状の井戸構造で集水及び/又は涵養することによって前記地下水の流動を確保する地下水流動保全工法であって、前記井戸構造の井戸効率を、次式を用いて設定することを特徴とする。

Figure 0005173782
ここで、Q:井戸構造の実集水量又は実涵養量
:開口部内の水位低下量又は水位上昇量
:地山の透水係数
:充填材の透水係数
D:開口部の長さ(=帯水層の層厚)
R:影響圏半径
:開口部の等価井戸半径
:開口部の幅
t:開口部の奥行き(充填材の充填厚さ)
η:井戸効率(理想的な状態での集水量と実集水量の比、又は理想的な状態での涵養量と実涵養量の比)
:理想的な状態での開口部の集水量又は涵養量 The groundwater flow maintenance method of the present invention is a groundwater that secures the flow of the groundwater by collecting and / or recharging groundwater blocked by the constructed retaining wall in a slit-like well structure provided on the retaining wall. In the fluidity maintenance method, the well efficiency of the well structure is set using the following equation.
Figure 0005173782
Where, Q: Actual water collection or recharge for well structure
s w : Amount of decrease in water level or amount of increase in water level in the opening
k 1 : Permeability coefficient of natural ground
k 2 : permeability coefficient of filler
D: Length of opening (= layer thickness of aquifer)
R: radius of influence zone
r w : equivalent well radius of the opening
Bw : width of the opening
t: Depth of opening (filling thickness of filler)
η: well efficiency (ratio of the amount of water collected in the ideal state to the actual amount of water collected, or the ratio of the amount of recharge in the ideal state to the actual amount of recharge)
Q 0 : Amount of water collected or recharged in an ideal state

本発明の地下水流動保全工法によれば、上記の式を用いることで、土留め壁に設ける井戸構造の開口部の透水性を反映させ、井戸構造の集水能力及び/又は涵養能力を精度よく求めて、井戸構造の設計を適切に行うことが可能になる。また、開口部に充填する充填材の透水性に対する施工上の管理目標値が明確になるため、信頼性の高い施工を行うことが可能になる。これにより、確実に好適な地下水流動の確保を図ることが可能になる。   According to the groundwater flow maintenance method of the present invention, by using the above formula, the water permeability and / or recharge capacity of the well structure is accurately reflected by reflecting the water permeability of the opening of the well structure provided in the retaining wall. Therefore, the well structure can be appropriately designed. Moreover, since the management target value in the construction with respect to the water permeability of the filler to be filled in the opening is clarified, it is possible to perform the construction with high reliability. As a result, it is possible to reliably ensure a suitable groundwater flow.

以下、図1から図9を参照し、本発明の一実施形態に係る地下水流動保全工法について説明する。本実施形態は、例えば地下鉄や地下道路等の地下構造物を構築する際に、構築予定位置の両側に構築される地中連続壁などの土留め壁で遮断される地下水を、土留め壁に設けた井戸構造で集水及び/又は涵養することで、地下水流動を確保する地下水流動保全工法に関するものである。   Hereinafter, a groundwater flow maintenance method according to an embodiment of the present invention will be described with reference to FIGS. 1 to 9. In this embodiment, for example, when constructing an underground structure such as a subway or an underground road, groundwater blocked by a retaining wall such as an underground continuous wall constructed on both sides of the planned construction position is used as the retaining wall. The present invention relates to a groundwater flow maintenance method that secures groundwater flow by collecting and / or recharging the well structure provided.

本実施形態の地下水流動保全工法においては、構築した土留め壁2で遮断された地下水の流動を確保するために土留め壁2に設ける井戸構造5を設計するにあたり、地下水を集水及び/又は涵養する開口部5aの幅(B)と、この開口部5aと等価な性能を有する井戸の等価井戸半径(r)との関係式として上記の式2を用い、井戸構造5の開口部5aの幅(B)を設定する(図8及び図9参照)。 In the groundwater flow maintenance method of this embodiment, when designing the well structure 5 provided in the retaining wall 2 in order to ensure the flow of groundwater blocked by the constructed retaining wall 2, groundwater is collected and / or Using the above equation 2 as a relational expression between the width (B w ) of the opening 5 a to be recharged and the equivalent well radius (r w ) of the well having the performance equivalent to this opening 5 a, the opening of the well structure 5 A width (B w ) of 5a is set (see FIGS. 8 and 9).

この式2は、有限要素法による浸透流解析を用いて土留め壁2に設置される井戸構造5の集水能力(及び/又は涵養能力)を計算し、この結果と、通常の井戸の揚水能力(集水能力及び/又は涵養能力)を算定する井戸理論式とを比較して、図1に示すように、井戸構造5の開口部5aの幅(B)と、この開口部5aと等価な性能を有する井戸の等価井戸半径(r)との関係を求めて導出したものである。 This equation 2 calculates the water collection capacity (and / or recharge capacity) of the well structure 5 installed on the retaining wall 2 using the osmotic flow analysis by the finite element method. Compared with the well theoretical formula for calculating the capacity (water collecting capacity and / or recharge capacity), as shown in FIG. 1, the width (B w ) of the opening 5a of the well structure 5 and the opening 5a This is derived by obtaining the relationship with the equivalent well radius (r w ) of a well having equivalent performance.

図2は、この式2を用いて土留め壁2の井戸構造5を設計した一例であり、地下水の影響圏半径Rを100m、1000mとした場合における井戸構造5の開口部5aの幅(B)に対する井戸構造5の開口部5aの設置間隔の変化を示している。そして、このような計算結果を参考にして、開口部5aの幅(B)や開口部5aの設置間隔を変化させた種々の条件での設計比較を行うことで、合理的な設計が可能になる。 FIG. 2 shows an example in which the well structure 5 of the retaining wall 2 is designed by using this equation 2, and the width (B of the opening 5a of the well structure 5 when the radius of influence R of the groundwater is set to 100 m and 1000 m. It shows a change in the installation interval of the openings 5a of the well structure 5 with respect to w ). Then, referring to such a calculation result, rational design is possible by comparing designs under various conditions in which the width (B w ) of the opening 5a and the installation interval of the openings 5a are changed. become.

また、図3は、式2に基づき土留め壁2に井戸構造5を設置した場合において、この土留め壁2で遮られた地下水の水位変動量を、有限要素法を用いて解析した結果と、式2に基づく設計法により求めた結果を比較したものである。ここで、図3においては、地下水の影響圏半径Rを100m、地下水の動水勾配Iを0.046とした場合、地下水の影響圏半径Rを1000m、地下水の動水勾配Iを0.005とした場合、地下水の影響圏半径Rを100m、地下水の動水勾配Iを0.005とした場合の結果をそれぞれ示している。   FIG. 3 shows the result of analyzing the amount of groundwater level fluctuation blocked by the retaining wall 2 using the finite element method when the well structure 5 is installed on the retaining wall 2 based on the formula 2. The results obtained by the design method based on Equation 2 are compared. Here, in FIG. 3, when the groundwater influence sphere radius R is 100 m and the groundwater dynamic gradient I is 0.046, the groundwater influence sphere radius R is 1000 m and the groundwater dynamic gradient I is 0.005. In this case, the results are shown in the case where the influence radius R of the groundwater is 100 m and the dynamic gradient I of the groundwater is 0.005.

そして、図3に示すように、全てのケースにおいて、有限要素法により求めた地下水の水位変動量と、式2に基づく設計法により求めた地下水の水位変動量とがほぼ同値となり、これらの結果から式2を用いて井戸構造5の開口部5aの幅(B)や開口部5aの設置間隔を設定する設計法の妥当性が実証されている。なお、式2は、地盤の透水性や影響圏半径Rなどが異なる種々の条件で適用可能である。 As shown in FIG. 3, in all cases, the groundwater level fluctuation amount obtained by the finite element method and the groundwater level fluctuation amount obtained by the design method based on Equation 2 are substantially the same, and these results From Equation 2, the validity of the design method for setting the width (B w ) of the opening 5a of the well structure 5 and the installation interval of the openings 5a is demonstrated. Equation 2 can be applied under various conditions such as the permeability of the ground and the radius of influence radius R.

一方、この式2は、井戸構造5の開口部5aの透水性が十分に確保されている理想的な状態を想定したものであるため、実際の現場において、開口部5aに透水性の低い材料が充填され、井戸構造5の集水性能及び/又は涵養性能が低下してしまう状況を評価して設計に反映することができない。   On the other hand, since this formula 2 assumes an ideal state in which the water permeability of the opening 5a of the well structure 5 is sufficiently ensured, the material having low water permeability in the opening 5a in an actual site. Cannot be reflected in the design by evaluating the situation where the water collection performance and / or the recharge performance of the well structure 5 is reduced.

これに対し、本実施形態においては、井戸構造5の集水性能及び/又は涵養性能(井戸効率)を、下記の式3及び式4を用いて設定する。   On the other hand, in this embodiment, the water collection performance and / or the recharge performance (well efficiency) of the well structure 5 are set using the following formulas 3 and 4.

Figure 0005173782
Figure 0005173782

ここで、図4及び図5に示すように、Qは井戸構造5の実集水量又は実涵養量(m/sec)、sは開口部5a内の水位低下量又は水位上昇量(m)、kは地山の透水係数(m/sec)、kは充填材6の透水係数(m/sec)、Dは開口部5aの長さ(=帯水層3の層厚)(m)、Rは影響圏半径(m)、rは式2で求めた開口部5aの等価井戸半径(m)、Bは開口部5aの幅(m)、tは開口部5aの奥行き(=充填材の充填厚さ)(m)、ηは井戸効率(理想的な状態での集水量と実集水量の比、又は理想的な状態での涵養量と実涵養量の比)(−)、Qは理想的な状態での開口部5aの集水量又は涵養量(m/sec)である。 Here, as shown in FIGS. 4 and 5, Q is the actual current water or actual recharge of the well structure 5 (m 3 / sec), s w is drawdown or level rise amount in the opening 5a (m ), K 1 is the permeability of the natural ground (m / sec), k 2 is the permeability of the filler 6 (m / sec), D is the length of the opening 5a (= layer thickness of the aquifer 3) ( m), R is the radius of influence (m), r w is the equivalent well radius (m) of the opening 5a obtained by Equation 2, B w is the width (m) of the opening 5a, and t is the depth of the opening 5a. (= Filling thickness of the filler) (m), η is well efficiency (ratio of water collection amount to actual water collection amount in ideal state, or ratio of recharge amount to actual recharge amount in ideal state) ( -), Q 0 is the water collection amount or recharge amount (m 3 / sec) of the opening 5a in an ideal state.

そして、図6は、土留め壁2に設けた井戸構造5の集水性能(又は涵養性能)を、有限要素法を用いて解析した結果(計算値)と、式3及び式4を用いた設計法によって求めた結果(考案式)をそれぞれ示している。ここで、図6は、影響圏半径Rを100m、開口部5aの奥行きtを0.5mとし、開口部5aの幅Bを変化させた際の井戸構造5の集水性能(又は涵養性能)を示したものであり、横軸を地山の透水係数kと充填材6の透水係数kの比とし、縦軸を井戸効率ηとしている。この図から、有限要素法を用いて解析した結果と、式3及び式4を用いた設計法によって求めた結果とが一致しており、式3及び式4の妥当性が実証されている。 And FIG. 6 used the result (calculated value) which analyzed the water collection performance (or recharge performance) of the well structure 5 provided in the retaining wall 2 using the finite element method, and Formula 3 and Formula 4. The result (design formula) obtained by the design method is shown. Here, FIG. 6, the sphere of influence radius R is 100 m, the depth t of the opening 5a and 0.5 m, the water collecting performance (or recharge the performance of the well structure 5 when changing the width B w of the opening 5a ) have the meanings indicated, and the horizontal axis represents the permeability k 1 and the ratio of the permeability coefficient k 2 of the filler 6 of natural ground, the vertical axis is the well efficiency eta. From this figure, the result analyzed using the finite element method and the result obtained by the design method using Equation 3 and Equation 4 are in agreement, and the validity of Equation 3 and Equation 4 is proved.

したがって、本実施形態の地下水流動保全工法によれば、式3及び式4を用いることで、土留め壁2に設ける井戸構造5の開口部5aの透水性(充填材6の透水性9を反映させ、井戸構造5の集水能力及び/又は涵養能力を精度よく求めて、井戸構造5の設計を適切に行うことが可能になる。また、開口部5aに充填する充填材6の透水性に対する施工上の管理目標値が明確になるため、信頼性の高い施工を行うことが可能になる。これにより、確実に好適な地下水流動の確保を図ることが可能になる。   Therefore, according to the groundwater flow maintenance method of the present embodiment, the water permeability of the opening 5a of the well structure 5 provided in the retaining wall 2 (reflecting the water permeability 9 of the filler 6) is reflected by using the equations 3 and 4. Thus, the water collecting capacity and / or the recharge capacity of the well structure 5 can be obtained with high accuracy, and the well structure 5 can be designed appropriately. Further, the water permeability of the filler 6 filling the opening 5a can be improved. Since the management target value for the construction is clarified, it is possible to perform the construction with high reliability, and it is possible to reliably secure a suitable groundwater flow.

また、図7は、式3及び式4を用いて土留め壁2の井戸構造5を設計した一例であり、地山の透水係数kと充填材6の透水係数kの比を変化させた場合の井戸構造5の開口部5aの幅(B)に対する井戸構造5の開口部5aの設置間隔の変化を示している。そして、このような計算結果を参考にして、開口部5aの幅(B)や開口部5aの設置間隔を変化させた種々の条件での設計比較を行うことで、合理的な設計が可能になる。 Further, FIG. 7 is an example in which design the well structure 5 of earth retaining wall 2 using Equation 3 and Equation 4, by changing the permeability k 1 and the ratio of the permeability coefficient k 2 of the filler 6 of natural ground The change of the installation space | interval of the opening part 5a of the well structure 5 with respect to the width | variety ( Bw ) of the opening part 5a of the well structure 5 is shown. Then, referring to such a calculation result, rational design is possible by comparing designs under various conditions in which the width (B w ) of the opening 5a and the installation interval of the openings 5a are changed. become.

以上、本発明に係る地下水流動保全工法の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although one Embodiment of the groundwater flow maintenance construction method concerning this invention was described, this invention is not limited to said one Embodiment, In the range which does not deviate from the meaning, it can change suitably.

本発明の一実施形態に係る地下水流動保全工法において、井戸構造の開口部の幅と、この開口部と等価な性能を有する井戸の等価井戸半径との関係(関係式)を示す図である。It is a figure which shows the relationship (relational expression) of the width of the opening part of a well structure, and the equivalent well radius of the well which has a performance equivalent to this opening part in the groundwater flow maintenance method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る地下水流動保全工法において、井戸構造の開口部の幅と、この開口部と等価な性能を有する井戸の等価井戸半径との関係式を用いて土留め壁の井戸構造を設計した一例である。In the groundwater flow maintenance method according to one embodiment of the present invention, the well structure of the retaining wall using the relational expression of the width of the opening of the well structure and the equivalent well radius of the well having the performance equivalent to this opening Is an example of designing. 本発明の一実施形態に係る地下水流動保全工法において、井戸構造の開口部の幅と、この開口部と等価な性能を有する井戸の等価井戸半径との関係式の妥当性を実証した図である。In the groundwater flow maintenance method according to an embodiment of the present invention, it is a diagram demonstrating the validity of the relational expression between the width of the opening of the well structure and the equivalent well radius of a well having a performance equivalent to this opening. . 本発明の一実施形態に係る地下水流動保全工法において、式3及び式4の諸条件を示した図である。It is the figure which showed various conditions of Formula 3 and Formula 4 in the groundwater flow maintenance construction method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る地下水流動保全工法において、式3及び式4の諸条件を示した図である。It is the figure which showed various conditions of Formula 3 and Formula 4 in the groundwater flow maintenance construction method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る地下水流動保全工法において、式3及び式4の妥当性を実証した図である。It is the figure which verified the validity of Formula 3 and Formula 4 in the groundwater flow maintenance construction method concerning one embodiment of the present invention. 本発明の一実施形態に係る地下水流動保全工法において、式3及び式4を用いて土留め壁の井戸構造を設計した一例である。It is an example which designed the well structure of the retaining wall using Formula 3 and Formula 4 in the groundwater flow maintenance construction method concerning one embodiment of the present invention. 構築した土留め壁に井戸構造を設けて地下水の流動を確保した状態を示す図である。It is a figure which shows the state which provided the well structure in the constructed earth retaining wall and ensured the flow of groundwater. 井戸構造を設計する際に、井戸構造をこの井戸構造の開口部と等価な性能を有する井戸の等価井戸半径に置き換えることを示した図である。When designing a well structure, it is the figure which showed replacing a well structure with the equivalent well radius of the well which has a performance equivalent to the opening part of this well structure.

符号の説明Explanation of symbols

1 地下構造物
2 土留め壁
3 帯水層
5 井戸構造
5a 開口部
6 充填材
T 地下水流
DESCRIPTION OF SYMBOLS 1 Underground structure 2 Earth retaining wall 3 Aquifer 5 Well structure 5a Opening 6 Filling material T Groundwater flow

Claims (1)

構築した土留め壁で遮断された地下水を前記土留め壁に設けたスリット状の井戸構造で集水及び/又は涵養することによって前記地下水の流動を確保する地下水流動保全工法であって、
前記井戸構造の井戸効率を、次式を用いて設定することを特徴とする地下水流動保全工法。
Figure 0005173782
ここで、Q:井戸構造の実集水量又は実涵養量
:開口部内の水位低下量又は水位上昇量
:地山の透水係数
:充填材の透水係数
D:開口部の長さ(=帯水層の層厚)
R:影響圏半径
:開口部の等価井戸半径
:開口部の幅
t:開口部の奥行き(充填材の充填厚さ)
η:井戸効率(理想的な状態での集水量と実集水量の比、又は理想的な状態での涵養量と実涵養量の比)
:理想的な状態での開口部の集水量又は涵養量
A groundwater flow maintenance method that secures the flow of groundwater by collecting and / or recharging groundwater blocked by the constructed retaining wall with a slit-like well structure provided in the retaining wall,
A groundwater flow maintenance method, wherein the well efficiency of the well structure is set using the following equation.
Figure 0005173782
Where, Q: Actual water collection or recharge for well structure
s w : Amount of decrease in water level or amount of increase in water level in the opening
k 1 : Permeability coefficient of natural ground
k 2 : permeability coefficient of filler
D: Length of opening (= layer thickness of aquifer)
R: radius of influence zone
r w : equivalent well radius of the opening
Bw : width of the opening
t: Depth of opening (filling thickness of filler)
η: well efficiency (ratio of the amount of water collected in the ideal state to the actual amount of water collected, or the ratio of the amount of recharge in the ideal state to the actual amount of recharge)
Q 0 : Amount of water collected or recharged in an ideal state
JP2008323953A 2008-05-26 2008-12-19 Groundwater flow conservation method Expired - Fee Related JP5173782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008323953A JP5173782B2 (en) 2008-05-26 2008-12-19 Groundwater flow conservation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008136907 2008-05-26
JP2008136907 2008-05-26
JP2008323953A JP5173782B2 (en) 2008-05-26 2008-12-19 Groundwater flow conservation method

Publications (2)

Publication Number Publication Date
JP2010007449A JP2010007449A (en) 2010-01-14
JP5173782B2 true JP5173782B2 (en) 2013-04-03

Family

ID=41588241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008323953A Expired - Fee Related JP5173782B2 (en) 2008-05-26 2008-12-19 Groundwater flow conservation method

Country Status (1)

Country Link
JP (1) JP5173782B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368512B2 (en) 2020-06-30 2023-10-24 寒武紀(西安)集成電路有限公司 Computing equipment, integrated circuit chips, board cards, electronic devices and computing methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368512B2 (en) 2020-06-30 2023-10-24 寒武紀(西安)集成電路有限公司 Computing equipment, integrated circuit chips, board cards, electronic devices and computing methods

Also Published As

Publication number Publication date
JP2010007449A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
Currell Drawdown “triggers”: A misguided strategy for protecting groundwater‐fed streams and springs
KR20100041996A (en) Apparatus and method for measuring ground settlement of whole section
JP5173782B2 (en) Groundwater flow conservation method
Arulrajah et al. Instrumentation at Changi land reclamation project, Singapore
Deng et al. Three-dimensional stability evaluation of a preexisting landslide with multiple sliding directions by the strength-reduction technique
CN104316029A (en) Geological sedimentation monitoring device and monitoring method
CN116796396A (en) Analysis method for deformation of underlying tunnel caused by foundation pit excavation and precipitation
JP5173783B2 (en) Groundwater flow conservation method
JP5265330B2 (en) Groundwater flow conservation method
Campelo et al. Georeferenced monitoring of displacements of gabion walls
JP2006249764A (en) Calculation method of allowable pumping discharge when pumping underground water
Fillibeck et al. Prediction of tunnel-induced settlements in soft ground
DeBarry Addressing Italy’s urban flooding problems through the holistic watershed approach by using blue/green infrastructure
Santi Precision and accuracy in debris-flow volume measurement
RU2509889C1 (en) Method for determining deformation of mine rocks in zones inaccessible for direct measurements
Lindsey Performance observations of geosynthetic reinforced bridge abutments
Olinde Displacement and entrainment behavior of bedload clasts in mountain streams
Amini Bezenjani et al. Monitoring methodology of underground dam (case study, Ravar underground dam)
Govindasamy et al. Application of the observation method for scour to two Texas bridges
Soga Geotechnical Aspects of Underground Construction in Soft Ground-Elshafie, Viggiani & Mair (eds) 2023 ISSMGE, London, UK, ISBN 978-1-032-40947-4 Ovalisation of cast-iron tunnels in response to nearby tunneling work M. Alhaddad Transport for London, London, UK
Sundell et al. City-Link Stockholm; an integrated hydrogeological and geotechnical risk assessment
Dornbusch Sediment transport through rock groynes on mixed beaches
Gu et al. Corrosion Study of Existing Steel H-Pile Installed through Cinder-Ash Fill
Ånes et al. Numerical hydrogeological modelling of drainage to an excavation
Ilyichev et al. Prediction of surface deformations, caused by shallow service tunnels construction activities in Moscow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5173782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees