JP5170990B2 - Humidification tank for polymer electrolyte fuel cell - Google Patents

Humidification tank for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP5170990B2
JP5170990B2 JP2006188087A JP2006188087A JP5170990B2 JP 5170990 B2 JP5170990 B2 JP 5170990B2 JP 2006188087 A JP2006188087 A JP 2006188087A JP 2006188087 A JP2006188087 A JP 2006188087A JP 5170990 B2 JP5170990 B2 JP 5170990B2
Authority
JP
Japan
Prior art keywords
water
humidified
gas
fuel cell
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006188087A
Other languages
Japanese (ja)
Other versions
JP2008016375A (en
Inventor
正信 沼尾
孝昌 松林
光雄 唐金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Celltech Co Ltd
Original Assignee
Eneos Celltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos Celltech Co Ltd filed Critical Eneos Celltech Co Ltd
Priority to JP2006188087A priority Critical patent/JP5170990B2/en
Publication of JP2008016375A publication Critical patent/JP2008016375A/en
Application granted granted Critical
Publication of JP5170990B2 publication Critical patent/JP5170990B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、例えば家庭用の小型電源として好適な固体高分子形燃料電池の加湿タンクに関するものである。   The present invention relates to a humidification tank of a polymer electrolyte fuel cell suitable as a small power source for home use, for example.

近年、天然ガス、都市ガス、メタノール、LPG、ブタンなどの炭化水素系燃料ガスを水素に改質する改質器と、一酸化炭素を変成するCO変成器と、一酸化炭素を除去するCO除去器と、このようにして得られた水素(改質ガス)と空気中の酸素などの酸化剤とを化学反応させて発電する燃料電池と、燃料電池の電極部を冷却するとともにこれらの反応ガスを加湿するための、イオン交換樹脂などの水処理装置で処理された水(純水)を収納した加湿タンク(水タンク)などを備えた小型電源としての固体高分子形燃料電池発電装置が提案されている(例えば特許文献1、2、3参照)。   In recent years, reformers that reform hydrocarbon fuel gases such as natural gas, city gas, methanol, LPG, and butane into hydrogen, CO converters that transform carbon monoxide, and CO removal that removes carbon monoxide , A fuel cell that generates electricity by chemically reacting the thus obtained hydrogen (reformed gas) and an oxidant such as oxygen in the air, and cooling the electrode part of the fuel cell and these reaction gases Proposal of a polymer electrolyte fuel cell power generation device as a compact power source equipped with a humidification tank (water tank) containing water (pure water) treated with a water treatment device such as ion exchange resin to humidify (For example, see Patent Documents 1, 2, and 3).

固体高分子形燃料電池発電装置で使用する固体高分子電解質膜は含水させることによりプロトン導電性電解質として機能するもので、固体高分子形燃料電池においては、空気などの酸化剤ガスや燃料ガスなどの反応ガスに水蒸気を飽和に含ませて電極部に供給して運転する方法が採られている。   The solid polymer electrolyte membrane used in the polymer electrolyte fuel cell power generator functions as a proton conductive electrolyte by containing water. In the polymer electrolyte fuel cell, oxidant gas such as air, fuel gas, etc. A method of operating by supplying water vapor to the reaction gas and supplying it to the electrode section is employed.

燃料極に水素を含む燃料ガス、空気極に空気などの酸化剤ガスを供給すると、燃料極では、水素分子を水素イオンと電子に分解する燃料極反応、空気極では、酸素と水素イオンと電子から水を生成する電気化学反応がそれぞれ行われ、燃料極から空気極に向かって外部回路を移動する電子により電力が負荷に供給されるとともに、空気極側に水が生成される。   When a fuel gas containing hydrogen is supplied to the fuel electrode and an oxidant gas such as air is supplied to the air electrode, the fuel electrode reacts to decompose hydrogen molecules into hydrogen ions and electrons at the fuel electrode, and oxygen, hydrogen ions, and electrons at the air electrode. Electrochemical reaction to generate water from each is performed, and electric power is supplied to the load by electrons moving in the external circuit from the fuel electrode toward the air electrode, and water is generated on the air electrode side.

図4は、従来の燃料電池の1形態である固体高分子型燃料電池の単セルの基本構成を示す分解断面図である。
高分子イオン交換膜(例えば、スルホン酸基を持つフッ素樹脂系イオン交換膜)などの固体高分子電解質膜13の両側の主面にそれぞれ貴金属(主として白金)を含む空気極側触媒層14および燃料極側触媒層15を接合してセルが構成される。空気極側触媒層14および燃料極側触媒層15と対向して、それぞれ空気極側ガス拡散層16および燃料極側ガス拡散層17が配置される。
これによりそれぞれ空気極1kおよび燃料極1aが構成される。これらのガス拡散層16および17は、それぞれ酸化剤ガスおよび燃料ガスを通過させると同時に、電流を外部に伝える働きをする。
そして、セルに面して、反応ガス流通用のガス流路18を備え、相対する主面に冷却水流通用の冷却水流路19を備えた導電性でかつガス不透過性の材料(例えばカーボン)よりなる一組のセパレータ20により挟持して単セル21が構成される。
燃料電池1は多数の単セル21を積層し、図示しない集電板、電気絶縁と熱絶縁を目的とする絶縁板ならびに荷重を加えて積層状態を保持するための締付板によって挟持し、ボルトとナットにより締め付けられて構成されている。
FIG. 4 is an exploded cross-sectional view showing a basic configuration of a single cell of a polymer electrolyte fuel cell which is one form of a conventional fuel cell.
Air electrode side catalyst layer 14 and fuel containing precious metal (mainly platinum) on both main surfaces of solid polymer electrolyte membrane 13 such as a polymer ion exchange membrane (for example, a fluororesin ion exchange membrane having a sulfonic acid group). A cell is configured by joining the pole-side catalyst layer 15 together. The air electrode side gas diffusion layer 16 and the fuel electrode side gas diffusion layer 17 are arranged to face the air electrode side catalyst layer 14 and the fuel electrode side catalyst layer 15, respectively.
Thereby, the air electrode 1k and the fuel electrode 1a are comprised, respectively. These gas diffusion layers 16 and 17 serve to transmit an electric current to the outside while allowing the oxidant gas and the fuel gas to pass therethrough, respectively.
A conductive and gas-impermeable material (for example, carbon) having a gas flow path 18 for reaction gas flow facing the cell and a cooling water flow path 19 for cooling water flow on the opposing main surface. A single cell 21 is formed by being sandwiched by a pair of separators 20 made of the same.
The fuel cell 1 is formed by laminating a large number of single cells 21 and sandwiching them by a current collector plate (not shown), an insulating plate for the purpose of electrical insulation and thermal insulation, and a clamping plate for applying a load to maintain the laminated state. And is tightened with a nut.

図5に従来の燃料電池(PEFC)(ポリマーエレクトロライトフューエルセル)に備えられた加湿水の入った加湿タンクの1例を模式的に説明する説明図である。   FIG. 5 is an explanatory diagram schematically illustrating an example of a humidification tank containing humidification water provided in a conventional fuel cell (PEFC) (polymer electrolite fuel cell).

図5に示したように燃料電池1Aは、空気を供給するためのポンプ2を備えたライン2Aを経て供給部3Bから供給して過加湿するための加湿水3Aの入った酸化剤加湿タンク3を備えるとともに、図示しない脱硫器、改質器、CO変成器、CO除去器を経て供給される燃料ガスを供給部4Bから供給して過加湿するための加湿水4Aの入った燃料ガス加湿タンク4を備えている。
また、酸化剤加湿タンク3は加湿後の空気を流出部3Cから外部に流出して燃料電池1Aの空気極1kへ供給する管路3Dを備えており、燃料ガス加湿タンク4は加湿後の燃料を流出部4Cから外部に流出して燃料電池1Aの燃料極1aへ供給する管路4Dを備えている。
酸化剤加湿タンク3および燃料ガス加湿タンク4は加湿水3Aおよび加湿水4Aを必要に応じて必要量排水する管路3N、4Nを備えている。
As shown in FIG. 5, the fuel cell 1 </ b> A includes an oxidant humidification tank 3 containing humidified water 3 </ b> A to be supplied from a supply unit 3 </ b> B via a line 2 </ b> A provided with a pump 2 for supplying air. And a fuel gas humidification tank containing humidified water 4A for supplying the fuel gas supplied through the desulfurizer, reformer, CO converter, and CO remover (not shown) from the supply unit 4B for over humidification 4 is provided.
The oxidant humidification tank 3 is provided with a pipe line 3D that flows the humidified air from the outflow portion 3C to the outside and supplies it to the air electrode 1k of the fuel cell 1A. The fuel gas humidification tank 4 is a fuel after humidification. From the outflow portion 4C to the outside and supply to the fuel electrode 1a of the fuel cell 1A.
The oxidant humidification tank 3 and the fuel gas humidification tank 4 are provided with pipe lines 3N and 4N for draining a required amount of humidified water 3A and humidified water 4A as required.

加湿水3A、4Aは、例えばイオン交換樹脂により構成された図示しない水処理装置に市水を供給して純水としたものを必要に応じて必要量管路3Lおよび管路4Lを経てそれぞれ酸化剤加湿タンク3および燃料ガス加湿タンク4へ供給して構成される。   The humidified water 3A, 4A is supplied with pure water by supplying city water to a water treatment device (not shown) made of, for example, an ion exchange resin, and is oxidized through a required amount of pipe 3L and pipe 4L as necessary. It is configured to be supplied to the agent humidification tank 3 and the fuel gas humidification tank 4.

また酸化剤加湿タンク3および燃料ガス加湿タンク4は、内部にそれぞれ固定して設置した熱交換器3E、熱交換器4Eを備えている。
熱交換器3E、熱交換器4Eは燃料電池1Aの冷却部1cへ冷却水を供給する管路5Aを備えるとともに、冷却部1cからの冷却水を循環して送る管路5Bをを備えている。
熱交換器3E、熱交換器4Eにおいて前記冷却水と加湿水3A、4Aとを間接的に熱交換した後、前記冷却水を管路5Aを経て燃料電池1Aの冷却部1cに循環して送るようになっている。
The oxidant humidification tank 3 and the fuel gas humidification tank 4 are provided with a heat exchanger 3E and a heat exchanger 4E that are fixedly installed inside.
The heat exchanger 3E and the heat exchanger 4E include a pipeline 5A that supplies cooling water to the cooling unit 1c of the fuel cell 1A, and a pipeline 5B that circulates and sends the cooling water from the cooling unit 1c. .
After the heat exchange between the cooling water and the humidified water 3A and 4A is indirectly performed in the heat exchanger 3E and the heat exchanger 4E, the cooling water is circulated and sent to the cooling unit 1c of the fuel cell 1A through the pipe line 5A. It is like that.

3Fは酸化剤加湿タンク3の供給部3Bに接続して設置したバブリング用の多孔管であり、4Fは燃料ガス加湿タンク4の供給部4Bに接続して設置したバブリング用の多孔管である。   3F is a bubbling perforated tube installed in connection with the supply unit 3B of the oxidant humidification tank 3, and 4F is a bubbling perforated tube installed in connection with the supply unit 4B of the fuel gas humidification tank 4.

そして酸化剤加湿タンク3および燃料ガス加湿タンク4にはそれぞれガス流入部3G、4Gとガス流出部3H、4Hを区画する隔壁3K、4Kが固定して備えられている。   The oxidant humidification tank 3 and the fuel gas humidification tank 4 are fixedly provided with partition walls 3K and 4K that partition the gas inflow portions 3G and 4G and the gas outflow portions 3H and 4H, respectively.

前記反応ガスは、それぞれ供給部3B、4Bから酸化剤加湿タンク3および燃料ガス加湿タンク4に流入して多孔管3F、4Fを経て加湿水3A、4A中にバブリングして加湿され、加湿した反応ガスをガス流入部3G、4Gから隔壁3K、4Kを越えてそれぞれガス流出部3H、4Hへ流入させ、それぞれの流出部3C、4Cから外部に流出させる。
特開2003−217620号公報 特開2003−217623号公報 特開2004−1999980号公報
The reaction gas flows from the supply units 3B and 4B into the oxidizer humidification tank 3 and the fuel gas humidification tank 4 and is bubbled through the perforated tubes 3F and 4F into the humidified water 3A and 4A to be humidified and humidified. The gas is caused to flow from the gas inflow portions 3G and 4G to the gas outflow portions 3H and 4H through the partition walls 3K and 4K, respectively, and from the respective outflow portions 3C and 4C to the outside.
JP 2003-217620 A JP 2003-217623 A JP 2004-199980 A

しかし、前記反応ガスを、それぞれ供給部3B、4Bから酸化剤加湿タンク3および燃料ガス加湿タンク4に流入して多孔管3F、4Fを経て加湿水3A、4A中にバブリングすると、気泡が発生し、気泡が割れ、そして水面が不安定になり泡が飛散し、そして酸化剤加湿タンク3および燃料ガス加湿タンク4の天板内壁3J、4J面に水滴が付着する。付着した水滴は徐々に大きくなり、大きくなった水滴は流出部3C、4C側にそれぞれ移動し、加湿した反応ガスに同伴されて外部に流出してしまう問題があり、また飛散した泡が加湿した反応ガスに直接同伴されて流出部3C、4Cから外部に流出してしまう問題があった。   However, when the reaction gas flows from the supply units 3B and 4B into the oxidizer humidification tank 3 and the fuel gas humidification tank 4 and is bubbled into the humidified water 3A and 4A through the porous tubes 3F and 4F, bubbles are generated. The bubbles break, the water surface becomes unstable and the bubbles scatter, and water droplets adhere to the top plate inner walls 3J and 4J of the oxidant humidification tank 3 and the fuel gas humidification tank 4. The adhering water droplets gradually become larger, and the enlarged water droplets move to the outflow portions 3C and 4C respectively, and are accompanied by the humidified reaction gas and flow out to the outside, and the scattered bubbles are humidified. There was a problem of being directly entrained by the reaction gas and flowing out from the outflow portions 3C and 4C.

このように水滴や泡が加湿した反応ガスに同伴されて流出部3C、4Cから外部に流出すると、燃料電池1Aの空気極1kおよび燃料極1aへ反応ガスを供給する管路3D、4Dの内壁に付着したり、反応ガス流通用の前記ガス流路18の内壁に付着したりして、反応ガスの均一な流通を妨げたり、閉塞を起こしたり、また空気極1kおよび燃料極1aの空気極側触媒層14、燃料極側触媒層15、空気極側ガス拡散層16および燃料極側ガス拡散層17に偏在して留まったり、部分的閉塞などが発生し、反応ガスの均一な流通が損なわれてしまい、その結果、均一な安定した電気化学反応が行われず、安定した発電ができないという問題があった。   When the water droplets and bubbles are accompanied by the humidified reaction gas and flow out to the outside from the outflow portions 3C and 4C, the inner walls of the pipelines 3D and 4D that supply the reaction gas to the air electrode 1k and the fuel electrode 1a of the fuel cell 1A. Or adhering to the inner wall of the gas flow path 18 for circulating the reaction gas, preventing the uniform flow of the reaction gas, causing clogging, and the air electrode 1k and the air electrode of the fuel electrode 1a. The catalyst layer 14, the fuel electrode side catalyst layer 15, the air electrode side gas diffusion layer 16, and the fuel electrode side gas diffusion layer 17 remain unevenly distributed or partially clogged, and the uniform distribution of the reaction gas is impaired. As a result, there is a problem that uniform and stable electrochemical reaction is not performed and stable power generation cannot be performed.

本発明の目的は、酸化剤加湿タンクおよび燃料ガス加湿タンクの天板内壁面に水滴が付着して、徐々に大きくなっても、加湿した反応ガスに同伴されて流出部から外部に流出しないようにし、しかも飛散した泡が加湿した反応ガスに直接同伴されて流出部から外部に流出しないようにして、安定した電気化学反応を行うことができ、そして安定した発電を行うことができるように構成した固体高分子形燃料電池の加湿タンクを提供することである。   The object of the present invention is to prevent water droplets from adhering to the inner wall of the top plate of the oxidizer humidification tank and the fuel gas humidification tank to gradually flow out from the outflow part by being accompanied by the humidified reaction gas. In addition, the scattered bubbles are directly entrained by the humidified reaction gas and do not flow out of the outflow part, so that stable electrochemical reaction can be performed and stable power generation can be performed. The present invention provides a humidifying tank for a polymer electrolyte fuel cell.

上記課題を解消するための本発明の請求項1記載の固体高分子形燃料電池の加湿タンクは、固体高分子電解質膜の両面に空気極および燃料極を構成するとともに、前記空気極および前記燃料極にそれぞれ反応ガスを供給して反応させて発電する燃料電池に備えられた前記反応ガスを加湿するための加湿水の入った加湿タンクであって、
前記反応ガスのガス流入部と、前記反応ガスのガス流出部と、前記ガス流入部と前記ガス流出部を区画する隔壁を備え、前記反応ガスを供給して前記加湿水中にバブリングして加湿し、加湿した前記反応ガスを前記隔壁を越えて前記ガス流出部から外部に流出させる流出経路に前記バブリングによる泡の飛散を防止するための泡飛散防止手段として、前記隔壁の先端部に前記加湿水側に所定の角度θで傾斜し所定の長さLを有する泡飛散防止板を固定して設置するとともに、前記加湿タンクの天板内壁に付着した水滴が加湿した前記反応ガスに同伴して外部に流出するのを防止するための水滴同伴防止手段として、前記加湿タンクの天板内壁に前記泡飛散防止板に対して所定の間隔Wをあけて平行に水滴同伴防止板を固定して設置し、前記泡飛散防止板と前記水滴同伴防止板との間に加湿した前記反応ガスの流路を形成した構成としたことを特徴とする。
The humidification tank of the polymer electrolyte fuel cell according to claim 1 of the present invention for solving the above-mentioned problem is that the air electrode and the fuel electrode are formed on both surfaces of the solid polymer electrolyte membrane, and the air electrode and the fuel are provided. A humidification tank containing humidified water for humidifying the reaction gas provided in a fuel cell for generating electricity by supplying reaction gas to each of the electrodes,
The reaction gas is provided with a gas inflow part, a gas outflow part of the reaction gas, a partition partitioning the gas inflow part and the gas outflow part, and the reaction gas is supplied and bubbled into the humidified water to be humidified. The humidified water is provided at the tip of the partition as a bubble scattering prevention means for preventing the bubble from scattering by the bubbling to the outflow path for allowing the humidified reaction gas to flow out from the gas outflow portion beyond the partition. A foam scattering prevention plate inclined at a predetermined angle θ and having a predetermined length L is fixedly installed on the side, and water droplets adhering to the inner wall of the top plate of the humidifying tank are accompanied by the humidified reaction gas to the outside. As a means for preventing water droplet entrainment from flowing out, a water droplet entrainment prevention plate is fixed in parallel to the inner wall of the top plate of the humidifying tank with a predetermined interval W with respect to the foam scattering prevention plate. The foam It was dispersed prevention plate configured to have a flow path of humidified the reaction gas between the water droplet entrainment baffle plate and said.

(削除) (Delete)

本発明の請求項2記載の固体高分子形燃料電池の加湿タンクは、請求項1記載の固体高分子形燃料電池の加湿タンクにおいて、
前記燃料電池を冷却する冷却水と前記加湿水とを間接的に熱交換する熱交換器を内部に固定して設置した構成としたことを特徴とする。
Humidification tank of the polymer electrolyte fuel cell according to claim 2 of the present invention, in a humidified tank of the polymer electrolyte fuel cell according to claim 1 Symbol placement,
A heat exchanger for indirectly exchanging heat between the cooling water for cooling the fuel cell and the humidified water is fixed and installed inside.

本発明の請求項1に記載の固体高分子形燃料電池の加湿タンクは、固体高分子電解質膜の両面に空気極および燃料極を構成するとともに、前記空気極および前記燃料極にそれぞれ反応ガスを供給して反応させて発電する燃料電池に備えられた前記反応ガスを加湿するための加湿水の入った加湿タンクであって、
前記反応ガスのガス流入部と、前記反応ガスのガス流出部と、前記ガス流入部と前記ガス流出部を区画する隔壁を備え、前記反応ガスを供給して前記加湿水中にバブリングして加湿し、加湿した前記反応ガスを前記隔壁を越えて前記ガス流出部から外部に流出させる流出経路に前記バブリングによる泡の飛散を防止するための泡飛散防止手段として、前記隔壁の先端部に前記加湿水側に所定の角度θで傾斜し所定の長さLを有する泡飛散防止板を固定して設置するとともに、前記加湿タンクの天板内壁に付着した水滴が加湿した前記反応ガスに同伴して外部に流出するのを防止するための水滴同伴防止手段として、前記加湿タンクの天板内壁に前記泡飛散防止板に対して所定の間隔Wをあけて平行に水滴同伴防止板を固定して設置し、前記泡飛散防止板と前記水滴同伴防止板との間に加湿した前記反応ガスの流路を形成した構成としたので、
酸化剤加湿タンクおよび燃料ガス加湿タンクの天板内壁面に水滴が付着して徐々に大きくなっても、水滴同伴防止板の作用により水滴が加湿した反応ガスに同伴されて外部に流出しないとともに、水滴同伴防止板の作用により水滴はそれぞれの加湿タンク中の加湿水に戻される効果があり、また飛散した泡は泡飛散防止板の作用により加湿した反応ガスに直接同伴されて外部に流出しないとともに、泡飛散防止板の作用により泡は水滴となってそれぞれの加湿タンク中の加湿水に戻される効果があるので、より安定した電気化学反応を行え、より安定した発電を行うことができるというさらなる顕著な効果を奏する。
The humidification tank of the polymer electrolyte fuel cell according to claim 1 of the present invention comprises an air electrode and a fuel electrode on both surfaces of the solid polymer electrolyte membrane, and a reaction gas is supplied to each of the air electrode and the fuel electrode. A humidifying tank containing humidified water for humidifying the reaction gas provided in a fuel cell that supplies and reacts to generate electricity,
The reaction gas is provided with a gas inflow part, a gas outflow part of the reaction gas, a partition partitioning the gas inflow part and the gas outflow part, and the reaction gas is supplied and bubbled into the humidified water to be humidified. The humidified water is provided at the tip of the partition as a bubble scattering prevention means for preventing the bubble from scattering by the bubbling to the outflow path for allowing the humidified reaction gas to flow out from the gas outflow portion beyond the partition. A foam scattering prevention plate inclined at a predetermined angle θ and having a predetermined length L is fixedly installed on the side, and water droplets adhering to the inner wall of the top plate of the humidifying tank are accompanied by the humidified reaction gas to the outside. As a means for preventing water droplet entrainment from flowing out, a water droplet entrainment prevention plate is fixed in parallel to the inner wall of the top plate of the humidifying tank with a predetermined interval W with respect to the foam scattering prevention plate. The foam Since the diffuser preventing plate configured to have a flow path of humidified the reaction gas between the water droplet entrainment prevention plate,
Even if water droplets adhere to the top wall of the top plate of the oxidizer humidification tank and fuel gas humidification tank and gradually increase in size, the water droplets accompanying the humidified reaction gas will not flow out to the outside due to the action of the water droplet entrainment prevention plate, The action of the water droplet entrainment prevention plate has the effect of returning water droplets to the humidified water in each humidification tank, and the scattered bubbles are directly entrained by the reaction gas humidified by the action of the foam splash prevention plate and do not flow outside. In addition, since the foam has the effect of returning to the humidified water in each humidifying tank due to the action of the foam scattering prevention plate, it is possible to perform more stable electrochemical reaction and more stable power generation. Has a remarkable effect.

(削除) (Delete)

本発明の請求項2記載の固体高分子形燃料電池の加湿タンクは、請求項1記載の固体高分子形燃料電池の加湿タンクにおいて、
前記燃料電池を冷却する冷却水と前記加湿水とを間接的に熱交換する熱交換器を内部に固定して設置した構成としたので、
酸化剤加湿タンクおよび燃料ガス加湿タンクの加湿水は適度な温度に制御されて、適度な温度に制御された加湿した反応ガスを空気極および燃料極にそれぞれ供給できるとともに、循環して使用される冷却水により燃料電池内の温度が発電に適した温度に保たれるように制御されるので、安定した電気化学反応を行え、より安定した発電を行うことができるというさらなる顕著な効果を奏する。
Humidification tank of the polymer electrolyte fuel cell according to claim 2 Symbol placement of the present invention, in a humidified tank of the polymer electrolyte fuel cell according to claim 1 Symbol placement,
Since the heat exchanger for indirectly exchanging heat between the cooling water for cooling the fuel cell and the humidified water is fixed and installed inside,
Humidified water in the oxidizer humidification tank and fuel gas humidification tank is controlled to an appropriate temperature, and humidified reaction gas controlled to an appropriate temperature can be supplied to the air electrode and the fuel electrode, respectively. Since the temperature in the fuel cell is controlled by the cooling water so as to be maintained at a temperature suitable for power generation, there is a further remarkable effect that stable electrochemical reaction can be performed and more stable power generation can be performed.

次に本発明を図を用いて実施の形態に基づいて詳細に説明する。
図1は、本発明の固体高分子形燃料電池の加湿タンクの1例を模式的に説明する説明図である。
図2は、図1に示した加湿タンクの要部を模式的に説明する説明図である。
図3は、本発明の固体高分子形燃料電池の加湿タンクの1実施例を説明する説明図である。
図1〜3において前記図5と同一符号の部分は同一機能をもつ部分である。
Next, the present invention will be described in detail based on embodiments with reference to the drawings.
FIG. 1 is an explanatory view schematically illustrating an example of a humidifying tank of a polymer electrolyte fuel cell of the present invention.
FIG. 2 is an explanatory view for schematically explaining the main part of the humidifying tank shown in FIG.
FIG. 3 is an explanatory view for explaining one embodiment of the humidifying tank of the polymer electrolyte fuel cell of the present invention.
1-3, the parts having the same reference numerals as those in FIG. 5 are parts having the same functions.

図1に示したように燃料電池1は、空気を供給するためのポンプ2を備えたライン2Aを経て空気を供給部3Bから供給して過加湿するための加湿水3Aの入った酸化剤加湿タンク3を備えるとともに、燃料ガスを供給部4Bから供給して過加湿するための加湿水4Aの入った燃料ガス加湿タンク4を備えている。
また、酸化剤加湿タンク3は加湿後の空気を流出部3Cから外部に流出して燃料電池1の空気極1kへ供給する管路3Dを備えており、燃料ガス加湿タンク4は加湿後の燃料を流出部4Cから外部に流出して燃料電池1の燃料極1aへ供給する管路4Dを備えている。
酸化剤加湿タンク3および燃料ガス加湿タンク4は加湿水3Aおよび加湿水4Aを必要に応じて必要量排水する管路3N、4Nを備えている。
As shown in FIG. 1, the fuel cell 1 includes an oxidant humidifier containing humidified water 3 </ b> A for supplying air from a supply unit 3 </ b> B via a line 2 </ b> A provided with a pump 2 for supplying air. A tank 3 is provided, and a fuel gas humidifying tank 4 containing humidified water 4A for supplying the fuel gas from the supply unit 4B and overhumidifying is provided.
The oxidant humidification tank 3 is provided with a pipe line 3D that flows the humidified air from the outflow portion 3C to the outside and supplies it to the air electrode 1k of the fuel cell 1, and the fuel gas humidification tank 4 is a fuel after humidification. Is provided to the outside from the outflow portion 4C to be supplied to the fuel electrode 1a of the fuel cell 1.
The oxidant humidification tank 3 and the fuel gas humidification tank 4 are provided with pipe lines 3N and 4N for draining a required amount of humidified water 3A and humidified water 4A as required.

加湿水3A、4Aは、例えばイオン交換樹脂により構成された図示しない水処理装置に市水を供給して純水としたものを必要に応じて必要量管路3Lおよび管路4Lを経てそれぞれ酸化剤加湿タンク3および燃料ガス加湿タンク4へ供給して構成される。   The humidified water 3A, 4A is supplied with pure water by supplying city water to a water treatment device (not shown) made of, for example, an ion exchange resin, and is oxidized through a required amount of pipe 3L and pipe 4L as necessary. It is configured to be supplied to the agent humidification tank 3 and the fuel gas humidification tank 4.

また酸化剤加湿タンク3および燃料ガス加湿タンク4は、内部にそれぞれ固定して設置した熱交換器3E、熱交換器4Eを備えている。
熱交換器3E、熱交換器4Eは燃料電池1Aの冷却部1cへ冷却水を供給する管路5Aを備えるとともに、冷却部1cからの冷却水を循環して送る管路5Bを備えている。
熱交換器3E、熱交換器4Eにおいて前記冷却水と加湿水3A、4Aとを間接的に熱交換した後、前記冷却水を管路5Aを経て燃料電池1Aの冷却部1cに循環して送るようになっている。
The oxidant humidification tank 3 and the fuel gas humidification tank 4 are provided with a heat exchanger 3E and a heat exchanger 4E that are fixedly installed inside.
The heat exchanger 3E and the heat exchanger 4E include a pipeline 5A that supplies cooling water to the cooling unit 1c of the fuel cell 1A, and a pipeline 5B that circulates and sends the cooling water from the cooling unit 1c.
After the heat exchange between the cooling water and the humidified water 3A and 4A is indirectly performed in the heat exchanger 3E and the heat exchanger 4E, the cooling water is circulated and sent to the cooling unit 1c of the fuel cell 1A through the pipe line 5A. It is like that.

3Fは酸化剤加湿タンク3の供給部3Bに接続して設置したバブリング用の多孔管であり、4Fは燃料ガス加湿タンク4の供給部4Bに接続して設置したバブリング用の多孔管である。   3F is a bubbling perforated tube installed in connection with the supply unit 3B of the oxidant humidification tank 3, and 4F is a bubbling perforated tube installed in connection with the supply unit 4B of the fuel gas humidification tank 4.

そして酸化剤加湿タンク3および燃料ガス加湿タンク4には、それぞれガス流入部3G、ガス流入部4Gとガス流出部3H、ガス流出部4Hを区画する隔壁3K、4Kが固定して備えられている。   The oxidant humidification tank 3 and the fuel gas humidification tank 4 are fixedly provided with gas inflow portions 3G, gas inflow portions 4G and gas outflow portions 3H, and partition walls 3K and 4K that partition the gas outflow portions 4H, respectively. .

前記反応ガスは、それぞれ供給部3B、4Bから酸化剤加湿タンク3および燃料ガス加湿タンク4に流入して、多孔管3F、4Fを経て加湿水3A、4A中にバブリングして加湿され、加湿した反応ガスをガス流入部3G、4Gから隔壁3K、4Kを越えてそれぞれガス流出部3H、4Hへ流入し、それぞれの流出部3C、4Cから外部に流出する。   The reaction gas flows from the supply units 3B and 4B into the oxidant humidification tank 3 and the fuel gas humidification tank 4, respectively, and is humidified by bubbling into the humidified water 3A and 4A through the porous tubes 3F and 4F. The reaction gas flows from the gas inflow portions 3G and 4G to the gas outflow portions 3H and 4H through the partition walls 3K and 4K, respectively, and flows out from the outflow portions 3C and 4C to the outside.

以下、燃料ガス加湿タンク4の構成および作用効果について説明するが、酸化剤加湿タンク3は燃料ガス加湿タンク4と同様になっているので、説明を省略する。   Hereinafter, although the structure and effect of the fuel gas humidifying tank 4 will be described, the oxidant humidifying tank 3 is the same as the fuel gas humidifying tank 4, and thus the description thereof is omitted.

図2に示すように、本発明においては、加湿タンク4の隔壁4Kの先端部に加湿水4A側に所定の長さLを有し、所定の角度θで傾斜する泡飛散防止板6を固定して設置するとともに、加湿タンク4の天板内壁4Jに泡飛散防止板6に対して所定の間隔Wをあけて平行に水滴同伴防止板7を固定して設置する。
すなわち、燃料ガス加湿タンク4は、隔壁4Kの先端部に加湿水4A側に所定の長さLを有し、所定の角度θで傾斜する泡飛散防止板6が固定して設置されているとともに、燃料ガス加湿タンク4の天板内壁4Jに泡飛散防止板6に対して所定の間隔Wをあけて平行に水滴同伴防止板7が固定して設置されており、泡飛散防止板6と水滴同伴防止板7との間に加湿した燃料ガスの流路8が形成されている。
6−1は隔壁4Kの先端部への泡飛散防止板6の固定部であり、7−1は天板内壁4Jへの水滴同伴防止板7の固定部である。
As shown in FIG. 2, in the present invention, a foam scattering prevention plate 6 having a predetermined length L on the humidified water 4A side and inclined at a predetermined angle θ is fixed to the tip of the partition wall 4K of the humidifying tank 4. together with installation by, for installation in parallel to fix the water droplet entrainment prevention plate 7 at a predetermined distance W to foam shatterproof plate 6 to the top plate inner wall 4J humidification tank 4.
That is, the fuel gas humidification tank 4 has a bubble scattering prevention plate 6 fixed at a tip end of the partition wall 4K having a predetermined length L on the humidified water 4A side and inclined at a predetermined angle θ. In addition, a water droplet entrainment prevention plate 7 is fixed on the top wall 4J of the fuel gas humidification tank 4 with a predetermined interval W in parallel to the bubble scattering prevention plate 6 and is installed in parallel with the bubble scattering prevention plate 6 and water droplets. A humidified fuel gas flow path 8 is formed between the entrainment prevention plate 7.
Reference numeral 6-1 denotes a fixing part of the foam scattering prevention plate 6 to the tip of the partition wall 4K, and 7-1 denotes a fixing part of the water droplet entrainment prevention plate 7 to the top plate inner wall 4J.

泡飛散防止板6の長さLが長すぎると、加湿水4Aの上方を大面積で覆うので泡飛散防止の効果は大きいが、泡飛散防止板6の先端部が天板内壁4Jに近づきすぎ、燃料ガスの流路8が狭くなり、燃料ガス供給圧力が高くなり、所定量の燃料ガスを燃料電池1Aの燃料極1aへ供給できなくなる恐れがある。
逆に泡飛散防止板6の長さLが短すぎると、加湿水4Aの上方を小面積でしか覆えないので泡飛散防止の効果が少なくなり、加湿した燃料ガスに泡や水滴が直接同伴されて外部に流出する恐れがあり、飛散した泡が泡飛散防止板6に付着して水滴となって燃料ガス加湿タンク4中の加湿水4Aに戻され難くなる恐れがある。
If the length L of the bubble scatter prevention plate 6 is too long, the area above the humidified water 4A is covered with a large area, so the effect of preventing the bubble scatter is great. However, the tip of the bubble scatter prevention plate 6 is too close to the top plate inner wall 4J. The fuel gas flow path 8 becomes narrow, the fuel gas supply pressure increases, and there is a possibility that a predetermined amount of fuel gas cannot be supplied to the fuel electrode 1a of the fuel cell 1A.
Conversely, if the length L of the bubble scatter prevention plate 6 is too short, the effect of preventing the bubble scatter is reduced because the area above the humidified water 4A can be covered only by a small area, and bubbles and water droplets are directly accompanied by the humidified fuel gas. May flow out to the outside, and the scattered bubbles may adhere to the foam scattering prevention plate 6 and become water droplets, making it difficult to return to the humidified water 4A in the fuel gas humidifying tank 4.

一方、泡飛散防止板6と隔壁4Kの間の角度θが大きすぎると、飛散した泡が泡飛散防止板6に付着して水滴となって燃料ガス加湿タンク4中の加湿水に戻され易くなるが、泡飛散防止板6の先端部が天板内壁4Jに近づきすぎ、燃料ガスの流路8が狭くなり、燃料ガス供給圧力が高くなり、所定量の燃料ガスを燃料電池1Aの燃料極1aへ供給できなくなる恐れがあるとともに、加湿水4Aを覆う面積が小さくなるので、泡飛散防止の効果が小さくなる恐れがある。
逆に泡飛散防止板6の角度θが小さすぎると、加湿水4Aの上方を大面積で覆うので泡飛散防止の効果は大きいが、水滴同伴防止板7と泡飛散防止板6の間隔Wが大きくなるので、加湿した燃料ガスに泡や水滴が直接同伴されて外部に流出する恐れがあるとともに、泡飛散防止板6に付着した泡が水滴となって燃料ガス加湿タンク4中の加湿水4Aに戻され難くなる恐れがある。
On the other hand, if the angle θ between the bubble scatter prevention plate 6 and the partition wall 4K is too large, the scattered bubbles adhere to the bubble scatter prevention plate 6 and are easily returned to the humidified water in the fuel gas humidification tank 4 as water droplets. However, the tip of the bubble scattering prevention plate 6 is too close to the top plate inner wall 4J, the fuel gas flow path 8 is narrowed, the fuel gas supply pressure is increased, and a predetermined amount of fuel gas is supplied to the fuel electrode of the fuel cell 1A. There is a possibility that it cannot be supplied to 1a, and since the area covering the humidified water 4A is small, the effect of preventing foam scattering may be small.
Conversely, if the angle θ of the bubble scatter preventing plate 6 is too small, the effect of preventing the bubble scatter is great because the area above the humidified water 4A is covered with a large area, but the interval W between the water droplet entrainment preventing plate 7 and the bubble scatter preventing plate 6 is large. Since it becomes larger, there is a possibility that bubbles and water droplets are directly entrained in the humidified fuel gas and flow out to the outside, and the bubbles adhering to the bubble scattering prevention plate 6 become water droplets and become humidified water 4A in the fuel gas humidifying tank 4 There is a risk that it will be difficult to return.

水滴同伴防止板7は、泡飛散防止板6に対して所定の間隔Wをあけて平行に天板内壁4Jへ固定して設置される。
間隔Wが狭すぎると、燃料ガス供給圧力が高くなり、所定量の燃料ガスを燃料電池1Aの燃料極1aへ供給できなくなるなどの恐れがあり、間隔Wが広すぎると、流路抵抗は小さくなるが、水滴や泡が加湿した燃料ガスに直接同伴されて外部に流出する恐れがある。
The water droplet entrainment prevention plate 7 is fixed to the top plate inner wall 4J in parallel to the bubble scattering prevention plate 6 with a predetermined interval W therebetween.
If the interval W is too narrow, the fuel gas supply pressure increases, and a predetermined amount of fuel gas may not be supplied to the fuel electrode 1a of the fuel cell 1A. If the interval W is too wide, the flow path resistance is small. However, water droplets and bubbles may be directly entrained with the humidified fuel gas and flow out to the outside.

水滴同伴防止板7が泡飛散防止板6に対して平行でなく、水滴同伴防止板7の固定部7−1の反対側の先端部が泡飛散防止板6に近付きすぎると、燃料ガス供給圧力が高くなり、所定量の燃料ガスを燃料電池1Aの燃料極1aへ供給できなくなるなどの恐れがあり、逆に水滴同伴防止板7の固定部7−1の反対側の先端部が泡飛散防止板6から離れすぎると、流路抵抗は小さくなるが、水滴同伴防止板7に付着した水滴が燃料ガス加湿タンク4中の加湿水に戻され難くなる恐れがある。
水滴同伴防止板7の長さが前記Lより長くなりすぎると、水滴同伴防止板7の固定部7−1の反対側の先端部と燃料ガス加湿タンク4の側壁との距離aが小さくなりすぎ、燃料ガス供給圧力が高くなり、所定量の燃料ガスを燃料電池1Aの燃料極1aへ供給できなくなる恐れがある。
水滴同伴防止板7の長さが前記Lより短すぎると、流路抵抗は小さくなるが、水滴や泡が加湿した燃料ガスに直接同伴されて外部に流出する恐れがある。
If the water droplet entrainment prevention plate 7 is not parallel to the bubble scattering prevention plate 6 and the tip of the water droplet entrainment prevention plate 7 opposite to the fixing portion 7-1 is too close to the bubble scattering prevention plate 6, the fuel gas supply pressure , And a predetermined amount of fuel gas cannot be supplied to the fuel electrode 1a of the fuel cell 1A. On the contrary, the tip of the water droplet entrainment prevention plate 7 on the opposite side of the fixed portion 7-1 prevents bubbles from scattering. If it is too far from the plate 6, the flow path resistance becomes small, but there is a possibility that the water droplets adhering to the water droplet entrainment prevention plate 7 are difficult to be returned to the humidified water in the fuel gas humidifying tank 4.
If the length of the water droplet entrainment prevention plate 7 is too long than L, the distance a between the tip of the water droplet entrainment prevention plate 7 opposite to the fixed portion 7-1 and the side wall of the fuel gas humidification tank 4 becomes too small. The fuel gas supply pressure becomes high, and there is a possibility that a predetermined amount of fuel gas cannot be supplied to the fuel electrode 1a of the fuel cell 1A.
If the length of the water droplet entrainment prevention plate 7 is too short than L, the flow path resistance becomes small, but there is a possibility that water droplets and bubbles are directly entrained with the humidified fuel gas and flow out to the outside.

水滴同伴防止板7が泡飛散防止板6に対して平行でなく、泡飛散防止板6の固定部6−1の反対側の先端部が水滴同伴防止板7に近付きすぎると、燃料ガス供給圧力が高くなり、所定量の燃料ガスを燃料電池1Aの燃料極1aへ供給できなくなるなどの恐れがあり、逆に泡飛散防止板6の固定部6−1の反対側の先端部が水滴同伴防止板7から離れすぎると、流路抵抗は小さくなるが、加湿した燃料ガスに泡や水滴が直接同伴されて外部に流出する恐れがあるとともに、泡飛散防止板6に付着した水滴が燃料ガス加湿タンク4中の加湿水に戻され難くなる恐れがある。   If the water drop entrainment prevention plate 7 is not parallel to the bubble splash prevention plate 6 and the tip of the opposite side of the fixing portion 6-1 of the bubble splash prevention plate 6 is too close to the water drop entrainment prevention plate 7, the fuel gas supply pressure , And a predetermined amount of fuel gas may not be supplied to the fuel electrode 1a of the fuel cell 1A. Conversely, the tip on the opposite side of the fixed portion 6-1 of the bubble scattering prevention plate 6 is prevented from being accompanied by water droplets. If it is too far from the plate 7, the flow resistance becomes small, but bubbles or water droplets may be directly entrained in the humidified fuel gas and flow out to the outside, and the water droplets adhering to the bubble scattering prevention plate 6 are humidified by the fuel gas. There is a risk that it will be difficult to return to the humidified water in the tank 4.

水滴同伴防止板7と泡飛散防止板6の材質は特に限定されない。しかし、燃料ガス加湿タンク4、隔壁4K、天板内壁4Jと同じ材質で形成されれば接続部6−1および7−1において腐食が起こり難くなるので好ましい。   The material of the water drop entrainment prevention plate 7 and the bubble scattering prevention plate 6 is not particularly limited. However, it is preferable to form the same material as the fuel gas humidification tank 4, the partition wall 4K, and the top plate inner wall 4J because corrosion hardly occurs in the connection parts 6-1 and 7-1.

図2に示したように燃料ガス加湿タンク4の天板内壁4J面に水滴が付着して徐々に大きくなっても、水滴同伴防止板7の作用により水滴が加湿した燃料ガスに同伴されて外部に流出しないとともに、天板内壁4J面に付着して大きくなった水滴は加湿した燃料ガスにより徐々に水滴同伴防止板7側に移動させられ、水滴同伴防止板7に付着した水滴は、水滴同伴防止板7に沿って下方に流れて、燃料ガス加湿タンク4中の加湿水4Aに戻る。
また、飛散した泡は泡飛散防止板6の作用により加湿した燃料ガスに直接同伴されて外部に流出しないとともに、泡飛散防止板6の作用により泡は泡飛散防止板6に付着し一部は水滴になり、泡飛散防止板6に沿って下方に流れて、燃料ガス加湿タンク4中の加湿水4Aに戻る。
その結果、より安定した電気化学反応を行え、より安定した発電を行うことができる。
As shown in FIG. 2, even if water droplets adhere to the top plate inner wall 4J surface of the fuel gas humidifying tank 4 and gradually increase in size, the water droplets accompanying the humidified fuel gas is externally moved by the action of the water droplet entrainment prevention plate 7. Water droplets that do not flow out to the top plate inner wall 4J surface and are gradually moved to the water droplet entrainment prevention plate 7 side by the humidified fuel gas, and water droplets adhering to the water droplet entrainment prevention plate 7 It flows downward along the prevention plate 7 and returns to the humidified water 4 </ b> A in the fuel gas humidifying tank 4.
Further, the scattered bubbles are directly accompanied by the fuel gas humidified by the action of the bubble scattering prevention plate 6 and do not flow to the outside, and the bubbles are attached to the bubble scattering prevention plate 6 by the action of the bubble scattering prevention plate 6 and partly It becomes water droplets, flows downward along the bubble scattering prevention plate 6, and returns to the humidified water 4 </ b> A in the fuel gas humidifying tank 4.
As a result, more stable electrochemical reaction can be performed, and more stable power generation can be performed.

また、燃料ガス加湿タンク4は熱交換器4Eを備えた構成となっているので、燃料ガス加湿タンク4の加湿水4Aは熱交換器4Eにおいて燃料電池1の冷却水と間接的に熱交換して適切な温度(例えば73〜76℃)に制御される。
加湿水4A中にバブリングされた燃料ガスは適度な温度に制御された加湿された燃料ガスとなり、このようにして、燃料電池1における反応が適度に維持されるように水分を与えられた後の燃料ガスが燃料ガス加湿タンク4の流出部4Cから外部に流出して管路4Dを経て燃料電池1の燃料極1aへ供給されるようになっているので、より安定した電気化学反応を行え、より安定した発電を行うことができる。
Further, since the fuel gas humidification tank 4 is configured to include the heat exchanger 4E, the humidified water 4A of the fuel gas humidification tank 4 indirectly exchanges heat with the cooling water of the fuel cell 1 in the heat exchanger 4E. To an appropriate temperature (for example, 73 to 76 ° C.).
The fuel gas bubbled in the humidified water 4A becomes a humidified fuel gas controlled to an appropriate temperature, and in this way, after the moisture is given so that the reaction in the fuel cell 1 is appropriately maintained. Since the fuel gas flows out from the outflow portion 4C of the fuel gas humidification tank 4 and is supplied to the fuel electrode 1a of the fuel cell 1 through the conduit 4D, a more stable electrochemical reaction can be performed. More stable power generation can be performed.

同様に酸化剤加湿タンク3は熱交換器3Eを備えた構成となっているので、酸化剤加湿タンク3の加湿水3Aは熱交換器3Eにおいて燃料電池1の冷却水と間接的に熱交換して適切な温度(例えば75〜78℃)に制御される。
加湿水3A中にバブリングされた酸化剤ガスは適度な温度に制御された加湿された酸化剤ガスとなり、このようにして、燃料電池1における反応が適度に維持されるように水分を与えられた後の酸化剤ガスが酸化剤加湿タンク3の流出部3Cから外部に流出して管路3Dを経て燃料電池1の空気極1kへ供給されるようになっているので、より安定した電気化学反応を行え、より安定した発電を行うことができる。
Similarly, since the oxidant humidification tank 3 includes a heat exchanger 3E, the humidified water 3A in the oxidant humidification tank 3 indirectly exchanges heat with the cooling water of the fuel cell 1 in the heat exchanger 3E. To an appropriate temperature (for example, 75 to 78 ° C.).
The oxidant gas bubbled in the humidified water 3A became a humidified oxidant gas controlled to an appropriate temperature, and thus was given moisture so that the reaction in the fuel cell 1 was maintained moderately. Since the subsequent oxidant gas flows out from the outflow part 3C of the oxidant humidification tank 3 and is supplied to the air electrode 1k of the fuel cell 1 through the conduit 3D, a more stable electrochemical reaction It is possible to perform more stable power generation.

燃料電池1では、燃料極1aに供給された改質ガス中の水素と、空気極1kへ供給された空気中の酸素との電気化学反応によって発電が行われる。
燃料電池1の冷却部1cは、この電気化学反応の反応熱などで燃料電池1が過熱しないようにするため冷却水を循環使用して燃料電池1内の温度が発電に適した温度(例えば78〜80℃程度)に保たれるように制御する。このようにして燃料電池1では所定の化学反応と発電が継続される。
In the fuel cell 1, power generation is performed by an electrochemical reaction between hydrogen in the reformed gas supplied to the fuel electrode 1a and oxygen in the air supplied to the air electrode 1k.
The cooling unit 1c of the fuel cell 1 circulates and uses cooling water so that the fuel cell 1 does not overheat due to the reaction heat of the electrochemical reaction, and the temperature inside the fuel cell 1 is suitable for power generation (for example, 78 (About ˜80 ° C.). In this way, the fuel cell 1 continues the predetermined chemical reaction and power generation.

そして適当な熱容量を有する酸化剤加湿タンク3および燃料ガス加湿タンク4を用いて加湿することにより、負荷変動など外乱が生じても、反応ガスを酸化剤加湿タンク3および燃料ガス加湿タンク4の水温に相当する露点に維持することができ、燃料電池1の温度が例え変動した際も、それに連れて露点が変動するので安定した露点制御が可能になり、燃料電池1における反応が適度に維持されるように水分を与えられた後の反応ガスを燃料電池1に供給できる効果があるとともに、熱交換器3E、4Eにおいて燃料電池1の冷却水と間接的に熱交換して適切な温度に制御された各加湿水3A、4A中で空気などの酸化剤および燃料ガスを直接バブリングして加湿することで高い酸化剤露点および燃料ガス露点を確保できる。   Then, by humidifying using the oxidant humidification tank 3 and the fuel gas humidification tank 4 having appropriate heat capacities, the reaction gas can be mixed with the water temperature of the oxidant humidification tank 3 and the fuel gas humidification tank 4 even if disturbance such as load fluctuation occurs. The dew point can be maintained, and even when the temperature of the fuel cell 1 fluctuates, the dew point fluctuates accordingly, so that stable dew point control is possible, and the reaction in the fuel cell 1 is appropriately maintained. Thus, the reaction gas after being given moisture can be supplied to the fuel cell 1, and the heat exchangers 3E and 4E indirectly exchange heat with the cooling water of the fuel cell 1 to control the temperature appropriately. High oxidant dew point and fuel gas dew point can be secured by directly bubbling oxidant such as air and fuel gas in each of the humidified water 3A and 4A.

なお、上記実施形態の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮するものではない。又、本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。   The description of the above embodiment is for explaining the present invention, and does not limit the invention described in the claims or reduce the scope. Moreover, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim.

本発明の固体高分子形燃料電池の加湿タンクは、水滴同伴防止手段として水滴同伴防止板を使用し、泡飛散防止手段として泡飛散防止板を使用したので、天板内壁面に水滴が付着して徐々に大きくなっても、水滴同伴防止板の作用により水滴が加湿した反応ガスに同伴されて外部に流出しないとともに、水滴同伴防止板の作用により水滴はそれぞれの加湿タンク中の加湿水に戻される効果があり、また飛散した泡は泡飛散防止板の作用により加湿した反応ガスに直接同伴されて外部に流出しないとともに、泡飛散防止板の作用により泡は水滴となってそれぞれの加湿タンク中の加湿水に戻される効果があるので、より安定した電気化学反応を行え、より安定した発電を行うことができるという顕著な効果を奏するので、産業上の利用価値が高い。 Humidification tank of the polymer electrolyte fuel cell of the present invention uses a water droplet entrainment prevention plate as water droplets entrained prevention means, since the use foam shatterproof plate as a foam scattering prevention means, water droplets adhered to the top plate inner wall surface However, even if it gradually increases, the water droplets accompanying the humidified reaction gas by the action of the water droplet entrainment prevention plate does not flow out to the outside, and the water droplets are prevented from flowing into the humidified water in each humidifying tank by the action of the water drop entrainment prevention plate. In addition to the effect of returning bubbles, the scattered bubbles are directly entrained by the reaction gas moistened by the action of the foam scatter prevention plate and do not flow outside, and the foam becomes water droplets by the action of the foam scatter prevention plate. since there is an effect to be returned to the humidification water in, performing the more stable electrochemical reaction, so a marked effect called can be performed more stable power generation and high industrial value .

本発明の固体高分子形燃料電池の加湿タンクの1例を模式的に説明する説明図である。It is explanatory drawing which illustrates typically an example of the humidification tank of the polymer electrolyte fuel cell of this invention. 図1に示した加湿タンクの要部を模式的に説明する説明図である。It is explanatory drawing which illustrates typically the principal part of the humidification tank shown in FIG. 本発明の固体高分子形燃料電池の加湿タンクの1実施例を説明する説明図である。It is explanatory drawing explaining 1 Example of the humidification tank of the polymer electrolyte fuel cell of this invention. 従来の燃料電池の1形態である固体高分子型燃料電池の単セルの基本構成を示す分解断面図である。It is an exploded sectional view showing the basic composition of the single cell of the polymer electrolyte fuel cell which is one form of the conventional fuel cell. 従来の燃料電池(PEFC)に備えられた加湿水の入った加湿タンクの1例を模式的に説明する説明図である。It is explanatory drawing which illustrates typically an example of the humidification tank containing the humidification water with which the conventional fuel cell (PEFC) was equipped.

1、1A 燃料電池
1a 燃料極
1k 空気極
1c 冷却部
2 ポンプ
3 酸化剤加湿タンク
4 燃料ガス加湿タンク
3A、4A 加湿水
3B、4B 供給部
3C、4C 流出部
3D、4D、3N、4N、3L、4L、5A、5B、管路
3E、4E 熱交換器
3F、4F 多孔管
3G、4G ガス流入部
3H、4H ガス流出部
3K、4K 隔壁
13 固体高分子電解質膜
18 ガス流路
19 冷却水流路
θ 角度
L 長さ
W 間隔
a 距離
DESCRIPTION OF SYMBOLS 1, 1A Fuel cell 1a Fuel electrode 1k Air electrode 1c Cooling part 2 Pump 3 Oxidant humidification tank 4 Fuel gas humidification tank 3A, 4A Humidification water 3B, 4B Supply part 3C, 4C Outflow part 3D, 4D, 3N, 4N, 3L 4L, 5A, 5B, pipeline 3E, 4E heat exchanger 3F, 4F porous tube 3G, 4G gas inflow part 3H, 4H gas outflow part 3K, 4K partition 13 solid polymer electrolyte membrane 18 gas flow path 19 cooling water flow path θ Angle L Length W Interval a Distance

Claims (2)

固体高分子電解質膜の両面に空気極および燃料極を構成するとともに、前記空気極および前記燃料極にそれぞれ反応ガスを供給して反応させて発電する燃料電池に備えられた前記反応ガスを加湿するための加湿水の入った加湿タンクであって、
前記反応ガスのガス流入部と、前記反応ガスのガス流出部と、前記ガス流入部と前記ガス流出部を区画する隔壁を備え、前記反応ガスを供給して前記加湿水中にバブリングして加湿し、加湿した前記反応ガスを前記隔壁を越えて前記ガス流出部から外部に流出させる流出経路に前記バブリングによる泡の飛散を防止するための泡飛散防止手段として、前記隔壁の先端部に前記加湿水側に所定の角度θで傾斜し所定の長さLを有する泡飛散防止板を固定して設置するとともに、前記加湿タンクの天板内壁に付着した水滴が加湿した前記反応ガスに同伴して外部に流出するのを防止するための水滴同伴防止手段として、前記加湿タンクの天板内壁に前記泡飛散防止板に対して所定の間隔Wをあけて平行に水滴同伴防止板を固定して設置し、前記泡飛散防止板と前記水滴同伴防止板との間に加湿した前記反応ガスの流路を形成した構成としたことを特徴とする固体高分子形燃料電池の加湿タンク。
An air electrode and a fuel electrode are formed on both surfaces of the solid polymer electrolyte membrane, and the reaction gas provided in the fuel cell for generating electric power by supplying a reaction gas to the air electrode and the fuel electrode for reaction is humidified. A humidifying tank containing humidifying water for
The reaction gas is provided with a gas inflow part, a gas outflow part of the reaction gas, a partition partitioning the gas inflow part and the gas outflow part, and the reaction gas is supplied and bubbled into the humidified water to be humidified. The humidified water is provided at the tip of the partition as a bubble scattering prevention means for preventing the bubble from scattering by the bubbling to the outflow path for allowing the humidified reaction gas to flow out from the gas outflow portion beyond the partition. A foam scattering prevention plate inclined at a predetermined angle θ and having a predetermined length L is fixedly installed on the side, and water droplets adhering to the inner wall of the top plate of the humidifying tank are accompanied by the humidified reaction gas to the outside. As a means for preventing water droplet entrainment from flowing out, a water droplet entrainment prevention plate is fixed in parallel to the inner wall of the top plate of the humidifying tank with a predetermined interval W with respect to the foam scattering prevention plate. The foam Polymer electrolyte fuel cell humidification tank, characterized in that the humidified configuration in which a flow path of the reaction gas between the diffuser preventing plate wherein the water droplet entrainment prevention plate.
前記燃料電池を冷却する冷却水と前記加湿水とを間接的に熱交換する熱交換器を内部に固定して設置した構成としたことを特徴とする請求項1記載の固体高分子形燃料電池の加湿タンク。 2. The polymer electrolyte fuel cell according to claim 1 , wherein a heat exchanger for indirectly exchanging heat between the cooling water for cooling the fuel cell and the humidified water is fixed and installed inside. Humidification tank.
JP2006188087A 2006-07-07 2006-07-07 Humidification tank for polymer electrolyte fuel cell Expired - Fee Related JP5170990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006188087A JP5170990B2 (en) 2006-07-07 2006-07-07 Humidification tank for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006188087A JP5170990B2 (en) 2006-07-07 2006-07-07 Humidification tank for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2008016375A JP2008016375A (en) 2008-01-24
JP5170990B2 true JP5170990B2 (en) 2013-03-27

Family

ID=39073180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006188087A Expired - Fee Related JP5170990B2 (en) 2006-07-07 2006-07-07 Humidification tank for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5170990B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5342738B2 (en) * 2006-07-07 2013-11-13 Jx日鉱日石エネルギー株式会社 Humidification tank for polymer electrolyte fuel cell
DK180518B1 (en) * 2019-10-17 2021-06-03 Blue World Technologies Holding ApS Fuel cell system with a combined fuel evaporation and cathode gas heater unit, its use and method of its operation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3868137B2 (en) * 1999-01-29 2007-01-17 三菱重工業株式会社 humidifier
JP2003028578A (en) * 2001-07-19 2003-01-29 Ngk Insulators Ltd Gas humidifier
US6863268B2 (en) * 2001-11-27 2005-03-08 Chaojiong Zhang Dew point humidifier (DPH) and related gas temperature control
JP3906083B2 (en) * 2002-01-18 2007-04-18 三洋電機株式会社 Solid polymer fuel cell power generator
JP2003217623A (en) * 2002-01-18 2003-07-31 Sanyo Electric Co Ltd Solid polymer electrolyte fuel cell generator
JP2004199980A (en) * 2002-12-18 2004-07-15 Sanyo Electric Co Ltd Fuel cell system
JP4774198B2 (en) * 2004-02-27 2011-09-14 パナソニック株式会社 Fuel cell system
JP2005353580A (en) * 2004-05-10 2005-12-22 Toyota Motor Corp Humidification device of fuel cell
JP2006004674A (en) * 2004-06-15 2006-01-05 Toyota Motor Corp Humidification control unit

Also Published As

Publication number Publication date
JP2008016375A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
US6706429B1 (en) Catalytic humidifier and heater, primarily for humidification of the oxidant stream for a fuel cell
US6746789B1 (en) Catalytic humidifier and heater for the fuel stream of a fuel cell
JP2005243647A (en) Reformer of fuel cell system and fuel cell system using the same
US8597851B2 (en) Polymer electrolyte fuel cell, fuel cell stack including the same, fuel cell system, and method for operating fuel cell system
JP2009106927A (en) Fluid recovery device and fuel cell system using the same
JP5170990B2 (en) Humidification tank for polymer electrolyte fuel cell
JP5103872B2 (en) Fastening member, cell stack, fuel cell device and electronic device
JP4351641B2 (en) Fuel cell system
JP3906083B2 (en) Solid polymer fuel cell power generator
JP4687867B2 (en) Cooling device for polymer electrolyte fuel cell
JPH10302824A (en) Carbon monoxide removing device
JP5342738B2 (en) Humidification tank for polymer electrolyte fuel cell
JP2012038608A (en) Fuel cell system and control method of reforming water supply amount in fuel cell system
JP2006286259A (en) Generator and humidification device
JP2008171612A (en) Fuel cell
JP2006059549A (en) Fuel cell power generator
JP3561659B2 (en) Fuel cell system
US20060172174A1 (en) Fuel cell system
JP5094044B2 (en) Fuel cell separator
JP5266635B2 (en) Fuel cell system
KR100778478B1 (en) Electrolyte matrix for fuel cell using inorganic compound as electrolyte and fuel cell using the same
KR20100058341A (en) Humidification system for fuel cell
JP2008270159A (en) Fuel cell stack
JP2004213978A (en) Fuel cell system
JP2009217965A (en) Fuel cell system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080725

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees