JP5170407B2 - Diabetes complication test reagent - Google Patents

Diabetes complication test reagent Download PDF

Info

Publication number
JP5170407B2
JP5170407B2 JP2008090821A JP2008090821A JP5170407B2 JP 5170407 B2 JP5170407 B2 JP 5170407B2 JP 2008090821 A JP2008090821 A JP 2008090821A JP 2008090821 A JP2008090821 A JP 2008090821A JP 5170407 B2 JP5170407 B2 JP 5170407B2
Authority
JP
Japan
Prior art keywords
arg
lys
group
leu
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008090821A
Other languages
Japanese (ja)
Other versions
JP2008271963A (en
Inventor
憲和 西野
珠樹 加藤
百合 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2008090821A priority Critical patent/JP5170407B2/en
Publication of JP2008271963A publication Critical patent/JP2008271963A/en
Application granted granted Critical
Publication of JP5170407B2 publication Critical patent/JP5170407B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、糖尿病の合併症、特に糖尿病性腎症の検査や進行度の管理に有効な糖尿病合併症検査用試薬に関するものである。   The present invention relates to a reagent for testing diabetic complications, which is effective in testing diabetic complications, particularly diabetic nephropathy, and managing the degree of progression.

近年、糖尿病や糖尿病合併症の発症検査のためのマーカーが見出されている。
例えば、糖尿病合併症の診断に有効なマーカーとして「N末端がカルボキシル化されたヘモグロビン(特許文献1)」や「特定のピリジニウム化合物(特許文献2)」が開示されている。また、血中と尿中のクレアチニン濃度を測定し、糖尿病性腎症による腎機能の低下度を検査する方法も知られている。
特許第3542245号公報 特許第3205899号公報
In recent years, markers for onset testing of diabetes and diabetic complications have been found.
For example, “hemoglobin with N-terminal carboxylation (Patent Document 1)” and “specific pyridinium compound (Patent Document 2)” are disclosed as effective markers for the diagnosis of diabetic complications. In addition, a method is also known in which the creatinine concentration in blood and urine is measured to examine the degree of decrease in renal function due to diabetic nephropathy.
Japanese Patent No. 3542245 Japanese Patent No. 3205899

しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)(特許文献1)、(特許文献2)に開示の技術や、クレアチニン濃度の測定による検査方法は、いずれも、カルボキシル化されたヘモグロビン,特定のピリジニウム化合物,クレアチニンのような特定物質を指標として、その特定物質が体液中にどの程度存在するかを測定して、糖尿病による腎臓等の臓器の機能低下を判断するものである。そのため、糖尿病による臓器の機能低下が、これらの特定物質の濃度変化として現れない場合は、糖尿病や糖尿病合併症の発症や進行度合いを検知することができないという課題を有していた。
(2)糖尿病性腎症は、第1期(腎症前期)、第2期(早期腎症)、第3期(顕性腎症)、第4期(腎不全期)と進行し、腎機能が廃絶し透析療法期に至る。血中と尿中のクレアチニン濃度を測定する方法は、主に第4期の検査で用いられており、クレアチニンは透析を導入するか否かを判断するマーカーである。そのため、クレアチニンを用いる方法では、透析を導入するか否かを判断するだけで、第1期〜第4期に至るまでの病状の進行度は全く判断することができず、そのため第1期〜第4期に至る間に施される血糖コントロール、血圧管理及び治療が有効か否かを判断することもできないという課題を有していた。
(3)糖尿病性腎症が第3期まで進行すると、腎機能は急激に低下するため腎症の進行を完全に防止することは困難になる。そのため、第1期〜第3期の病状の進行度の管理がたいへん重要である。しかしながら、この間の病状の進行度管理を行う技術は皆無であった。
(4)尿や血漿中にはタンパク質分解酵素活性を示す物質(以下、酵素という。)が含まれていることが以前から良く知られている。尿中に含まれる酵素としては、ウロキナーゼやユリナリーカリクレインが知られている。また、腎機能の低下によって未知の酵素が漏出することも考えられる。しかし、個々の酵素の活性や存在量、安定性等を個別に解析することは困難なため、これらの酵素を腎機能マーカーとして捉えることはできなかった。
However, the above conventional techniques have the following problems.
(1) All of the techniques disclosed in (Patent Document 1) and (Patent Document 2) and the inspection method based on the measurement of creatinine concentration use a specific substance such as carboxylated hemoglobin, a specific pyridinium compound, or creatinine. As an index, the degree of the presence of the specific substance in the body fluid is measured to determine a decrease in function of an organ such as a kidney due to diabetes. For this reason, there has been a problem that the onset and the degree of progression of diabetes and diabetic complications cannot be detected when a decrease in organ function due to diabetes does not appear as a change in the concentration of these specific substances.
(2) Diabetic nephropathy progresses into the first stage (early nephropathy), the second stage (early nephropathy), the third stage (apparent nephropathy), and the fourth stage (renal failure stage). The function is abolished and the dialysis therapy period is reached. The method of measuring the creatinine concentration in blood and urine is mainly used in the fourth stage test, and creatinine is a marker for determining whether or not to introduce dialysis. Therefore, in the method using creatinine, it is impossible to determine the degree of progression of the disease state from the first phase to the fourth phase only by determining whether or not to introduce dialysis. There was a problem that it was impossible to judge whether blood glucose control, blood pressure management and treatment performed during the fourth period were effective.
(3) When diabetic nephropathy progresses to the third stage, it becomes difficult to completely prevent the progression of nephropathy because the renal function rapidly decreases. Therefore, it is very important to manage the degree of progression of the first to third stage medical conditions. However, there was no technique for managing the progress of the disease state during this period.
(4) It has been well known that urine and plasma contain a substance exhibiting proteolytic enzyme activity (hereinafter referred to as an enzyme). As enzymes contained in urine, urokinase and urinaly kallikrein are known. It is also possible that an unknown enzyme leaks due to a decrease in renal function. However, since it is difficult to analyze individually the activity, abundance, stability, etc. of each enzyme, these enzymes could not be regarded as renal function markers.

本発明は上記従来の課題を解決するもので、被験者の尿や血液等の体液を接触させて活性測定を行うという簡単な操作で、糖尿病患者の体液に含まれるマーカーの特定や追跡をしなくても、糖尿病性腎症を発症しているか否か、発症している場合に進行度合いは第1期〜第4期のいずれなのかを判別することができるとともに、第1期〜第4期の治療の有効性の検討や人工透析をいつ頃導入することになるか等の病状の進行予測を精密化させ、医師の診断支援に極めて有効な糖尿病合併症検査用試薬を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and does not specify and track markers contained in body fluids of diabetic patients by a simple operation of measuring the activity by contacting body fluids such as urine and blood of a subject. However, it is possible to determine whether or not diabetic nephropathy has developed, and if so, whether the degree of progression is from the first stage to the fourth stage, and from the first stage to the fourth stage The purpose is to provide a diagnostic reagent for diabetes complications that is extremely effective for doctors' diagnosis support by refining the progress prediction of disease states such as examination of the effectiveness of treatment and when to introduce artificial dialysis And

上記従来の課題を解決するために本発明の糖尿病合併症検査用試薬は、以下の構成を有している。
本発明の請求項1に記載の糖尿病合併症検査用試薬は、3個のアミノ酸が結合した基質ペプチドが4種類以上組み合わせられており、前記基質ペプチドの組み合わせの内4種の組み合わせが、(a)Leu-Val-Tyr, His-Glu-Lys, Glu-Lys-Lys, Thr-Arg-Ala, (b)Leu-Gly-Arg, Gly-Arg-Ile, Gly-Arg-Thr, Gly-Arg-Gly, (c)Asn-Pro-Arg, Asp-Gly-Arg, Arg-Arg-Gln, Pro-Leu-Gly又はAla-Lys-Ser, (d) Gln-Arg-Arg, His-Leu-Lys, Glu-Lys-Gly, Ala-Arg-Ser, (e) Val-Leu-Lys, Gly-Arg-Ile, Ala-Lys-Ser, Gly-Arg-Gly, (f) Val-Val-Arg, Val-Pro-Arg, Thr-Arg-Val, Asn-Lys-Tyr, (g) Gly-Arg-Ile, Gly-Arg-Thr, Phe-Lys-Ile, Ala-Lys-Ser, (h) Ala-Pro-Phe, Leu-Leu-Glu, Leu-Val-Tyr, Val-Leu-Lys, (i) Thr-Arg-Ala, Pro-Val-Arg, Gln-Arg-Ile, Leu-Met-Lys, (j) Val-Val-Arg, Pro-Val-Arg, Gln-Arg-Ile, Leu-Met-Lys, (k) Ser-Pro-Arg, Lys-Arg-Lys, Lys-Arg-Asp, Ser-Arg-Leu, (l) His-Leu-Lys, Lys-Arg-Lys, Lys-Arg-Asp, Ser-Arg-Leuのいずれかである構成を有している。
この構成により、以下のような作用が得られる。
(1)尿や血液等の体液には各種の酵素が分泌されており、体液に分泌される酵素の量や種類は、糖尿病の発症や糖尿病性腎症の進行によって常に変化している。本発明者らは、3個のアミノ酸が結合した4種以上の基質ペプチドを用い、体液の酵素活性全体を一括して評価し、それを腎機能障害と関連付けることにより、マーカーを特定しなくても、体液中に存在する酵素の種類,個々の存在量や活性強度に関わらず、糖尿病性腎症の発症や進行度合いを判別できることを見出した。これにより、被験者の尿や血液等の体液を接触させて活性測定を行うという簡単な操作で、糖尿病性腎症を発症しているか否か、発症している場合に進行度合いは第1期〜第4期のいずれなのかを判別することができるとともに、第1期〜第4期の治療の有効性の検討や人工透析をいつ頃導入することになるか等の病状の進行予測の精密化が可能となる。
(2)尿に分泌される酵素、血液に分泌される酵素はそれぞれ異なるため、基質ペプチドの組み合わせによって、体液の種類に応じた活性検出を行うことができ応用性に優れる。
(3)基質ペプチドはペプチド合成機等を用いて容易に製造できるため、生産性に優れる。
(4)(a)Leu-Val-Tyr, His-Glu-Lys, Glu-Lys-Lys, Thr-Arg-Ala, (b)Leu-Gly-Arg, Gly-Arg-Ile, Gly-Arg-Thr, Gly-Arg-Gly, (c)Asn-Pro-Arg, Asp-Gly-Arg, Arg-Arg-Gln, Pro-Leu-Gly又はAla-Lys-Ser, (d) Gln-Arg-Arg, His-Leu-Lys, Glu-Lys-Gly, Ala-Arg-Ser, (e) Val-Leu-Lys, Gly-Arg-Ile, Ala-Lys-Ser, Gly-Arg-Gly, (f) Val-Val-Arg, Val-Pro-Arg, Thr-Arg-Val, Asn-Lys-Tyr, (g) Gly-Arg-Ile, Gly-Arg-Thr, Phe-Lys-Ile, Ala-Lys-Ser, (h) Ala-Pro-Phe, Leu-Leu-Glu, Leu-Val-Tyr, Val-Leu-Lys, (i) Thr-Arg-Ala, Pro-Val-Arg, Gln-Arg-Ile, Leu-Met-Lys, (j) Val-Val-Arg, Pro-Val-Arg, Gln-Arg-Ile, Leu-Met-Lys, (k) Ser-Pro-Arg, Lys-Arg-Lys, Lys-Arg-Asp, Ser-Arg-Leu, (l) His-Leu-Lys, Lys-Arg-Lys, Lys-Arg-Asp, Ser-Arg-Leuのいずれかの基質ペプチドの組み合わせを、糖尿病患者の尿又は血漿より得た検体液と接触させ、検体液の酵素活性を測定して得られた計測データを解析することにより、ほぼ100%の正判別率が得られることが確認された。これにより、糖尿病性腎症の検体を正確にグループ分けできることがわかった。従って、未知の被験者から採取した尿又は血漿の酵素活性を、これらの基質ペプチドを用いて測定し、設定された判別式を適用することにより、未知の被験者の糖尿病性腎症の進行度を判別することができる。
In order to solve the above conventional problems, the reagent for testing for diabetic complications of the present invention has the following configuration.
In the reagent for testing for diabetic complications according to claim 1 of the present invention, four or more kinds of substrate peptides to which three amino acids are bound are combined, and four of the combinations of the substrate peptides are (a ) Leu-Val-Tyr, His-Glu-Lys, Glu-Lys-Lys, Thr-Arg-Ala, (b) Leu-Gly-Arg, Gly-Arg-Ile, Gly-Arg-Thr, Gly-Arg- Gly, (c) Asn-Pro-Arg, Asp-Gly-Arg, Arg-Arg-Gln, Pro-Leu-Gly or Ala-Lys-Ser, (d) Gln-Arg-Arg, His-Leu-Lys, Glu-Lys-Gly, Ala-Arg-Ser, (e) Val-Leu-Lys, Gly-Arg-Ile, Ala-Lys-Ser, Gly-Arg-Gly, (f) Val-Val-Arg, Val- Pro-Arg, Thr-Arg-Val, Asn-Lys-Tyr, (g) Gly-Arg-Ile, Gly-Arg-Thr, Phe-Lys-Ile, Ala-Lys-Ser, (h) Ala-Pro- Phe, Leu-Leu-Glu, Leu-Val-Tyr, Val-Leu-Lys, (i) Thr-Arg-Ala, Pro-Val-Arg, Gln-Arg-Ile, Leu-Met-Lys, (j) Val-Val-Arg, Pro-Val-Arg, Gln-Arg-Ile, Leu-Met-Lys, (k) Ser-Pro-Arg, Lys-Arg-Lys, Lys-Arg-Asp, Ser-Arg-Leu (l) His-Leu-Lys, Lys-Arg-Lys, Lys-Arg-Asp, Ser-Arg-Leu .
With this configuration, the following effects can be obtained.
(1) Various enzymes are secreted into body fluids such as urine and blood, and the amount and type of enzymes secreted into body fluids are constantly changing with the onset of diabetes and the progression of diabetic nephropathy. The present inventors use four or more kinds of substrate peptides to which three amino acids are bonded, collectively evaluate the whole enzyme activity of body fluid, and associate it with renal dysfunction, so that the marker can be identified. It was also found that the onset and progression of diabetic nephropathy can be determined regardless of the type of enzyme present in the body fluid, the amount of each enzyme present, and the intensity of activity. Accordingly, whether or not diabetic nephropathy has developed by a simple operation of measuring the activity by contacting a body fluid such as urine or blood of the subject, the degree of progression is from the first stage to It is possible to determine whether it is in the 4th stage, and to refine the prediction of the progress of the disease state, such as examination of the effectiveness of the 1st to 4th stage treatments and when to introduce artificial dialysis. Is possible.
(2) Since the enzyme secreted into urine and the enzyme secreted into blood are different from each other, the activity can be detected according to the type of body fluid by combining the substrate peptides, and the applicability is excellent.
(3) Since the substrate peptide can be easily produced using a peptide synthesizer or the like, it is excellent in productivity.
(4) (a) Leu-Val-Tyr, His-Glu-Lys, Glu-Lys-Lys, Thr-Arg-Ala, (b) Leu-Gly-Arg, Gly-Arg-Ile, Gly-Arg-Thr , Gly-Arg-Gly, (c) Asn-Pro-Arg, Asp-Gly-Arg, Arg-Arg-Gln, Pro-Leu-Gly or Ala-Lys-Ser, (d) Gln-Arg-Arg, His -Leu-Lys, Glu-Lys-Gly, Ala-Arg-Ser, (e) Val-Leu-Lys, Gly-Arg-Ile, Ala-Lys-Ser, Gly-Arg-Gly, (f) Val-Val -Arg, Val-Pro-Arg, Thr-Arg-Val, Asn-Lys-Tyr, (g) Gly-Arg-Ile, Gly-Arg-Thr, Phe-Lys-Ile, Ala-Lys-Ser, (h ) Ala-Pro-Phe, Leu-Leu-Glu, Leu-Val-Tyr, Val-Leu-Lys, (i) Thr-Arg-Ala, Pro-Val-Arg, Gln-Arg-Ile, Leu-Met- Lys, (j) Val-Val-Arg, Pro-Val-Arg, Gln-Arg-Ile, Leu-Met-Lys, (k) Ser-Pro-Arg, Lys-Arg-Lys, Lys-Arg-Asp, Ser-Arg-Leu, (l) His-Leu-Lys, Lys-Arg-Lys, Lys-Arg-Asp, Ser-Arg-Leu substrate peptide combination obtained from urine or plasma of diabetic patients It was confirmed that a positive discrimination rate of almost 100% was obtained by analyzing the measurement data obtained by contacting with the sample liquid and measuring the enzyme activity of the sample liquid. As a result, it was found that diabetic nephropathy samples can be accurately grouped. Therefore, the enzymatic activity of urine or plasma collected from an unknown subject is measured using these substrate peptides, and the degree of progression of diabetic nephropathy in the unknown subject is determined by applying a set discriminant. can do.

