JP5169979B2 - Packing twist detection device - Google Patents

Packing twist detection device Download PDF

Info

Publication number
JP5169979B2
JP5169979B2 JP2009106980A JP2009106980A JP5169979B2 JP 5169979 B2 JP5169979 B2 JP 5169979B2 JP 2009106980 A JP2009106980 A JP 2009106980A JP 2009106980 A JP2009106980 A JP 2009106980A JP 5169979 B2 JP5169979 B2 JP 5169979B2
Authority
JP
Japan
Prior art keywords
packing
core plate
inclination angle
dimensional shape
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009106980A
Other languages
Japanese (ja)
Other versions
JP2010256180A (en
Inventor
出泰 瀬嵜
功 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009106980A priority Critical patent/JP5169979B2/en
Publication of JP2010256180A publication Critical patent/JP2010256180A/en
Application granted granted Critical
Publication of JP5169979B2 publication Critical patent/JP5169979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

本発明は、パッキンねじれ検出装置に関する。   The present invention relates to a packing twist detection device.

図1は、特許文献1に例示された熱交換器30の構成を示す分解斜視図である。
特許文献1に示された熱交換器30を一例として説明すると、熱交換流体が通過するチューブと、チューブの間を通過する空気との熱交換を促進させるフィンとを交互に積層して、熱交換流体と空気とが熱交換するコア部31を形成している。このコア部31のチューブの両端部(図1の斜視図における上部と下部)には、上側コアプレート(コアプレート)15Aと下側コアプレート(コアプレート)15Bの二つのコアプレート15が設けられている。このコアプレート15には、シール用のパッキン17が組み込まれる。さらに、それぞれのコアプレート15には、上側タンク(タンク)16Aと下側タンク(タンク)16Bの二つのタンク)16が、パッキン17を挟んだ状態で組み合わされる。その際、コアプレート15とタンク16とを結合させるため、コアプレートに形成した突片(かしめ爪)を折り曲げてタンクをかしめ固定する。
このような熱交換器において、パッキンとしてゴム等の弾性材を用いているので、コアプレートとタンク本体とを締結する際に、パッキン部材が弾性変形して捩れ、あるいは、位置ズレが発生する場合がある。この場合、タンクのシール面とコアプレートのシール面との間に微少隙間が生じるので、タンク内空間から流体が洩れる可能性があった。
FIG. 1 is an exploded perspective view showing the configuration of the heat exchanger 30 exemplified in Patent Document 1. As shown in FIG.
The heat exchanger 30 shown in Patent Document 1 will be described as an example. A tube through which a heat exchange fluid passes and a fin that promotes heat exchange with air passing between the tubes are alternately stacked, The core part 31 in which the exchange fluid and air exchange heat is formed. Two core plates 15 of an upper core plate (core plate) 15A and a lower core plate (core plate) 15B are provided at both ends of the tube of the core portion 31 (upper and lower portions in the perspective view of FIG. 1). ing. A seal 17 for sealing is incorporated in the core plate 15. Further, each core plate 15 is combined with two tanks (an upper tank (tank) 16A and a lower tank (tank) 16B) 16 with a packing 17 interposed therebetween. At that time, in order to connect the core plate 15 and the tank 16, the projecting piece (caulking claw) formed on the core plate is bent and the tank is caulked and fixed.
In such a heat exchanger, since an elastic material such as rubber is used as packing, when the core plate and the tank body are fastened, the packing member is elastically deformed and twisted or misaligned. There is. In this case, a minute gap is formed between the sealing surface of the tank and the sealing surface of the core plate, so that there is a possibility that fluid leaks from the space in the tank.

特開2009−30951号公報JP 2009-30951 A

本発明は、上記問題に鑑み、熱交換器におけるパッキンねじれ検出装置を提供するものである。   In view of the above problems, the present invention provides a packing twist detection device in a heat exchanger.

上記課題を解決するために、請求項1の発明は、かしめ爪(3)が外周に形成されたコアプレート(15)内に、パッキン(17)が配置された場合に、前記パッキン(17)のシール面の傾き角度を検出するパッキンねじれ検出装置であって、該パッキンねじれ検出装置は、2次元形状計測センサ(40)と、該2次元形状計測センサ(40)又は前記コアプレート(15)のいずれか一方を、前記コアプレート(15)の長手方向に相対的に移動させる駆動機構(50)と、前記パッキン(17)のシール面の傾き角度を演算する演算部とを具備するパッキンねじれ検出装置において、前記2次元形状計測センサ(40)が、前記コアプレート(15)の長手方向に、前記かしめ爪(3)の所定ピッチ毎に、前記コアプレート(15)、及び、前記パッキン(17)の断面を計測して、前記演算部が、前記断面の計測情報に基づいて、前記所定ピッチ毎に、前記コアプレート(15)の傾き角度を差し引いた前記パッキン(17)のシール面の傾き角度(θ)を算出して、所定の閾値と比較して良否判定を行うパッキンねじれ検出装置である。   In order to solve the above problems, the invention of claim 1 is directed to the packing (17) when the packing (17) is disposed in the core plate (15) having the caulking claw (3) formed on the outer periphery. A packing torsion detection device for detecting the inclination angle of the seal surface of the seal, the packing torsion detection device comprising a two-dimensional shape measurement sensor (40) and the two-dimensional shape measurement sensor (40) or the core plate (15). A twisted packing comprising: a drive mechanism (50) for moving either one of the core plate (15) relative to the longitudinal direction of the core plate (15); and a calculator for calculating the inclination angle of the seal surface of the packing (17). In the detection device, the two-dimensional shape measurement sensor (40) is arranged in the longitudinal direction of the core plate (15) at a predetermined pitch of the caulking claw (3). The packing (17) is obtained by measuring the cross section of the packing (17), and the calculation unit subtracting the inclination angle of the core plate (15) for each predetermined pitch based on the measurement information of the cross section. This is a packing twist detection device that calculates the inclination angle (θ) of the seal surface and makes a pass / fail judgment by comparing with a predetermined threshold value.

これにより、熱交換器のコアプレートとタンクを、パッキンを介して結合する前に、パッキンのねじれの状態を検出することができ、パッキンがねじれた状態で爪をかしめた場合の不良を、自動的に判別して排除することができる。   As a result, it is possible to detect the twisting state of the packing before the core plate and the tank of the heat exchanger are connected via the packing, and automatically detect defects when the claws are crimped while the packing is twisted. Can be determined and eliminated.

請求項2の発明は、請求項1の発明において、前記コアプレート(15)の傾き角度、及び、前記パッキン(17)のシール面の傾き角度(θ)を、かしめ爪(3)の中央で算出することを特徴とする。これにより、パッキン17とコアプレート15の傾き角度について、同時に計測することができる。   The invention of claim 2 is the invention of claim 1, wherein the inclination angle of the core plate (15) and the inclination angle (θ) of the seal surface of the packing (17) are set at the center of the caulking claw (3). It is characterized by calculating. Thereby, the inclination angle of the packing 17 and the core plate 15 can be measured simultaneously.

請求項3の発明は、請求項1又は2の発明において、前記コアプレート(15)を静止させて、前記駆動機構(50)が、前記2次元形状計測センサ(40)を、前記コアプレート(15)の長手方向に移動させることを特徴とする。これにより、前記コアプレート(15)内に配置された前記パッキン(17)のシール面の傾きを、静止した状態で検出するので、正確に検出することが出来る。   According to a third aspect of the present invention, in the first or second aspect of the invention, the core plate (15) is stopped, and the drive mechanism (50) moves the two-dimensional shape measurement sensor (40) to the core plate ( 15) It is characterized by moving in the longitudinal direction. Thereby, since the inclination of the sealing surface of the said packing (17) arrange | positioned in the said core plate (15) is detected in a stationary state, it can detect correctly.

なお、上記に付した符号は、後述する実施形態に記載の具体的実施態様との対応関係を示す一例である。   In addition, the code | symbol attached | subjected above is an example which shows a corresponding relationship with the specific embodiment as described in embodiment mentioned later.

従来技術の熱交換器の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the heat exchanger of a prior art. 本発明の一実施形態におけるコアプレート15を示す写真図である。It is a photograph figure which shows the core plate 15 in one Embodiment of this invention. コアプレート15のシール面に対して、パッキン17のシール面が、θ傾いている状態を示す図である。It is a figure which shows the state which the sealing surface of the packing 17 inclines with respect to the sealing surface of the core plate 15. 本発明の基礎となった比較技術を示す概要図である。It is a schematic diagram which shows the comparison technique used as the foundation of this invention. 本発明の一実施形態を示す概要図である。It is a schematic diagram showing one embodiment of the present invention. コアプレート15とパッキン17の断面を示す概要図である。4 is a schematic view showing a cross section of a core plate 15 and a packing 17. FIG. パッキン17のシール面の検出を説明する説明図である。It is explanatory drawing explaining the detection of the sealing surface of the packing. コアプレート15とパッキン17のシール面の傾きの検出を説明する説明図である。It is explanatory drawing explaining the detection of the inclination of the sealing surface of the core plate 15 and the packing 17. FIG.

以下、図面を参照して、本発明の一実施形態のパッキンねじれ検出装置を説明する。従来技術や、一実施態様の変形態様について、同一構成の部分には、同一の符号を付してその説明を省略する。本発明の一実施形態が、本発明の基礎となった比較技術に対しても同一構成の部分には同一の符号を付してその説明を省略する。
図2は、本発明の一実施形態におけるコアプレート15を示す写真図である。17は、パッキンを示し、3はかしめ爪であり、4は、かしめ爪3とかしめ爪3の間の谷を示す。コアプレート15の外周にかしめ爪3が形成されている。かしめ爪3とかしめ爪3との間のピッチはpである。一例として、かしめ爪3の幅が6mm程度、谷4が3mm程度、ピッチp=9mm程度として、以下に説明する。
Hereinafter, a packing twist detecting device according to an embodiment of the present invention will be described with reference to the drawings. About the prior art and the deformation | transformation aspect of one embodiment, the same code | symbol is attached | subjected to the part of the same structure, and the description is abbreviate | omitted. In the embodiment of the present invention, the same reference numerals are given to the same components with respect to the comparative technique on which the present invention is based, and the description thereof is omitted.
FIG. 2 is a photograph showing the core plate 15 in one embodiment of the present invention. Reference numeral 17 denotes a packing, 3 denotes a caulking claw, and 4 denotes a valley between the caulking claw 3 and the caulking claw 3. A caulking claw 3 is formed on the outer periphery of the core plate 15. The pitch between the caulking claw 3 and the caulking claw 3 is p. As an example, the following explanation will be made assuming that the width of the caulking claw 3 is about 6 mm, the valley 4 is about 3 mm, and the pitch p is about 9 mm.

図3は、コアプレート15のシール面に対して、パッキン17のシール面が、θ傾いている状態を示す図である。
図4は、本発明の基礎となった比較技術を示す概要図である。この比較技術では、パッキンねじれチェック方法として、視覚装置21(2台のカメラ)とレーザ発光装置22とを被計測対象物に対して測定方向に移動させるユニット20で構成していた。レーザで被計測対象物を照射しそのレーザ光を視覚装置21で検出後、2値化して良否判別を行っていた。この場合、視覚による良否判別はできるものの、ねじれの状態までの検出は困難であり、上からの投射では断面形状の測定が困難であった。
FIG. 3 is a view showing a state where the seal surface of the packing 17 is inclined by θ with respect to the seal surface of the core plate 15.
FIG. 4 is a schematic diagram showing a comparative technique on which the present invention is based. In this comparative technique, as a packing twist check method, the visual device 21 (two cameras) and the laser light emitting device 22 are configured by a unit 20 that moves in a measurement direction with respect to an object to be measured. The object to be measured is irradiated with a laser, and the laser beam is detected by the visual device 21, and then binarized to determine whether it is good or bad. In this case, although it is possible to visually determine whether the product is good or bad, it is difficult to detect the torsional state, and it is difficult to measure the cross-sectional shape by projection from above.

これに対して、本発明の一実施形態は次のようなものである。図5は、本発明の一実施形態を示す概要図である。本発明の一実施形態では、2次元形状計測センサ40を、被測定対象物であるコアプレート15の長手方向(矢印方向)に、駆動機構としてのローダ50(図示せず)により移動させる。ここで、コアプレート15の長手方向(矢印方向)をZ軸とし、コアプレート15の幅方向をX軸とし、コアプレートの設置平面に対して高さ方向をY軸とする。本発明の一実施形態では、2次元形状計測センサ40を、コアプレート15の長手方向(矢印方向)に移動させたが、2次元形状計測センサ40を固定して、コアプレート15の方を移動させても良い。この場合は、駆動機構はコアプレート15の搬送装置などを指す。   On the other hand, an embodiment of the present invention is as follows. FIG. 5 is a schematic diagram showing an embodiment of the present invention. In one embodiment of the present invention, the two-dimensional shape measurement sensor 40 is moved by a loader 50 (not shown) as a drive mechanism in the longitudinal direction (arrow direction) of the core plate 15 that is the object to be measured. Here, the longitudinal direction (arrow direction) of the core plate 15 is taken as the Z axis, the width direction of the core plate 15 is taken as the X axis, and the height direction with respect to the installation plane of the core plate is taken as the Y axis. In one embodiment of the present invention, the two-dimensional shape measurement sensor 40 is moved in the longitudinal direction (arrow direction) of the core plate 15, but the two-dimensional shape measurement sensor 40 is fixed and moved toward the core plate 15. You may let them. In this case, the drive mechanism refers to a conveying device for the core plate 15 or the like.

2次元形状計測センサ40は、X軸方向に2台設置して、コアプレート15の幅方向の両側にあるパッキンを計測する。2次元形状計測センサ40は、レーザビームをX軸方向にスキャンさせて(図5の三角形)、Y軸方向の高さ情報を基準位置から測長して記憶する。
図6は、コアプレート15とパッキン17の断面を示す概要図である。2次元形状計測センサ40は、両側のかしめ爪の高さy4、y14、コアプレート15の幅方向の両側にあるパッキンの高さを計測する。これにより、Z軸方向にわたって、コアプレート15とパッキン17の断面の計測情報を得ることが出来る。
Two two-dimensional shape measurement sensors 40 are installed in the X-axis direction and measure packings on both sides of the core plate 15 in the width direction. The two-dimensional shape measurement sensor 40 scans the laser beam in the X-axis direction (triangle in FIG. 5), measures the height information in the Y-axis direction from the reference position, and stores it.
FIG. 6 is a schematic view showing a cross section of the core plate 15 and the packing 17. The two-dimensional shape measuring sensor 40 measures the heights y4 and y14 of the caulking claws on both sides and the height of the packing on both sides in the width direction of the core plate 15. Thereby, the measurement information of the cross section of the core plate 15 and the packing 17 can be obtained over the Z-axis direction.

2次元形状計測センサ40を被計測対象物に対し移動させながら、各かしめ爪3中央で被計測対象物の断面を計測し、後述するように、その測定値をシーケンサにて演算し判定する。このとき、2次元形状計測センサ40を移動させているローダ50の位置を常時監視し、かしめ爪中央の位置に到着したら、2次元形状計測センサ40にタイミングを出力し測定する。かしめ爪中央の位置は、2次元形状計測センサ40が谷4からかしめ爪3に高さが変わったZ軸位置を検出すればよい。そして、かしめ爪の寸法の半分の位置(コアプレート製品情報を利用)に、2次元形状計測センサ40が移動した時点で、被計測対象物の断面を計測する。本実施形態では、かしめ爪中央のポイントで計測したが、かしめ爪の谷で計測しても良い。しかしながら、かしめ爪中央のポイントで計測した方が、パッキン17とコアプレート15の傾き角度について同時に計測できる。   While moving the two-dimensional shape measurement sensor 40 with respect to the object to be measured, the cross section of the object to be measured is measured at the center of each caulking claw 3, and the measured value is calculated and determined by a sequencer as will be described later. At this time, the position of the loader 50 that is moving the two-dimensional shape measurement sensor 40 is constantly monitored. When the loader 50 arrives at the center of the crimping claw, the timing is output to the two-dimensional shape measurement sensor 40 and measured. As for the position of the center of the caulking claw, the two-dimensional shape measurement sensor 40 may detect the Z-axis position where the height has changed from the valley 4 to the caulking claw 3. Then, when the two-dimensional shape measurement sensor 40 moves to a position half the size of the caulking claw (using the core plate product information), the cross section of the measurement object is measured. In this embodiment, the measurement is performed at the center point of the caulking nail, but the measurement may be performed at the valley of the caulking nail. However, it is possible to simultaneously measure the inclination angles of the packing 17 and the core plate 15 by measuring at the center of the caulking claw.

2次元形状計測センサ40が、コアプレート15の長手方向の所定ピッチ毎に、コアプレート15、及び、コアプレート15内に配置されたパッキン17の断面を計測する点について、演算部が行う処理について説明する。   About the process which a calculating part performs about the point which the two-dimensional shape measurement sensor 40 measures the cross section of the packing 17 arrange | positioned in the core plate 15 and the core plate 15 for every predetermined pitch of the longitudinal direction of the core plate 15. explain.

X軸方向に2次元形状計測センサ40がスキャンして、形状全体を検出しても良いが、ここでは処理スピードアップのため、爪3の検出とパッキン15のシール面の検出を行う一実施形態について述べる。
爪3の検出は、コアプレート15の製品情報を利用して、Y軸方向の爪3の存在する範囲において、2次元形状計測センサ40が谷4からかしめ爪3に高さが変わったZ軸位置を検出すればよい。かしめ爪の寸法の半分の位置に、2次元形状計測センサ40が移動した時点でコアプレート15の両側の爪3の高さ(x4、y4)、(x14、y14)を検出する。x14−x4はコアプレート15の幅Lを表している。
The two-dimensional shape measurement sensor 40 may scan in the X-axis direction to detect the entire shape, but here, in order to increase the processing speed, an embodiment in which the claw 3 is detected and the seal surface of the packing 15 is detected. Is described.
The nail 3 is detected using the product information of the core plate 15 in the range where the nail 3 exists in the Y-axis direction. What is necessary is just to detect a position. The heights (x4, y4) and (x14, y14) of the claws 3 on both sides of the core plate 15 are detected when the two-dimensional shape measurement sensor 40 moves to a position half the size of the caulking claws. x14-x4 represents the width L of the core plate 15.

次に、パッキン17のシール面の検出について述べる。
図7は、パッキン17のシール面の検出を説明する説明図である。図7に示すように、パッキン17が入るコアプレート15の枠の中央に、角度測定ウィンドウWを設定する。角度測定ウィンドウWの幅aは、コアプレート15の枠の中央に角度測定ウィンドウWを設定した場合に、角度測定ウィンドウWのX軸方向全てに亘ってパッキン17のシール面が必ず存在するように設定する。一例として、a=0.8mm程度に設定する。
角度測定ウィンドウW内で、2次元形状計測センサ40により得られた、ピーク位置及びボトム位置の2点を取出し、それらの座標位置(x11、y11)、(x12、y12)の計測情報(図7はコアプレート15の右側、この場合を右側パッキンという)を演算部が記憶する。同様にして、コアプレート15の右側(この場合を左側パッキンという)についても、角度測定ウィンドウWを設定して、ピーク位置及びボトム位置の2点を取出し、それらの座標位置(x1、y1)、(x2、y2)の計測情報を得る。パッキン17のシール面のY軸位置が、単調減少、単調増加の場合は、ピーク位置及びボトム位置は、角度測定ウィンドウWの左右境界上に現れる。
Next, detection of the seal surface of the packing 17 will be described.
FIG. 7 is an explanatory view for explaining detection of the seal surface of the packing 17. As shown in FIG. 7, an angle measurement window W is set at the center of the frame of the core plate 15 in which the packing 17 is inserted. The width a of the angle measurement window W is such that when the angle measurement window W is set at the center of the frame of the core plate 15, the seal surface of the packing 17 always exists over the entire X-axis direction of the angle measurement window W. Set. As an example, a is set to about 0.8 mm.
In the angle measurement window W, two points of the peak position and the bottom position obtained by the two-dimensional shape measurement sensor 40 are taken out, and measurement information of their coordinate positions (x11, y11), (x12, y12) (FIG. 7). Is stored on the right side of the core plate 15, in this case the right side packing). Similarly, for the right side of the core plate 15 (in this case, the left side packing), an angle measurement window W is set, and two points of the peak position and the bottom position are taken out, and their coordinate positions (x1, y1), Measurement information of (x2, y2) is obtained. When the Y-axis position of the seal surface of the packing 17 is monotonously decreased or monotonically increased, the peak position and the bottom position appear on the left and right boundaries of the angle measurement window W.

図8は、コアプレート15とパッキン17のシール面の傾きの検出を説明する説明図である。図6、7のY軸の正方向を、図8では逆にとって第1象限で表示してある。
以上の2次元形状計測センサ40から得られた断面の計測情報を用いて、演算部は以下の処理をして、両側のかしめ爪3上端の距離を求めて、その距離の差分値とコアプレート幅Lより傾き角を算出する。(x14−x4が正の場合はLで置き換えられる。)
ピーク位置及びボトム位置の2点を取出し(それらのどちらがピークかボトムかを決めることなく)、それらの座標位置をX軸正方向に沿って順に、(x1、y1)及び(x2、y2)、(x12、y12)及び(x11、y11)とする。
FIG. 8 is an explanatory diagram for explaining the detection of the inclination of the sealing surfaces of the core plate 15 and the packing 17. The positive direction of the Y-axis in FIGS. 6 and 7 is shown in the first quadrant in FIG.
Using the cross-section measurement information obtained from the above two-dimensional shape measurement sensor 40, the calculation unit performs the following process to obtain the distance between the upper ends of the caulking claws 3 on both sides, and the difference value of the distance and the core plate The inclination angle is calculated from the width L. (If x14-x4 is positive, it is replaced with L.)
Two points of the peak position and the bottom position are taken out (without deciding which of them is the peak or the bottom), and their coordinate positions are sequentially (x1, y1) and (x2, y2) along the positive direction of the X axis, Let (x12, y12) and (x11, y11).

コアプレート傾き角度=ARCTAN[(y14−y4)/(x14−x4)]
左側パッキン傾き角度=ARCTAN[(y2−y1)/(x2−x1)]
右側パッキン傾き角度=ARCTAN[(y11−y12)/(x11−x12)]
Core plate tilt angle = Arctan [(y14-y4) / (x14-x4)]
Left side packing inclination angle = ARCtan [(y2-y1) / (x2-x1)]
Right side packing inclination angle = Arctan [(y11−y12) / (x11−x12)]

コアプレート15に対するパッキン17の傾き角度θは以下のようにして求められる。
左側パッキン傾き角度θ=ARCTAN[(y2−y1)/(x2−x1)]
−ARCTAN[(y14−y4)/(x14−x4)]
右側パッキン傾き角度θ=ARCTAN[(y11−y12)/(x11−x12)] −ARCTAN[(y14−y4)/(x14−x4)]
The inclination angle θ of the packing 17 with respect to the core plate 15 is obtained as follows.
Left side packing inclination angle θ = ARCtan [(y2-y1) / (x2-x1)]
-Arctan [(y14-y4) / (x14-x4)]
Right side packing inclination angle θ = ARCTAAN [(y11−y12) / (x11−x12)] − ARCTAAN [(y14−y4) / (x14−x4)]

なお、左側パッキンについて、ピーク位置の座標位置を(x11、y11)と定め、ボトム位置の座標位置を(x12、y12)と定めて取出す場合は、上記式において符号をそれに相応させる必要がある。(左側パッキンについても同様である。)   In the case of taking out the left packing with the coordinate position of the peak position set as (x11, y11) and the coordinate position of the bottom position set as (x12, y12), it is necessary to make the code correspond to it. (The same applies to the left packing.)

一例として5ピッチの場合、n番目のピッチでのパッキン傾き角度θ、n+5番目のパッキン傾き角度θと、順に閾値αと比較して、1箇所でもそれより大きい場合を不良として、排出する。この場合は5ピッチ毎であったが、任意の整数ピッチ毎でも良い。   As an example, in the case of 5 pitches, the packing inclination angle θ at the nth pitch and the n + 5th packing inclination angle θ are sequentially compared with the threshold value α, and if it is larger than even one place, it is discharged as defective. In this case, every 5 pitches, but any integer pitch may be used.

閾値αの値としては、パッキンを1周ひねった状態で、かしめ爪3の所定ピッチで測定した時の値を目安とすると良い。製品寸法、ピッチpの間隔にもよるが、一例として5ピッチの場合で15〜23°程度の値となる。   As a value of the threshold value α, a value obtained by measuring at a predetermined pitch of the caulking claw 3 in a state where the packing is twisted once may be used as a guide. Although it depends on the product dimensions and the pitch p interval, as an example, the value is about 15 to 23 ° in the case of 5 pitches.

このようにして、2次元形状計測センサ40を2台並べて、ローダ50のモータを駆動させ、パッキン17の上空80mm程度の位置にて800mm/S程度の速度で移動させる。移動中の所定位置毎(定ピッチ)にてパッキン17の断面図を測定する。数値を制御装置に送り、演算部にてパッキン状態を検出しねじれているか否かを、所定の閾値αにて良否判定をさせる。   In this way, two two-dimensional shape measurement sensors 40 are arranged side by side, the motor of the loader 50 is driven, and moved at a speed of about 800 mm / S at a position of about 80 mm above the packing 17. A cross-sectional view of the packing 17 is measured at each predetermined position during movement (constant pitch). A numerical value is sent to the control device, and a pass / fail judgment is made based on a predetermined threshold value α to determine whether or not the packing state is detected by the calculation unit.

3 かしめ爪
4 谷
15 コアプレート
16 タンク
17 パッキン
30 熱交換器
31 コア部
40 2次元形状計測センサ
50 駆動機構、ローダ
3 Caulking claw 4 Valley 15 Core plate 16 Tank 17 Packing 30 Heat exchanger 31 Core part 40 Two-dimensional shape measurement sensor 50 Drive mechanism, loader

Claims (3)

かしめ爪(3)が外周に形成されたコアプレート(15)内に、パッキン(17)が配置された場合に、前記パッキン(17)のシール面の傾き角度を検出するパッキンねじれ検出装置であって、該パッキンねじれ検出装置は、
2次元形状計測センサ(40)と、
該2次元形状計測センサ(40)又は前記コアプレート(15)のいずれか一方を、前記コアプレート(15)の長手方向に相対的に移動させる駆動機構(50)と、
前記パッキン(17)のシール面の傾き角度を演算する演算部と
を具備するパッキンねじれ検出装置において、
前記2次元形状計測センサ(40)が、前記コアプレート(15)の長手方向に、前記かしめ爪(3)の所定ピッチ毎に、前記コアプレート(15)、及び、前記パッキン(17)の断面を計測して、
前記演算部が、前記断面の計測情報に基づいて、前記所定ピッチ毎に、前記コアプレート(15)の傾き角度を差し引いた前記パッキン(17)のシール面の傾き角度(θ)を算出して、所定の閾値と比較して良否判定を行うパッキンねじれ検出装置。
This is a packing twist detection device that detects the inclination angle of the sealing surface of the packing (17) when the packing (17) is disposed in the core plate (15) having the caulking claw (3) formed on the outer periphery. The packing twist detection device
A two-dimensional shape measurement sensor (40);
A drive mechanism (50) for moving either the two-dimensional shape measurement sensor (40) or the core plate (15) in the longitudinal direction of the core plate (15);
A packing torsion detection device comprising: a calculation unit that calculates an inclination angle of the seal surface of the packing (17);
The cross section of the core plate (15) and the packing (17) in the longitudinal direction of the core plate (15) at a predetermined pitch of the caulking claw (3). Measure
The calculation unit calculates an inclination angle (θ) of the seal surface of the packing (17) obtained by subtracting the inclination angle of the core plate (15) at each predetermined pitch based on the measurement information of the cross section. A packing torsion detection device that makes a pass / fail judgment in comparison with a predetermined threshold.
前記コアプレート(15)の傾き角度、及び、前記パッキン(17)のシール面の傾き角度(θ)を、かしめ爪(3)の中央で算出することを特徴とする請求項1に記載のパッキンねじれ検出装置。   The packing according to claim 1, wherein the inclination angle of the core plate (15) and the inclination angle (θ) of the sealing surface of the packing (17) are calculated at the center of the caulking claw (3). Twist detector. 前記コアプレート(15)を静止させて、前記駆動機構(50)が、前記2次元形状計測センサ(40)を、前記コアプレート(15)の長手方向に移動させることを特徴とする請求項1又は2に記載のパッキンねじれ検出装置。   The core plate (15) is stationary, and the drive mechanism (50) moves the two-dimensional shape measurement sensor (40) in the longitudinal direction of the core plate (15). Or the packing twist detection apparatus of 2 or 2.
JP2009106980A 2009-04-24 2009-04-24 Packing twist detection device Active JP5169979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009106980A JP5169979B2 (en) 2009-04-24 2009-04-24 Packing twist detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009106980A JP5169979B2 (en) 2009-04-24 2009-04-24 Packing twist detection device

Publications (2)

Publication Number Publication Date
JP2010256180A JP2010256180A (en) 2010-11-11
JP5169979B2 true JP5169979B2 (en) 2013-03-27

Family

ID=43317261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009106980A Active JP5169979B2 (en) 2009-04-24 2009-04-24 Packing twist detection device

Country Status (1)

Country Link
JP (1) JP5169979B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6131608B2 (en) * 2013-01-23 2017-05-24 株式会社デンソー Packing twist detection device and control method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351671Y2 (en) * 1987-11-12 1991-11-06
JP4930398B2 (en) * 2007-06-28 2012-05-16 株式会社デンソー Manufacturing method and caulking device for heat exchanger

Also Published As

Publication number Publication date
JP2010256180A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
KR100942911B1 (en) Bridge inspecting robot using rail in Steel box
JP2009041934A (en) Apparatus and method for shape measurement
TWI635252B (en) Methods and system for inspecting a 3d object using 2d image processing
US9948841B2 (en) Tire shape testing device and tire shape testing method
JP5333408B2 (en) Holding member posture determination apparatus, method thereof, substrate processing apparatus, and storage medium
JP6753383B2 (en) Object detection device
US10775204B2 (en) Encoder unit, angle measuring method, and robot
EP3743713B1 (en) Vehicle surface scanning system
CN103561901A (en) Method for detecting butt position of weld joint, device for detecting butt position of weld joint, and method for manufacturing weld joint
KR20190030196A (en) Method and apparatus for automatic determination of urine position and health smart toilet seat including the same
MX2007002063A (en) Method of measuring length of band-form member and device therefor.
JP5169979B2 (en) Packing twist detection device
EP2851650A1 (en) Tire shape inspection method and tire shape inspection device
JP6525720B2 (en) Chain elongation detection device and passenger conveyor
CN104024790A (en) Method for measuring shape of threaded tube end portion
WO2014167784A1 (en) Shape inspection device
JP2012181097A (en) Structure flaw inspection method and device
JP2014044127A (en) Center position detection device, program, recording medium, and method
JP5142826B2 (en) Object position information calculation method
JP6045483B2 (en) Train fixed position stop support system
KR101637749B1 (en) A Calibration Base and Calibration Method thereof
CN103052863A (en) Glass bottle inspection device
KR20240018627A (en) Machine vision inspection method, inspection device, and inspection system
JPH0883124A (en) Unmanned carrier
JP2008298742A (en) Posture angle detection device, posture angle detecting method, and surface of floor detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R151 Written notification of patent or utility model registration

Ref document number: 5169979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250