JP5173458B2 - Fuel cell cell tube seal structure and fuel cell module - Google Patents

Fuel cell cell tube seal structure and fuel cell module Download PDF

Info

Publication number
JP5173458B2
JP5173458B2 JP2008020868A JP2008020868A JP5173458B2 JP 5173458 B2 JP5173458 B2 JP 5173458B2 JP 2008020868 A JP2008020868 A JP 2008020868A JP 2008020868 A JP2008020868 A JP 2008020868A JP 5173458 B2 JP5173458 B2 JP 5173458B2
Authority
JP
Japan
Prior art keywords
tube
fuel cell
cell
film
ysz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008020868A
Other languages
Japanese (ja)
Other versions
JP2009181854A (en
Inventor
滋 大隈
洋 佃
和男 冨田
北條  透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008020868A priority Critical patent/JP5173458B2/en
Publication of JP2009181854A publication Critical patent/JP2009181854A/en
Application granted granted Critical
Publication of JP5173458B2 publication Critical patent/JP5173458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、円筒型燃料電池のセルチューブのシール性を向上させ、燃料電池の発電特性の向上を図った燃料電池用セルチューブのシール構造、および該シール構造を採用した燃料電池モジュールに関する。   The present invention relates to a sealing structure for a cell tube for a fuel cell in which the sealing property of a cell tube of a cylindrical fuel cell is improved and the power generation characteristics of the fuel cell are improved, and a fuel cell module employing the sealing structure.

円筒型固体電解質燃料電池モジュールの概略構造を図4に示す。図5はそのセルチューブ部分の斜視概略図、図6はセルチューブ端部のシール構造の概略図である。   A schematic structure of the cylindrical solid electrolyte fuel cell module is shown in FIG. FIG. 5 is a schematic perspective view of the cell tube portion, and FIG. 6 is a schematic diagram of a seal structure at the end of the cell tube.

図4に示すように、断熱材で包囲されたモジュール本体01内には、天板02、上部管板03および下部管板04が配設され、下部管板04の下方には、電池室01aが形成されている。一方、モジュール本体01の天板02と上部管板03との間には、燃料供給室05が形成されている。また上部管板03と下部管板04との間には、燃料排出室06が形成されている。   As shown in FIG. 4, a top plate 02, an upper tube plate 03, and a lower tube plate 04 are disposed in a module body 01 surrounded by a heat insulating material, and a battery chamber 01a is disposed below the lower tube plate 04. Is formed. On the other hand, a fuel supply chamber 05 is formed between the top plate 02 and the upper tube plate 03 of the module body 01. A fuel discharge chamber 06 is formed between the upper tube plate 03 and the lower tube plate 04.

前記燃料供給室05の天板02には、当該燃料供給室05とモジュール本体01の外部とを連通する外側管07が当該モジュール本体01を貫通して連結されている。この外側管07の内側には、前記燃料排出室06と当該モジュール本体01の外部とを連通するように上部管板03を貫通する内側管08が配設されている。   An outer pipe 07 that connects the fuel supply chamber 05 and the outside of the module main body 01 is connected to the top plate 02 of the fuel supply chamber 05 through the module main body 01. Inside the outer tube 07, an inner tube 08 that penetrates the upper tube plate 03 is disposed so as to communicate the fuel discharge chamber 06 with the outside of the module body 01.

前記下部管板04には、外周面に単電池膜(図示せず)を成膜してなるセルチューブ010が、上端を燃料排出室06に位置させると共に、下方寄りをモジュール本体01の電池室01a内に位置させるようにして貫通支持されている。
セルチューブ010の内側には、当該セルチューブ010の内部下方側と燃料供給室05とを連通させるように上部管板03を貫通する燃料注入管011が配設されている。
The lower tube plate 04 has a cell tube 010 formed by forming a single cell membrane (not shown) on the outer peripheral surface thereof, the upper end thereof being positioned in the fuel discharge chamber 06, and the lower side thereof being the battery chamber of the module main body 01. Through-holes are supported so as to be positioned within 01a.
Inside the cell tube 010, a fuel injection pipe 011 penetrating the upper tube plate 03 is disposed so as to communicate the inside lower side of the cell tube 010 and the fuel supply chamber 05.

前記燃料注入管011の内側には、上端を燃料供給室05に位置させると共に、下端をセルチューブ010の下端近傍に位置させた集電棒012が配設されている。該集電棒012の下端は、前記単電池膜と電気的に接続すると共に、セルチューブ010の下端を閉塞する集電部材013に連結している。該集電棒012の上端は、ニッケル製の集電部材013および導電棒014を介してモジュール本体010の外部へ電気的に接続されている。   Inside the fuel injection pipe 011, a current collecting rod 012 having an upper end positioned in the fuel supply chamber 05 and a lower end positioned in the vicinity of the lower end of the cell tube 010 is disposed. The lower end of the current collecting rod 012 is electrically connected to the unit cell membrane and connected to a current collecting member 013 that closes the lower end of the cell tube 010. The upper end of the current collecting rod 012 is electrically connected to the outside of the module main body 010 via a nickel current collecting member 013 and a conductive rod 014.

一方、セルチューブ010の上端には、前記単電池膜と電気的に接続する集電コネクタ015が取り付けられており、当該集電コネクタ015は、他のセルチューブ010と当該集電コネクタ015を介して直列的に接続されている。   On the other hand, a current collecting connector 015 that is electrically connected to the cell membrane is attached to the upper end of the cell tube 010. The current collecting connector 015 is connected to the other cell tube 010 and the current collecting connector 015. Connected in series.

前記モジュール本体01の電池室01aの下部には、多孔質のセラミック製の仕切板016が設けられている。該仕切板016の下方には、当該仕切板016を介して前記電池室01aと連通する空気予熱室017が設けられており、該空気予熱室017には、モジュール本体01の外部と連通する空気供給管018が接続している。
また、モジュール本体01の電池室01aの内部には、空気排出管019の一端側が位置している。この空気排出管019は、他端側がモジュール本体01の外側に位置し、中程部分が前記空気予熱室017の内部を通過するように配設されて、熱交換されている。
A porous ceramic partition plate 016 is provided below the battery chamber 01a of the module body 01. An air preheating chamber 017 that communicates with the battery chamber 01a via the partition plate 016 is provided below the partition plate 016. The air preheating chamber 017 includes air that communicates with the outside of the module body 01. A supply pipe 018 is connected.
Further, one end side of the air discharge pipe 019 is located inside the battery chamber 01a of the module body 01. The air discharge pipe 019 has the other end located outside the module main body 01, and the middle part is disposed so as to pass through the inside of the air preheating chamber 017 so that heat is exchanged.

前記モジュール本体01の下部管板04に吊らされるようにセルチューブ010は、図5および図6に示すように、基体管031の表面に燃料極032c、電解質032b、空気極032aを順次積層し、さらに燃料極と空気極を接続するための緻密性の導電性接続材(インタコネクタ)033を積層して、単電池膜032を横縞状に複数形成している。つまり、基体管031上にそれぞれ積層された燃料極032c、固体電解質032b、空気極032aにより単電池膜032が構成され、インタコネクタ033により前記単電池膜間の基体管031の内側と外側との間がシールされると共に当該単電池膜032が直列に接続される。   As shown in FIGS. 5 and 6, the cell tube 010 is formed by sequentially laminating a fuel electrode 032c, an electrolyte 032b, and an air electrode 032a on the surface of the base tube 031 so as to be suspended from the lower tube plate 04 of the module body 01. Furthermore, a dense conductive connecting material (interconnector) 033 for connecting the fuel electrode and the air electrode is laminated to form a plurality of unit cell films 032 in a horizontal stripe shape. That is, the unit cell membrane 032 is constituted by the fuel electrode 032c, the solid electrolyte 032b, and the air electrode 032a laminated on the substrate tube 031. The interconnector 033 connects the inside and outside of the substrate tube 031 between the unit cell membranes. The gap is sealed and the cell membranes 032 are connected in series.

前記セルチューブ010のシール部分の膜構造を図6、図7を参照して説明する。図6に示すように、基体管(15%CaO−ZrO)031の下端側の外周面上には、当該基体管031の最も他端側に位置する空気極032aにインタコネクタ033を介して接続するリード膜(Ni−Al)034が成膜されている。前記リード膜034には、端部集電部材013が設けられており、集電棒012により集電されている。
また、該リード膜034の上面には気密性の高い気密膜(Al)035が成膜され、図7に示すように無機系接着剤036を介してキャップ状のシール部材037が固着されている。
なお、前記基体管031の下部管板04側の上端近傍の外周面も同様のシール構造を有している。
The membrane structure of the sealing portion of the cell tube 010 will be described with reference to FIGS. As shown in FIG. 6, on the outer peripheral surface on the lower end side of the base tube (15% CaO—ZrO 2 ) 031, an air electrode 032 a located on the most other end side of the base tube 031 is connected via an interconnector 033. A lead film (Ni—Al) 034 to be connected is formed. The lead film 034 is provided with an end current collecting member 013 and is collected by a current collecting rod 012.
In addition, a highly airtight film (Al 2 O 3 ) 035 is formed on the upper surface of the lead film 034, and a cap-shaped seal member 037 is fixed via an inorganic adhesive 036 as shown in FIG. Has been.
The outer peripheral surface in the vicinity of the upper end of the base tube 031 on the lower tube plate 04 side has a similar sealing structure.

前記気密膜035は、その気孔率が5〜10%程度とポーラスであるので、ガス抜けを防止すると共に下層のリード膜034の酸化を防止するために、膜厚を100〜150μm程度と厚くしている。   Since the airtight film 035 is porous with a porosity of about 5 to 10%, the film thickness is increased to about 100 to 150 μm in order to prevent gas escape and oxidation of the lower lead film 034. ing.

このような構造をなす円筒型固体電解質燃料電池モジュールの作用について次に説明する。モジュール本体01の電池室01a内を作動温度(約900〜1000℃)に加熱し、外側管07から水素などの燃料ガス020を供給すると共に、空気供給管018から酸化剤ガスである空気021を供給する。
外側管07を介して供給された燃料ガス020は、燃料供給管05から注入管011を介してセルチューブ010の下端側まで流入する。
一方、空気予熱室017を介して仕切016を通過した空気021が電池室01a内に流入する。
Next, the operation of the cylindrical solid electrolyte fuel cell module having such a structure will be described. The inside of the battery chamber 01a of the module main body 01 is heated to an operating temperature (about 900 to 1000 ° C.), fuel gas 020 such as hydrogen is supplied from the outer pipe 07, and air 021 which is oxidant gas is supplied from the air supply pipe 018. Supply.
The fuel gas 020 supplied via the outer pipe 07 flows from the fuel supply pipe 05 to the lower end side of the cell tube 010 via the injection pipe 011.
On the other hand, the air 021 that has passed through the partition 016 passes through the air preheating chamber 017 and flows into the battery chamber 01a.

前記燃料ガス020が多孔質性の基体管031を透過して単電池膜032の燃料極032cに供給され、前記空気(酸素)021が空気極032aに接触すると、該単電池膜032が水素と空気(酸素)とを電気化学的にさせて電力を発生させ、当該電力が集電部材013、導電棒014を介して外部へ送り出されるようになっている。   When the fuel gas 020 passes through the porous base tube 031 and is supplied to the fuel electrode 032c of the single cell membrane 032 and the air (oxygen) 021 contacts the air electrode 032a, the single cell membrane 032 The air (oxygen) is electrochemically generated to generate electric power, and the electric power is sent to the outside through the current collecting member 013 and the conductive rod 014.

なお、発電に供された後の残燃料ガス022は、セルチューブ010の上端から燃料出室06に流入し、内側管08を介して外部へ排出され、再利用される。一方、発電に供された後の残空気023は、空気排出管019を介して外部へ排出される。   The remaining fuel gas 022 after being used for power generation flows into the fuel outlet chamber 06 from the upper end of the cell tube 010, is discharged outside through the inner pipe 08, and is reused. On the other hand, the remaining air 023 after being used for power generation is discharged to the outside through the air discharge pipe 019.

一方、このような円筒型固体電解質燃料電池モジュールについては、特許文献1(特許第3495654号公報)が知られており、該特許文献1には、図8に示すようにセルチューブのシール部分の膜構造について示されている。
該特許文献1には、セルチューブ010の基体管031の表面に形成してなる導電性のリード膜034と、該リード膜034の表面に形成してなる機密性の高い気密膜035と、該気密膜035の表面に表面粗度の大きい接着性向上膜040を設け、該接着性向上膜040の表面に接着剤036を塗布してシール部材037を密着してなるセルチューブのシール構造が示されている。
On the other hand, Patent Document 1 (Japanese Patent No. 3495654) is known for such a cylindrical solid electrolyte fuel cell module, and in Patent Document 1, a sealing portion of a cell tube is shown in FIG. The membrane structure is shown.
In Patent Document 1, a conductive lead film 034 formed on the surface of the base tube 031 of the cell tube 010, a highly confidential airtight film 035 formed on the surface of the lead film 034, A cell tube sealing structure is shown in which an adhesion improving film 040 having a large surface roughness is provided on the surface of the airtight film 035, and an adhesive 036 is applied to the surface of the adhesion improving film 040 and a sealing member 037 is adhered thereto. Has been.

そして、基体管031の表面に気密性膜035等を成膜する際に、焼結方法によって作成される気密性膜は、溶射法によって得られる気密性膜よりその焼結作用により表面粗度が極めて小さく、溶射法では表面粗度が10〜15μm程度であるのに対して、焼結法では2〜5μm程度と極めて小さい。
そのため接着剤036と気密性膜035との接着性不良が生じやすいが、前記接着性向上膜040を気密性膜035と接着剤036との間に介在させることによって、焼結方法により形成される気密性膜035の問題点を解消してシール部材037とのシール性の向上を図っている。
When the airtight film 035 or the like is formed on the surface of the base tube 031, the airtight film created by the sintering method has a surface roughness higher than that of the airtight film obtained by the thermal spraying method. It is extremely small, and the surface roughness is about 10 to 15 μm in the thermal spraying method, whereas it is extremely small as about 2 to 5 μm in the sintering method.
For this reason, poor adhesion between the adhesive 036 and the airtight film 035 is likely to occur. However, the adhesive improvement film 040 is formed between the airtight film 035 and the adhesive 036 by a sintering method. The problem of the airtight film 035 is solved to improve the sealing performance with the sealing member 037.

さらに、特許文献1には、前記接着性向上膜040が、カルシウムチタネート(CaTiO)、マグネシウムアルミニウム酸化物(MgAl)、カルシア安定化ジルコニア(CSZ)、イットリウム安定化ジルコニア(YSZ)のいずれか一種またはこれらの混合物からなることが示されている。
特許第3495654号公報
Further, in Patent Document 1, the adhesion improving film 040 is made of calcium titanate (CaTiO 3 ), magnesium aluminum oxide (MgAl 2 O 4 ), calcia stabilized zirconia (CSZ), yttrium stabilized zirconia (YSZ). It is shown to consist of any one or a mixture thereof.
Japanese Patent No. 3495654

しかし、前記特許文献1に示されているシール構造においては、前記したように接着性向上膜040が、カルシウムチタネート(CaTiO)、マグネシウムアルミニウム酸化物(MgAl)、カルシア安定化ジルコニア(CSZ)、イットリウム安定化ジルコニア(YSZ)のいずれか一種またはこれらの混合物からなることが示されているだけであり、これら材料組成の好適な配分割合や粒径についてまでは具体的に示されてなく、シール性をさらに向上するには、材質の配合割合等を含めたさらなる改良が必要である。 However, in the seal structure shown in Patent Document 1, as described above, the adhesion improving film 040 includes calcium titanate (CaTiO 3 ), magnesium aluminum oxide (MgAl 2 O 4 ), calcia-stabilized zirconia ( CSZ), only one of yttrium-stabilized zirconia (YSZ) or a mixture thereof is shown, and suitable distribution ratios and particle sizes of these material compositions are specifically shown. In order to further improve the sealing performance, further improvements including the blending ratio of materials and the like are necessary.

そこで、本発明は、このような背景に鑑みてなされたものであり、接着性向上膜に要求される表面粗度や、温度の昇降の繰り返しによる割れ防止等を満足するような材料の配分割合や、さらに材料の粒径条件等を設定して、長時間にわたって充分なシール性を確保でき、信頼性の高い接着性向上膜を提供できる燃料電池用セルチューブのシール構造、および該シール構造を採用した燃料電池モジュールを提供することを課題とする。   Therefore, the present invention has been made in view of such a background, and the material distribution ratio that satisfies the surface roughness required for the adhesion improving film and the prevention of cracking due to repeated temperature increase and decrease, etc. Further, by setting the particle size condition of the material, etc., a sealing structure for a fuel cell cell tube that can secure a sufficient sealing property for a long time and provide a highly reliable adhesion improving film, and the sealing structure It is an object to provide an adopted fuel cell module.

前記課題を解決するため、燃料電池用セルチューブのシール構造にかかる本発明は、燃料電池用基体管の表面に固体電解質を介在させて燃料極と空気極とを焼結法により成膜して単電池膜を構成してなるセルチューブであって、セルチューブの基体管の表面に形成してなる導電性のリード膜と、該リード膜の表面に形成してなる気密性の高い気密膜とからなり、該気密膜の表面に表面粗度の大きい接着性向上膜を設け、該接着性向上膜の表面に接着剤を塗布してシール部材を密着してなる燃料電池用セルチューブのシール構造において、前記接着性向上膜がカルシウムチタネート(CaTiO、カルシア安定化ジルコニア(CSZ)又はイットリウム安定化ジルコニア(YSZ)の何れか一方とからなり、CaTiOが20〜40体積%と、CSZまたはYSZが80〜60体積%との混合物で構成され、さらに、前記CSZまたはYSZは、それぞれ粒径が異なる粗粒成分と微粒成分との混合物からなり、粗粒成分が20〜50体積%含み、前記粗粒成分は平均粒径が20μmであり、前記微粒成分は平均粒径が数μmであることを特徴とする。 In order to solve the above-mentioned problems, the present invention according to the seal structure of a fuel cell cell tube comprises forming a fuel electrode and an air electrode by a sintering method with a solid electrolyte interposed on the surface of a fuel cell base tube. A cell tube comprising a single cell membrane, a conductive lead film formed on the surface of a base tube of the cell tube, and a highly airtight film formed on the surface of the lead film, A cell tube sealing structure for a fuel cell comprising an adhesion improving film having a large surface roughness provided on the surface of the airtight film, and an adhesive is applied to the surface of the adhesion improving film and a sealing member is adhered thereto in the adhesive properties improved membrane calcium titanate (CaTiO 3), consists of a one of calcia-stabilized zirconia (CSZ) or yttrium stabilized zirconia (YSZ), CaTiO 3 is 20 to 40 The CSZ or YSZ is composed of a mixture of a coarse component and a fine component having different particle diameters, and the coarse component is 20%. 50 vol% seen including, the coarse particle component has an average particle diameter of 20 [mu] m, the fine component, wherein an average particle diameter of several [mu] m.

かかる発明によれば、接着性向上膜を、カルシウムチタネート(CaTiO)を基体として、そこにカルシア安定化ジルコニア(CSZ)またはイットリウム安定化ジルコニア(YSZ)を添加すると共に、このCaTiOを20〜40体積%と、CSZまたはYSZを80〜60体積%との配合比率にすることによって、接着性向上膜の熱疲労(ヒートサイクル)に対する耐久性を向上し、信頼性の高いシール構造を得ることができる。 According to this invention, the adhesion improving film is made of calcium titanate (CaTiO 3 ) as a base, calcia-stabilized zirconia (CSZ) or yttrium-stabilized zirconia (YSZ) is added thereto, and the CaTiO 3 is added to 20 to 20%. By making the blending ratio of 40% by volume and 80-60% by volume of CSZ or YSZ, the durability of the adhesion improving film against thermal fatigue (heat cycle) is improved and a highly reliable seal structure is obtained. Can do.

すなわち、CSZまたはYSZを多量に含むと基材に対する熱膨張率が小さくなり基材への充分な接着性が得られず、温度の昇降の繰り返しには耐えられずに割れを生じやすくなり、またCSZまたはYSZが少量でCaTiOを多量に含むと、熱膨張率が大きくなり、温度の昇降の繰り返しには耐えられずに割れを生じやすくなるため、熱サイクルに対する耐久性を考慮するとCaTiOを20〜40体積%と、CSZまたはYSZを80〜60体積%との配分比率に設定するとよい。 In other words, if CSZ or YSZ is contained in a large amount, the coefficient of thermal expansion with respect to the base material becomes small and sufficient adhesion to the base material cannot be obtained. When CSZ or YSZ is contains a large amount of CaTiO 3 in a small amount, the thermal expansion coefficient becomes large, it becomes prone to cracking not withstand the repeated lifting of temperature, a CaTiO 3 in consideration of the durability against thermal cycle It is preferable to set the distribution ratio of 20 to 40% by volume and CSZ or YSZ to 80 to 60% by volume.

さらに、本発明によれば、前記CSZまたはYSZは、それぞれ粒径が異なる粗粒成分と微粒成分との混合物からなるため、CSZまたはYSZの組成物の充填性を向上できる。
すなわち、微粒成分が多くなるに従って焼結の際に、固化しすぎて焼結固化の収縮によって割れを生じやすくなり、また微粒成分が少なく粗粒成分が多くなるに従って、成分が粗くなって焼結しにくく脆くなり、膜として接着して固まらなくなるので、粒径が異なる粗粒成分と微粒成分との混合物を適切な配分とすることでCSZまたはYSZの組成物の充填性を高めることができる。
Furthermore, according to the present invention, the CSZ or YSZ is composed of a mixture of a coarse particle component and a fine particle component each having a different particle size, so that the filling property of the CSZ or YSZ composition can be improved.
In other words, as the fine particle component increases, during sintering, it becomes too solid, and cracking is likely to occur due to shrinkage of the solidification, and as the fine particle component decreases and the coarse particle component increases, the component becomes coarse and sintered. Since it becomes difficult to be brittle and does not harden by adhering as a film, the filling property of the composition of CSZ or YSZ can be improved by appropriately distributing a mixture of coarse and fine components having different particle sizes.

さらに、本発明によれば、粗粒成分を20〜50体積%含むことで、前記したように接着性向上膜の焼結の際の割れを防止する。さらに、焼結時の固化の収縮性による基体管の表面への接着性、すなわち気密膜への接着性を確実にして、接着性向上膜の耐久性を向上する。   Furthermore, according to this invention, the crack in the case of sintering of an adhesive improvement film | membrane is prevented as mentioned above by including a coarse-grain component 20-50 volume%. Furthermore, the adhesion to the surface of the base tube, that is, the adhesion to the airtight film, is ensured by the shrinkage of solidification during sintering, and the durability of the adhesion improving film is improved.

また、好ましくは、前記CSZまたはYSZの微粒成分と、前記CaTiOとの合計が60〜80体積%含むとよい。
かかる構成によれば、平均粒度20μmの粗粒成分のCSZまたはYSZが20〜50体積%、平均粒度数μmの微粒成分のCSZまたはYSZと、CaTiOとの合計が80〜60体積%含むことによって、接着性向上膜が焼結製法において割れを生じずに膜として焼き固まり気密膜への接着性を確実にすることができる。また、表面粗度が40μm以上となり、接着剤との接着性も充分得られるようになる。
その結果、燃料ガスのリークを確実に防止できる接着性向上膜を提供できると共に、接着性向上膜の耐久性を向上できる。
It is preferred that the fine particle component before Symbol CSZ or YSZ, the sum of the CaTiO 3 comprises 60 to 80 vol%.
According to this configuration, the coarse particle component CSZ or YSZ having an average particle size of 20 μm is contained in an amount of 20 to 50% by volume, and the sum of the fine particle component CSZ or YSZ having an average particle size of several μm and CaTiO 3 is contained in an amount of 80 to 60% by volume. Thus, the adhesion improving film can be baked and hardened as a film without causing cracks in the sintering method, and the adhesion to the airtight film can be ensured. Further, the surface roughness is 40 μm or more, and sufficient adhesiveness with the adhesive can be obtained.
As a result, it is possible to provide an adhesion improving film that can reliably prevent leakage of fuel gas, and to improve the durability of the adhesion improving film.

さらに、本発明は、酸化剤ガスと燃料ガスとを作動温度環境下の電池室内の外周面に単電池膜を成膜してなるセルチューブに供給することにより、前記酸化剤ガスと前記燃料ガスとを電気化学的に反応させて電力を得るようにした円筒型固体電解質燃料電池モジュールにおいて、前記した接着性向上膜を備えた燃料電池用セルチューブのシール構造を用いることを特徴とする。
Furthermore, the present invention is, by supplying to the cell tube obtained by forming a unit cell film and the oxidizing agent gas and the fuel gas to the outer peripheral surface of the battery compartment under operating temperature environment, before and the oxidant gas Ki燃 In a cylindrical solid electrolyte fuel cell module in which a fuel gas is electrochemically reacted to obtain electric power, the fuel cell cell tube seal structure provided with the above-described adhesion improving film is used. .

かかる発明によれば、前記したような接着性向上膜を備えた燃料電池用セルチューブのシール構造を用いることで、燃料ガスのリーク率が大幅に低減でき、さらに長期に亘ってシール性能が確保されるので、長期に亘って安定した燃料電池発電が可能となる。   According to this invention, by using the sealing structure of the fuel cell cell tube provided with the adhesion improving film as described above, the leak rate of the fuel gas can be greatly reduced, and the sealing performance can be secured over a long period of time. Therefore, stable fuel cell power generation over a long period of time becomes possible.

本発明によれば、接着性向上膜に要求される表面粗度や、温度の昇降の繰り返しによる割れ防止等を満足するような材料の配分割合や、さらに材料の粒径条件等を設定して、長時間にわたって充分なシール性を確保でき、信頼性の高い接着性向上膜を提供できる燃料電池用セルチューブのシール構造、および該シール構造を採用した燃料電池モジュールを提供することができる。   According to the present invention, the surface roughness required for the adhesion-improving film, the material distribution ratio that satisfies the prevention of cracking due to repeated temperature rise and fall, and the particle size condition of the material are set. Thus, it is possible to provide a fuel cell cell tube seal structure that can secure a sufficient sealing property over a long period of time and provide a highly reliable adhesion improving film, and a fuel cell module that employs the seal structure.

以下、図面を参照して本発明の好適な実施の形態を例示的に詳しく説明する。但しこの実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Only.

図1、図2を参照して本発明の実施形態について説明する。図1は、本実施形態にかかるセルチューブ2のシール構造の一例を示す概略図である。該セルチューブ2が装着される燃料電池モジュールについては従来技術の図3において説明した構造と同様である。シール部分は基体管4の下端部分と、セルチューブ2を吊るす側部分とに設けられている。
燃料電池用基体管(基体管)4の表面に、固体電解質を介在させて燃料極と空気極とを成膜して単電池膜6を構成してなるセルチューブ2であって、該セルチューブ2のシール部分に表面粗の大きい接着性向上膜を設けてなるものである。
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram illustrating an example of a seal structure of a cell tube 2 according to the present embodiment. The fuel cell module to which the cell tube 2 is attached has the same structure as that described in FIG. 3 of the prior art. The seal portion is provided at the lower end portion of the base tube 4 and the side portion where the cell tube 2 is suspended.
A cell tube 2 formed by forming a fuel cell and an air electrode on a surface of a fuel cell substrate tube (substrate tube) 4 with a solid electrolyte interposed therebetween to form a unit cell membrane 6, the cell tube The adhesive improvement film | membrane with a large surface roughness is provided in 2 sealing parts.

該接着性向上膜を含むシール部分の膜構成は、図2に示すように、基体管(例えば、15%CaO−ZrO等)4の表面に形成してなる導電性のリード膜(例えば、Ni−MgAl等)8と、該リード膜8の表面に形成してなる気密性の高い気密膜(例えば、8%Y2O3−ZrO2等)10とからなり、該気密膜10の表面に接着性向上膜12を設け、該接着性向上膜12の表面に無機系の接着剤14を塗布してシール部材16を密着して構成されている。
接着性向上膜12は、基体管4の表面に焼結法によって焼結されたリード膜8、気密膜10の上にさらに、原料焼結することによって行われる。
As shown in FIG. 2, the film configuration of the seal portion including the adhesion improving film is a conductive lead film (for example, formed on the surface of a base tube (for example, 15% CaO—ZrO 2 or the like) 4). Ni—MgAl 2 O 4 etc.) 8 and a highly airtight film (for example, 8% Y 2 O 3 —ZrO 2 etc.) 10 formed on the surface of the lead film 8. An adhesive improvement film 12 is provided, and an inorganic adhesive 14 is applied to the surface of the adhesive improvement film 12 so that a seal member 16 is adhered thereto.
The adhesion improving film 12 is formed by further sintering the raw material on the lead film 8 and the airtight film 10 sintered on the surface of the base tube 4 by the sintering method.

接着性向上膜12に要求される性能としては次の(1)〜(3)の点を備えていることが必要となる。
(1)酸化還元に対して強い膜となる材料であること。
これは、図1のセルチューブ2を吊るす上部側のシール部分においは、(図3の下部管板04参照)、酸化雰囲気と還元雰囲気との両方の雰囲気下に晒されるので、劣化するのを防止する必要があるからである。
(2)接着性向上膜12の下層の気密膜10に対して、反応することがない材料であること。
これは、下層の気密膜10と反応して劣化することを防止する必要があるからである。
(3)基体管4の熱膨張係数と接着性向上膜12の熱膨張係数とが近いこと。
これは、燃料電池の発電を繰り返す場合、発電時の温度は900℃前後と高温であり、温度の昇降の繰り返しによる割れを防止する必要があるからである。
The performance required for the adhesion improving film 12 is required to have the following points (1) to (3).
(1) The material is a film that is strong against oxidation and reduction.
This is because the upper seal portion that suspends the cell tube 2 in FIG. 1 (see the lower tube plate 04 in FIG. 3) is exposed to both the oxidizing atmosphere and the reducing atmosphere, and therefore deteriorates. This is because it needs to be prevented.
(2) The material does not react with the airtight film 10 below the adhesion improving film 12.
This is because it is necessary to prevent deterioration due to reaction with the lower hermetic film 10.
(3) The thermal expansion coefficient of the base tube 4 and the thermal expansion coefficient of the adhesion improving film 12 are close.
This is because when the power generation of the fuel cell is repeated, the temperature at the time of power generation is as high as around 900 ° C., and it is necessary to prevent cracking due to repeated temperature rise and fall.

前記性能を満足する材料として、カルシウムチタネート(CaTiO)、カルシア安定化ジルコニア(CSZ)、イットリウム安定化ジルコニア(YSZ)を選定する。
そして、カルシウムチタネート(CaTiO)を主体に、カルシア安定化ジルコニア(CSZ)またはイットリウム安定化ジルコニア(YSZ)を添加し、CaTiOが20〜40体積%と、CSZまたはYSZが80〜60体積%とを含む混合物によって構成している。このような組成配分にすることによって接着性向上膜12の熱疲労に対する耐久性が向上する。
Calcium titanate (CaTiO 3 ), calcia stabilized zirconia (CSZ), and yttrium stabilized zirconia (YSZ) are selected as materials that satisfy the above performance.
Then, mainly calcium titanate (CaTiO 3 ), calcia stabilized zirconia (CSZ) or yttrium stabilized zirconia (YSZ) is added, CaTiO 3 is 20 to 40% by volume, and CSZ or YSZ is 80 to 60% by volume. It is comprised by the mixture containing these. By adopting such a composition distribution, the durability against thermal fatigue of the adhesion improving film 12 is improved.

すなわち、CSZまたはYSZを多量に含むと基材に対する熱膨張率が小さくなり基材への充分な接着性が得られず、温度の昇降の繰り返しには耐えられずに割れを生じやすくなり、またCSZまたはYSZが少量でCaTiOを多量に含むと、熱膨張率が大きくなり、温度の昇降の繰り返しには耐えられずに割れを生じやすくなるため、熱サイクルに対する耐久性を考慮するとCaTiOを20〜40体積%と、CSZまたはYSZを80〜60体積%との配分比率に設定することで接着性向上膜の熱疲労に対する耐久性が向上する。 In other words, if CSZ or YSZ is contained in a large amount, the coefficient of thermal expansion with respect to the base material becomes small and sufficient adhesion to the base material cannot be obtained. When CSZ or YSZ is contains a large amount of CaTiO 3 in a small amount, the thermal expansion coefficient becomes large, it becomes prone to cracking not withstand the repeated lifting of temperature, a CaTiO 3 in consideration of the durability against thermal cycle By setting the distribution ratio of 20 to 40% by volume and CSZ or YSZ to 80 to 60% by volume, the durability of the adhesion improving film against thermal fatigue is improved.

また、カルシウムチタネート(CaTiO)に添加するカルシア安定化ジルコニア(CSZ)またはイットリウム安定化ジルコニア(YSZ)を平均粒度20μmの粗粒成分と、平均粒度数μmの微粒成分との混合物から構成する。
粗粒成分(20μm)と微粒成分(数μm)とを混合することで、組成物の充填性を向上できる。
Further, calcia-stabilized zirconia (CSZ) or yttrium-stabilized zirconia (YSZ) added to calcium titanate (CaTiO 3 ) is composed of a mixture of a coarse particle component having an average particle size of 20 μm and a fine particle component having an average particle size of several μm.
By mixing the coarse particle component (20 μm) and the fine particle component (several μm), the filling property of the composition can be improved.

すなわち、微粒成分が多くなるに従って焼結の際に、固化しすぎて焼結固化の収縮によって割れを生じやすくなり、また微粒成分が少なく粗粒成分が多くなるに従って、成分が粗くなって焼結しにくく脆くなり、膜として接着して固まらなくなるので、粒径が異なる粗粒成分と微粒成分との混合物を適切な配分とすることでCSZ、YSZの組成物の充填性を高めることができる。   In other words, as the fine particle component increases, during sintering, it becomes too solid, and cracking is likely to occur due to shrinkage of the solidification, and as the fine particle component decreases and the coarse particle component increases, the component becomes coarse and sintered. Since it becomes difficult to be brittle and does not harden by adhering as a film, the filling property of the composition of CSZ and YSZ can be improved by appropriately distributing a mixture of coarse and fine components having different particle sizes.

粗粒成分を20〜50体積%とすることで、接着性向上膜12の焼結の際の割れを防止するとともに、焼結時の固化の収縮性による基体管の表面への接着性、すなわち気密膜10への接着性を確実にして、接着性向上膜の耐久性を向上できる。   By making the coarse-grained component 20 to 50% by volume, the adhesion-improving film 12 is prevented from cracking during sintering, and the adhesion to the surface of the substrate tube due to the shrinkage of solidification during sintering, that is, The adhesion to the airtight film 10 can be ensured, and the durability of the adhesion improving film can be improved.

さらに、平均粒度20μmの粗粒成分のCSZまたはYSZを20〜50体積%含み、平均粒度数μmの微粒成分のCSZまたはYSZとCaTiO3を80〜60体積%含んで構成される。
平均粒度20μmの粗粒成分のCSZまたはYSZが20〜50体積%を超えると、粗粒成分が多くなって焼結しにくく脆くなり、膜として接着して焼き固まらなくなる。
また、平均粒度数μmの微粒成分のCSZまたはYSZとCaTiO3が80〜60体積%を超えると、微粒成分が多くなり焼結固化の収縮によって割れを生じやすくなる。
Furthermore, 20 to 50% by volume of CSZ or YSZ as a coarse particle component having an average particle size of 20 μm is contained, and 80 to 60% by volume of CSZ or YSZ and CaTiO 3 as fine particle components having an average particle size of several μm are included.
When CSZ or YSZ of the coarse-grained component having an average particle size of 20 μm exceeds 20 to 50% by volume, the coarse-grained component increases to make it difficult to sinter and become brittle, and adheres as a film and is not baked and hardened.
Moreover, when CSZ or YSZ and CaTiO3 of the fine particle component having an average particle size of several μm exceed 80 to 60% by volume, the fine particle component increases, and cracking is likely to occur due to shrinkage of the sintered solidification.

そこで、粗粒成分が20〜50体積%、微粒成分が80〜60体積%とする配合によって、焼結製法において割れを生じずに膜として焼き固まり気密膜10への接着性を確実にすることができる。また、表面粗度が40μm以上となり、接着剤との接着性も充分得られるようになる。
その結果、燃料ガスのリークを確実に防止できる接着性向上膜を提供できると共に、耐久性を向上する接着性向上膜を得ることができる。
Therefore, by blending 20 to 50% by volume of the coarse-grained component and 80 to 60% by volume of the fine-grained component, the adhesiveness to the airtight film 10 can be ensured by baking as a film without cracking in the sintering process. Can do. Further, the surface roughness is 40 μm or more, and sufficient adhesiveness with the adhesive can be obtained.
As a result, it is possible to provide an adhesion improving film that can surely prevent fuel gas leakage, and to obtain an adhesion improving film that improves durability.

以上の材料成分の配合条件、さらに粒径の条件は実験結果に基づいて設定したものであり、その実験結果を次の実施例で説明する。
そして、実験結果をまとめたものを図3の図表に示す。なお、図3には、従来条件の成分割合、さらに比較例1〜10の成分割合も示す。
実験結果において、接着性向上膜の良否の評価は、スクラッチ試験(JIS H8305)による評価、表面粗度の計測結果による評価、ヒートサイクル試験による評価の3つの項目によって判定した。
The blending conditions of the above material components and the particle size conditions are set based on experimental results, and the experimental results will be described in the following examples.
A summary of the experimental results is shown in the chart of FIG. In addition, in FIG. 3, the component ratio of a conventional condition and also the component ratio of Comparative Examples 1-10 are also shown.
In the experimental results, the quality of the adhesion improving film was evaluated by three items: evaluation by a scratch test (JIS H8305), evaluation by a measurement result of surface roughness, and evaluation by a heat cycle test.

スクラッチ試験は、基材に焼結した接着性向上膜12の表面にカッタによって複数の四角形を格子状に切り欠き、その四角形部分の膜が、所定の条件で剥がれ落ちないかを調べる。
JIS H8305に示されている試験は、鉄鋼製品に防食の目的で施した亜鉛、アルミニウム合金溶射皮膜の密着性を判定する方法であるが、この方法を今回の接着性向上膜12の密着性の判定に用いたものである。
In the scratch test, a plurality of squares are cut out in a lattice shape by a cutter on the surface of the adhesion improving film 12 sintered on the base material, and it is examined whether or not the films of the square parts are peeled off under predetermined conditions.
The test shown in JIS H8305 is a method for judging the adhesion of zinc and aluminum alloy sprayed coatings applied to steel products for the purpose of corrosion protection. It was used for judgment.

また、表面粗度の計測は粗度計を用いて計測し、基準値として40μm以上の粗度があるかを測定した。40μm以上あれば接着剤との接着性が充分得られることが予め引き抜き試験で確認されている。なお、表面粗度の上限については限定されるものではないが過去の実験結果から700μm未満であることが好ましい。
また、ヒートサイクル試験は、常温と1000℃との間を上昇と下降の少なくとも1回を繰り返して、接着性向上膜12が、熱膨張率の差によって割れを生じないかを調べるものである。
Further, the surface roughness was measured using a roughness meter, and it was measured whether there was a roughness of 40 μm or more as a reference value. It has been confirmed in advance by a pull-out test that adhesiveness with an adhesive can be sufficiently obtained when the thickness is 40 μm or more. The upper limit of the surface roughness is not limited, but is preferably less than 700 μm from past experimental results.
The heat cycle test repeats at least one rise and fall between normal temperature and 1000 ° C., and examines whether the adhesion improving film 12 is cracked due to a difference in thermal expansion coefficient.

(実施例1〜3)
YSZの粗粒を30%一定にして、CaTiOを20、30、40%と変化させるとともに、YSZの微粒を50、40、30%と変化させた場合について前記3つの評価項目を評価した。その結果何れも満足いく結果が得られた。
CaTiOが20〜40%の範囲を外れると、すなわち比較例3、4に示すように10%、50%となると、比較例3、4ともにヒートサイクル性が不適合となった。
これは、CaTiOと、CSZまたはYSZとの配合比率が熱膨張率に影響してヒートサイクル性が不適合となったと考える。
(Examples 1-3)
The three evaluation items were evaluated when the YSZ coarse particles were kept constant at 30%, CaTiO 3 was changed to 20, 30, and 40%, and the YSZ fine particles were changed to 50, 40, and 30%. As a result, satisfactory results were obtained.
When CaTiO 3 was out of the range of 20 to 40%, that is, when it was 10% and 50% as shown in Comparative Examples 3 and 4, the heat cycle properties were incompatible with both Comparative Examples 3 and 4.
This is considered that the heat cycle property became incompatible because the blending ratio of CaTiO 3 and CSZ or YSZ affected the coefficient of thermal expansion.

(実施例4〜6)
次に、CaTiOを30%一定にして、YSZの粗粒を20、40、50%と変化させるとともに、YSZの微粒を50、30、20%と変化させた場合について前記3つの評価項目を判定した。何れも満足いく結果が得られた。
YSZの粗粒が20〜50%の範囲を外れると、すなわち比較例5、6に示すように10、60%となると、スクラッチ試験およびヒートサイクル性が不適合となった。
これは、微粒と粗粒との配合割合が適切な範囲になく、微粒成分が多くなるに従って焼結の際に、固化しすぎて焼結固化の収縮によって割れを生じやすくなり、また、微粒成分が少なく粗粒成分が多くなるに従って、成分が粗くなって焼結しにくく脆くなり、膜として接着して固まり難くなったためと考える。
(Examples 4 to 6)
Next, when the CaTiO 3 is kept constant at 30%, the coarse grains of YSZ are changed to 20, 40, 50% and the fine grains of YSZ are changed to 50, 30, 20%. Judged. In both cases, satisfactory results were obtained.
When the coarse particles of YSZ were out of the range of 20 to 50%, that is, 10 or 60% as shown in Comparative Examples 5 and 6, the scratch test and the heat cycle property became incompatible.
This is because the blending ratio of fine particles and coarse particles is not in an appropriate range, and as the fine particle component increases, it becomes harder to solidify during sintering, and cracking tends to occur due to shrinkage of the sintered solidification. This is considered to be because the components became coarse and became difficult to sinter and become brittle as the amount of coarse components increased and the amount of coarse particles increased, and it became difficult to adhere and harden as a film.

(実施例7〜9)
実施例1〜3がYSZの粗粒を30%一定にしていたのに対して、実施例7〜9はCSZの粗粒を30%一定にした例であり、前記実施例1〜3と同様のことがいえる。
すなわち、CaTiOが20〜40%の範囲を外れると、すなわち比較例9、10に示すように10%、50%となると、ヒートサイクル性が不適合となった。
これは、CaTiO3と、CSZまたはYSZとの配合比率が熱膨張率に影響してヒートサイクル性が不適合となったと考える。
(Examples 7 to 9)
While Examples 1 to 3 had YSZ coarse particles kept constant by 30%, Examples 7 to 9 were examples in which CSZ coarse particles were made 30% constant, similar to Examples 1 to 3 above. I can say that.
That is, when CaTiO 3 is out of the range of 20 to 40%, that is, when it becomes 10% or 50% as shown in Comparative Examples 9 and 10, the heat cycle property becomes incompatible.
This is considered that the heat cycle property became incompatible because the blending ratio of CaTiO3 and CSZ or YSZ affected the coefficient of thermal expansion.

本発明によれば、接着性向上膜に要求される表面粗度や、温度の昇降の繰り返しによる割れ防止等を満足するような材料の配分割合や、さらに材料の粒径条件等を設定して、長時間にわたって充分なシール性を確保でき、信頼性の高い接着性向上膜を得ることができるので、燃料電池用セルチューブのシール構造および該シール構造を採用した燃料電池モジュールへの適用に際して有益である。   According to the present invention, the surface roughness required for the adhesion-improving film, the material distribution ratio that satisfies the prevention of cracking due to repeated temperature rise and fall, and the particle size condition of the material are set. Since a sufficient sealing property can be secured over a long period of time and a highly reliable adhesion improving film can be obtained, it is useful for application to a fuel cell module employing the sealing structure of a fuel cell cell tube and the sealing structure. It is.

本発明のセルチューブのシール構造の概略図である。It is the schematic of the sealing structure of the cell tube of this invention. シール部分の膜構成を示す説明図である。It is explanatory drawing which shows the film | membrane structure of a seal part. 比較例1〜10および実施例1〜9の接着性向上膜の配合成分、及び評価試験結果である密着性、表面粗度を示す図表である。It is a table | surface which shows the adhesiveness and surface roughness which are a compounding component of the adhesive improvement film | membrane of Comparative Examples 1-10 and Examples 1-9, and an evaluation test result. 円筒型固体電解質燃料電池モジュールの概略構造を示す説明図である。It is explanatory drawing which shows schematic structure of a cylindrical solid electrolyte fuel cell module. セルチューブ部分の斜視概略図である。It is a perspective schematic diagram of a cell tube part. セルチューブ端部のシール構造の概略図である。It is the schematic of the sealing structure of a cell tube edge part. 従来技術を説明するシール部分の膜構成図である。It is a film | membrane structural view of the seal part explaining a prior art. 従来技術を説明するシール部分の膜構成図である。It is a film | membrane structural view of the seal part explaining a prior art.

符号の説明Explanation of symbols

2 セルチューブ
4 基体管
6 単電池膜
8 リード膜
10 気密膜
12 接着性向上膜
14 接着剤
16 シール部材
2 Cell tube 4 Substrate tube 6 Single cell membrane 8 Lead membrane 10 Airtight membrane 12 Adhesion improving membrane 14 Adhesive 16 Seal member

Claims (3)

燃料電池用基体管の表面に固体電解質を介在させて燃料極と空気極とを焼結法により成膜して単電池膜を構成してなるセルチューブであって、
セルチューブの基体管の表面に形成してなる導電性のリード膜と、該リード膜の表面に形成してなる気密性の高い気密膜とからなり、該気密膜の表面に表面粗度の大きい接着性向上膜を設け、該接着性向上膜の表面に接着剤を塗布してシール部材を密着してなる燃料電池用セルチューブのシール構造において、
前記接着性向上膜がカルシウムチタネート(CaTiO、カルシア安定化ジルコニア(CSZ)又はイットリウム安定化ジルコニア(YSZ)の何れか一方とからなり、CaTiOが20〜40体積%と、CSZまたはYSZが80〜60体積%との混合物で構成され、さらに、前記CSZまたはYSZは、それぞれ粒径が異なる粗粒成分と微粒成分との混合物からなり、粗粒成分が20〜50体積%含み、前記粗粒成分は平均粒径が20μmであり、前記微粒成分は平均粒径が数μmであることを特徴とする燃料電池用セルチューブのシール構造。
A cell tube comprising a single cell membrane by forming a fuel electrode and an air electrode by a sintering method with a solid electrolyte interposed on the surface of a base tube for a fuel cell,
It consists of a conductive lead film formed on the surface of the base tube of the cell tube and a highly airtight film formed on the surface of the lead film. The surface of the airtight film has a large surface roughness. In the sealing structure of a fuel cell cell tube, which is provided with an adhesion improving film, and an adhesive is applied to the surface of the adhesion improving film and the sealing member is adhered to the surface.
The adhesion improving film is composed of calcium titanate (CaTiO 3 ) and either calcia-stabilized zirconia (CSZ) or yttrium-stabilized zirconia (YSZ), and CaTiO 3 is 20 to 40% by volume, CSZ or YSZ. There is composed of a mixture of 80 to 60 vol%, further, the CSZ or YSZ consists of a mixture of the respective particle diameters different from coarse components and fine components, coarse component unrealized 20-50 vol%, The seal structure of a fuel cell cell tube, wherein the coarse particle component has an average particle diameter of 20 μm, and the fine particle component has an average particle diameter of several μm .
前記CSZまたはYSZの微粒成分と、前記CaTiO3との合計が60〜80体積%含むことを特徴とする請求項1記載の燃料電池用セルチューブのシール構造。 The CSZ or a fine component of YSZ, the sealing structure according to claim 1 Symbol placement of fuel cell tube total, characterized in that it comprises 60 to 80 volume% of the CaTiO3. 酸化剤ガスと燃料ガスとを作動温度環境下の電池室内の外周面に単電池膜を成膜してなるセルチューブに供給することにより、前記酸化剤ガスと前記燃料ガスとを電気化学的に反応させて電力を得るようにした円筒型固体電解質燃料電池モジュールにおいて、
請求項1又は2記載の燃料電池用セルチューブのシール構造を用いてなることを特徴とする燃料電池モジュール。
By supplying the oxygen-containing gas and the fuel gas and the operating temperature environment of the battery compartment cell tube to the outer circumferential surface formed by forming a unit cell membranes, electrochemical and said oxidant gas and before Ki燃 material gas In the cylindrical solid electrolyte fuel cell module which is made to react and obtain electric power,
Fuel cell module characterized by using the claim 1 or 2 seal structure of fuel cell tube according.
JP2008020868A 2008-01-31 2008-01-31 Fuel cell cell tube seal structure and fuel cell module Active JP5173458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008020868A JP5173458B2 (en) 2008-01-31 2008-01-31 Fuel cell cell tube seal structure and fuel cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008020868A JP5173458B2 (en) 2008-01-31 2008-01-31 Fuel cell cell tube seal structure and fuel cell module

Publications (2)

Publication Number Publication Date
JP2009181854A JP2009181854A (en) 2009-08-13
JP5173458B2 true JP5173458B2 (en) 2013-04-03

Family

ID=41035652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008020868A Active JP5173458B2 (en) 2008-01-31 2008-01-31 Fuel cell cell tube seal structure and fuel cell module

Country Status (1)

Country Link
JP (1) JP5173458B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2822075A1 (en) 2013-07-03 2015-01-07 Toto Ltd. Solid oxide fuel cell unit
JP2016122545A (en) * 2014-12-24 2016-07-07 三菱日立パワーシステムズ株式会社 Solid oxide type fuel battery and manufacturing method for the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5461238B2 (en) * 2010-02-26 2014-04-02 三菱重工業株式会社 Solid oxide fuel cell
JP5449120B2 (en) * 2010-12-17 2014-03-19 三菱重工業株式会社 Method for forming seal component and method for manufacturing solid oxide fuel cell module
KR101230087B1 (en) 2011-10-04 2013-02-05 삼성에스디아이 주식회사 Solid oxide fuel cell stack
CN104253282B (en) * 2013-06-27 2016-10-05 Toto株式会社 SOFC device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3495654B2 (en) * 1999-08-23 2004-02-09 三菱重工業株式会社 Cell tube seal structure
JP4562951B2 (en) * 2001-06-01 2010-10-13 三菱重工業株式会社 SUBSTRATE TUBE FOR FUEL CELL, SUBSTRATE TUBE MATERIAL FOR FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL CELL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2822075A1 (en) 2013-07-03 2015-01-07 Toto Ltd. Solid oxide fuel cell unit
JP2016122545A (en) * 2014-12-24 2016-07-07 三菱日立パワーシステムズ株式会社 Solid oxide type fuel battery and manufacturing method for the same

Also Published As

Publication number Publication date
JP2009181854A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
CN105981207B (en) Electrochemical energy conversion equipment, battery and its negative side material
CA2922876C (en) Process for forming a metal supported solid oxide fuel cell
JP5173458B2 (en) Fuel cell cell tube seal structure and fuel cell module
JP5839756B1 (en) Fuel cell stack structure
CN106688130B (en) Electrochemical element, solid oxide fuel cell, and methods for producing same
JP2001060462A (en) Cell-tube sealing structure
JP2015035418A (en) Fuel cell stack structure
US20140291151A1 (en) Method for producing solid oxide fuel cells having a cathode-electrolyte-anode unit borne by a metal substrate, and use of said solid oxide fuel cells
JP3631923B2 (en) Substrate tube for fuel cell and its material
JP6134085B1 (en) Electrochemical cell
US7074255B2 (en) Noble metal gas barriers
JP5711093B2 (en) Gas separation material for solid oxide fuel cell and solid oxide fuel cell
JP5449120B2 (en) Method for forming seal component and method for manufacturing solid oxide fuel cell module
CN111244498A (en) Fuel cell and fuel cell stack
JP2016162700A (en) Anode for fuel battery and fuel battery single cell
JP4145041B2 (en) Electrochemical equipment
JP2007305319A (en) Solid oxide fuel cell
JP2020167093A (en) Green sheet for sealing
JP4232216B2 (en) Method for producing fuel electrode of solid oxide fuel cell
JP5205543B1 (en) Fuel cell
WO2023013205A1 (en) Electrochemical cell
JP2012094365A (en) Solid oxide fuel battery single cell
JP6488347B1 (en) Support substrate for solid oxide fuel cell
JP6518554B2 (en) Fuel cell single cell
JP6134086B1 (en) Electrochemical cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R151 Written notification of patent or utility model registration

Ref document number: 5173458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350