ここで、アミノ酸としては、天然に存在するタンパク質中に通常見出されるL−アミノ酸を用いることができる。
基質ペプチドは、固相法や液相法の通常のペプチド合成法を用いて合成することができる。また、目的とするアミノ酸配列のC末端側からN末端側へ逐次伸長していく逐次伸長法や、複数の短いペプチド断片を合成しペプチド断片間のカップリングにより伸長させる断片縮合法等を用いることができる。また、ペプチド合成機を用いて9−フルオレニルメチルオキシカルボニル(Fmoc)アミノ酸やt−ブチルオキシカルボニル(Boc)アミノ酸等を導入して合成することもできる。さらに、プロテアーゼを用いてペプチド結合を生成したり、遺伝子工学を利用したりして合成することもできる。
Here, as the amino acid, an L-amino acid usually found in a naturally occurring protein can be used.
The substrate peptide can be synthesized using a normal peptide synthesis method such as a solid phase method or a liquid phase method. Also, use a sequential extension method that sequentially extends from the C-terminal side to the N-terminal side of the target amino acid sequence, or a fragment condensation method that synthesizes a plurality of short peptide fragments and extends them by coupling between peptide fragments. Can do. Moreover, 9-fluorenylmethyloxycarbonyl (Fmoc) amino acid, t-butyloxycarbonyl (Boc) amino acid, etc. can also be synthesize | combined using a peptide synthesizer. Furthermore, it can also be synthesized by generating peptide bonds using proteases or utilizing genetic engineering.

糖尿病の検査を行う際には、基質ペプチドの各々に被験者の尿や血液等の体液や体液の培養液等の検体液を接触させ、検体液中の酵素と反応させることにより酵素の活性測定を行う。検体液は生体試料(血液等)をそのまま、あるいはフィルタや遠心分離等で血球成分等を除去したものを用いることができる。また、生体試料を基に酵素が活性を発現するような条件設定(pH調整、活性剤導入など)を行ったものを使用することもできる。pH調整剤としては、Tris−HCl,Hepes−KOH等の緩衝剤を反応バッファーとして添加することができる。また、酵素活性の発現に必要な塩類や活性保護剤を添加することもできる。   When testing for diabetes, each substrate peptide is contacted with a body fluid such as urine or blood of the subject or a culture fluid of body fluid, and the enzyme activity is measured by reacting with the enzyme in the sample fluid. Do. As the sample liquid, a biological sample (blood or the like) can be used as it is, or a sample obtained by removing blood cell components or the like by a filter, centrifugation, or the like. Moreover, what performed the condition setting (pH adjustment, active agent introduction | transduction, etc.) that an enzyme expresses activity based on a biological sample can also be used. As a pH adjuster, a buffering agent such as Tris-HCl or Hepes-KOH can be added as a reaction buffer. In addition, salts and active protective agents necessary for the expression of enzyme activity can be added.

活性測定の方法としては、公知の種々の方法を用いることができる。例えば、基質ペプチドの減少量を特定波長の吸光度で測定する方法、基質ペプチドや反応生成物を化学試薬で発色させて測定する方法、その他放射能、比色、蛍光、発光等を利用して測定する方法を用いることもできる。
酵素活性の測定は、反応の時間経過を追跡し反応初速度や変化量を求めるのが好ましい。反応時間の経過につれて反応速度が漸減するからである。
As a method for measuring activity, various known methods can be used. For example, a method for measuring the amount of decrease in substrate peptide by absorbance at a specific wavelength, a method for measuring substrate peptide or reaction product by coloring with chemical reagents, and other measurements using radioactivity, colorimetry, fluorescence, luminescence, etc. It is also possible to use a method of
In measuring the enzyme activity, it is preferable to trace the reaction time and obtain the initial reaction rate and the amount of change. This is because the reaction rate gradually decreases as the reaction time elapses.

糖尿病合併症の検査や進行度管理は、始めに、糖尿病にかかっているが糖尿病性腎症は発症していない患者の尿等の検体液、糖尿病性腎症を発症している患者の検体液を、複数種の基質ペプチドの各々と反応させて酵素活性を測定し、判別分析等の公知の手法によって、糖尿病性腎症を発症しているグループと発症していないグループに判別する基準(判別関数)を予め設定しておく。判別関数を得るには、線形手法、非線形手法のいずれも用いることができる。
次に、未知の被験者の検体液を、判別関数を設定したときに用いたのと同じ種類の基質ペプチドの各々と反応させて酵素活性を測定し、未知の被験者が、予め設定したグループのいずれに属するのかを判別することで、糖尿病性腎症の発症や進行度を判断することができる。
また、データをSOM(自己組織化マップ)解析により二次元マップ化すると視覚化し易くなり、マップ上に糖尿病性腎症の進行の度合いに応じて複数のグループに分類できるため、未知の被験者が病状の進行度合い(第1期〜第4期)を把握し易くなり、人工透析をいつ頃導入することになるか等の病状の進行予測を視覚的に行うことができる。
なお、得られた酵素活性データは、SOM以外の種々の非線形分類法や非線形要因解析法により解析し、糖尿病の合併症の検査や進行度管理を行うことができる。
Diabetes complications and progress management should be done first by sample fluid such as urine from patients who have diabetes but have not developed diabetic nephropathy, sample fluid from patients who have diabetic nephropathy Is measured by reacting with each of a plurality of substrate peptides, and the enzyme activity is measured. By a known method such as discriminant analysis, a criterion for discriminating between a group that develops diabetic nephropathy and a group that does not develop (discrimination Function) is set in advance. To obtain the discriminant function, either a linear method or a non-linear method can be used.
Next, the sample liquid of an unknown subject is reacted with each of the same types of substrate peptides as used when the discriminant function was set, and the enzyme activity is measured. It is possible to determine the onset and progression of diabetic nephropathy.
In addition, when the data is converted into a two-dimensional map by SOM (self-organizing map) analysis, it becomes easier to visualize and can be classified into a plurality of groups according to the degree of progression of diabetic nephropathy on the map. It is easy to grasp the degree of progression (1st to 4th stages), and it is possible to visually predict the progress of the disease state such as when artificial dialysis will be introduced.
The obtained enzyme activity data can be analyzed by various nonlinear classification methods and nonlinear factor analysis methods other than SOM, and diabetes complications can be examined and the degree of progress can be managed.

基質ペプチドの組み合わせとしては、4種以上8種以下好ましくは4種以上6種以下が好適に用いられる。酵素活性の測定や解析を比較的容易に行うことができ、さらに判別精度に優れるからである。組み合わせが4種より少なくなるにつれ、判別精度が低下する傾向がみられる。6種を超えると酵素活性の測定や解析が煩雑になる傾向がみられ、8種を超えると、この傾向が著しくなるため好ましくない。   As a combination of substrate peptides, 4 or more and 8 or less, preferably 4 or more and 6 or less are suitably used. This is because the enzyme activity can be measured and analyzed relatively easily and the discrimination accuracy is excellent. As the number of combinations decreases from four, the discrimination accuracy tends to decrease. If the number exceeds 6, the measurement and analysis of the enzyme activity tends to be complicated, and if the number exceeds 8, the tendency becomes remarkable.

糖尿病合併症検査用試薬は、(a)〜(l)の配列の4種の基質ペプチドを、別々の化合物としたものを用いることができる。また、基質ペプチドを伸長させて、1乃至3種の化合物としたものも用いることができる。なお、4種の基質ペプチドを別々の化合物としたものが好適である。測定結果の解析が容易で、精度も向上させることができるからである。なお、尿を検体液とする場合には、(a)、(h)〜(l)の基質ペプチドが適している。また、血液(血漿)を検体液とする場合には、(b)〜(g)の基質ペプチドが適している。
基質ペプチドは、酵素特異性を有しない任意のペプチド又はその他の化合物や分子を結合させることもできる。また、一端を不溶性の担体に結合させたものを用いることもできる。
As the reagent for testing for diabetic complications, it is possible to use four types of substrate peptides having the sequences (a) to (l) as separate compounds. In addition, one obtained by extending a substrate peptide to 1 to 3 kinds of compounds can also be used. It is preferable to use four types of substrate peptides as separate compounds. This is because the analysis of the measurement result is easy and the accuracy can be improved. When urine is used as the sample liquid, the substrate peptides (a), (h) to (l) are suitable. When blood (plasma) is used as the sample liquid, the substrate peptides (b) to (g) are suitable.
The substrate peptide can also bind any peptide or other compound or molecule that does not have enzyme specificity. Alternatively, one having one end bound to an insoluble carrier can be used.

本発明の請求項に記載の発明は、請求項に記載の糖尿病検出用試薬であって、前記基質ペプチドの一方の末端に結合した第1蛍光基を備えた構成を有している。
この構成により、請求項で得られる作用に加え、以下のような作用が得られる。
(1)尿中や血中の酵素によって基質ペプチドが切断されると、その前後において第1蛍光基の性質が変わり、蛍光波長や蛍光強度が変化するので、これを指標として酵素活性を検出することができる。
(2)尿や血液の検体液を接触反応させた後、検体液の蛍光強度等を測定するだけで酵素活性を検出することができるので、測定時間を短縮化することができ作業性を高め測定効率を高めることができ、また検出感度と測定精度を高めることができる。
The invention according to claim 2 of the present invention is the reagent for detecting diabetes according to claim 1 , and has a configuration including a first fluorescent group bonded to one end of the substrate peptide.
With this configuration, in addition to the operation obtained in the first aspect , the following operation can be obtained.
(1) When the substrate peptide is cleaved by an enzyme in urine or blood, the nature of the first fluorescent group changes before and after that, and the fluorescence wavelength and fluorescence intensity change. be able to.
(2) Since the enzyme activity can be detected simply by measuring the fluorescence intensity of the sample liquid after contact reaction with urine or blood sample liquid, the measurement time can be shortened and the workability improved. Measurement efficiency can be increased, and detection sensitivity and measurement accuracy can be increased.

ここで、第1蛍光基としては、酵素によって基質ペプチドが切断される前後において蛍光基の性質が変わり、蛍光波長や蛍光強度に変化が生じるものが用いられる。基質ペプチドが不溶性の担体に結合している場合は、濃度消光現象に由来して蛍光波長や蛍光強度の変化が生じる蛍光基も用いられる。濃度消光現象とは、蛍光基が担体上で互いに近接しているときと尿や血液の検体液中に遊離して蛍光基間の距離が離れているときとで蛍光波長や蛍光強度が変化する現象をいう。
このような第1蛍光基としては、例えば、4−メチルクマリル−7−アミド(MCA)、7−アミノ−4−カルボキシメチルクマリン(ACC)、α−ナフチルアミド、α−ナフチルエステル、フルオレセイン、希土類錯体又はそれらの誘導体等が用いられる。
これにより、担体から遊離した第1蛍光基の蛍光波長や蛍光強度は、遊離前の第1蛍光基のものとは異なるので、特定波長領域における蛍光強度を指標として、酵素による切断量を測定することができる。
Here, as the first fluorescent group, those in which the property of the fluorescent group changes before and after the substrate peptide is cleaved by the enzyme and the fluorescent wavelength and the fluorescence intensity change are used. When the substrate peptide is bound to an insoluble carrier, a fluorescent group that causes a change in fluorescence wavelength or fluorescence intensity due to concentration quenching is also used. The concentration quenching phenomenon means that the fluorescence wavelength and fluorescence intensity change when the fluorescent groups are close to each other on the carrier and when the fluorescent groups are separated in the urine or blood sample liquid and the distance between the fluorescent groups is increased. A phenomenon.
Examples of the first fluorescent group include 4-methylcoumaryl-7-amide (MCA), 7-amino-4-carboxymethylcoumarin (ACC), α-naphthylamide, α-naphthyl ester, fluorescein, rare earth complex Alternatively, derivatives thereof are used.
Thereby, since the fluorescence wavelength and fluorescence intensity of the first fluorescent group released from the carrier are different from those of the first fluorescent group before release, the amount of cleavage by the enzyme is measured using the fluorescence intensity in the specific wavelength region as an index. be able to.

なお、第1蛍光基は、フルオレセイン又はフルオレセインイソチオシアネート(FITC)等のフルオレセイン誘導体を用いるのが好ましい。フルオレセインは525nm前後の蛍光を発するので、薬等に含まれる蛍光物質の蛍光波長と区別することができ、薬やビタミン剤等を服用している被験者の尿もそのまま検体液として用いることができ汎用性に優れるからである。薬やビタミン剤等を服用している被験者の尿中には薬等に含まれる雑多な蛍光物質が出るが、これらの蛍光物質は蛍光波長が400nm付近のものが多いため、尿を検体液としてそのまま用いる場合、薬等に含まれる蛍光物質の蛍光と酵素活性によって検体液内に遊離した第1蛍光基の蛍光とを区別できないのである。   The first fluorescent group is preferably a fluorescein derivative such as fluorescein or fluorescein isothiocyanate (FITC). Since fluorescein emits fluorescence at around 525 nm, it can be distinguished from the fluorescence wavelength of fluorescent substances contained in medicines, etc., and the urine of a subject taking medicines or vitamins can be used as a sample liquid as it is. It is because it is excellent in property. In the urine of a subject who is taking drugs or vitamins, various fluorescent substances contained in the drug etc. appear, but since many of these fluorescent substances have a fluorescence wavelength of around 400 nm, urine is used as the sample liquid. When used as it is, the fluorescence of the fluorescent substance contained in the medicine or the like cannot be distinguished from the fluorescence of the first fluorescent group released into the sample liquid due to the enzyme activity.

検体液の蛍光測定は、蛍光分光光度計を用いる方法の他、発光ダイオード等の発光素子からの光を蛍光基の励起波長を通過するフィルタを通して検体液に照射し、検体液の蛍光を検出することができる位置に配置したCCD等の受光素子で蛍光強度等を測定する方法を用いることもできる。   In addition to the method using a fluorescence spectrophotometer, the fluorescence measurement of the sample liquid is performed by irradiating the sample liquid with light from a light emitting element such as a light emitting diode through a filter that passes the excitation wavelength of the fluorescent group to detect the fluorescence of the sample liquid. It is also possible to use a method of measuring fluorescence intensity or the like with a light receiving element such as a CCD arranged at a position where it can be used.

本発明の請求項に記載の発明は、請求項に記載の糖尿病合併症検査用試薬であって、前記基質ペプチドの一方の末端に結合した第2蛍光基と、前記基質ペプチドの他方の末端に結合した消光基と、を備えた構成を有している。
この構成により、請求項に記載の作用に加え、以下のような作用が得られる。
(1)酵素によって基質ペプチドが切断されると、消光基と第2蛍光基との距離が離れることによって第2蛍光基の蛍光スペクトルが変化するので、このスペクトル変化を酵素活性の測定指標にすることができ、これにより、蛍光強度等の変化を指標として酵素活性を検出することができる。
(2)尿や血液の検体液を接触反応させた後、検体液の蛍光強度等を測定するだけで酵素活性を検出することができるので、測定時間を短縮化することができ作業性を高め測定効率を高めることができ、また検出感度と測定精度を高めることができる。
The invention according to claim 3 of the present invention is the reagent for testing diabetic complications according to claim 1 , wherein the second fluorescent group bonded to one end of the substrate peptide and the other of the substrate peptide And a quenching group bonded to the terminal.
With this configuration, in addition to the operation of the first aspect , the following operation can be obtained.
(1) When the substrate peptide is cleaved by the enzyme, the fluorescence spectrum of the second fluorescent group changes due to the distance between the quenching group and the second fluorescent group, so this spectral change is used as a measurement index for enzyme activity. Thus, enzyme activity can be detected using changes in fluorescence intensity or the like as an index.
(2) Since the enzyme activity can be detected simply by measuring the fluorescence intensity of the sample liquid after contact reaction with urine or blood sample liquid, the measurement time can be shortened and the workability improved. Measurement efficiency can be increased, and detection sensitivity and measurement accuracy can be increased.

ここで、消光基としては、第2蛍光基の蛍光励起波長に相当する光を吸収する物質、第2蛍光基との間のゆるい結合により無発光複合体を形成する物質、第2蛍光基と蛍光共鳴エネルギー移動が起こる物質等が用いられる。
蛍光共鳴エネルギー移動とは、第2蛍光基と消光基が距離的に近い位置に存在するとき、消光基(アクセプター)の励起スペクトルと第2蛍光基(ドナー)の蛍光スペクトルとが重なりをもつ場合、第2蛍光基の励起波長のエネルギーを当てると消光基が励起エネルギーを奪い、本来観察されるはずの第2蛍光基の蛍光が減衰する現象をいう。
Here, as the quenching group, a substance that absorbs light corresponding to the fluorescence excitation wavelength of the second fluorescent group, a substance that forms a non-light emitting complex by loose bonding with the second fluorescent group, a second fluorescent group, A substance that causes fluorescence resonance energy transfer is used.
Fluorescence resonance energy transfer is when the excitation spectrum of the quenching group (acceptor) and the fluorescence spectrum of the second fluorescent group (donor) overlap when the second fluorescent group and the quenching group are located at close distances. When the energy of the excitation wavelength of the second fluorescent group is applied, the quenching group takes the excitation energy and the fluorescence of the second fluorescent group that should be observed is attenuated.

第2蛍光基や消光基としては、蛍光共鳴エネルギー移動が起こるドナーとアクセプターの組合せを用いることができる。例えば、第2蛍光基の蛍光波長と重なる波長域に吸収帯をもつ原子団である消光基等が用いられる。具体的には、(7−メトキシクマリン−4−イル)アセチル(MOAc),アントラニロイルベンジル(ABz),N−メチルアントラニル酸(Nma)等とジニトロフェニル(Dnp)の組合せ、DabsylとEDANS(5−(2'-アミノエチル)アミノナフタレン−1−スルホン酸)の組合せ、トリプトファン(Trp)と5−ジメチルアミノ−1−ナフタレンスルホン酸(Dns)の組合せ、カルボキシジクロロフルオレセイン(CDCF)とカルボキシメチルローダミン(CTMR)の組合せ、カルボキシジクロロフルオレセイン(CDCF)とカルボキシX−ローダミン(CXR)の組合せ、ルシファーイエロー(LY)とカルボキシメチルローダミン(CTMR)の組合せ等が用いられる。   As the second fluorescent group or quenching group, a combination of a donor and an acceptor in which fluorescence resonance energy transfer occurs can be used. For example, a quenching group that is an atomic group having an absorption band in a wavelength region that overlaps the fluorescence wavelength of the second fluorescent group is used. Specifically, the combination of (7-methoxycoumarin-4-yl) acetyl (MOAc), anthraniloylbenzyl (ABz), N-methylanthranilic acid (Nma) and the like and dinitrophenyl (Dnp), Dabsyl and EDANS ( 5- (2′-aminoethyl) aminonaphthalene-1-sulfonic acid), tryptophan (Trp) and 5-dimethylamino-1-naphthalenesulfonic acid (Dns), carboxydichlorofluorescein (CDCF) and carboxymethyl A combination of rhodamine (CTMR), a combination of carboxydichlorofluorescein (CDCF) and carboxy X-rhodamine (CXR), a combination of lucifer yellow (LY) and carboxymethyl rhodamine (CTMR), and the like are used.

消光基は、基質ペプチドと直接結合させてもよいし、ペプチド又はその他の化合物や分子が結合した原子団を介して基質ペプチドと結合させてもよい。
なお、基質ペプチドと原子団の結合、原子団と消光基との結合は、酵素によって切断されないアミド結合,エステル結合,エーテル結合,チオエーテル結合,ウレタン結合等が用いられる。消光基が酵素によって切断されて基質ペプチドから遊離することでも第2蛍光基の蛍光スペクトルに変化が生じるが、基質ペプチドのアミノ酸配列に依存した酵素活性は検出できないからである。
The quenching group may be bound directly to the substrate peptide, or may be bound to the substrate peptide via an atomic group to which the peptide or other compound or molecule is bound.
For the bond between the substrate peptide and the atomic group, and the bond between the atomic group and the quenching group, an amide bond, an ester bond, an ether bond, a thioether bond, a urethane bond, or the like that is not cleaved by an enzyme is used. This is because even when the quenching group is cleaved by the enzyme and released from the substrate peptide, the fluorescence spectrum of the second fluorescent group changes, but the enzyme activity depending on the amino acid sequence of the substrate peptide cannot be detected.

基質ペプチドに結合した第2蛍光基と消光基の結合部間の長さは、100Å以下であることが望ましい。第2蛍光基と消光基との結合部間の距離が長くなるにつれ蛍光強度等の変化が小さくなる傾向がみられ、100Åより長くなるとこの傾向が著しく蛍光強度の変化が著しく小さくなり感度が低下するからである。   The length between the binding part of the second fluorescent group and the quenching group bonded to the substrate peptide is preferably 100 mm or less. As the distance between the binding parts of the second fluorescent group and the quenching group becomes longer, changes in fluorescence intensity and the like tend to become smaller, and when the distance exceeds 100 mm, this tendency becomes remarkably small and the change in fluorescence intensity becomes extremely small and sensitivity decreases. Because it does.

以上のように、本発明の糖尿病合併症検査用試薬によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)体液に分泌される複数の酵素の活性の測定を、複数の基質を用いて行い、その結果を分析することにより、糖尿病性腎症の発症や進行度合いを判別できるため、被験者の尿や血液等の体液を接触させて活性測定を行うという簡単な操作で、糖尿病性腎症を発症しているか否か、発症している場合に進行度合いは第1期〜第4期のいずれなのかを判別することができるとともに、第1期〜第4期の治療の有効性の検討や人工透析をいつ頃導入することになるか等の病状の進行予測の精密化が可能な糖尿病合併症検査用試薬を提供できる。
(2)尿に分泌される酵素、血液に分泌される酵素はそれぞれ異なるため、基質ペプチドの組合せによって、体液の種類に応じた活性検出を行うことができ応用性に優れた糖尿病合併症検査用試薬を提供できる。
(3)基質ペプチドはペプチド合成機等を用いて容易に製造できるため、生産性に優れた糖尿病合併症検査用試薬を提供できる。
(4)糖尿病患者の尿又は血漿より得た検体液と接触させ、検体液の酵素活性を測定して得られた計測データを解析することにより、糖尿病性腎症の検体を正確にグループ分けできるので、未知の被験者から採取した尿又は血漿の酵素活性を、これらの基質ペプチドを用いて測定し、設定された判別式を適用することにより、未知の被験者の糖尿病性腎症の進行度を判別することができる糖尿病合併症検査用試薬を提供できる。
As described above, according to the reagent for testing for diabetic complications of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) Since the activity of a plurality of enzymes secreted into a body fluid is measured using a plurality of substrates and the results are analyzed, the onset and progression of diabetic nephropathy can be determined. Whether or not diabetic nephropathy has developed in a simple operation of measuring the activity by contacting body fluids such as blood and blood, and if so, the degree of progression is any of the first to fourth stages Diabetic complications that can be used to assess the effectiveness of treatments in the first to fourth stages and to predict the progress of disease states such as when to introduce artificial dialysis A test reagent can be provided.
(2) Since the enzymes secreted in the urine and the enzymes secreted in the blood are different, the activity detection according to the type of body fluid can be detected by the combination of substrate peptides, and it has excellent applicability for testing diabetic complications Reagents can be provided.
(3) Since the substrate peptide can be easily produced using a peptide synthesizer or the like, a reagent for testing a diabetic complication having excellent productivity can be provided.
(4) Samples of diabetic nephropathy can be accurately grouped by contacting the sample solution obtained from urine or plasma of diabetic patients and analyzing the measurement data obtained by measuring the enzyme activity of the sample solution. Therefore, the enzyme activity of urine or plasma collected from an unknown subject is measured using these substrate peptides, and the progression of diabetic nephropathy in an unknown subject is determined by applying a set discriminant. A reagent for testing diabetic complications can be provided.

請求項に記載の発明によれば、請求項の効果に加え、
(1)尿や血液の検体液を接触反応させた後、検体液の蛍光強度等を測定するだけで酵素活性を検出することができるので、測定時間を短縮化することができ作業性を高め測定効率を高めることができるとともに、検出感度と測定精度に優れた糖尿病合併症検査用試薬を提供できる。
According to invention of Claim 2 , in addition to the effect of Claim 1 ,
(1) Since the enzyme activity can be detected by simply measuring the fluorescence intensity of the sample liquid after the urine or blood sample liquid is contacted, the measurement time can be shortened and the workability is improved. It is possible to provide a reagent for testing diabetic complications that can improve measurement efficiency and is excellent in detection sensitivity and measurement accuracy.

請求項の発明によれば、請求項の効果に加え、
(2)尿や血液の検体液を接触反応させた後、検体液の蛍光強度等を測定するだけで酵素活性を検出することができるので、測定時間を短縮化することができ作業性を高め測定効率を高めることができるとともに、検出感度と測定精度に優れた糖尿病合併症検査用試薬を提供できる。
According to the invention of claim 3 , in addition to the effect of claim 1 ,
(2) Since the enzyme activity can be detected simply by measuring the fluorescence intensity of the sample liquid after contact reaction with urine or blood sample liquid, the measurement time can be shortened and the workability improved. It is possible to provide a reagent for testing diabetic complications that can improve measurement efficiency and is excellent in detection sensitivity and measurement accuracy.

以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。
(実施の形態1)
図1は本発明の実施の形態1における糖尿病合併症検査用試薬の酵素活性検出原理を示す模式図である。
図中、1は実施の形態1における糖尿病合併症検査用試薬、2はハロゲン化炭化水素類,エステル類等の溶媒に不溶性の合成樹脂(ポリスチレン等)製(PEGA等)やガラス製等で略球状や多面体状等に形成された担体、Xは担体2に結合された酵素特異性を有さない化合物、3は化合物Xがアミノ酸AAに結合したAA−AA−AAのアミノ酸配列を有する基質ペプチド、4は基質ペプチド3のN末端に結合し基質ペプチド3が後述する酵素5によって切断される前後において、蛍光波長や蛍光強度に変化が生じる蛍光基の1種である4−メチルクマリル−7−アミド(MCA),フルオレセインイソチオシアネート(FITC)等の第1蛍光基、5は第1蛍光基4と基質ペプチド3とのペプチド結合や基質ペプチド3を特定の切断部位で選択的に切断する検体液中の基質特異性を有する酵素、6は酵素5によって基質ペプチド3が切断されたことにより遊離し蛍光波長等が変化した第1蛍光基である。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a schematic diagram showing the principle of detecting enzyme activity of a reagent for testing diabetic complications in Embodiment 1 of the present invention.
In the figure, 1 is a reagent for testing for diabetic complications in the first embodiment, 2 is a synthetic resin (polystyrene etc.) insoluble in solvents such as halogenated hydrocarbons, esters, etc. (eg, PEGA), glass, etc. carrier formed in a spherical shape or polyhedral shape or the like, X is a compound having no enzyme specificity conjugated to a carrier 2, 3 AA 3 -AA 2 -AA 1 amino acid sequence to which the compound X is bonded to an amino acid AA 1 4-methylcoumalyl is a kind of fluorescent group that changes in fluorescence wavelength and fluorescence intensity before and after substrate peptide 3 binds to the N-terminus of substrate peptide 3 and is cleaved by enzyme 5 described later. First fluorescent group such as -7-amide (MCA), fluorescein isothiocyanate (FITC), 5 is a peptide bond between the first fluorescent group 4 and substrate peptide 3, and substrate peptide 3 Enzymes with substrate specificity of the test solution which selectively cleaved at the cleavage site of, 6 is the first fluorescent groups liberated fluorescence wavelength or the like is changed by the substrate peptide 3 was cleaved by the enzyme 5.

以上のように構成された糖尿病合併症検査用試薬1は、基質ペプチド3をC末端から伸長していく固相法等の通常のペプチド合成法、目的とするアミノ酸配列のC末端側からN末端側へ逐次伸長していく逐次伸長法、複数の短いペプチド断片を合成しペプチド断片間のカップリングにより伸長させる断片縮合法、ペプチド合成機を用いてFmoc法、Boc法等を導入して合成する方法等を用いて合成することができる。   The reagent 1 for testing a complication of diabetes composing as described above includes a normal peptide synthesis method such as a solid phase method in which the substrate peptide 3 is extended from the C-terminal, and the N-terminal from the C-terminal side of the target amino acid sequence. Sequential extension method that sequentially extends to the side, fragment condensation method that synthesizes multiple short peptide fragments and extends by coupling between peptide fragments, Fmoc method, Boc method etc. using peptide synthesizer It can be synthesized using a method or the like.

以上のように構成された実施の形態1における糖尿病合併症検査用試薬について、以下その酵素活性の検出原理を説明する。
図1(a)に示す糖尿病合併症検査用試薬1の4−メチルクマリル−7−アミド(MCA),フルオレセインイソチオシアネート(FITC)等の第1蛍光基4は特定波長領域において非蛍光物質であり、また担体2の表面に高密度に存在しているときは濃度消光により蛍光強度が弱い。この糖尿病合併症検査用試薬1に酵素5を含む検体液を接触させ反応させると、第1蛍光基4と基質ペプチド3との間のペプチド結合や基質ペプチド3を特定の切断部位で選択的に切断する。
基質ペプチド3と遊離した第1蛍光基6は7−アミノ−メチルクマリン(AMC)等の蛍光物質となったり、担体2から離れることで濃度消光の効果が減少し、第1蛍光基6の蛍光波長又は該特定波長領域における蛍光強度は、基質ペプチド3と結合した第1蛍光基4とは異なるので、検体液の蛍光強度等の変化を指標として酵素活性を検出することができる(図1(b)参照)。
The detection principle of the enzyme activity of the reagent for testing for diabetic complications in Embodiment 1 configured as described above will be described below.
The first fluorescent group 4 such as 4-methylcoumalyl-7-amide (MCA), fluorescein isothiocyanate (FITC), etc. of the reagent 1 for testing for diabetic complications shown in FIG. 1 (a) is a non-fluorescent substance in a specific wavelength region, Further, when it exists on the surface of the carrier 2 at a high density, the fluorescence intensity is weak due to concentration quenching. When the reagent solution containing the enzyme 5 is brought into contact with and reacted with the reagent 1 for testing for complications of diabetes, the peptide bond between the first fluorescent group 4 and the substrate peptide 3 and the substrate peptide 3 are selectively selected at a specific cleavage site. Disconnect.
The first fluorescent group 6 released from the substrate peptide 3 becomes a fluorescent substance such as 7-amino-methylcoumarin (AMC), or the effect of concentration quenching is reduced by moving away from the carrier 2, and the fluorescence of the first fluorescent group 6 is reduced. Since the fluorescence intensity in the wavelength or the specific wavelength region is different from that of the first fluorescent group 4 bound to the substrate peptide 3, the enzyme activity can be detected by using a change in the fluorescence intensity of the sample liquid as an index (FIG. 1 ( b)).

糖尿病合併症の検査や進行度管理は、始めに、糖尿病にかかっているが糖尿病性腎症は発症していない患者の血液等の体液、糖尿病性腎症を発症している患者の体液を、アミノ酸配列が異なる4種類以上の基質ペプチド3が組み合わせられた糖尿病合併症検査用試薬1の各々と反応させて酵素活性を測定し、判別分析等の公知の手法によって、体液の酵素活性全体を一括して評価し、糖尿病性腎症を発症しているグループと発症していないグループに判別する基準(判別関数)をマハラノビスの距離をベースとした非線形手法等によって予め設定しておく。糖尿病性腎症の第1期〜第4期の患者を判別する各々の判別関数を、予めデータベース化して設定しておくことができる。
次に、未知の被験者の体液を、判別関数を設定したときと同じ種類の基質ペプチド3が組み合わせられた糖尿病合併症検査用試薬1の各々と反応させて酵素活性を測定し、未知の被験者が、予め設定したグループのいずれに属するのかを判別することで、糖尿病性腎症を発症しているのか否か、合併症の進行度等を簡便に判断することができる。
Diabetes complications and progress management, first, body fluid such as blood of patients who have diabetes but have not developed diabetic nephropathy, body fluid of patients who have diabetic nephropathy, The enzyme activity is measured by reacting with each of the diabetic complication test reagents 1 combined with four or more kinds of substrate peptides 3 having different amino acid sequences, and the whole enzyme activity of the body fluid is collectively collected by a known method such as discriminant analysis. Thus, a criterion (discriminant function) for discriminating between a group that develops diabetic nephropathy and a group that does not develop diabetic nephropathy is set in advance by a nonlinear method based on the Mahalanobis distance. Each discriminant function for discriminating patients in the first to fourth stages of diabetic nephropathy can be set in a database in advance.
Next, the body fluid of the unknown subject is reacted with each of the diabetic complication testing reagents 1 combined with the same type of substrate peptide 3 as when the discriminant function is set, and the enzyme activity is measured. By determining which of the preset groups it belongs, it is possible to easily determine whether or not diabetic nephropathy has developed, the degree of complication, and the like.

以上のように、実施の形態1における糖尿病合併症検査用試薬は構成されているので、以下のような作用が得られる。
(1)被験者の体液を接触させて活性測定を行うという簡単な操作で、糖尿病性腎症を発症しているか否か、発症している場合に進行度合いはどの程度なのかを判別することができるとともに、治療の有効性の検討や人工透析をいつ頃導入することになるか等の病状の進行予測の精密化が可能になる。
(2)尿や血液等の体液の種類に応じて、基質ペプチド3の組合せを変えて酵素活性を測定することで、体液の種類に応じた活性検出を行うことができ応用性に優れる。
(3)基質ペプチドはペプチド合成機等を用いて容易に製造できるため、生産性に優れる。
As described above, since the reagent for testing for diabetic complications in the first embodiment is configured, the following effects can be obtained.
(1) It is possible to determine whether or not diabetic nephropathy has developed by a simple operation of measuring the activity by contacting the body fluid of the subject and to what extent the progression has progressed. In addition, it is possible to refine the prediction of the progress of disease states such as the examination of the effectiveness of treatment and when to introduce artificial dialysis.
(2) By measuring the enzyme activity by changing the combination of substrate peptides 3 according to the type of body fluid such as urine and blood, the activity can be detected according to the type of body fluid and the applicability is excellent.
(3) Since the substrate peptide can be easily produced using a peptide synthesizer or the like, it is excellent in productivity.

なお、本実施の形態においては、基質ペプチド3が担体2に結合した糖尿病合併症検査用試薬1を説明したが、担体2に結合したものを必ずしも用いる必要はなく、特定のアミノ酸配列を有する基質ペプチドが含まれていれば、凍結乾燥された粉末の状態や溶液の状態で供給されるものを用いることもできる。
また、糖尿病合併症検査用試薬1が基質ペプチド3を1種類ずつ有し、それを4以上組み合わせた場合について説明したが、基質ペプチド3の2種類以上を組み合わせて結合して伸長させた基質ペプチドを用いる場合もある。この場合も、糖尿病合併症検査用試薬の蛍光測定により酵素活性を評価し、糖尿病性腎症の第1期〜第4期の患者を判別する各々の判別関数によりグループ化することで、同様の作用が得られる。
In the present embodiment, the reagent 1 for testing for diabetic complications in which the substrate peptide 3 is bound to the carrier 2 has been described. However, it is not always necessary to use the substrate 1 having the specific amino acid sequence. As long as the peptide is contained, a lyophilized powder or a solution supplied in a solution can be used.
In addition, the case where the reagent 1 for testing diabetic complications has one kind of substrate peptide 3 and four or more of them are combined, but the substrate peptide obtained by combining and extending two or more kinds of substrate peptides 3 in combination is extended. May be used. In this case as well, the enzyme activity is evaluated by fluorescence measurement of a reagent for testing for diabetic complications, and grouping by each discriminant function for discriminating patients in the first to fourth stages of diabetic nephropathy, The effect is obtained.

(実施の形態2)
図2は本発明の実施の形態2における糖尿病合併症検査用試薬の酵素活性検出原理を示す模式図である。なお、実施の形態1と同様のものは、同じ符号を付して説明を省略する。
図中、10は実施の形態2における糖尿病合併症検査用試薬、11は後述する検体液中の酵素14の切断部位を含むAA−AA−AAのアミノ酸配列を有する基質ペプチドである。Y,Zは任意のアミノ酸残基等の原子団を示しており、本実施の形態においては、端部の原子団Yが担体2と結合している。
12は基質ペプチド11に結合した原子団Yと結合するジニトロフェニル(Dnp),5−ジメチルアミノ−1−ナフタレンスルホン酸(Dns)等の消光基、13は基質ペプチド11の他端に導入され消光基12と蛍光共鳴エネルギー移動がみられる(7−メトキシクマリン−4−イル)アセチル(MOAc),トリプトファン(Trp)等の第2蛍光基である。消光基12と第2蛍光基13は互いに蛍光に影響を及ぼす相互作用がみられる距離(100Å以下)で結合している。14は検体液中に存在する酵素、15は基質ペプチド11が酵素14の基質特異性によって特定の切断部位で切断され遊離されたことにより蛍光波長等が変化した第2蛍光基である。
(Embodiment 2)
FIG. 2 is a schematic diagram showing the principle of detecting the enzyme activity of the reagent for testing diabetic complications in Embodiment 2 of the present invention. In addition, the same thing as Embodiment 1 attaches | subjects the same code | symbol, and abbreviate | omits description.
In the figure, 10 is a reagent for testing diabetic complications in the second embodiment, and 11 is a substrate peptide having an amino acid sequence of AA 3 -AA 2 -AA 1 including the cleavage site of enzyme 14 in the sample liquid described later. Y and Z represent an atomic group such as an arbitrary amino acid residue. In this embodiment, the atomic group Y at the end is bonded to the carrier 2.
12 is a quenching group such as dinitrophenyl (Dnp) and 5-dimethylamino-1-naphthalenesulfonic acid (Dns) that binds to the atomic group Y bound to the substrate peptide 11, and 13 is quenched at the other end of the substrate peptide 11 This is a second fluorescent group such as (7-methoxycoumarin-4-yl) acetyl (MOAc), tryptophan (Trp), etc. in which fluorescence resonance energy transfer is observed with the group 12. The quenching group 12 and the second fluorescent group 13 are bonded together at a distance (100 Å or less) at which an interaction affecting the fluorescence is observed. Reference numeral 14 denotes an enzyme present in the sample solution, and reference numeral 15 denotes a second fluorescent group whose fluorescence wavelength or the like has changed due to the substrate peptide 11 being cleaved and released at a specific cleavage site by the substrate specificity of the enzyme 14.

以上のように構成された実施の形態2における糖尿病合併症検査用試薬について、以下その酵素活性の検出原理を説明する。
図2(a)に示す糖尿病合併症検査用試薬10の消光基12と第2蛍光基13は、互いに蛍光に影響を及ぼす相互作用がみられる距離で結合しているので、消光基12の吸収スペクトルと第2蛍光基13の蛍光スペクトルとが重なりをもち、第2蛍光基13の励起波長のエネルギーを当てると本来観察されるはずの第2蛍光基13の蛍光の減衰が観察される。
糖尿病合併症検査用試薬10に酵素14を含む検体液を接触させ反応させると、基質特異性を有する酵素14は、基質ペプチド11を切断する。
第2蛍光基13が担体2から遊離すると、第2蛍光基13と消光基12との間で蛍光に影響を及ぼす相互作用がみられなくなるので、検体液に第2蛍光基13の励起波長のエネルギーを当てると、検体液との接触前には観察されなかった第2蛍光基15の蛍光波長が観察されるようになり、酵素14の反応前の蛍光波長とは異なるため、蛍光強度等の変化を指標として酵素活性を検出することができる(図2(b)参照)。
なお、糖尿病合併症の検査や進行度管理の方法は、実施の形態1で説明したものと同様なので説明を省略する。
The detection principle of the enzyme activity of the reagent for testing for diabetic complications in Embodiment 2 configured as described above will be described below.
Since the quenching group 12 and the second fluorescent group 13 of the reagent 10 for testing for diabetic complications shown in FIG. 2 (a) are bonded to each other at a distance at which an interaction affecting fluorescence is observed, absorption of the quenching group 12 is achieved. The spectrum and the fluorescence spectrum of the second fluorescent group 13 overlap each other, and when the energy of the excitation wavelength of the second fluorescent group 13 is applied, attenuation of the fluorescence of the second fluorescent group 13 that should originally be observed is observed.
When the sample liquid containing the enzyme 14 is brought into contact with the reagent 10 for testing for diabetic complications and reacted, the enzyme 14 having substrate specificity cleaves the substrate peptide 11.
When the second fluorescent group 13 is released from the carrier 2, no interaction affecting the fluorescence is observed between the second fluorescent group 13 and the quenching group 12, so that the sample liquid has an excitation wavelength of the second fluorescent group 13. When energy is applied, the fluorescence wavelength of the second fluorescent group 15 that has not been observed before contact with the sample liquid is observed, and is different from the fluorescence wavelength before the reaction of the enzyme 14, so that the fluorescence intensity, etc. The enzyme activity can be detected using the change as an index (see FIG. 2B).
In addition, since the method of a diabetic complication test | inspection and progress management is the same as that of what was demonstrated in Embodiment 1, description is abbreviate | omitted.

以上のように実施の形態2における糖尿病合併症検査用試薬は構成されているので、実施の形態1に記載の作用に加え、以下のような作用が得られる。
(1)消光基12と第2蛍光基13を選択することにより、第2蛍光基13の蛍光波長を可視部領域に設定することが可能になるので、市販のCCDカメラ等の可視光検出装置を用いて測定することが可能になり汎用性に優れる。
As described above, since the reagent for testing for diabetic complications in the second embodiment is configured, in addition to the operation described in the first embodiment, the following operation can be obtained.
(1) Since the fluorescence wavelength of the second fluorescent group 13 can be set in the visible region by selecting the quenching group 12 and the second fluorescent group 13, a visible light detection device such as a commercially available CCD camera This makes it possible to measure with a superior versatility.

本実施の形態においても、必ずしも基質ペプチド11を担体2に結合させる必要はなく、特定のアミノ酸配列を有する基質ペプチド11が含まれていれば、凍結乾燥された粉末の状態や溶液の状態で供給されるものを用いることもできる。
また、糖尿病合併症検査用試薬10が基質ペプチド11を1種類ずつ有し、それを4以上組み合わせた場合について説明したが、基質ペプチド11の2種類以上を組み合わせて結合して伸長させた基質ペプチドを用いる場合もある。この場合も、糖尿病合併症検査用試薬の蛍光測定により酵素活性を評価し、糖尿病性腎症の第1期〜第4期の患者を判別する各々の判別関数によりグループ化することで、同様の作用が得られる。
Also in this embodiment, it is not always necessary to bind the substrate peptide 11 to the carrier 2, and if the substrate peptide 11 having a specific amino acid sequence is included, it is supplied in a lyophilized powder state or a solution state. Can also be used.
In addition, although the case where the reagent 10 for testing for diabetic complications has one kind of substrate peptide 11 and four or more of them are combined, the substrate peptide obtained by combining and extending two or more kinds of substrate peptides 11 in combination is extended. May be used. In this case as well, the enzyme activity is evaluated by fluorescence measurement of a reagent for testing for diabetic complications, and grouping by each discriminant function for discriminating patients in the first to fourth stages of diabetic nephropathy, The effect is obtained.

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
なお、本実施例で説明するアミノ酸、ペプチド、保護基、溶媒等は、当該技術分野で慣用されている略号又はIUPAC-IUBの命名委員会で採用された略号を使用している。例えば、以下の略号を使用している。例えば、FITC:Fluorescein-4-isothiocyanate isomer-I(フルオレセインイソチオシアネート) 、DMF:N,N−ジメチルホルムアミド、DIEA:N,N−ジイソプロピルエチルアミン、DCM:ジクロロメタン、i-PrOH:2-プロパノール、MeOH:メタノール、Lys(Dnp):(2S)-2-amino-6-(2,4-dinitrophenylamino)hexanoic acid、TFA:トリフルオロ酢酸。
(実施例1)
実施例1では、糖尿病合併症検査用試薬としてのペプチジル蛍光基結合球状担体を合成し、次に尿より得た検体液の活性測定を行った。以下、その方法について説明する。
<ペプチジル蛍光基結合球状担体の合成>
担体としては球状の市販のNH2-PEGA-resin(渡辺化学工業製、粒径約0.1mm)を用いた。Peptide synthesizer (Model 433A, Applied Biosystems) を用いてNH2-PEGA Resin (0.5 g, 25μmol) に、Lys(Dnp)、AA、AA、AA、βAlaの5つのアミノ酸を順に導入した。なお、AA、AA、AAは表1に示すアミノ酸である。その後、プラスチックベッセルに担体を入れ、DMFを加えて担体を膨潤させた。DMFを吸引除去した後、少量のDMFに溶解させた FITC (30μmol, 12 mg), DMF (2 ml) 及びDIEA (25μmol, 4.4μl) を加え、室温で3時間振とうした。反応液を吸引除去した後、DMF (2 ml, 2回)、 DCM (2 ml, 2回)、i-PrOH (2 ml, 2回)、DMF (2 ml, 2回)、MeOH (2 ml, 2回)、エーテル (2 ml, 2回) の順で担体を洗浄した。その後、フェノール (75 mg)、1,2-エタンジチオール (25μl)、チオアニソール(50μl)、蒸留水(50μl) 及びTFA (2 ml) の混合溶液と3時間反応させた。反応液を吸引除去後、DCM (2 ml, 2回)、 DMF (2 ml, 2回)、20%ピペリジン / DMF (2 ml, 2回)、DMF (2 ml, 2回)、i-PrOH (2 ml, 2回)、DMF (2 ml, 2回)、蒸留水(2 ml, 2回)、エーテル (2 ml,1回) の順で担体を洗浄し減圧乾燥することによって、FITCからなる第2蛍光基が一端のβアラニンに結合し、ジニトロフェニル(Dnp)からなる消光基が他端のリジンに結合したβAla-AA-AA-AA-Lysからなる基質ペプチド(表1のNo1〜No4)を有する糖尿病合併症検査用試薬(配列表の配列番号1〜4)を得た。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
The amino acids, peptides, protecting groups, solvents, and the like described in this example use the abbreviations commonly used in the technical field or the abbreviations adopted by the IUPAC-IUB naming committee. For example, the following abbreviations are used. For example, FITC: Fluorescein-4-isothiocyanate isomer-I (fluorescein isothiocyanate), DMF: N, N-dimethylformamide, DIEA: N, N-diisopropylethylamine, DCM: dichloromethane, i-PrOH: 2-propanol, MeOH: Methanol, Lys (Dnp): (2S) -2-amino-6- (2,4-dinitrophenylamino) hexanoic acid, TFA: trifluoroacetic acid.
Example 1
In Example 1, a peptidyl fluorescent group-bound spherical carrier as a reagent for testing diabetic complications was synthesized, and then the activity of a sample solution obtained from urine was measured. The method will be described below.
<Synthesis of peptidyl fluorescent group-bound spherical carrier>
As the carrier, spherical NH 2 -PEGA-resin (manufactured by Watanabe Chemical Industries, particle size of about 0.1 mm) was used. Five amino acids of Lys (Dnp), AA 1 , AA 2 , AA 3 , and βAla were sequentially introduced into NH 2 -PEGA Resin (0.5 g, 25 μmol) using a peptide synthesizer (Model 433A, Applied Biosystems). AA 1 , AA 2 and AA 3 are amino acids shown in Table 1. Thereafter, the carrier was placed in a plastic vessel, and DMF was added to swell the carrier. After removing DMF by suction, FITC (30 μmol, 12 mg), DMF (2 ml) and DIEA (25 μmol, 4.4 μl) dissolved in a small amount of DMF were added, and the mixture was shaken at room temperature for 3 hours. After removing the reaction solution by suction, DMF (2 ml, 2 times), DCM (2 ml, 2 times), i-PrOH (2 ml, 2 times), DMF (2 ml, 2 times), MeOH (2 ml , Twice) and ether (2 ml, twice) in this order. Thereafter, the mixture was reacted with a mixed solution of phenol (75 mg), 1,2-ethanedithiol (25 μl), thioanisole (50 μl), distilled water (50 μl) and TFA (2 ml) for 3 hours. After removing the reaction solution by suction, DCM (2 ml, 2 times), DMF (2 ml, 2 times), 20% piperidine / DMF (2 ml, 2 times), DMF (2 ml, 2 times), i-PrOH (2 ml, 2 times), DMF (2 ml, 2 times), distilled water (2 ml, 2 times), ether (2 ml, 1 time) were washed in this order and dried under reduced pressure. A substrate peptide consisting of βAla-AA 3 -AA 2 -AA 1 -Lys in which a second fluorescent group is bound to β-alanine at one end and a quenching group consisting of dinitrophenyl (Dnp) is bound to lysine at the other end (Table 1) (No. 1 to No. 4) of diabetic complication test reagent (SEQ ID NO: 1 to 4 in the sequence listing).

Figure 0005170407
Figure 0005170407

<酵素活性の測定>
No1〜No4の糖尿病合併症検査用試薬の各々1 mg に、0.01% Tween 20を含有する20 mM Tris-HCl バッファ(pH 8.0, NaCl 100mM, CaCl250 mM) 190 μl を加え、糖尿病性腎症対象者(第4期)(A群)5名並びに糖尿病性腎症非対象者(第1期)(B群)5名の尿より得た検体液を同量ずつ加え、測定時間ごとにサンプルから10 μlとり、バッファを190 μl加えて96ウェルプレートに移し、蛍光値をPerkin Elmer社製Wallac 1420 ARVO sx プレートリーダーにより測定した(測定時間0.1秒)。検体液を加えてから10分後の蛍光値の変化量(検体液を加える前の蛍光値と検体液を加えてから10分後の蛍光値との差) (励起波長485 nm、蛍光波長535 nm)を、表2に示す。
<Measurement of enzyme activity>
Add 190 μl of 20 mM Tris-HCl buffer (pH 8.0, NaCl 100 mM, CaCl 2 50 mM) containing 0.01% Tween 20 to 1 mg of each of No1 to No4 diabetic complication test reagents. Add the same amount of sample solution obtained from the urine of 5 subjects (4th stage) (Group A) and 5 non-diabetic nephropathy subjects (Phase 1) (Group B), and sample each measurement time. 10 μl was added, 190 μl of buffer was added and transferred to a 96-well plate, and the fluorescence value was measured with a Wallac 1420 ARVO sx plate reader manufactured by Perkin Elmer (measurement time 0.1 second). Change amount of fluorescence value 10 minutes after adding sample solution (difference between fluorescence value before adding sample solution and fluorescence value 10 minutes after adding sample solution) (excitation wavelength 485 nm, fluorescence wavelength 535 nm) is shown in Table 2.

Figure 0005170407
Figure 0005170407

まず、表2に示すA群、B群の分散共分散行列の等質性について解析したところ、等質とはみなされないことがわかった。そこで、マハラノビスの距離をベースとした非線形(二次)判別分析法を用いて解析した。解析結果より得られた判別得点を表3に示す。   First, the homogeneity of the variance-covariance matrix of Group A and Group B shown in Table 2 was analyzed, and it was found that the homogeneity was not considered. Therefore, analysis was performed using a nonlinear (secondary) discriminant analysis based on Mahalanobis distance. Table 3 shows the discrimination scores obtained from the analysis results.

Figure 0005170407
Figure 0005170407

表3に示す判別得点から、表4に示すように正判別率100%を得た。   From the discrimination score shown in Table 3, a positive discrimination rate of 100% was obtained as shown in Table 4.

Figure 0005170407
Figure 0005170407

以上の計測データを解析し2次判別関数を求め、判別式を作成した。
以上説明したように、本実施例の糖尿病合併症検査用試薬を糖尿病患者の尿より得た検体液と接触させ、検体液の酵素活性を測定して得られた測定値を判別分析により解析した結果、正判別率は100%と極めて高いことが確認された。このことは、本実施例の糖尿病合併症検査用試薬を用いることにより、糖尿病性腎症の検体を極めて正確にグループ分けできることを示している。
従って、未知の被験者から採取した尿の検体液の酵素活性を、本実施例の糖尿病合併症検査用試薬を用いて測定し、設定された判別式を適用することにより、未知の被験者の糖尿病性腎症の進行度を判別可能であることが明らかである。
なお、本実施例においては、糖尿病性腎症第1期と第4期の検体について正確に判別できることを示したが、第1期〜第4期の検体数を増やすことにより、同様の方法で糖尿病性腎症の第1期〜第4期の進行度管理を行うこともできる。
The above measurement data was analyzed to obtain a secondary discriminant function, and a discriminant was created.
As described above, the test for diabetic complications of this example was brought into contact with the sample liquid obtained from the urine of a diabetic patient, and the measurement value obtained by measuring the enzyme activity of the sample liquid was analyzed by discriminant analysis. As a result, it was confirmed that the correct discrimination rate was as extremely high as 100%. This indicates that the diabetic nephropathy specimens can be grouped very accurately by using the reagent for testing diabetic complications of this example.
Therefore, by measuring the enzyme activity of the urine sample liquid collected from an unknown subject using the reagent for testing diabetic complications of this example, and applying the set discriminant, the diabetic property of the unknown subject It is clear that the degree of progression of nephropathy can be distinguished.
In this example, it was shown that the samples of the first and fourth stages of diabetic nephropathy can be accurately discriminated, but by increasing the number of specimens in the first to fourth stages, the same method can be used. It is also possible to manage the progress of the first to fourth stages of diabetic nephropathy.

また、本実施例においては、フルオレセインイソチオシアネート(FITC)からなる第2蛍光基が一端に結合し、ジニトロフェニル(Dnp)からなる消光基が他端のリジンに結合した基質ペプチドを有する糖尿病合併症検査用試薬を合成して、これと接触させた検体液の蛍光変化を測定した場合について説明したが、第2蛍光基として(7−メトキシクマリン−4−イル)アセチル(MOAc)等を用いた場合も、同様の結果が得られることを確認した。
また、PEGA resin等の担体が一端に、FITC等の第1蛍光基が他端に結合した基質ペプチドを有する糖尿病合併症検査用試薬を用いた場合も、これと接触させた検体液の蛍光変化を測定し酵素活性を検出することで、糖尿病の合併症の検査や進行度管理に利用できることを確認した。
In this example, a diabetic complication having a substrate peptide in which a second fluorescent group composed of fluorescein isothiocyanate (FITC) is bonded to one end and a quenching group composed of dinitrophenyl (Dnp) is bonded to lysine at the other end. Although the case where the test reagent was synthesized and the fluorescence change of the sample liquid brought into contact with the reagent was measured was described, (7-methoxycoumarin-4-yl) acetyl (MOAc) or the like was used as the second fluorescent group. In some cases, it was confirmed that similar results were obtained.
In addition, when using a reagent for examination of diabetic complications that has a substrate peptide with a carrier such as PEGA resin at one end and a first fluorescent group such as FITC attached to the other end, the fluorescence change of the sample liquid brought into contact with this reagent It was confirmed that it can be used for the examination of the complication of diabetes and the progress management by measuring the enzyme activity.

(実施例2)
実施例1と同様にして、FITCからなる第2蛍光基が一端のβアラニンに結合し、ジニトロフェニル(Dnp)からなる消光基が他端のリジンに結合したβAla-AA-AA-AA-Lysからなる基質ペプチド(表5のNo5〜No8)を有する糖尿病合併症検査用試薬(配列表の配列番号5〜8)を得た。
(Example 2)
In the same manner as in Example 1, βAla-AA 3 -AA 2 -AA in which a second fluorescent group consisting of FITC is bound to β-alanine at one end and a quenching group consisting of dinitrophenyl (Dnp) is bound to lysine at the other end Reagents for testing diabetic complications (SEQ ID NOs: 5 to 8 in the sequence listing) having substrate peptides (No5 to No8 in Table 5) comprising 1- Lys were obtained.

Figure 0005170407
Figure 0005170407

<酵素活性の測定>
No5〜No8の糖尿病合併症検査用試薬の各々1 mg に、0.01% Tween 20を含有する20 mM Tris-HCl バッファ(pH 8.0, NaCl 100mM, CaCl250 mM) 190 μl を加え、糖尿病性腎症対象者(第4期)(A群)5名並びに糖尿病性腎症非対象者(第1期)(B群)5名の血液(血漿)より得た検体液を同量ずつ加え、測定時間ごとにサンプルから10 μlとり、バッファを190 μl加えて96ウェルプレートに移し、蛍光値をPerkin Elmer社製Wallac 1420 ARVO sx プレートリーダーにより測定した(測定時間0.1秒)。検体液を加えてから10分後の蛍光値の変化量(検体液を加える前の蛍光値と検体液を加えてから10分後の蛍光値との差) (励起波長485 nm、蛍光波長535 nm)を、表6に示す。
<Measurement of enzyme activity>
Add 190 μl of 20 mM Tris-HCl buffer (pH 8.0, NaCl 100 mM, CaCl 2 50 mM) containing 0.01% Tween 20 to each 1 mg of No5 to No8 Diabetes Complication Test Reagent. Add the same amount of sample solution obtained from the blood (plasma) of 5 subjects (Phase 4) (Group A) and 5 non-diabetic nephropathy subjects (Phase 1) (Group B), and measure the time. 10 μl was taken from each sample, 190 μl of buffer was added and transferred to a 96-well plate, and the fluorescence value was measured with a Wallac 1420 ARVO sx plate reader manufactured by Perkin Elmer (measurement time 0.1 second). Change amount of fluorescence value 10 minutes after adding sample solution (difference between fluorescence value before adding sample solution and fluorescence value 10 minutes after adding sample solution) (excitation wavelength 485 nm, fluorescence wavelength 535 nm) is shown in Table 6.

Figure 0005170407
Figure 0005170407

表6に示すA群、B群の分散共分散行列について、実施例1と同様に、マハラノビスの距離をベースとした非線形(二次)判別分析法を用いて解析した。解析結果より得られた判別得点を表7に示す。   The variance-covariance matrices of Group A and Group B shown in Table 6 were analyzed using a non-linear (second-order) discriminant analysis method based on Mahalanobis distance, as in Example 1. Table 7 shows the discrimination scores obtained from the analysis results.

Figure 0005170407
Figure 0005170407

表7に示す判別得点から、表8に示すように80%以上の正判別率を得た。   From the discrimination score shown in Table 7, a positive discrimination rate of 80% or more was obtained as shown in Table 8.

Figure 0005170407
Figure 0005170407

以上の計測データを解析し2次判別関数を求め、判別式を作成した。
以上説明したように、本実施例の糖尿病合併症検査用試薬を糖尿病患者の血漿より得た検体液と接触させ、検体液の酵素活性を測定して得られた計測データを解析することにより、正判別率は極めて高いことが確認された。検体数が増加すれば、さらに正判別率が上昇することが期待される。このことは、本実施例の糖尿病合併症検査用試薬を用いることにより、糖尿病性腎症の検体を極めて正確にグループ分けできることを示している。
従って、未知の被験者から採取した血漿の検体液の酵素活性を、本実施例の糖尿病合併症検査用試薬を用いて測定し、設定された判別式を適用することにより、未知の被験者の糖尿病性腎症の進行度を判別可能であることが明らかである。
The above measurement data was analyzed to obtain a secondary discriminant function, and a discriminant was created.
As described above, the reagent for testing diabetic complications of this example is brought into contact with the sample liquid obtained from the plasma of the diabetic patient, and by analyzing the measurement data obtained by measuring the enzyme activity of the sample liquid, It was confirmed that the correct discrimination rate was extremely high. If the number of specimens increases, the positive discrimination rate is expected to further increase. This indicates that the diabetic nephropathy specimens can be grouped very accurately by using the reagent for testing diabetic complications of this example.
Therefore, the enzyme activity of the plasma sample fluid collected from an unknown subject is measured using the reagent for testing diabetic complications of this example, and the diabetic property of the unknown subject is determined by applying the set discriminant. It is clear that the degree of progression of nephropathy can be distinguished.

(実施例3)
実施例1と同様にして、FITCからなる第2蛍光基が一端のβアラニンに結合し、ジニトロフェニル(Dnp)からなる消光基が他端のリジンに結合したβAla-AA-AA-AA-Lysからなる基質ペプチド(表9のNo9〜No12)を有する糖尿病合併症検査用試薬(配列表の配列番号9〜12)を得た。
(Example 3)
In the same manner as in Example 1, βAla-AA 3 -AA 2 -AA in which a second fluorescent group consisting of FITC is bound to β-alanine at one end and a quenching group consisting of dinitrophenyl (Dnp) is bound to lysine at the other end Reagents for testing diabetic complications (SEQ ID NOs: 9 to 12 in the sequence listing) having substrate peptides (No9 to No12 in Table 9) comprising 1- Lys were obtained.

Figure 0005170407
Figure 0005170407

<酵素活性の測定>
No9〜No12の糖尿病合併症検査用試薬の各々1 mg を用い、実施例2と同様にして、血液(血漿)より得た検体液を加えたときの蛍光値の変化量を測定した。その結果を表10に示す。
<Measurement of enzyme activity>
Using 1 mg each of the No9 to No12 diabetic complication test reagents, in the same manner as in Example 2, the amount of change in fluorescence value when a sample solution obtained from blood (plasma) was added was measured. The results are shown in Table 10.

Figure 0005170407
Figure 0005170407

表10に示すA群、B群の分散共分散行列について、実施例1と同様に、マハラノビスの距離をベースとした非線形(二次)判別分析法を用いて解析した。解析結果より得られた判別得点を表11に示す。   The variance-covariance matrices of Group A and Group B shown in Table 10 were analyzed using a non-linear (second-order) discriminant analysis method based on Mahalanobis distance, as in Example 1. Table 11 shows the discrimination scores obtained from the analysis results.

Figure 0005170407
Figure 0005170407

表11に示す判別得点から、表12に示すように正判別率100%を得た。この結果、本実施例の糖尿病合併症検査用試薬を用いることにより、糖尿病性腎症の検体を極めて正確にグループ分けできることが確認された。   From the discrimination score shown in Table 11, a positive discrimination rate of 100% was obtained as shown in Table 12. As a result, it was confirmed that the diabetic nephropathy specimens could be grouped very accurately by using the diabetic complication test reagent of this example.

Figure 0005170407
Figure 0005170407

(実施例4)
実施例1と同様にして、FITCからなる第2蛍光基が一端のβアラニンに結合し、ジニトロフェニル(Dnp)からなる消光基が他端のリジンに結合したβAla-AA-AA-AA-Lysからなる基質ペプチド(表13のNo9〜No11,No13)を有する糖尿病合併症検査用試薬(配列表の配列番号9〜11、配列番号13)を得た。
Example 4
In the same manner as in Example 1, βAla-AA 3 -AA 2 -AA in which a second fluorescent group consisting of FITC is bound to β-alanine at one end and a quenching group consisting of dinitrophenyl (Dnp) is bound to lysine at the other end Reagents for testing diabetic complications (SEQ ID NO: 9 to 11, SEQ ID NO: 13 in the sequence listing) having substrate peptides (No9 to No11, No13 in Table 13) comprising 1- Lys were obtained.

Figure 0005170407
Figure 0005170407

<酵素活性の測定>
No9〜No11,No13の糖尿病合併症検査用試薬の各々1 mg を用い、実施例2と同様にして、血液(血漿)より得た検体液を加えたときの蛍光値の変化量を測定した。その結果を表14に示す。
<Measurement of enzyme activity>
Using 1 mg of each of the reagents for testing for diabetic complications No. 9 to No. 11 and No. 13, in the same manner as in Example 2, the amount of change in the fluorescence value when the sample liquid obtained from blood (plasma) was added was measured. The results are shown in Table 14.

Figure 0005170407
Figure 0005170407

表14に示すA群、B群の分散共分散行列について、実施例1と同様に、マハラノビスの距離をベースとした非線形(二次)判別分析法を用いて解析した。解析結果より得られた判別得点を表15に示す。   The variance-covariance matrices of Group A and Group B shown in Table 14 were analyzed using a non-linear (secondary) discriminant analysis method based on Mahalanobis distance, as in Example 1. Table 15 shows the discrimination scores obtained from the analysis results.

Figure 0005170407
Figure 0005170407

表15に示す判別得点から、表16に示すように正判別率100%を得た。この結果、本実施例の糖尿病合併症検査用試薬を用いることにより、糖尿病性腎症の検体を極めて正確にグループ分けできることが確認された。   From the discrimination score shown in Table 15, a positive discrimination rate of 100% was obtained as shown in Table 16. As a result, it was confirmed that the diabetic nephropathy specimens could be grouped very accurately by using the diabetic complication test reagent of this example.

Figure 0005170407
Figure 0005170407

(実施例5)
実施例1と同様にして、FITCからなる第2蛍光基が一端のβアラニンに結合し、ジニトロフェニル(Dnp)からなる消光基が他端のリジンに結合したβAla-AA-AA-AA-Lysからなる基質ペプチド(表17のNo8〜No13)を有する糖尿病合併症検査用試薬(配列表の配列番号8〜13)を得た。
(Example 5)
In the same manner as in Example 1, βAla-AA 3 -AA 2 -AA in which a second fluorescent group consisting of FITC is bound to β-alanine at one end and a quenching group consisting of dinitrophenyl (Dnp) is bound to lysine at the other end Reagents for testing diabetic complications (SEQ ID NOs: 8 to 13 in the sequence listing) having substrate peptides (No8 to No13 in Table 17) consisting of 1- Lys were obtained.

Figure 0005170407
Figure 0005170407

<酵素活性の測定>
No8〜No13の糖尿病合併症検査用試薬の各々1 mg を用い、実施例2と同様にして、血液(血漿)より得た検体液を加えたときの蛍光値の変化量を測定した。その結果を表18に示す。
<Measurement of enzyme activity>
Using 1 mg of each of the No8 to No13 diabetic complication test reagents, the amount of change in fluorescence value when a sample solution obtained from blood (plasma) was added was measured in the same manner as in Example 2. The results are shown in Table 18.

Figure 0005170407
Figure 0005170407

表18に示すA群、B群の分散共分散行列について、マハラノビスの距離をベースとし、両群の分散共分散行列が等質であると仮定して、(2次項を除外して)線形判別関数を導いた。解析結果より得られた判別得点を表19に示す。   For the variance-covariance matrices of Group A and Group B shown in Table 18, assuming that the variance-covariance matrices of both groups are homogeneous based on the Mahalanobis distance (excluding the quadratic terms), linear discrimination Led function. Table 19 shows the discrimination scores obtained from the analysis results.

Figure 0005170407
Figure 0005170407

表19に示す判別得点から、表20に示すように正判別率100%を得た。一般に、検体数が増加すれば両群の類似性が上昇するため、線形解析が可能となることが期待される。本実施例の糖尿病合併症検査用試薬を用い、線形解析を行うことにより、糖尿病性腎症の検体を極めて正確にグループ分けできることが確認された。   From the discrimination score shown in Table 19, a positive discrimination rate of 100% was obtained as shown in Table 20. In general, as the number of specimens increases, the similarity between both groups increases, and it is expected that linear analysis will be possible. It was confirmed that samples of diabetic nephropathy can be grouped very accurately by performing linear analysis using the reagent for testing diabetic complications of this example.

Figure 0005170407
Figure 0005170407

(実施例6)
実施例1と同様にして、FITCからなる第2蛍光基が一端のβアラニンに結合し、ジニトロフェニル(Dnp)からなる消光基が他端のリジンに結合したβAla-AA-AA-AA-Lysからなる基質ペプチド(表21のNo17,19,21,23)を有する糖尿病合併症検査用試薬(配列表の配列番号17,19,21,23)を得た。
(Example 6)
In the same manner as in Example 1, βAla-AA 3 -AA 2 -AA in which a second fluorescent group consisting of FITC is bound to β-alanine at one end and a quenching group consisting of dinitrophenyl (Dnp) is bound to lysine at the other end A reagent for testing diabetic complications (SEQ ID NO: 17, 19, 21, 23 in the sequence listing) having a substrate peptide consisting of 1- Lys (No. 17, 19, 21, 23 in Table 21) was obtained.

Figure 0005170407
Figure 0005170407

<酵素活性の測定>
No17,19,21,23の糖尿病合併症検査用試薬の各々1 mg を用い、実施例2と同様にして、血液(血漿)より得た検体液を加えたときの蛍光値の変化量を測定した。その結果を表22に示す。
<Measurement of enzyme activity>
Measure the amount of change in fluorescence when adding sample liquid obtained from blood (plasma) in the same manner as in Example 2 using 1 mg each of the reagents for testing diabetic complications No17, 19, 21, 23 did. The results are shown in Table 22.

Figure 0005170407
Figure 0005170407

表22に示すA群、B群の分散共分散行列について、実施例1と同様に、マハラノビスの距離をベースとした非線形(二次)判別分析法を用いて解析した。解析結果より得られた判別得点を表23に示す。   The variance-covariance matrices of Group A and Group B shown in Table 22 were analyzed using a non-linear (second-order) discriminant analysis method based on Mahalanobis distance, as in Example 1. Table 23 shows the discrimination scores obtained from the analysis results.

Figure 0005170407
Figure 0005170407

表23に示す判別得点から、表24に示すように正判別率100%を得た。この結果、本実施例の糖尿病合併症検査用試薬を用いることにより、糖尿病性腎症の検体を極めて正確にグループ分けできることが確認された。   From the discrimination score shown in Table 23, a positive discrimination rate of 100% was obtained as shown in Table 24. As a result, it was confirmed that the diabetic nephropathy specimens could be grouped very accurately by using the diabetic complication test reagent of this example.

Figure 0005170407
Figure 0005170407

(実施例7)
実施例1と同様にして、FITCからなる第2蛍光基が一端のβアラニンに結合し、ジニトロフェニル(Dnp)からなる消光基が他端のリジンに結合したβAla-AA-AA-AA-Lysからなる基質ペプチド(表25のNo6,8,13,14)を有する糖尿病合併症検査用試薬(配列表の配列番号6,8,13,14)を得た。
(Example 7)
In the same manner as in Example 1, βAla-AA 3 -AA 2 -AA in which a second fluorescent group consisting of FITC is bound to β-alanine at one end and a quenching group consisting of dinitrophenyl (Dnp) is bound to lysine at the other end A reagent for testing diabetic complications (SEQ ID NO: 6, 8, 13, 14 in the sequence listing) having a substrate peptide consisting of 1- Lys (No. 6, 8, 13, 14 in Table 25) was obtained.

Figure 0005170407
Figure 0005170407

<酵素活性の測定>
No6,8,13,14の糖尿病合併症検査用試薬の各々1 mg を用い、実施例2と同様にして、血液(血漿)より得た検体液を加えたときの蛍光値の変化量を測定した。その結果を表26に示す。
<Measurement of enzyme activity>
Measure the amount of change in fluorescence when adding a sample solution obtained from blood (plasma) in the same manner as in Example 2, using 1 mg each of No. did. The results are shown in Table 26.

Figure 0005170407
Figure 0005170407

表26に示すA群、B群の分散共分散行列について、実施例1と同様に、マハラノビスの距離をベースとした非線形(二次)判別分析法を用いて解析した。解析結果より得られた判別得点を表27に示す。   The variance-covariance matrices of Group A and Group B shown in Table 26 were analyzed using a non-linear (second-order) discriminant analysis method based on Mahalanobis distance, as in Example 1. Table 27 shows the discrimination scores obtained from the analysis results.

Figure 0005170407
Figure 0005170407

表27に示す判別得点から、表28に示すように正判別率100%を得た。この結果、本実施例の糖尿病合併症検査用試薬を用いることにより、糖尿病性腎症の検体を極めて正確にグループ分けできることが確認された。   From the discrimination score shown in Table 27, a positive discrimination rate of 100% was obtained as shown in Table 28. As a result, it was confirmed that the diabetic nephropathy specimens could be grouped very accurately by using the diabetic complication test reagent of this example.

Figure 0005170407
Figure 0005170407

(実施例8)
実施例1と同様にして、FITCからなる第2蛍光基が一端のβアラニンに結合し、ジニトロフェニル(Dnp)からなる消光基が他端のリジンに結合したβAla-AA-AA-AA-Lysからなる基質ペプチド(表29のNo15,16,18,22)を有する糖尿病合併症検査用試薬(配列表の配列番号15,16,18,22)を得た。
(Example 8)
In the same manner as in Example 1, βAla-AA 3 -AA 2 -AA in which a second fluorescent group consisting of FITC is bound to β-alanine at one end and a quenching group consisting of dinitrophenyl (Dnp) is bound to lysine at the other end A reagent for testing diabetic complications (SEQ ID NOs: 15, 16, 18, and 22 in the sequence listing) having a substrate peptide consisting of 1- Lys (No. 15, 16, 18, and 22 in Table 29) was obtained.

Figure 0005170407
Figure 0005170407

<酵素活性の測定>
No15,16,18,22の糖尿病合併症検査用試薬の各々1 mg を用い、実施例2と同様にして、血液(血漿)より得た検体液を加えたときの蛍光値の変化量を測定した。その結果を表30に示す。
<Measurement of enzyme activity>
Measure the amount of change in fluorescence when adding a sample solution obtained from blood (plasma) in the same manner as in Example 2 using 1 mg each of No15, 16, 18, and 22 diabetes complication test reagents did. The results are shown in Table 30.

Figure 0005170407
Figure 0005170407

表30に示すA群、B群の分散共分散行列について、実施例1と同様に、マハラノビスの距離をベースとした非線形(二次)判別分析法を用いて解析した。解析結果より得られた判別得点を表31に示す。   The variance-covariance matrices of Group A and Group B shown in Table 30 were analyzed using a non-linear (secondary) discriminant analysis method based on Mahalanobis distance, as in Example 1. Table 31 shows the discrimination scores obtained from the analysis results.

Figure 0005170407
Figure 0005170407

表31に示す判別得点から、表32に示すように正判別率100%を得た。この結果、本実施例の糖尿病合併症検査用試薬を用いることにより、糖尿病性腎症の検体を極めて正確にグループ分けできることが確認された。   From the discrimination score shown in Table 31, a positive discrimination rate of 100% was obtained as shown in Table 32. As a result, it was confirmed that the diabetic nephropathy specimens could be grouped very accurately by using the diabetic complication test reagent of this example.

Figure 0005170407
Figure 0005170407

(実施例9)
実施例1と同様にして、FITCからなる第2蛍光基が一端のβアラニンに結合し、ジニトロフェニル(Dnp)からなる消光基が他端のリジンに結合したβAla-AA-AA-AA-Lysからなる基質ペプチド(表33のNo6,7,13,20)を有する糖尿病合併症検査用試薬(配列表の配列番号6,7,13,20)を得た。
Example 9
In the same manner as in Example 1, βAla-AA 3 -AA 2 -AA in which a second fluorescent group consisting of FITC is bound to β-alanine at one end and a quenching group consisting of dinitrophenyl (Dnp) is bound to lysine at the other end A reagent for testing diabetic complications (SEQ ID NO: 6, 7, 13, 20 in the sequence listing) having a substrate peptide consisting of 1- Lys (No. 6, 7, 13, 20 in Table 33) was obtained.

Figure 0005170407
Figure 0005170407

<酵素活性の測定>
No6,7,13,20の糖尿病合併症検査用試薬の各々1 mg を用い、実施例2と同様にして、血液(血漿)より得た検体液を加えたときの蛍光値の変化量を測定した。その結果を表34に示す。
<Measurement of enzyme activity>
Measure the amount of change in fluorescence when adding a sample solution obtained from blood (plasma) in the same manner as in Example 2 using 1 mg each of the reagents for testing diabetic complications No. 6, 7, 13, and 20. did. The results are shown in Table 34.

Figure 0005170407
Figure 0005170407

表34に示すA群、B群の分散共分散行列について、実施例1と同様に、マハラノビスの距離をベースとした非線形(二次)判別分析法を用いて解析した。解析結果より得られた判別得点を表35に示す。   The variance-covariance matrix of Group A and Group B shown in Table 34 was analyzed using a non-linear (secondary) discriminant analysis method based on Mahalanobis distance, as in Example 1. Table 35 shows the discrimination scores obtained from the analysis results.

Figure 0005170407
Figure 0005170407

表35に示す判別得点から、表36に示すように正判別率100%を得た。この結果、本実施例の糖尿病合併症検査用試薬を用いることにより、糖尿病性腎症の検体を極めて正確にグループ分けできることが確認された。   From the discrimination score shown in Table 35, a positive discrimination rate of 100% was obtained as shown in Table 36. As a result, it was confirmed that the diabetic nephropathy specimens could be grouped very accurately by using the diabetic complication test reagent of this example.

Figure 0005170407
Figure 0005170407

(実施例10)
実施例1と同様にして、FITCからなる第2蛍光基が一端のβアラニンに結合し、ジニトロフェニル(Dnp)からなる消光基が他端のリジンに結合したβAla-AA-AA-AA-Lysからなる基質ペプチド(表37のNo24,25,1,14)を有する糖尿病合併症検査用試薬(配列表の配列番号24,25,1,14)を得た。
(Example 10)
In the same manner as in Example 1, βAla-AA 3 -AA 2 -AA in which a second fluorescent group consisting of FITC is bound to β-alanine at one end and a quenching group consisting of dinitrophenyl (Dnp) is bound to lysine at the other end A reagent for testing diabetic complications (SEQ ID NO: 24, 25, 1, 14 in the sequence listing) having a substrate peptide consisting of 1- Lys (No 24, 25, 1 , 14 in Table 37) was obtained.

Figure 0005170407
Figure 0005170407

<酵素活性の測定>
No24,25,1,14の糖尿病合併症検査用試薬の各々1 mg を用い、実施例1と同様にして、尿より得た検体液を加えたときの蛍光値の変化量を測定した。その結果を表38に示す。
<Measurement of enzyme activity>
Using 1 mg each of the reagents for testing for diabetic complications No. 24, 25, 1, and 14 in the same manner as in Example 1, the amount of change in the fluorescence value when the sample solution obtained from urine was added was measured. The results are shown in Table 38.

Figure 0005170407
Figure 0005170407

表38に示すA群、B群の分散共分散行列について、実施例1と同様に、マハラノビスの距離をベースとした非線形(二次)判別分析法を用いて解析した。解析結果より得られた判別得点を表39に示す。   The variance-covariance matrices of Group A and Group B shown in Table 38 were analyzed using a non-linear (second order) discriminant analysis method based on Mahalanobis distance, as in Example 1. Table 39 shows the discrimination scores obtained from the analysis results.

Figure 0005170407
Figure 0005170407

表39に示す判別得点から、表40に示すように正判別率100%を得た。この結果、本実施例の糖尿病合併症検査用試薬を用いることにより、糖尿病性腎症の検体を極めて正確にグループ分けできることが確認された。   From the discrimination score shown in Table 39, a positive discrimination rate of 100% was obtained as shown in Table 40. As a result, it was confirmed that the diabetic nephropathy specimens could be grouped very accurately by using the diabetic complication test reagent of this example.

Figure 0005170407
Figure 0005170407

(実施例11)
実施例1と同様にして、FITCからなる第2蛍光基が一端のβアラニンに結合し、ジニトロフェニル(Dnp)からなる消光基が他端のリジンに結合したβAla-AA-AA-AA-Lysからなる基質ペプチド(表41のNo4,26,27,28)を有する糖尿病合併症検査用試薬(配列表の配列番号4,26,27,28)を得た。
(Example 11)
In the same manner as in Example 1, βAla-AA 3 -AA 2 -AA in which a second fluorescent group consisting of FITC is bound to β-alanine at one end and a quenching group consisting of dinitrophenyl (Dnp) is bound to lysine at the other end A reagent for testing diabetic complications (SEQ ID NO: 4, 26, 27, 28 in the sequence listing) having a substrate peptide consisting of 1- Lys (No. 4, 26, 27, 28 in Table 41) was obtained.

Figure 0005170407
Figure 0005170407

<酵素活性の測定>
No4,26,27,28の糖尿病合併症検査用試薬の各々1 mg を用い、実施例1と同様にして、尿より得た検体液を加えたときの蛍光値の変化量を測定した。その結果を表42に示す。
<Measurement of enzyme activity>
Using 1 mg of each of No. 4, 26, 27, and 28 for diabetic complication testing reagent, the amount of change in fluorescence value when a sample solution obtained from urine was added was measured in the same manner as in Example 1. The results are shown in Table 42.

Figure 0005170407
Figure 0005170407

表42に示すA群、B群の分散共分散行列について、実施例1と同様に、マハラノビスの距離をベースとした非線形(二次)判別分析法を用いて解析した。解析結果より得られた判別得点を表43に示す。   The variance-covariance matrices of Group A and Group B shown in Table 42 were analyzed using a non-linear (second order) discriminant analysis method based on Mahalanobis distance, as in Example 1. Table 43 shows the discrimination scores obtained from the analysis results.

Figure 0005170407
Figure 0005170407

表43に示す判別得点から、表44に示すように正判別率100%を得た。この結果、本実施例の糖尿病合併症検査用試薬を用いることにより、糖尿病性腎症の検体を極めて正確にグループ分けできることが確認された。   From the discrimination score shown in Table 43, a positive discrimination rate of 100% was obtained as shown in Table 44. As a result, it was confirmed that the diabetic nephropathy specimens could be grouped very accurately by using the diabetic complication test reagent of this example.

Figure 0005170407
Figure 0005170407

(実施例12)
実施例1と同様にして、FITCからなる第2蛍光基が一端のβアラニンに結合し、ジニトロフェニル(Dnp)からなる消光基が他端のリジンに結合したβAla-AA-AA-AA-Lysからなる基質ペプチド(表45のNo15,26,27,28)を有する糖尿病合併症検査用試薬(配列表の配列番号15,26,27,28)を得た。
(Example 12)
In the same manner as in Example 1, βAla-AA 3 -AA 2 -AA in which a second fluorescent group consisting of FITC is bound to β-alanine at one end and a quenching group consisting of dinitrophenyl (Dnp) is bound to lysine at the other end A reagent for testing diabetic complications (SEQ ID NO: 15, 26, 27, 28 in the sequence listing) having a substrate peptide consisting of 1- Lys (No 15, 26, 27, 28 in Table 45) was obtained.

Figure 0005170407
Figure 0005170407

<酵素活性の測定>
No15,26,27,28の糖尿病合併症検査用試薬の各々1 mg を用い、実施例1と同様にして、尿より得た検体液を加えたときの蛍光値の変化量を測定した。その結果を表46に示す。
<Measurement of enzyme activity>
Using 1 mg of each of No15, 26, 27, and 28, a reagent for testing diabetic complications, the amount of change in fluorescence value when a sample solution obtained from urine was added was measured in the same manner as in Example 1. The results are shown in Table 46.

Figure 0005170407
Figure 0005170407

表46に示すA群、B群の分散共分散行列について、実施例1と同様に、マハラノビスの距離をベースとした非線形(二次)判別分析法を用いて解析した。解析結果より得られた判別得点を表47に示す。   The variance-covariance matrices of Group A and Group B shown in Table 46 were analyzed using a non-linear (second order) discriminant analysis method based on Mahalanobis distance, as in Example 1. Table 47 shows the discrimination scores obtained from the analysis results.

Figure 0005170407
Figure 0005170407

表47に示す判別得点から、表48に示すように正判別率100%を得た。この結果、本実施例の糖尿病合併症検査用試薬を用いることにより、糖尿病性腎症の検体を極めて正確にグループ分けできることが確認された。   From the discrimination score shown in Table 47, a positive discrimination rate of 100% was obtained as shown in Table 48. As a result, it was confirmed that the diabetic nephropathy specimens could be grouped very accurately by using the diabetic complication test reagent of this example.

Figure 0005170407
Figure 0005170407

(実施例13)
実施例1と同様にして、FITCからなる第2蛍光基が一端のβアラニンに結合し、ジニトロフェニル(Dnp)からなる消光基が他端のリジンに結合したβAla-AA-AA-AA-Lysからなる基質ペプチド(表49のNo29,30,31,32)を有する糖尿病合併症検査用試薬(配列表の配列番号29,30,31,32)を得た。
(Example 13)
In the same manner as in Example 1, βAla-AA 3 -AA 2 -AA in which a second fluorescent group consisting of FITC is bound to β-alanine at one end and a quenching group consisting of dinitrophenyl (Dnp) is bound to lysine at the other end A reagent for testing diabetic complications (SEQ ID NO: 29, 30, 31, 32 in the sequence listing) having a substrate peptide consisting of 1- Lys (No. 29, 30, 31, 32 in Table 49) was obtained.

Figure 0005170407
Figure 0005170407

<酵素活性の測定>
No29,30,31,32の糖尿病合併症検査用試薬の各々1 mg を用い、実施例1と同様にして、尿より得た検体液を加えたときの蛍光値の変化量を測定した。その結果を表50に示す。
<Measurement of enzyme activity>
Using 1 mg of each of the reagents for testing for diabetic complications No. 29, 30, 31, and 32, the amount of change in fluorescence value when a sample solution obtained from urine was added was measured in the same manner as in Example 1. The results are shown in Table 50.

Figure 0005170407
Figure 0005170407

表50に示すA群、B群の分散共分散行列について、実施例1と同様に、マハラノビスの距離をベースとした非線形(二次)判別分析法を用いて解析した。解析結果より得られた判別得点を表51に示す。   The variance-covariance matrices of Group A and Group B shown in Table 50 were analyzed using a non-linear (second-order) discriminant analysis method based on Mahalanobis distance, as in Example 1. Table 51 shows the discrimination scores obtained from the analysis results.

Figure 0005170407
Figure 0005170407

表51に示す判別得点から、表52に示すように正判別率100%を得た。この結果、本実施例の糖尿病合併症検査用試薬を用いることにより、糖尿病性腎症の検体を極めて正確にグループ分けできることが確認された。   From the discrimination score shown in Table 51, a positive discrimination rate of 100% was obtained as shown in Table 52. As a result, it was confirmed that the diabetic nephropathy specimens could be grouped very accurately by using the diabetic complication test reagent of this example.

Figure 0005170407
Figure 0005170407

(実施例14)
実施例1と同様にして、FITCからなる第2蛍光基が一端のβアラニンに結合し、ジニトロフェニル(Dnp)からなる消光基が他端のリジンに結合したβAla-AA-AA-AA-Lysからなる基質ペプチド(表53のNo19,30,31,32)を有する糖尿病合併症検査用試薬(配列表の配列番号19,30,31,32)を得た。
(Example 14)
In the same manner as in Example 1, βAla-AA 3 -AA 2 -AA in which a second fluorescent group consisting of FITC is bound to β-alanine at one end and a quenching group consisting of dinitrophenyl (Dnp) is bound to lysine at the other end A reagent for testing diabetic complications (SEQ ID NO: 19, 30, 31, 32 in the sequence listing) having a substrate peptide consisting of 1- Lys (No 19, 30, 31, 32 in Table 53) was obtained.

Figure 0005170407
Figure 0005170407

<酵素活性の測定>
No19,30,31,32の糖尿病合併症検査用試薬の各々1 mg を用い、実施例1と同様にして、尿より得た検体液を加えたときの蛍光値の変化量を測定した。その結果を表54に示す。
<Measurement of enzyme activity>
Using 1 mg each of No19, 30, 31, and 32 reagents for testing diabetic complications, the amount of change in fluorescence value when a sample liquid obtained from urine was added was measured in the same manner as in Example 1. The results are shown in Table 54.

Figure 0005170407
Figure 0005170407

表54に示すA群、B群の分散共分散行列について、実施例1と同様に、マハラノビスの距離をベースとした非線形(二次)判別分析法を用いて解析した。解析結果より得られた判別得点を表55に示す。   The variance-covariance matrices of Group A and Group B shown in Table 54 were analyzed using a non-linear (second order) discriminant analysis method based on Mahalanobis distance, as in Example 1. Table 55 shows the discrimination scores obtained from the analysis results.

Figure 0005170407
Figure 0005170407

表55に示す判別得点から、表56に示すように正判別率100%を得た。この結果、本実施例の糖尿病合併症検査用試薬を用いることにより、糖尿病性腎症の検体を極めて正確にグループ分けできることが確認された。   From the discrimination score shown in Table 55, a positive discrimination rate of 100% was obtained as shown in Table 56. As a result, it was confirmed that the diabetic nephropathy specimens could be grouped very accurately by using the diabetic complication test reagent of this example.

Figure 0005170407
Figure 0005170407

本発明は、糖尿病の合併症、特に糖尿病性腎症の検査や進行度の管理に有効な糖尿病合併症検査用試薬に関し、被験者の尿や血液等の体液を接触させて活性測定を行うという簡単な操作で、糖尿病患者の体液に含まれるマーカーの特定や追跡をしなくても、糖尿病性腎症を発症しているか否か、発症している場合に進行度合いは第1期〜第4期のいずれなのかを判別することができるとともに、第1期〜第4期の治療の有効性の検討や人工透析をいつ頃導入することになるか等の病状の進行予測を精密化でき、医師による糖尿病診断の支援に極めて有効な糖尿病合併症検査用試薬を提供できる。   The present invention relates to a reagent for testing diabetic complications, in particular diabetic nephropathy, and a diagnostic test for diabetic complications, which is effective for measuring activity by contacting a body fluid such as urine or blood of a subject. With the simple operation, without identifying or following the markers contained in the body fluid of diabetic patients, whether or not diabetic nephropathy has developed, and if so, the degree of progression is from 1st to 4th And can refine the prediction of the progression of the disease state, such as the examination of the effectiveness of the first to fourth treatments and when to introduce artificial dialysis. It is possible to provide a reagent for testing for diabetic complications that is extremely effective in supporting diabetes diagnosis by the use of the above.

実施の形態1における糖尿病合併症検査用試薬の酵素活性検出原理を示す模式図Schematic diagram showing the principle of enzyme activity detection of the reagent for testing for diabetic complications in the first embodiment 実施の形態2における糖尿病合併症検査用試薬の酵素活性検出原理を示す模式図Schematic diagram showing the principle of detecting enzyme activity of a reagent for testing for diabetic complications in Embodiment 2

符号の説明Explanation of symbols

1 糖尿病合併症検査用試薬
2 担体
3 基質ペプチド
4,6 第1蛍光基
5 酵素
10 糖尿病合併症検査用試薬
11 基質ペプチド
12 消光基
13,15 第2蛍光基
14 酵素
DESCRIPTION OF SYMBOLS 1 Reagent for diabetic complication test 2 Carrier 3 Substrate peptide 4,6 First fluorescent group 5 Enzyme 10 Diabetes complication test reagent 11 Substrate peptide 12 Quenching group 13,15 Second fluorescent group 14 Enzyme

Claims (3)

3個のアミノ酸が結合した基質ペプチドが4種類以上組み合わせられており、前記基質ペプチドの組み合わせの内4種の組み合わせが、(a)Leu-Val-Tyr, His-Glu-Lys, Glu-Lys-Lys, Thr-Arg-Ala, (b)Leu-Gly-Arg, Gly-Arg-Ile, Gly-Arg-Thr, Gly-Arg-Gly, (c)Asn-Pro-Arg, Asp-Gly-Arg, Arg-Arg-Gln, Pro-Leu-Gly又はAla-Lys-Ser, (d) Gln-Arg-Arg, His-Leu-Lys, Glu-Lys-Gly, Ala-Arg-Ser, (e) Val-Leu-Lys, Gly-Arg-Ile, Ala-Lys-Ser, Gly-Arg-Gly, (f) Val-Val-Arg, Val-Pro-Arg, Thr-Arg-Val, Asn-Lys-Tyr, (g) Gly-Arg-Ile, Gly-Arg-Thr, Phe-Lys-Ile, Ala-Lys-Ser, (h) Ala-Pro-Phe, Leu-Leu-Glu, Leu-Val-Tyr, Val-Leu-Lys, (i) Thr-Arg-Ala, Pro-Val-Arg, Gln-Arg-Ile, Leu-Met-Lys, (j) Val-Val-Arg, Pro-Val-Arg, Gln-Arg-Ile, Leu-Met-Lys, (k) Ser-Pro-Arg, Lys-Arg-Lys, Lys-Arg-Asp, Ser-Arg-Leu, (l) His-Leu-Lys, Lys-Arg-Lys, Lys-Arg-Asp, Ser-Arg-Leuのいずれかであることを特徴とする糖尿病合併症検査試薬。 Four or more kinds of substrate peptides to which three amino acids are bonded are combined, and four of the above-mentioned combinations of substrate peptides are (a) Leu-Val-Tyr, His-Glu-Lys, Glu-Lys- Lys, Thr-Arg-Ala, (b) Leu-Gly-Arg, Gly-Arg-Ile, Gly-Arg-Thr, Gly-Arg-Gly, (c) Asn-Pro-Arg, Asp-Gly-Arg, Arg-Arg-Gln, Pro-Leu-Gly or Ala-Lys-Ser, (d) Gln-Arg-Arg, His-Leu-Lys, Glu-Lys-Gly, Ala-Arg-Ser, (e) Val- Leu-Lys, Gly-Arg-Ile, Ala-Lys-Ser, Gly-Arg-Gly, (f) Val-Val-Arg, Val-Pro-Arg, Thr-Arg-Val, Asn-Lys-Tyr, ( g) Gly-Arg-Ile, Gly-Arg-Thr, Phe-Lys-Ile, Ala-Lys-Ser, (h) Ala-Pro-Phe, Leu-Leu-Glu, Leu-Val-Tyr, Val-Leu -Lys, (i) Thr-Arg-Ala, Pro-Val-Arg, Gln-Arg-Ile, Leu-Met-Lys, (j) Val-Val-Arg, Pro-Val-Arg, Gln-Arg-Ile , Leu-Met-Lys, (k) Ser-Pro-Arg, Lys-Arg-Lys, Lys-Arg-Asp, Ser-Arg-Leu, (l) His-Leu-Lys, Lys-Arg-Lys, Lys -A diagnostic reagent for diabetic complications characterized by being either Arg-Asp or Ser-Arg-Leu . 前記基質ペプチドの一方の端末に結合した第1蛍光基を備えていることを特徴とする請求項1に記載の糖尿病合併症検査試薬。 The diagnostic reagent for diabetes complication according to claim 1 , further comprising a first fluorescent group bonded to one terminal of the substrate peptide. 前記基質ペプチドの一方の末端に結合した第2蛍光基と、前記基質ペプチドの他方の末端に結合した消光基と、を備えていることを特徴とする請求項1に記載の糖尿病合併症検査用試薬。 The diabetic complication test according to claim 1 , further comprising: a second fluorescent group bonded to one end of the substrate peptide; and a quenching group bonded to the other end of the substrate peptide. reagent.
JP2008090821A 2007-03-30 2008-03-31 Diabetes complication test reagent Expired - Fee Related JP5170407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090821A JP5170407B2 (en) 2007-03-30 2008-03-31 Diabetes complication test reagent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007094835 2007-03-30
JP2007094835 2007-03-30
JP2008090821A JP5170407B2 (en) 2007-03-30 2008-03-31 Diabetes complication test reagent

Publications (2)

Publication Number Publication Date
JP2008271963A JP2008271963A (en) 2008-11-13
JP5170407B2 true JP5170407B2 (en) 2013-03-27

Family

ID=40050733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090821A Expired - Fee Related JP5170407B2 (en) 2007-03-30 2008-03-31 Diabetes complication test reagent

Country Status (1)

Country Link
JP (1) JP5170407B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107312759A (en) * 2012-09-19 2017-11-03 珍白斯凯尔有限公司 Cell-penetrating peptides, the conjugate comprising the peptide and the composition comprising the conjugate
US20140273009A1 (en) * 2013-03-14 2014-09-18 Palo Alto Research Center Incorporated Compositions and methods for performing assays

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004357642A (en) * 2003-06-09 2004-12-24 Toyobo Co Ltd Method for comprehensive analysis of protease activity using surface plasmon resonance
WO2005071056A1 (en) * 2004-01-23 2005-08-04 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Biochip and method for inspecting functionality of sample solution using it

Also Published As

Publication number Publication date
JP2008271963A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
US20220163536A1 (en) Identifying peptides at the single molecule level
US20240302380A1 (en) Single molecule peptide sequencing
CA2203758C (en) Compositions for the detection of proteases in biological samples and methods of use thereof
JP4912362B2 (en) Peptide-immobilized substrate and target protein measurement method using the same
US11435358B2 (en) Single molecule peptide sequencing
JP4713835B2 (en) Method for measuring enzyme activity
Byzia et al. Activity profiling of aminopeptidases in cell lysates using a fluorogenic substrate library
JP5337960B2 (en) Method for measuring histone deacetylase activity
JP5170407B2 (en) Diabetes complication test reagent
WO2020247952A2 (en) Systems comprising substrates and methods of using the same for detection of pancreatic cancers
US9809837B2 (en) Method for evaluating suitability of duodenal fluid sample as sample for detecting pancreatic fluid-derived components
JP5278873B2 (en) Cancer diagnostic reagents
US7291698B2 (en) Synthetic substrate for high specificity enzymatic assays
CN106632689B (en) Polypeptide probe, kit containing same and application thereof
Roth et al. Ubiquitin Binds to a Short Peptide Segment of Hydrolase UCH‐L3: A Study by FCS, RIfS, ITC and NMR
Anslyn et al. Identifying peptides at the single molecule level
CN101334362A (en) HIV protease activity determination indicator, its preparation and uses
WO2023204721A1 (en) Compound - diagnostic marker for kidney cancer, method lor detecting enzymaticactivity, method for diagnosis of kidney cancer, kit comprising the compound, uses of the compound and method for the treatment of kidney cancer
IL312534A (en) Fret enzymatic substrate and uses thereof in liver cancer
US20050207981A1 (en) Compositions and methods for determining substrate specificity of hydrolytic enzymes
Agnew Rapid Construction of Protein Capture Agents with Chemically Designed Stability and Antibody-Like Recognition Properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

R150 Certificate of patent or registration of utility model

Ref document number: 5170407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees