JP5173639B2 - Natural gas processing equipment and liquefied natural gas carrier - Google Patents

Natural gas processing equipment and liquefied natural gas carrier Download PDF

Info

Publication number
JP5173639B2
JP5173639B2 JP2008184046A JP2008184046A JP5173639B2 JP 5173639 B2 JP5173639 B2 JP 5173639B2 JP 2008184046 A JP2008184046 A JP 2008184046A JP 2008184046 A JP2008184046 A JP 2008184046A JP 5173639 B2 JP5173639 B2 JP 5173639B2
Authority
JP
Japan
Prior art keywords
natural gas
refrigerant
expander
compressor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008184046A
Other languages
Japanese (ja)
Other versions
JP2010025152A (en
Inventor
勝 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008184046A priority Critical patent/JP5173639B2/en
Publication of JP2010025152A publication Critical patent/JP2010025152A/en
Application granted granted Critical
Publication of JP5173639B2 publication Critical patent/JP5173639B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0258Construction and layout of liquefaction equipments, e.g. valves, machines vertical layout of the equipments within in the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0259Modularity and arrangement of parts of the liquefaction unit and in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0267Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using flash gas as heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0282Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/04Multiple expansion turbines in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Description

本発明は、天然ガス処理設備およびこれを搭載している液化天然ガス運搬船(LNG船)に関するものである。   The present invention relates to a natural gas processing facility and a liquefied natural gas carrier ship (LNG ship) equipped with the same.

LNG船では、低温の液化天然ガスをカーゴタンクに大気圧で貯蔵し、運搬している。この液化天然ガス(LNG)はカーゴタンク内への入熱によって蒸発され、ボイルオフガスとしてカーゴタンク内に溜る。これによりカーゴタンク内の圧力が増加するので、その一部を連続的に抜き出して処理する必要がある。
このボイルガスを有効に使うため、ほとんどLNG船では、ボイルオフガスをボイラ、ガス焚き内燃機関等の燃料とすることによって推進力や船内電力の足しに利用している。
In the LNG ship, low-temperature liquefied natural gas is stored in a cargo tank at atmospheric pressure and transported. This liquefied natural gas (LNG) is evaporated by heat input into the cargo tank, and accumulates in the cargo tank as boil-off gas. As a result, the pressure in the cargo tank increases, and it is necessary to continuously extract a part of the cargo tank.
In order to effectively use this boiled gas, almost all LNG ships use boil-off gas as fuel for boilers, gas-fired internal combustion engines, etc., to add propulsive force and inboard power.

ところで、発生するボイルオフガスの量に対して燃料として求められる量が少ない場合、余剰のボイルオフガスは船外に排出する、すなわち、無駄に捨てることになる。特に、積荷状態で停泊あるいは低速航行を長期にわたって行う場合には、損失が大きくなる。
この損失を抑制するものとして、余剰のボイルオフガスを再液化してカーゴタンクに戻す再液化装置を備えるLNG船が提案されている(特許文献1参照)。
By the way, when the amount calculated | required as a fuel with respect to the quantity of the generated boil-off gas is small, excess boil-off gas will be discharged | emitted out of a ship, ie, will be thrown away wastefully. In particular, the loss becomes large when berthing or low-speed navigation is performed for a long time in a loaded state.
In order to suppress this loss, an LNG ship including a reliquefaction device that reliquefies excess boil-off gas and returns it to the cargo tank has been proposed (see Patent Document 1).

特開2001−132898号公報JP 2001-132898 A

たとえば、ボイルオフガス等の天然ガスをボイラの燃料として用いる場合、要求される天然ガスの圧力は低いので、それをそのまま再液化装置で再液化しようとすると、効率が悪くなる。また、低効率で再液化すると、同じ所定量を処理するために再液化装置が大型化する。
したがって、再液化装置に供給する天然ガスの圧力を高めるため、天然ガス供給ラインに圧縮機を介装することが提案されている。
For example, when natural gas such as boil-off gas is used as boiler fuel, the required natural gas pressure is low, so if it is re-liquefied with a re-liquefaction device as it is, the efficiency will deteriorate. Moreover, if reliquefaction is performed with low efficiency, the reliquefaction apparatus becomes larger in order to process the same predetermined amount.
Therefore, in order to increase the pressure of the natural gas supplied to the reliquefaction apparatus, it has been proposed to install a compressor in the natural gas supply line.

ところで、船舶で使用される通常の圧縮機は、それを駆動するためにモータが用いられる。このモータは圧縮機とバルクヘッドを挟んで配置されるので、バルクヘッドシールが必要である。また、両者の回転数を調整するために減速機が介装される。このため、大きな設置空間を必要とするし、モータを作動させる動力として電力を必要とする。
また、特許文献1のように並列に設置された2台の燃料供給用の圧縮機(1台は本来予備として備えられているもの)を用いるとしても、関連部分の配管および運転制御が複雑で、結局大きな設置空間を必要とする。また、それを駆動する動力が必要である。予備という本来の機能を果たさない。一方二段圧縮機を用いることもできるが、従来のボイラ供給用(1段圧縮)との兼用が難しくなり、専用の追加装備が必要となる。
このように再液化装置関連構造が大型化すると、たとえば、既存のボイルオフガス等の天然ガスをボイラの燃料として用いるLNG船に、再液化装置を設置する場合、既存のシステムの撤去を含めて大幅な改造工事が必要になり、現実的でない。
By the way, a normal compressor used in a ship uses a motor to drive it. Since this motor is disposed between the compressor and the bulkhead, a bulkhead seal is required. In addition, a speed reducer is interposed to adjust the rotational speed of both. For this reason, a large installation space is required, and electric power is required as power for operating the motor.
Further, even if two fuel supply compressors installed in parallel as in Patent Document 1 (one is originally provided as a spare) are used, the piping and operation control of related parts are complicated. After all, a large installation space is required. Moreover, the motive power which drives it is required. It does not perform the original function of spare. On the other hand, a two-stage compressor can be used, but it becomes difficult to share with a conventional boiler supply (one-stage compression), and a dedicated additional equipment is required.
If the reliquefaction equipment-related structure becomes large in this way, for example, when installing a reliquefaction equipment on an LNG ship that uses natural gas such as existing boil-off gas as boiler fuel, it will be drastically including the removal of the existing system. Remodeling work is required, which is not realistic.

本発明は、上記課題に鑑み、小型で高効率な再液化プラントとし、狭い空間に設置し得る天然ガス処理設備を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a natural gas processing facility that can be installed in a small space as a small and highly efficient reliquefaction plant.

上記課題を解決するために、本発明は以下の手段を採用する。
すなわち、本発明にかかる天然ガス処理設備は、天然ガスを燃料用圧縮機によって圧縮しボイラへ燃料として供給する燃料供給ラインと、前記燃料用圧縮機によって圧縮された前記天然ガスを取り込み搬送する天然ガス搬送ラインおよび循環する冷媒によって該天然ガス搬送ラインで搬送される天然ガスを冷却し再液化させる冷凍サイクル部を有する再液化プラントと、を備えている天然ガス処理設備であって、前記冷凍サイクル部には、冷媒流路に沿って循環される前記冷媒を圧縮する第一のブースタコンプレッサと、圧縮された後冷却された冷媒を膨張させ一層低温状態とするとともに前記第一のブースタコンプレッサを駆動する第一のエキスパンダと、前記冷媒流路における前記第一のブースタコンプレッサと前記第一のエキスパンダのとの間で分岐し前記第一のエキスパンダよりも下流側で合流する分岐流路に介装され、該分岐流路を流れる冷媒を膨張させる第二のエキスパンダと、が備えられ、前記天然ガス搬送ラインには、前記第二のエキスパンダにより駆動され、前記天然ガスを圧縮する第二のブースタコンプレッサが備えられていることを特徴とする。
In order to solve the above problems, the present invention employs the following means.
That is, the natural gas processing facility according to the present invention includes a fuel supply line that compresses natural gas by a fuel compressor and supplies the fuel to the boiler, and a natural gas that takes in and conveys the natural gas compressed by the fuel compressor. A re-liquefaction plant having a gas transfer line and a refrigeration cycle section for cooling and re-liquefying the natural gas transferred in the natural gas transfer line by a circulating refrigerant, wherein the refrigeration cycle The section includes a first booster compressor that compresses the refrigerant circulated along the refrigerant flow path, and expands the refrigerant that has been compressed and then cooled to lower the temperature and drives the first booster compressor first expander and the said in the refrigerant flow path the first booster compressor first expander that The branch above first expander between the interposed branch flow path merge at the downstream side, and a second expander for expanding the refrigerant flowing through the branch flow path, is provided with, the native The gas transport line is provided with a second booster compressor that is driven by the second expander and compresses the natural gas.

冷凍サイクル部では、たとえば、冷媒圧縮機によって冷媒が冷媒流路に沿って循環されている。冷媒圧縮機によって圧縮された後冷却された冷媒は、第一のブースタコンプレッサによって再度圧縮された後、冷却される。この冷媒は、第一のエキスパンダの上流側位置で、冷媒流路と分岐流路とに分割されて送られる。冷媒流路を通った冷媒は、第一のエキスパンダによって減圧され、膨張させられることによって一層低温状態とされる。第一のエキスパンダは、この冷媒が膨張する時の力を回転力として取り出し、直結された軸を介してブースタコンプレッサを回転させる。一方、分岐流路を通った冷媒は、第二のエキスパンダによって減圧され、膨張させられることによって一層低温状態とされ、第一のエキスパンダによって低温状態とされた冷媒と合流する。この低温状態の冷媒は、その冷熱を周囲に与えて冷却する、たとえば、天然ガス搬送ラインで搬送される天然ガスを凝縮させる。その後、冷媒は冷媒圧縮機に送られて、1サイクルが完了する。   In the refrigeration cycle unit, for example, a refrigerant is circulated along the refrigerant flow path by a refrigerant compressor. The refrigerant cooled after being compressed by the refrigerant compressor is cooled again after being compressed by the first booster compressor. This refrigerant is divided into a refrigerant flow path and a branch flow path at the upstream position of the first expander and is sent. The refrigerant that has passed through the refrigerant flow path is depressurized and expanded by the first expander, so that the temperature is further lowered. The first expander takes out the force when the refrigerant expands as a rotational force, and rotates the booster compressor via the directly connected shaft. On the other hand, the refrigerant that has passed through the branch flow path is decompressed and expanded by the second expander to be further cooled, and merges with the refrigerant that has been cooled to the low temperature by the first expander. This low-temperature state refrigerant cools the surroundings by giving the cold to the surroundings, for example, condenses natural gas conveyed in a natural gas conveyance line. Thereafter, the refrigerant is sent to the refrigerant compressor to complete one cycle.

燃料供給ラインは、カーゴタンクで発生したボイルオフガスおよびそれが不足する場合はカーゴタンク内の液化天然ガスをガス化させた天然ガスを燃料用圧縮機によって圧縮しボイラへ燃料として供給している。
この天然ガスが余ったとき、あるいは、常時、燃料用圧縮機を出た天然ガスは抜き出され天然ガス搬送ラインを通って搬送される。この天然ガスは、第二のブースタコンプレッサによって圧縮されて、冷媒流路を搬送される低温状態の冷媒によって冷却され、凝縮される。凝縮された天然ガスは、気液分離器によって液分である液化天然ガスと気体である天然ガスとに分離される。液化天然ガスは、カーゴタンクに戻される。
このように、天然ガスは、燃料用圧縮機および第二のブースタコンプレッサによって2回にわたり圧縮されるので、冷凍サイクル部との熱交換を効率的に行うことができる。これにより、再液化プラントの小型化をはかることができる。
The fuel supply line compresses the boil-off gas generated in the cargo tank and the natural gas obtained by gasifying the liquefied natural gas in the cargo tank by the fuel compressor and supplies it as fuel to the boiler.
When this natural gas is left over, or at all times, the natural gas that has exited the fuel compressor is extracted and transported through a natural gas transport line. This natural gas is compressed by the second booster compressor, cooled and condensed by the low-temperature refrigerant conveyed through the refrigerant flow path. The condensed natural gas is separated into a liquefied natural gas which is a liquid component and a natural gas which is a gas by a gas-liquid separator. The liquefied natural gas is returned to the cargo tank.
Thus, since natural gas is compressed twice by the fuel compressor and the second booster compressor, heat exchange with the refrigeration cycle unit can be performed efficiently. Thereby, size reduction of a reliquefaction plant can be achieved.

また、第二のブースタコンプレッサは、冷凍サイクル部の第二のエキスパンダで取り出された冷媒が膨張する時の回転力によって駆動されるので、別途それを駆動するための部材が不要である。また、構造自体が簡素であることもあいまって再液化プラントの小型化を一層はかることができる。
また、第二のブースタコンプレッサを駆動する動力が第二のエキスパンダを通る冷媒から得られるので、別途それを駆動するための電力等追加動力が不要となり、また窒素サイクルの効率向上により、省エネルギーとできる。
このように、再液化プラントは小型で高効率なものにできるし、その設置空間を少なくできる。このため、たとえば、既存のボイルオフガス等の天然ガスをボイラの燃料として用いる天然ガス運搬船に、再液化プラントを設置する場合、改造工事を大幅に軽減することができる。また、新造船に適用する場合でも、設計変更を容易に行うことができる。
Moreover, since the second booster compressor is driven by the rotational force when the refrigerant taken out by the second expander of the refrigeration cycle section expands, a member for driving it separately is unnecessary. In addition, combined with the simplicity of the structure itself, the reliquefaction plant can be further downsized.
Further, since the power for driving the second booster compressor is obtained from the refrigerant passing through the second expander, additional power such as electric power for driving the second booster becomes unnecessary, and energy efficiency is improved by improving the efficiency of the nitrogen cycle. it can.
Thus, the reliquefaction plant can be made small and highly efficient, and the installation space can be reduced. For this reason, for example, when a reliquefaction plant is installed in a natural gas carrier using natural gas such as existing boil-off gas as boiler fuel, the remodeling work can be greatly reduced. In addition, even when applied to new ships, design changes can be easily made.

また、上記発明では、前記第二のブースタコンプレッサに供給される前記天然ガスを冷却する冷却部材が備えられていることが望ましい。
このように第二のブースタコンプレッサに導入される天然ガスが冷却部材によって冷却されるので、第二のブースタコンプレッサにおける圧縮効率を向上させることができる。
これにより冷凍サイクル部との熱交換を一層効率的に行うことができるので、再液化プラントの小型化をはかることができる。
Moreover, in the said invention, it is desirable to provide the cooling member which cools the said natural gas supplied to said 2nd booster compressor.
Since the natural gas introduced into the second booster compressor is thus cooled by the cooling member, the compression efficiency in the second booster compressor can be improved.
Thereby, since heat exchange with a refrigerating cycle part can be performed more efficiently, size reduction of a reliquefaction plant can be achieved.

また、上記発明では、前記冷却部材は、前記天然ガスに前記天然ガス搬送ラインを通って再液化された液化天然ガスの一部を噴霧して冷却する緩熱器であることとしてもよい。
このようにすると、別途の冷熱源が不要となるので、配管が簡素化され、再液化プラントの小型化をはかることができる。
Moreover, in the said invention, the said cooling member is good also as a slow-heater which sprays and cools a part of liquefied natural gas reliquefied to the said natural gas through the said natural gas conveyance line.
This eliminates the need for a separate cooling heat source, simplifying the piping and reducing the size of the reliquefaction plant.

また、上記発明では、前記分岐流路の前記冷媒流路への合流部は、前記冷媒流路における冷媒温度が前記第一のエキスパンダの直後位置における冷媒温度よりも高い高温位置とされていてもよい。   Moreover, in the said invention, the junction part to the said refrigerant flow path of the said branch flow path is made into the high temperature position where the refrigerant temperature in the said refrigerant flow path is higher than the refrigerant temperature in the position immediately after said 1st expander. Also good.

このようにすると、高温位置における冷媒温度は、冷媒流路を流れる冷媒の量および冷媒温度と、分岐流路から合流する冷媒の量および冷媒温度と、によって決定されるので、これらを調整することによって高温位置における冷媒温度を適宜設定することができる。
冷媒と天然ガスとの熱交換の際、冷媒の状態はガス状を維持するので、その温度上昇率は略一定となる。一方、天然ガスは、ガス状、ガスと液との混合、液状と状態が変化するし、たとえば、窒素等の不純物が含まれているとさらに状態が変化するので、同じ熱量を与えられても温度下降率は変動する。このため、冷媒と天然ガスとの温度変化に乖離が生じる。
本発明では、高温位置における冷媒の温度を調整できるので、この高温位置において冷媒と天然ガスとの温度変化における乖離を修正することができる。したがって、冷媒と天然ガスとの熱交換効率を向上させることができる。
In this case, the refrigerant temperature at the high temperature position is determined by the amount of refrigerant flowing through the refrigerant flow path and the refrigerant temperature, and the amount of refrigerant flowing from the branch flow path and the refrigerant temperature. Thus, the refrigerant temperature at the high temperature position can be set as appropriate.
During the heat exchange between the refrigerant and the natural gas, the state of the refrigerant is maintained in a gaseous state, so that the rate of temperature increase is substantially constant. On the other hand, natural gas changes its state in the form of gas, mixture of gas and liquid, and liquid state. For example, the state changes further when impurities such as nitrogen are contained. The temperature drop rate varies. For this reason, deviation arises in the temperature change of a refrigerant and natural gas.
In this invention, since the temperature of the refrigerant | coolant in a high temperature position can be adjusted, the deviation in the temperature change of a refrigerant | coolant and natural gas can be corrected in this high temperature position. Therefore, the heat exchange efficiency between the refrigerant and natural gas can be improved.

また、本発明にかかる液化天然ガス運搬船は、上述の天然ガス処理設備を搭載していることを特徴とする。   A liquefied natural gas carrier according to the present invention is equipped with the above-described natural gas processing equipment.

本発明の液化天然ガス運搬船によれば、コンパクトな再液化プラントを用いた天然ガス処理設備を搭載しているので、これらに要する設置空間を小さくすることができる。
このため、たとえば、既存のボイルオフガス等の天然ガスをボイラの燃料として用いる天然ガス運搬船に、再液化プラントを設置する場合、改造工事を大幅に軽減することができる。また、新造船に適用する場合でも、設計変更を容易に行うことができる。
According to the liquefied natural gas carrier of the present invention, since the natural gas processing equipment using a compact reliquefaction plant is mounted, the installation space required for these can be reduced.
For this reason, for example, when a reliquefaction plant is installed in a natural gas carrier using natural gas such as existing boil-off gas as boiler fuel, the remodeling work can be greatly reduced. In addition, even when applied to new ships, design changes can be easily made.

本発明によれば、冷凍サイクル部に第一のエキスパンダと第二のエキスパンダとが並列するように設置されるとともに天然ガス搬送ラインには、第二のエキスパンダにより駆動され、天然ガスを圧縮する第二のブースタコンプレッサが備えられているので、天然ガスと冷媒との熱交換を効率的に行うことができ、再液化プラントの小型化をはかることができる。
また、第二のブースタコンプレッサは、冷凍サイクル部の第二のエキスパンダで取り出された冷媒が膨張する時の回転力によって駆動されるので、別途それを駆動するための部材が不要であり、構造自体が簡素であることもあいまって再液化プラントの小型化を一層はかることができる。
また、第二のブースタコンプレッサを駆動する動力が第二のエキスパンダを通る冷媒から得られるので、別途それを駆動するための外部動力が不要となり、省スペース・省エネルギーとできる。
このように、再液化プラントは小型で高効率なものにできるし、その設置空間を少なくできる。このため、たとえば、既存のボイルオフガス等の天然ガスをボイラの燃料として用いる天然ガス運搬船に、再液化プラントを設置する場合、改造工事を大幅に軽減することができる。また、新造船に適用する場合でも、設計変更を容易に行うことができる。
According to the present invention, the first expander and the second expander are installed in parallel in the refrigeration cycle unit, and the natural gas transport line is driven by the second expander to supply natural gas. Since the second booster compressor for compression is provided, heat exchange between the natural gas and the refrigerant can be performed efficiently, and the reliquefaction plant can be downsized.
Further, since the second booster compressor is driven by the rotational force when the refrigerant taken out by the second expander of the refrigeration cycle section expands, a separate member for driving it is unnecessary, and the structure Combined with its simplicity, the reliquefaction plant can be further downsized.
Further, since the power for driving the second booster compressor is obtained from the refrigerant passing through the second expander, no external power for driving the second booster compressor is required, saving space and energy.
Thus, the reliquefaction plant can be made small and highly efficient, and the installation space can be reduced. For this reason, for example, when a reliquefaction plant is installed in a natural gas carrier using natural gas such as existing boil-off gas as boiler fuel, the remodeling work can be greatly reduced. In addition, even when applied to new ships, design changes can be easily made.

以下に、本発明の一実施形態にかかるLNG船の天然ガス処理設備1について、図1および図2を用いて説明する。
図1は、LNG船の天然ガス処理設備1の全体概略構成を示すブロック図である。LNG船は、液化天然ガス(以下、LNGということもある。)3を貯蔵する複数のカーゴタンク5を備えている。カーゴタンク5には、種々の形式があり、たとえば、モス式のタンクは図1に示されるように略球形をしている。
天然ガス処理設備1には、燃料供給ライン7と、再液化処理部(再液化プラント)9と、が備えられている。
Below, the natural gas processing equipment 1 of the LNG ship concerning one Embodiment of this invention is demonstrated using FIG. 1 and FIG.
FIG. 1 is a block diagram showing an overall schematic configuration of a natural gas processing facility 1 of an LNG ship. The LNG ship includes a plurality of cargo tanks 5 that store liquefied natural gas (hereinafter sometimes referred to as LNG) 3. There are various types of cargo tanks 5. For example, a moss-type tank has a substantially spherical shape as shown in FIG.
The natural gas processing facility 1 includes a fuel supply line 7 and a reliquefaction processing unit (reliquefaction plant) 9.

燃料供給ライン7は、カーゴタンク5に貯蔵されたLNG3をガス化し、燃料としてボイラ11のバーナ13へ供給するものである。
燃料供給ライン7には、カーゴタンク5に発生するボイルオフガス15を搬送するBOG配管17と、カーゴタンク5内のLNG3を途中でベーパライザ21によって気化して搬送するLNG配管19と、BOG配管17およびLNG配管19で搬送される天然ガスが流入するミストセパレータ23と、ミストセパレータ23からボイラ11へ天然ガスを搬送する燃料配管24と、燃料配管24で搬送される天然ガスを圧縮する燃料用圧縮機25と、燃料用圧縮機25で圧縮された天然ガスを加熱するガスヒータ27と、天然ガスの流量を調整するガス流量制御弁28と、が備えられている。
The fuel supply line 7 gasifies the LNG 3 stored in the cargo tank 5 and supplies it to the burner 13 of the boiler 11 as fuel.
The fuel supply line 7 includes a BOG pipe 17 that transports the boil-off gas 15 generated in the cargo tank 5, an LNG pipe 19 that transports the LNG 3 in the cargo tank 5 by being vaporized by the vaporizer 21, and a BOG pipe 17 and A mist separator 23 into which natural gas conveyed by the LNG pipe 19 flows, a fuel pipe 24 that conveys natural gas from the mist separator 23 to the boiler 11, and a compressor for fuel that compresses the natural gas conveyed by the fuel pipe 24. 25, a gas heater 27 that heats the natural gas compressed by the fuel compressor 25, and a gas flow rate control valve 28 that adjusts the flow rate of the natural gas.

ミストセパレータ23は、液分を除去する機能を有している。
燃料用圧縮機25は、同一構造の2台が並列的に配設され、一方は万一故障した場合の予備とされている。燃料用圧縮機25はモータで駆動されるように構成されている。
また、この2台の燃料用圧縮機25に並列的に燃料用圧縮機25が設置されていないフリーフローライン29が備えられている。フリーフローライン29には、開閉する開閉弁31と、燃料用圧縮機25の出側からの流入を阻止する逆止弁33とが備えられている。
フリーフローライン29は、たとえば、2台の燃料用圧縮機25が停止している場合に、ミストセパレータ23側の圧力で天然ガスをボイラ11へ供給するために用いられる。
The mist separator 23 has a function of removing the liquid component.
Two fuel compressors 25 having the same structure are arranged in parallel, and one of them is set as a spare in the event of a failure. The fuel compressor 25 is configured to be driven by a motor.
The two fuel compressors 25 are provided with a free flow line 29 in which the fuel compressors 25 are not installed in parallel. The free flow line 29 is provided with an on-off valve 31 that opens and closes and a check valve 33 that prevents inflow from the outlet side of the fuel compressor 25.
The free flow line 29 is used, for example, to supply natural gas to the boiler 11 with the pressure on the mist separator 23 side when the two fuel compressors 25 are stopped.

再液化処理部9は、余剰の天然ガス等を再液化するものである。
再液化処理部9には、冷凍サイクル部35と、液化処理部37とが備えられている。
冷凍サイクル部35は、冷凍配管(冷媒流路)39を通って循環される冷媒(冷媒としては、例えば、窒素が用いられている。他に、例えば、水素やヘリウムが対象となる。)の冷熱を液化処理部37に供給するものである。
冷凍サイクル部35には、冷媒圧縮機41と、ブースタコンプレッサ(第一のブースタコンプレッサ)43と、コールドエキスパンダ(第一のエキスパンダ)45と、プレクーラ47と、凝縮器49と、過冷却器51と、が主たる要素として設けられている。
The reliquefaction processing unit 9 reliquefies excess natural gas or the like.
The reliquefaction processing unit 9 includes a refrigeration cycle unit 35 and a liquefaction processing unit 37.
The refrigeration cycle unit 35 is a refrigerant circulated through a refrigeration pipe (refrigerant channel) 39 (for example, nitrogen is used as the refrigerant. In addition, for example, hydrogen and helium are targets). The cold heat is supplied to the liquefaction processing unit 37.
The refrigeration cycle unit 35 includes a refrigerant compressor 41, a booster compressor (first booster compressor) 43, a cold expander (first expander) 45, a precooler 47, a condenser 49, and a supercooler. 51 is provided as a main element.

冷凍サイクル部35には、これら要素間を接続して閉じた系を構成する冷凍配管39が設けられている。冷凍配管39には、ブースタコンプレッサ43、プレクーラ47および凝縮器49を経由してコールドエキスパンダ45に入る予備冷却配管部53と、コールドエキスパンダ45、過冷却器51、凝縮器49、およびプレクーラ47を経由して冷媒圧縮機41に入る冷却配管部55とが設けられている。   The refrigeration cycle section 35 is provided with a refrigeration pipe 39 that configures a closed system by connecting these elements. The refrigeration pipe 39 includes a precooling pipe section 53 that enters the cold expander 45 via the booster compressor 43, the precooler 47 and the condenser 49, and the cold expander 45, the supercooler 51, the condenser 49, and the precooler 47. And a cooling pipe portion 55 that enters the refrigerant compressor 41 via the.

冷媒圧縮機41は、スチームタービン57によって駆動される2段の遠心式圧縮機である。なお、駆動用スチーム設備の無い船舶(ディーゼル推進船等)では圧縮機スピード制御機能を有したモータ駆動としてもよい。また、冷媒圧縮機41はこの形式に限らず、冷凍配管39内の差圧を発生させるものであれば、スクリュー圧縮機等、適宜な形式のものを用いることができる。
冷媒圧縮機41は、低温・低圧のガス状冷媒を吸引して圧縮し、高温・高圧のガス状冷媒とするものである。
冷媒圧縮機41はインタークーラ59を有している。冷媒圧縮機41とブースタコンプレッサ43との間には第一アフタクーラ61が設けられている。
冷媒量を調整するために、冷媒バッファタンク63を有する配管が、冷媒圧縮機41の前後に接続されている。
The refrigerant compressor 41 is a two-stage centrifugal compressor driven by a steam turbine 57. In addition, in a ship without a driving steam facility (diesel propulsion ship or the like), a motor drive having a compressor speed control function may be used. In addition, the refrigerant compressor 41 is not limited to this type, and a suitable type such as a screw compressor can be used as long as it generates a differential pressure in the refrigeration pipe 39.
The refrigerant compressor 41 sucks and compresses a low-temperature / low-pressure gaseous refrigerant to form a high-temperature / high-pressure gaseous refrigerant.
The refrigerant compressor 41 has an intercooler 59. A first aftercooler 61 is provided between the refrigerant compressor 41 and the booster compressor 43.
In order to adjust the amount of refrigerant, a pipe having a refrigerant buffer tank 63 is connected before and after the refrigerant compressor 41.

ブースタコンプレッサ43は、第一アフタクーラ61から導入される冷媒を圧縮して、冷媒を高温・高圧とし、予備冷却配管部53へ供給するものである。ブースタコンプレッサ43の下流側には第二アフタクーラ65が備えられている。
コールドエキスパンダ45は、第二アフタクーラ65、プレクーラ47および凝縮器49を通って温度が低下させられた冷媒を減圧により膨張させて低温・低圧のガス状冷媒とするものである。この冷媒が膨張する時の力を回転力として、コールドエキスパンダ45と同軸で接続されたブースタコンプレッサ43は回転させられる。
コールドエキスパンダ45からの低温・低圧のガス状冷媒は、冷却配管部55を通って過冷却器51、凝縮器49およびプレクーラ47と順次送られ熱交換される。
The booster compressor 43 compresses the refrigerant introduced from the first aftercooler 61 so that the refrigerant is heated to a high temperature and a high pressure, and is supplied to the preliminary cooling pipe unit 53. A second aftercooler 65 is provided on the downstream side of the booster compressor 43.
The cold expander 45 expands the refrigerant whose temperature has been lowered through the second aftercooler 65, the precooler 47, and the condenser 49 by decompression to form a low-temperature and low-pressure gaseous refrigerant. The booster compressor 43 connected coaxially with the cold expander 45 is rotated using the force when the refrigerant expands as a rotational force.
The low-temperature and low-pressure gaseous refrigerant from the cold expander 45 is sequentially sent to the supercooler 51, the condenser 49 and the precooler 47 through the cooling pipe 55 to exchange heat.

予備冷却配管部53におけるプレクーラ47と凝縮器49との間の分岐点Aと、冷却配管部55における凝縮器49と過冷却器51との間の合流点Bと、を接続する分岐配管(分岐流路)67が備えられている。分岐点Aはコールドエキスパンダ45の上流側で、合流点(合流部、高温位置)Bはコールドエキスパンダ45の下流側であるので、分岐配管67はコールドエキスパンダ45の前後を結んでいる。
分岐点Aとコールドエキスパンダ45との間には凝縮器49があるので、分岐点Aにおける冷媒温度はコールドエキスパンダ45の入口部の冷媒温度よりも高くなる。
合流点Bとコールドエキスパンダ45との間には過冷却器51があるので、合流点Bにおける冷媒温度はコールドエキスパンダ45の出口部の冷媒温度よりも高くなる。
A branch pipe (branch) connecting the branch point A between the precooler 47 and the condenser 49 in the precooling pipe part 53 and the junction point B between the condenser 49 and the subcooler 51 in the cooling pipe part 55. A flow path) 67 is provided. Since the branch point A is upstream of the cold expander 45 and the junction (junction portion, high temperature position) B is downstream of the cold expander 45, the branch pipe 67 connects the front and rear of the cold expander 45.
Since the condenser 49 exists between the branch point A and the cold expander 45, the refrigerant temperature at the branch point A is higher than the refrigerant temperature at the inlet of the cold expander 45.
Since the supercooler 51 exists between the junction B and the cold expander 45, the refrigerant temperature at the junction B is higher than the refrigerant temperature at the outlet of the cold expander 45.

分岐配管67には、分岐配管67を通る冷媒を減圧により膨張させて低温・低圧のガス状冷媒とするホットエキスパンダ(第二のエキスパンダ)69が備えられている。
冷凍配管39におけるブースタコンプレッサ43の上流側と、第二アフタクーラ65の下流側との間に、弁の開閉により断接される第一バイパス配管71が備えられている。
冷凍配管39におけるコールドエキスパンダ45の上流側と、過冷却器51の下流側との間に、弁の開閉により断接される第二バイパス配管73が備えられている。
冷凍サイクル35の起動時に、第一バイパス配管71および第二バイパス配管73は開放される。これにより冷媒はブースタコンプレッサ43およびコールドエキスパンダ45を通過しないので、それらによる抵抗がなくなり冷媒圧縮機41の起動を可能とできる。
The branch pipe 67 is provided with a hot expander (second expander) 69 that expands the refrigerant passing through the branch pipe 67 by decompression to produce a low-temperature and low-pressure gaseous refrigerant.
A first bypass pipe 71 is provided between the upstream side of the booster compressor 43 in the refrigeration pipe 39 and the downstream side of the second aftercooler 65, which is connected / disconnected by opening / closing of a valve.
A second bypass pipe 73 is provided between the upstream side of the cold expander 45 in the refrigeration pipe 39 and the downstream side of the supercooler 51, which is connected / disconnected by opening / closing a valve.
When the refrigeration cycle unit 35 is started, the first bypass pipe 71 and the second bypass pipe 73 are opened. As a result, the refrigerant does not pass through the booster compressor 43 and the cold expander 45, so that the resistance due to them disappears and the refrigerant compressor 41 can be started.

液化処理部37には、燃料用圧縮機25によって圧縮された天然ガスをセパレータ75へ搬送する天然ガス供給配管(天然ガス搬送ライン)77と、セパレータ75からカーゴタンク5へ再液化されたLNGを送る再液化ガス配管79とが備えられている。
天然ガス供給配管77には、搬送される天然ガスを冷却する緩熱器(冷却部材)81と、緩熱器81からの天然ガスを圧縮するガス圧縮ブースタコンプレッサ(第二のブースタコンプレッサ)83と、が備えられている。
ガス圧縮ブースタコンプレッサ83は、ホットエキスパンダ69と同軸で接続されている。したがって、分岐配管67を通る冷媒が膨張する時の力を回転力としてホットエキスパンダ69が回転することによりガス圧縮ブースタコンプレッサ83は回転させられる。
The liquefaction processing unit 37 includes a natural gas supply pipe (natural gas transport line) 77 for transporting the natural gas compressed by the fuel compressor 25 to the separator 75, and LNG reliquefied from the separator 75 to the cargo tank 5. A reliquefied gas pipe 79 to be sent is provided.
The natural gas supply pipe 77 includes a slow heatr (cooling member) 81 for cooling the natural gas being conveyed, and a gas compression booster compressor (second booster compressor) 83 for compressing the natural gas from the slow heatr 81. , Is provided.
The gas compression booster compressor 83 is coaxially connected to the hot expander 69. Therefore, the gas expansion booster compressor 83 is rotated by rotating the hot expander 69 using the force when the refrigerant passing through the branch pipe 67 expands as a rotational force.

再液化ガス配管79からLNG供給配管85が分岐されている。緩熱器81は、燃料用圧縮機25からの天然ガスに、LNG供給配管85から供給されるLNGを噴霧することによって天然ガスの温度を低下させる。
LNG供給配管85に備えられた調整弁87によって緩熱器81に供給するLNGの量を調整することによってガス圧縮ブースタコンプレッサ83へ供給する天然ガスの温度を調整することができる。
An LNG supply pipe 85 is branched from the reliquefied gas pipe 79. The slow heatr 81 reduces the temperature of the natural gas by spraying the LNG supplied from the LNG supply pipe 85 onto the natural gas from the fuel compressor 25.
The temperature of the natural gas supplied to the gas compression booster compressor 83 can be adjusted by adjusting the amount of LNG supplied to the slow heat generator 81 by the adjustment valve 87 provided in the LNG supply pipe 85.

天然ガス供給配管77は、ガス圧縮ブースタコンプレッサ83を出た後、凝縮器49を通りセパレータ75の上部に接続されている。天然ガス供給配管77で搬送される天然ガスは凝縮器49において冷却配管部55を通る冷媒によって冷却され凝縮させられる。
この凝縮された天然ガスは、セパレータ75に導入され液分とガス分とに分離される。
再液化ガス配管79は、セパレータ75の下部から過冷却器51を通りカーゴタンク5に接続されている。
再液化ガス配管79には、過冷却器51よりも下流側に再液化ガス流量調整弁89が設けられている。
The natural gas supply pipe 77 is connected to the upper part of the separator 75 through the condenser 49 after leaving the gas compression booster compressor 83. The natural gas conveyed by the natural gas supply pipe 77 is cooled and condensed by the refrigerant passing through the cooling pipe section 55 in the condenser 49.
The condensed natural gas is introduced into the separator 75 and separated into a liquid component and a gas component.
The reliquefied gas pipe 79 is connected to the cargo tank 5 from the lower part of the separator 75 through the supercooler 51.
The reliquefied gas pipe 79 is provided with a reliquefied gas flow rate adjustment valve 89 on the downstream side of the subcooler 51.

セパレータ75の頂部から天然ガス供給配管77における緩熱器81の上流側である合流点Cへ接続される流量調整弁を備えたガス供給配管91が設けられている。
ガス供給配管91から燃料配管24へ接続される流量調整弁を備えたガス供給分岐配管93が分岐して設けられている。
A gas supply pipe 91 having a flow rate adjusting valve connected from the top of the separator 75 to the junction C on the upstream side of the slow heat generator 81 in the natural gas supply pipe 77 is provided.
A gas supply branch pipe 93 provided with a flow rate adjusting valve connected from the gas supply pipe 91 to the fuel pipe 24 is branched.

コールドエキスパンダ45、ホットエキスパンダ69、プレクーラ47、凝縮器49および過冷却器51は防熱構造をした略直方体形状をした機器ブロック95内にコンパクトに収納されている。
ガス圧縮ブースタコンプレッサ83およびブースタコンプレッサ43は小型であるので、図2に示されるように機器ブロック95に埋め込むように取り付けられている。これにより、ガス圧縮ブースタコンプレッサ83およびブースタコンプレッサ43は同時に防熱されている。
The cold expander 45, the hot expander 69, the precooler 47, the condenser 49, and the supercooler 51 are housed compactly in a device block 95 having a substantially rectangular parallelepiped shape having a heat-proof structure.
Since the gas compression booster compressor 83 and the booster compressor 43 are small in size, they are attached to be embedded in the equipment block 95 as shown in FIG. Thereby, the gas compression booster compressor 83 and the booster compressor 43 are insulated simultaneously.

緩熱器81およびセパレータ75は、図1に示されるように略円筒形状をしたリキッドカラム97の内側に上下に配置されて取り付けられている。
冷媒圧縮機41、冷媒バッファタンク63およびスチームタービン57はボイラ11が設置されている機関室MRに配置され、機器ブロック95およびリキッドカラム97はカーゴ機器室CMに設置されている。
As shown in FIG. 1, the slow heatr 81 and the separator 75 are vertically arranged and attached inside a liquid column 97 having a substantially cylindrical shape.
The refrigerant compressor 41, the refrigerant buffer tank 63, and the steam turbine 57 are arranged in the engine room MR in which the boiler 11 is installed, and the equipment block 95 and the liquid column 97 are installed in the cargo equipment room CM.

以上説明した本実施形態にかかる天然ガス処理設備1の動作について説明する。
冷凍サイクル部35では、冷媒圧縮機41がスチームタービン57により駆動され、冷凍配管39から導入される低温・低圧のガス状冷媒を圧縮して、高温・高圧のガス状冷媒とする。
この高温・高圧のガス状冷媒は、第一アフタクーラ61で冷却されてブースタコンプレッサ43に導入される。
ブースタコンプレッサ43では、導入されたガス状冷媒が圧縮されてさらに再度高温・高圧とされる。
Operation | movement of the natural gas processing equipment 1 concerning this embodiment demonstrated above is demonstrated.
In the refrigeration cycle unit 35, the refrigerant compressor 41 is driven by the steam turbine 57 to compress the low-temperature / low-pressure gaseous refrigerant introduced from the refrigeration pipe 39 into a high-temperature / high-pressure gaseous refrigerant.
This high-temperature and high-pressure gaseous refrigerant is cooled by the first aftercooler 61 and introduced into the booster compressor 43.
In the booster compressor 43, the introduced gaseous refrigerant is compressed and is again brought to high temperature and high pressure.

この冷媒が、予備冷却配管部53に送られ、第二アフタクーラ65で冷却され、次いでプレクーラ47および凝縮器49を通過する際に冷却配管部55を通る低温・低圧のガス状冷媒により冷却されてコールドエキスパンダ45に導入される。
コールドエキスパンダ45に導入された冷媒は、減圧により膨張されて低温・低圧のガス状冷媒とされる。
そして、この低温・低圧のガス状冷媒は、冷却配管部55に送られ、過冷却器51を通過し、その冷熱を周囲に与えて冷却する。
This refrigerant is sent to the preliminary cooling pipe section 53, cooled by the second aftercooler 65, and then cooled by the low-temperature and low-pressure gaseous refrigerant passing through the cooling pipe section 55 when passing through the precooler 47 and the condenser 49. Introduced into the cold expander 45.
The refrigerant introduced into the cold expander 45 is expanded by decompression to be a low-temperature / low-pressure gaseous refrigerant.
The low-temperature and low-pressure gaseous refrigerant is sent to the cooling pipe section 55, passes through the supercooler 51, and cools it by giving the cold to the surroundings.

一方、予備冷却配管部53を流れる冷媒の一部は、プレクーラ47の下流側の分岐点Aから分岐配管67に分岐される。分岐配管67を流れる冷媒は、ホットエキスパンダ69に導入され、減圧により膨張されて低温・低圧のガス状冷媒とされる。この冷媒は、過冷却器51の下流側の合流点Bにおいて冷却配管部55に合流される。
この合流点Bにおける冷媒温度は、過冷却器51を通った後の冷媒の量および冷媒温度と、分岐配管67から合流する冷媒の量および冷媒温度と、によって決定される。
したがって、過冷却器51を通った後の冷媒の量および冷媒温度と、分岐配管67から合流する冷媒の量および冷媒温度とを調整することによって合流点Bにおける冷媒温度を適宜設定することができる。
On the other hand, a part of the refrigerant flowing through the preliminary cooling pipe portion 53 is branched from the branch point A on the downstream side of the precooler 47 to the branch pipe 67. The refrigerant flowing through the branch pipe 67 is introduced into the hot expander 69 and expanded by decompression to be a low-temperature and low-pressure gaseous refrigerant. This refrigerant is merged into the cooling pipe section 55 at the merge point B on the downstream side of the subcooler 51.
The refrigerant temperature at the junction B is determined by the refrigerant amount and refrigerant temperature after passing through the supercooler 51 and the refrigerant amount and refrigerant temperature that merge from the branch pipe 67.
Therefore, the refrigerant temperature at the junction B can be appropriately set by adjusting the refrigerant quantity and refrigerant temperature after passing through the supercooler 51 and the refrigerant quantity and refrigerant temperature joining from the branch pipe 67. .

合流点Bにおいて合流した冷媒は、凝縮器49およびプレクーラ47を通る際、その冷熱を周囲に与えて冷却する。
その後、冷媒は冷媒圧縮機41に送られて、1サイクルが完了する。
冷凍サイクル部35では、このサイクルを連続的に行うことで、冷却配管部55が通過する過冷却器51、凝縮器49およびプクーラ47において冷熱を提供する。
When the refrigerant having joined at the junction B passes through the condenser 49 and the precooler 47, the refrigerant is cooled by giving the cold to the surroundings.
Thereafter, the refrigerant is sent to the refrigerant compressor 41 to complete one cycle.
In the refrigeration cycle unit 35, by performing this cycle continuously, subcooler 51 cooling pipe 55 passes, to provide a cold in the condenser 49 and the flop les cooler 47.

カーゴタンク5で発生したボイルオフガス15およびカーゴタンク5内のLNGをベーパライザ21によってガス化させた天然ガスは、ミストセパレータ23で混合され、燃料用圧縮機25に燃料配管24を通って供給される。この天然ガスは燃料用圧縮機25によって圧縮され、ガスヒータ27によって加温され、ボイラ11のバーナ13へ燃料として供給される。
このとき、ガス流量制御弁28はボイラ11が要する燃料の量にあわせて自動で開閉するように制御されている。
The boil-off gas 15 generated in the cargo tank 5 and the natural gas obtained by gasifying the LNG in the cargo tank 5 with the vaporizer 21 are mixed by the mist separator 23 and supplied to the fuel compressor 25 through the fuel pipe 24. . This natural gas is compressed by the fuel compressor 25, heated by the gas heater 27, and supplied as fuel to the burner 13 of the boiler 11.
At this time, the gas flow rate control valve 28 is controlled to automatically open and close in accordance with the amount of fuel required by the boiler 11.

この天然ガスが余ったとき、あるいは、常時、燃料用圧縮機25を出た天然ガスは抜き出され天然ガス供給配管77を通って緩熱器81に導入される。
緩熱器81に導入された天然ガスは再液化ガス配管79およびLNG供給配管85を通ってセパレータ75の下部から供給されるLNGが噴霧されることによって冷却される。
緩熱器81で冷却された天然ガスは、ホットエキスパンダ69で駆動されるガス圧縮ブースタコンプレッサ83によって圧縮される。
このようにガス圧縮ブースタコンプレッサ83に導入される天然ガスが緩熱器81によって冷却されるので、ガス圧縮ブースタコンプレッサ83における圧縮効率を向上させることができる。
When the natural gas is left or at all times, the natural gas that has exited the fuel compressor 25 is extracted and introduced into the slow heat generator 81 through the natural gas supply pipe 77.
The natural gas introduced into the slow heat generator 81 is cooled by spraying LNG supplied from the lower part of the separator 75 through the reliquefied gas pipe 79 and the LNG supply pipe 85.
The natural gas cooled by the slow heat generator 81 is compressed by a gas compression booster compressor 83 driven by a hot expander 69.
Thus, since the natural gas introduced into the gas compression booster compressor 83 is cooled by the slow heat generator 81, the compression efficiency in the gas compression booster compressor 83 can be improved.

そして、凝縮器49において、天然ガスは、冷凍サイクル部35の冷却配管部55を流れる低温・低圧のガス状冷媒により冷却されて、飽和液状態、すなわち気液に分離し易い状態でセパレータ75に送られる。
セパレータ75では、飽和液状態の天然ガスが気液分離され、液体分は下部に、ガス分は上部に分離される。
下部のLNGは、再液化ガス配管79を通ってカーゴタンク5に戻される。
In the condenser 49, the natural gas is cooled by the low-temperature and low-pressure gaseous refrigerant flowing through the cooling pipe section 55 of the refrigeration cycle section 35, and is supplied to the separator 75 in a saturated liquid state, that is, in a state where it is easily separated into gas and liquid. Sent.
In the separator 75 , the saturated natural gas is gas-liquid separated, and the liquid component is separated into the lower portion and the gas component is separated into the upper portion.
The lower LNG is returned to the cargo tank 5 through the reliquefied gas pipe 79.

このように、天然ガスは、燃料用圧縮機25およびガス圧縮ブースタコンプレッサ83によって中間冷却したうえで2回にわたり圧縮されるので、冷凍サイクル部35との熱交換を効率的に行うことができる。これにより、冷凍サイクル部35の小型化をはかることができる。
また、ガス圧縮ブースタコンプレッサ83における圧縮効率を向上させることができるので、ガス圧縮ブースタコンプレッサ83を小型化でき、機器ブロック95の小型化をはかることができる。
また、ガス圧縮ブースタコンプレッサ83は、冷凍サイクル部35のホットエキスパンダ69で取り出された冷媒が膨張する時の回転力によって駆動されるので、別途それを駆動するための部材が不要である。また、構造自体が簡素であることもあいまって機器ブロック95、すなわち、再液化処理部9の小型化を一層はかることができる。
As described above, the natural gas is compressed twice by being intermediate-cooled by the fuel compressor 25 and the gas compression booster compressor 83, so that heat exchange with the refrigeration cycle unit 35 can be performed efficiently. Thereby, size reduction of the refrigerating cycle part 35 can be achieved.
Moreover, since the compression efficiency in the gas compression booster compressor 83 can be improved, the gas compression booster compressor 83 can be downsized, and the equipment block 95 can be downsized.
Further, since the gas compression booster compressor 83 is driven by the rotational force when the refrigerant taken out by the hot expander 69 of the refrigeration cycle section 35 expands, a member for driving it separately is unnecessary. In addition, since the structure itself is simple, the device block 95, that is, the reliquefaction processing unit 9 can be further downsized.

また、ガス圧縮ブースタコンプレッサ83を駆動する動力がホットエキスパンダ69を通る冷媒から得られるので、別途それを駆動するための外部動力が不要となり、省スペース・省エネルギーとできる。
このように、再液化処理部9は小型で高効率なものにできるし、その設置空間を少なくできる。このため、たとえば、既存のボイルオフガス等の天然ガスをボイラの燃料として用いるLNG船に、再液化処理部9を設置する場合、改造工事を大幅に軽減することができる。また、新造船に適用する場合でも、設計変更を容易に行うことができる。
Further, since the power for driving the gas compression booster compressor 83 is obtained from the refrigerant passing through the hot expander 69, no external power for driving the gas compression booster compressor 83 is required, and space and energy can be saved.
Thus, the reliquefaction processing unit 9 can be made small and highly efficient, and the installation space can be reduced. For this reason, for example, when installing the reliquefaction processing part 9 in the LNG ship which uses natural gas, such as the existing boil-off gas, as a fuel of a boiler, remodeling construction can be reduced significantly. In addition, even when applied to new ships, design changes can be easily made.

冷却配管部55を通る冷媒と天然ガス供給配管77および再液化ガス配管79を通る天然ガスとの熱交換の際、冷媒の状態はガス状を維持するので、その温度上昇率は略一定となる。一方、天然ガスは、凝縮器49においてガス状およびガスと液との混合状態、過冷却器51において液状と状態が変化するし、たとえば、窒素等の不純物が含まれているとさらに状態が変化するので、同じ熱量を与えられても温度下降率は変動する。
このため、冷媒と天然ガスとの温度変化に乖離が生じる。
In the heat exchange between the refrigerant passing through the cooling pipe section 55 and the natural gas passing through the natural gas supply pipe 77 and the reliquefied gas pipe 79, the state of the refrigerant is maintained in a gaseous state, so that the rate of temperature increase is substantially constant. . On the other hand, natural gas changes in a gaseous state and a mixed state of gas and liquid in the condenser 49, and in a liquid state in the subcooler 51. For example, the state changes further when impurities such as nitrogen are contained. Therefore, even if the same amount of heat is given, the temperature decrease rate varies.
For this reason, deviation arises in the temperature change of a refrigerant and natural gas.

過冷却器51を通った後の冷媒の量および冷媒温度と、分岐配管67から合流する冷媒の量および冷媒温度とを適宜設定することによって合流点Bにおける冷媒温度を適宜設定することができるので、この合流点Bにおいて冷媒と天然ガスとの温度変化における乖離を修正することができる。
したがって、冷媒と天然ガスとの熱交換効率を向上させることができる。
Since the refrigerant temperature and the refrigerant temperature after passing through the subcooler 51 and the refrigerant quantity and the refrigerant temperature that merge from the branch pipe 67 are appropriately set, the refrigerant temperature at the junction B can be set as appropriate. The deviation in the temperature change between the refrigerant and the natural gas can be corrected at the junction B.
Therefore, the heat exchange efficiency between the refrigerant and natural gas can be improved.

セパレータ75の上部に溜まった低温のガス分は、ガス供給配管91で、合流点Cにおいて天然ガス供給配管77へ送られ、天然ガス供給配管77で送られる天然ガスを冷却する。流量調整弁によってガス供給配管91の流量を調整することによって冷却量を調整できる。
また、セパレータ75の上部に溜まったガス分の一部は、ガス供給配管91およびガス供給分岐配管93を通って燃料配管24に供給され、ボイラ11のバーナ13に供給される。
The low-temperature gas component accumulated in the upper portion of the separator 75 is sent to the natural gas supply pipe 77 at the junction C at the gas supply pipe 91, and the natural gas sent through the natural gas supply pipe 77 is cooled. The amount of cooling can be adjusted by adjusting the flow rate of the gas supply pipe 91 with the flow rate adjusting valve.
A part of the gas accumulated in the upper portion of the separator 75 is supplied to the fuel pipe 24 through the gas supply pipe 91 and the gas supply branch pipe 93 and supplied to the burner 13 of the boiler 11.

なお、本発明は本実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
たとえば、本実施形態では、ガス圧縮ブースタコンプレッサ83がホットエキスパンダ69に軸によって直結されているが、図3に示されるようにホットエキスパンダ69に直結された発電機101備え、ガス圧縮ブースタコンプレッサ83は発電機101で発生する電力でそのまま駆動される高速モータ103によって作動されるようにしてもよい。
In addition, this invention is not limited to this embodiment, In the range which does not deviate from the summary of this invention, it can change suitably.
For example, in this embodiment, the gas compression booster compressor 83 is directly connected to the hot expander 69 by a shaft. However, as shown in FIG. 3, the gas compression booster compressor 83 includes a generator 101 directly connected to the hot expander 69. Reference numeral 83 may be operated by a high-speed motor 103 that is directly driven by electric power generated by the generator 101.

また、本実施例では、分岐配管67は予備冷却配管部53におけるプクーラ47と凝縮器49との間の分岐点Aから分岐するようにしているが、図4に示されるようにプクーラ47の上流側の分岐点Dから分岐するようにしてもよい。
さらに、図5に示されるように、分岐配管6が、予備冷却配管部53における凝縮器49とコールドエキスパンダ45との間の分岐位置Eから分岐し、冷却配管部55における過冷却器51の上流側である合流点(合流部)Fで合流するようにしてもよい。この場合、コールドエキスパンダ45およびホットエキスパンダ69へ流入する冷媒の温度は略同一であり、コールドエキスパンダ45およびホットエキスパンダ69の膨張度の違いで合流点Fの冷媒温度を設定できる。ただし、合流点Fが過冷却51の上流側であるので、過冷却51からプクーラ47までの冷媒温度の温度変化率を調整する効果は有しない。
Further, in this embodiment, so that branching from the branch point A between the branch pipe 67 and the flop les cooler 47 in the preliminary cooling pipe 53 and the condenser 49, flop les as shown in FIG. 4 You may make it branch from the branch point D of the upstream of the cooler 47. FIG.
Furthermore, as shown in FIG. 5, the branch pipe 6 7 branches from the branching position E between the condenser 49 and the cold expander 45 in the preliminary cooling pipe section 53, the subcooler in the cooling pipe section 55 51 You may make it merge at the confluence | merging point (junction part) F which is the upstream of this. In this case, the temperature of the refrigerant flowing into the cold expander 45 and the hot expander 69 is substantially the same, and the refrigerant temperature at the confluence F can be set by the difference in expansion between the cold expander 45 and the hot expander 69. However, since the converging point F is upstream of the subcooler 51, the effect of adjusting the temperature change rate of the refrigerant temperature to the subcooler 51 Karapu Les cooler 47 does not have.

なお、最近、モータと一体的に組合せ全体として小型化した圧縮機が提案されている。ガス圧縮ブースタコンプレッサ83の替わりにこれを用いても再液化処理部9をある程度小型化できる。この場合、モータを駆動する電力を別途供給する必要があるので、動力源としてホットエキスパンダ69を用いるものに比べて多くの動力を必要とし、効率上は若干不利となる。   Recently, a compressor that has been miniaturized as a whole in combination with a motor has been proposed. Even if this is used instead of the gas compression booster compressor 83, the reliquefaction processing section 9 can be downsized to some extent. In this case, since it is necessary to separately supply electric power for driving the motor, a large amount of power is required as compared with the power source using the hot expander 69, which is slightly disadvantageous in terms of efficiency.

本発明の一実施形態にかかる天然ガス処理設備の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the natural gas processing equipment concerning one Embodiment of this invention. 本発明の一実施形態にかかる機器ブロックおよびリキッドカラムを示す斜視図である。It is a perspective view which shows the apparatus block and liquid column concerning one Embodiment of this invention. 本発明の一実施形態にかかるガス圧縮ブースタコンプレッサの別の実施態様を示すブロック図である。It is a block diagram which shows another embodiment of the gas compression booster compressor concerning one Embodiment of this invention. 本発明の一実施形態にかかる分岐配管の別の実施態様を示すブロック図である。It is a block diagram which shows another embodiment of the branch piping concerning one Embodiment of this invention. 本発明の一実施形態にかかる分岐配管のさらに別の実施態様を示すブロック図である。It is a block diagram which shows another embodiment of the branch piping concerning one Embodiment of this invention.

符号の説明Explanation of symbols

1 天然ガス処理設備
7 燃料供給ライン
9 再液化処理部
11 ボイラ
25 燃料用圧縮機
35 冷凍サイクル部
39 冷媒配管
43 ブースタコンプレッサ
45 コールドエキスパンダ
67 分岐配管
69 ホットエキスパンダ
77 天然ガス供給配管
81 緩熱器
83 ガス圧縮ブースタコンプレッサ
B,F 合流点
DESCRIPTION OF SYMBOLS 1 Natural gas processing equipment 7 Fuel supply line 9 Reliquefaction processing part 11 Boiler 25 Fuel compressor 35 Refrigeration cycle part 39 Refrigerant piping 43 Booster compressor 45 Cold expander 67 Branch piping 69 Hot expander 77 Natural gas supply piping 81 Slow heat 83 Gas Compression Booster Compressor B, F Junction

Claims (5)

天然ガスを燃料用圧縮機によって圧縮しボイラへ燃料として供給する燃料供給ラインと、
前記燃料用圧縮機によって圧縮された前記天然ガスを取り込み搬送する天然ガス搬送ラインおよび循環する冷媒によって該天然ガス搬送ラインで搬送される天然ガスを冷却し再液化させる冷凍サイクル部を有する再液化プラントと、を備えている天然ガス処理設備であって、
前記冷凍サイクル部には、冷媒流路に沿って循環される前記冷媒を圧縮する第一のブースタコンプレッサと、圧縮された後冷却された冷媒を膨張させ一層低温状態とするとともに前記第一のブースタコンプレッサを駆動する第一のエキスパンダと、前記冷媒流路における前記第一のブースタコンプレッサと前記第一のエキスパンダのとの間で分岐し前記第一のエキスパンダよりも下流側で合流する分岐流路に介装され、該分岐流路を流れる冷媒を膨張させる第二のエキスパンダと、が備えられ、
前記天然ガス搬送ラインには、前記第二のエキスパンダにより駆動され、前記天然ガスを圧縮する第二のブースタコンプレッサが備えられていることを特徴とする天然ガス処理設備。
A fuel supply line that compresses natural gas with a fuel compressor and supplies it to the boiler;
A re-liquefaction plant having a natural gas transfer line that takes in and transfers the natural gas compressed by the fuel compressor, and a refrigeration cycle section that cools and re-liquefies the natural gas transferred in the natural gas transfer line by circulating refrigerant. A natural gas processing facility comprising:
The refrigeration cycle section includes a first booster compressor that compresses the refrigerant that is circulated along the refrigerant flow path, and expands the refrigerant that has been compressed and then cooled to lower temperature and the first booster. A first expander that drives a compressor, and a branch that branches between the first booster compressor and the first expander in the refrigerant flow path and joins downstream of the first expander A second expander interposed in the flow path and expanding the refrigerant flowing in the branch flow path,
A natural gas processing facility, wherein the natural gas transport line is provided with a second booster compressor that is driven by the second expander and compresses the natural gas.
前記第二のブースタコンプレッサに供給される前記天然ガスを冷却する冷却部材が備えられていることを特徴とする請求項1記載の天然ガス処理設備。   The natural gas processing facility according to claim 1, further comprising a cooling member for cooling the natural gas supplied to the second booster compressor. 前記冷却部材は、前記天然ガスに前記天然ガス搬送ラインを通って再液化された液化天然ガスの一部を噴霧して冷却する緩熱器であることを特徴とする請求項2に記載の天然ガス処理設備。   The natural cooling device according to claim 2, wherein the cooling member is a slow heat cooler that sprays and cools a part of the liquefied natural gas reliquefied through the natural gas transfer line to the natural gas. Gas processing equipment. 前記分岐流路の前記冷媒流路への合流部は、前記冷媒流路における冷媒温度が前記第一のエキスパンダの直後位置における冷媒温度よりも高い高温位置とされていることを特徴とする請求項1から3のいずれかに記載の天然ガス処理設備。   The junction part of the branch channel to the refrigerant channel is a high temperature position in which the refrigerant temperature in the refrigerant channel is higher than the refrigerant temperature immediately after the first expander. Item 4. A natural gas processing facility according to any one of Items 1 to 3. 請求項1から請求項4のいずれか1項に記載の天然ガス処理設備を搭載していることを特徴とする液化天然ガス運搬船。   A liquefied natural gas carrier ship equipped with the natural gas processing facility according to any one of claims 1 to 4.
JP2008184046A 2008-07-15 2008-07-15 Natural gas processing equipment and liquefied natural gas carrier Active JP5173639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008184046A JP5173639B2 (en) 2008-07-15 2008-07-15 Natural gas processing equipment and liquefied natural gas carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008184046A JP5173639B2 (en) 2008-07-15 2008-07-15 Natural gas processing equipment and liquefied natural gas carrier

Publications (2)

Publication Number Publication Date
JP2010025152A JP2010025152A (en) 2010-02-04
JP5173639B2 true JP5173639B2 (en) 2013-04-03

Family

ID=41731187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008184046A Active JP5173639B2 (en) 2008-07-15 2008-07-15 Natural gas processing equipment and liquefied natural gas carrier

Country Status (1)

Country Link
JP (1) JP5173639B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525686B1 (en) * 2013-10-31 2015-06-03 현대중공업 주식회사 A Treatment System of Liquefied Gas

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737894B2 (en) * 2010-09-30 2015-06-17 三菱重工業株式会社 Boil-off gas reliquefaction equipment
JP2013210045A (en) * 2012-03-30 2013-10-10 Mitsubishi Heavy Ind Ltd Ship, liquefied gas evaporatoion device, control method, and modification method of the same
JP2014162306A (en) * 2013-02-22 2014-09-08 Mitsubishi Heavy Ind Ltd Natural gas fuel evaporator, natural gas fuel supplying device, and supplying method for natural gas fuel to ship or motor
CA2969333C (en) 2014-12-01 2020-03-10 Chiyoda Corporation Equipment safety management device, equipment safety management method, and natural gas liquefaction device
JP6741691B2 (en) 2015-06-02 2020-08-19 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Ship
US10661873B2 (en) 2015-06-02 2020-05-26 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Ship
KR101805490B1 (en) * 2015-06-26 2017-12-07 대우조선해양 주식회사 Floating vessel supplied LNG as fuel and method of renovating the same
KR101613236B1 (en) * 2015-07-08 2016-04-18 대우조선해양 주식회사 Vessel Including Engines and Method of Reliquefying Boil-Off Gas for The Same
JP6551684B2 (en) * 2016-03-31 2019-07-31 株式会社三井E&Sマシナリー Fuel gas supply system and fuel gas supply method
JP6941448B2 (en) * 2017-02-09 2021-09-29 三菱重工業株式会社 Liquefied gas fuel ship for transporting liquefied gas
JP2019210976A (en) * 2018-06-01 2019-12-12 株式会社神戸製鋼所 Gas supply unit and mixed combustion power generation device
CN114046441B (en) * 2021-10-29 2023-08-15 济南华信流体控制有限公司 Automatic pressurization system for low-temperature liquefied gas
CN114109657B (en) * 2021-11-12 2023-07-04 中国船舶集团有限公司第七一一研究所 Self-pressurizing air supply system and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545920Y2 (en) * 1989-01-14 1993-11-29
JP3790393B2 (en) * 1999-11-05 2006-06-28 大阪瓦斯株式会社 Cargo tank pressure control device and pressure control method for LNG carrier
JP4544885B2 (en) * 2004-03-22 2010-09-15 三菱重工業株式会社 Gas reliquefaction apparatus and gas reliquefaction method
WO2007011155A1 (en) * 2005-07-19 2007-01-25 Shinyoung Heavy Industries Co., Ltd. Lng bog reliquefaction apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525686B1 (en) * 2013-10-31 2015-06-03 현대중공업 주식회사 A Treatment System of Liquefied Gas

Also Published As

Publication number Publication date
JP2010025152A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP5173639B2 (en) Natural gas processing equipment and liquefied natural gas carrier
JP5737894B2 (en) Boil-off gas reliquefaction equipment
JP6366642B2 (en) Ship liquefied gas treatment system
CN107848607B (en) Ship, and system and method for processing boil-off gas of ship
KR102242784B1 (en) Device for recovering vapours from a cryogenic tank
JP2016173184A5 (en)
KR102340478B1 (en) A system for processing gases produced by evaporation of cryogenic liquids and for supplying pressurized gases to gas engines.
JP2018534206A (en) Ship
JP2009204026A (en) Liquefied gas storage facility and ship or marine structure using the same
JP6766135B2 (en) Systems and methods for treating gases resulting from evaporation of cryogenic liquids
KR101714677B1 (en) Vessel Including Storage Tanks
KR102473946B1 (en) BOG Reliquefaction System and Method for Vessels
KR20160150346A (en) Vessel Including Storage Tanks
KR101714675B1 (en) Vessel Including Storage Tanks
KR20200009719A (en) BOG Reliquefaction System and Method for Vessels
KR20200020166A (en) BOG Reliquefaction System and Method for Vessels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R151 Written notification of patent or utility model registration

Ref document number: 5173639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350