JP5169064B2 - Soluble porphyrin derivative - Google Patents

Soluble porphyrin derivative Download PDF

Info

Publication number
JP5169064B2
JP5169064B2 JP2007207987A JP2007207987A JP5169064B2 JP 5169064 B2 JP5169064 B2 JP 5169064B2 JP 2007207987 A JP2007207987 A JP 2007207987A JP 2007207987 A JP2007207987 A JP 2007207987A JP 5169064 B2 JP5169064 B2 JP 5169064B2
Authority
JP
Japan
Prior art keywords
porphyrin
bis
group
chloroform
arom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007207987A
Other languages
Japanese (ja)
Other versions
JP2009040726A (en
Inventor
純夫 丸山
大輔 奥山
律 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2007207987A priority Critical patent/JP5169064B2/en
Publication of JP2009040726A publication Critical patent/JP2009040726A/en
Application granted granted Critical
Publication of JP5169064B2 publication Critical patent/JP5169064B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、湿式成膜法に適した可溶性ポルフィリン誘導体、及びその製造方法に関するものである。   The present invention relates to a soluble porphyrin derivative suitable for a wet film forming method and a method for producing the same.

ポルフィリンとは、4つのピロ−ル環がα位置で4つのメチン基と交互に結合した大環状化合物とその誘導体であり、可視部に強い複数のピ−クがあり,赤色領域にQ帯(Qband)、400nm付近にソ−レ−帯(Soret band)と呼ばれる特徴的なピ−クを有する化合物である。このようなポルフィリンは、中心に金属が配位することが可能で、大きなπ電子共役系を有するため、電子キャリアとして使用可能であることや、特定の波長領域に鋭い吸収ピ−クを有すること等から、電子材料、光学材料、医療材料、表示材料等、種々の用途への応用の試みがなされいる。   Porphyrin is a macrocyclic compound and its derivatives in which four pyrrol rings are alternately bonded to four methine groups at the α position, and there are a plurality of strong peaks in the visible region, and the Q band ( Qband), a compound having a characteristic peak called a soret band in the vicinity of 400 nm. Such porphyrins can coordinate with a metal at the center and have a large π-electron conjugated system, so that they can be used as electron carriers and have sharp absorption peaks in a specific wavelength region. Attempts have been made to apply to various uses such as electronic materials, optical materials, medical materials and display materials.

このようにポルフィリンは、今後も機能性材料として幅広い産業分野への応用が期待されるものである。しかしながら、その剛直な骨格により凝集しやすく、また、溶剤溶解性が悪いという問題がある。たとえば、テトラフェニルポルフィリン(以下、「TPP」と省略することがある)は、有機EL素子における燐光ゲスト分子として有用であるが、溶剤溶解性が極めて低いため、有機EL素子における膜を形成する場合には、真空蒸着等の気相成膜法により形成しなければならなかった。一般的に、溶媒を用いて基材に塗布する湿式成膜法は、真空蒸着法に比べて大掛かりな蒸着装置が不要で、作製プロセス工程の簡便化が期待でき、材料の利用効率も高く、コストが安価で、基材の大面積化が可能というメリットがある。そこで、ポルフィリン誘導体の溶剤溶解性が向上すれば、湿式成膜法によって、各種の機能性膜を形成可能になるというメリットもある。膜を形成しない場合にも、種々の溶剤溶解性が向上すれば、触媒など、溶剤中で機能する用途へも応用可能になる。   Thus, porphyrin is expected to be applied to a wide range of industrial fields as a functional material in the future. However, there is a problem that the rigid skeleton easily aggregates and the solvent solubility is poor. For example, tetraphenylporphyrin (hereinafter sometimes abbreviated as “TPP”) is useful as a phosphorescent guest molecule in an organic EL device, but has a very low solvent solubility, and therefore forms a film in an organic EL device. However, it had to be formed by a vapor phase film forming method such as vacuum deposition. In general, the wet film-forming method applied to the substrate using a solvent does not require a large-scale vapor deposition apparatus as compared with the vacuum vapor deposition method, can be expected to simplify the manufacturing process steps, and has high material utilization efficiency. There is an advantage that the cost is low and the area of the base material can be increased. Therefore, if the solvent solubility of the porphyrin derivative is improved, there is an advantage that various functional films can be formed by a wet film forming method. Even when a film is not formed, if the solubility of various solvents is improved, it can be applied to applications such as catalysts that function in a solvent.

ポルフィリン誘導体の応用として、特許文献1には、特定の構造を有するポルフィリン化合物からなる有機半導体を含有する有機半導体層を用いた電界効果トランジスタが開示されている。ここで開示されているポルフィリン化合物は湿式成膜法により膜を形成しているが、ピロ−ル環にビシクロ化合物が結合した特殊な構造を有している。   As an application of a porphyrin derivative, Patent Document 1 discloses a field effect transistor using an organic semiconductor layer containing an organic semiconductor made of a porphyrin compound having a specific structure. The porphyrin compound disclosed here forms a film by a wet film formation method, but has a special structure in which a bicyclo compound is bonded to a pyrrole ring.

特開2006−245559号公報JP 2006-245559 A

本発明は、上記問題を解決するためのなされたものであり、本発明の目的は、湿式成膜法により安定性の高い膜を成膜可能な、可溶性ポルフィリン誘導体及びその製造方法を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a soluble porphyrin derivative capable of forming a highly stable film by a wet film forming method and a method for producing the same. It is in.

本発明に係る可溶性ポルフィリン誘導体は、下記式(2)で表されるものである。
The soluble porphyrin derivative according to the present invention is represented by the following formula (2).

(式(2)において、Rは、それぞれ独立に、置換もしくは無置換の炭素数が3以上のアルキル基である。) (In Formula (2), each R is independently a substituted or unsubstituted alkyl group having 3 or more carbon atoms.)

本発明に係るポルフィリン誘導体は、上記式(2)で表されるように、特定の位置に特定の置換基Rを有するため、従来溶剤溶解性が極めて低かったTPPとは異なり、溶剤溶解性が高く、湿式成膜法により安定性の高い膜を成膜可能であり、また、熱安定性が高い。
記式(2)で表されるように白金を配位させたポルフィリン誘導体は、ポルフィリン環平面でのπ−πスタッキングにより隣接する白金のd軌道同士がd−d結合を形成可能であり、白金を配位していないポルフィリン誘導体に比べて更なる導電性の向上が期待できる。
Porphyrin derivative of the present invention, as represented by the above following formula (2), because they have a specific substituent R at a specific position, unlike the conventional solvent solubility was very low TPP, solvent solubility In addition, a highly stable film can be formed by a wet film forming method, and the thermal stability is high.
Porphyrin derivatives is coordinated platinum as represented above following formula (2) is, d orbitals between platinum adjacent by [pi-[pi stacking in the porphyrin ring plane can be formed a d-d bonds, Compared to porphyrin derivatives not coordinated with platinum, further improvement in conductivity can be expected.

本発明に係る可溶性ポルフィリン誘導体において、前記式(2)において、置換基Rが、炭素数が7以上のアルキル基である場合には、中でも、n−ヘキサンに易溶なほど溶剤溶解性が高く、安定性の高いアモルファス性の膜を成膜可能である。従って、このような場合には、有機ELなどのアモルファス性の膜が要求される用途に好適である。
In soluble porphyrin derivatives according to the present invention, before following formula (2), the substituents R is, when the number of carbon atoms is 7 or more alkyl groups, among others, solubility in a solvent as a readily soluble in n- hexane A high and highly stable amorphous film can be formed. Therefore, in such a case, it is suitable for an application where an amorphous film such as an organic EL is required.

本発明に係る可溶性ポルフィリン誘導体は、溶剤溶解性が極めて低いTPPと異なり、溶剤溶解性が高く、湿式成膜法により安定性の高い膜を成膜可能である。また、本発明に係る可溶性ポルフィリン誘導体は、TPPに比べて熱安定性が高い。更に、本発明に係る可溶性ポルフィリン誘導体は、置換基Rの炭素数や分岐度を調整することにより、結晶性の膜やアモルファス性の膜を形成可能であり、適用分野に合わせて、適宜応用可能である。
また、本発明に係る可溶性ポルフィリン誘導体の中でも白金を配位させたポルフィリン誘導体は、ポルフィリン環平面でのπ−πスタッキングにより白金のd軌道同士のd−d結合を形成可能であり、白金を配位していない場合に比べて更なる導電性の向上が期待できる。
また、本発明に係る製造方法によれば、当該可溶性ポルフィリン誘導体を容易に得ることができる。
The soluble porphyrin derivative according to the present invention has a high solvent solubility and can form a highly stable film by a wet film forming method, unlike TPP having a very low solvent solubility. Moreover, the soluble porphyrin derivative according to the present invention has higher thermal stability than TPP. Furthermore, the soluble porphyrin derivative according to the present invention can form a crystalline film or an amorphous film by adjusting the carbon number and branching degree of the substituent R, and can be appropriately applied according to the application field. It is.
In addition, among the soluble porphyrin derivatives according to the present invention, the porphyrin derivative coordinated with platinum can form a dd bond between the d orbitals of platinum by π-π stacking in the plane of the porphyrin ring. A further improvement in conductivity can be expected as compared with the case where it is not.
Moreover, according to the manufacturing method which concerns on this invention, the said soluble porphyrin derivative can be obtained easily.

以下において、本発明の可溶性ポルフィリン誘導体、及びその製造方法について順に詳細に説明する。
本発明に係る第一の可溶性ポルフィリン誘導体は、下記一般式(1)で表されることを特徴とする。
Below, the soluble porphyrin derivative of this invention and its manufacturing method are demonstrated in detail in order.
The first soluble porphyrin derivative according to the present invention is represented by the following general formula (1).

(式(1)において、Rは、それぞれ独立に、置換もしくは無置換の炭素数が3以上のアルキル基である。) (In Formula (1), each R is independently a substituted or unsubstituted alkyl group having 3 or more carbon atoms.)

また、本発明に係る第二の可溶性ポルフィリン誘導体は、下記式(2)で表されるものである。   Moreover, the 2nd soluble porphyrin derivative which concerns on this invention is represented by following formula (2).

(式(2)において、Rは、それぞれ独立に、置換もしくは無置換の炭素数が3以上のアルキル基である。) (In Formula (2), each R is independently a substituted or unsubstituted alkyl group having 3 or more carbon atoms.)

本発明に係るポルフィリン誘導体は、上記式(1)及び上記式(2)で表されるように、特定の位置に特定の置換基Rを有するため、従来溶剤溶解性が極めて低かったTPPとは異なり、溶剤溶解性が高い。そのため、湿式成膜法により、凝集などが起こりにくい安定性の高い膜を成膜可能である。また、本発明に係るポルフィリン誘導体は、従来のTPPに比べて熱安定性が高い。
中でも、上記式(2)で表されるように白金を配位させたポルフィリン誘導体は、ポルフィリン環平面でのπ−πスタッキングにより隣接する白金のd軌道同士がd−d結合を形成可能であり、白金を配位していないポルフィリン誘導体に比べて更なる導電性の向上が期待できる。
The porphyrin derivative according to the present invention has a specific substituent R at a specific position as represented by the above formula (1) and the above formula (2). In contrast, solvent solubility is high. Therefore, it is possible to form a highly stable film in which aggregation or the like hardly occurs by a wet film forming method. In addition, the porphyrin derivative according to the present invention has higher thermal stability than conventional TPP.
Among them, in the porphyrin derivative in which platinum is coordinated as represented by the above formula (2), adjacent d orbitals of platinum can form a dd bond by π-π stacking in the porphyrin ring plane. In addition, further improvement in conductivity can be expected compared to porphyrin derivatives not coordinated with platinum.

式(1)において、Rは、それぞれ独立に、置換もしくは無置換の炭素数が3以上のアルキル基である。アルキル基としては、直鎖又は分岐状の他、環状構造を含んでいても良い。
無置換の炭素数が3以上のアルキル基としては、例えば、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基などの直鎖アルキル基が挙げられる。また、これらの直鎖アルキル基の末端以外の1以上の水素原子がメチル基、エチル基、n−プロピル基、イソプロピル基などのアルキル基で置換された、i−プロピル基、sec−ブチル基、tert−ブチル基、1−メチルブチル基、2−メチルブチル基、1−エチルプロピル基、2−エチルプロピル基、1,2−ジメチルプロピル、1,3−ジメチルプロピル、2,3−ジメチルプロピル、1,1−ジメチルブチル基、2,2−ジメチルブチル基、3,3−ジメチルブチル基、4,4−ジメチルブチル基、1,2−ジメチルブチル基、1,3−ジメチルブチル基、1,4−ジメチルブチル基、2,3−ジメチルブチル基、2,4−ジメチルブチル基、3,4−ジメチルブチル基、1−エチルブチル基、2−エチルブチル基、3−エチルブチル基、1−メチルペンチル基、2−メチルペンチル基、3−メチルペンチル基、 4−メチルペンチル基、、1,1−ジメチルペンチル基、2,2−ジメチルペンチル基、3,3−ジメチルペンチル基、4,4−ジメチルペンチル基、5,5−ジメチルペンチル基、1,2−ジメチルペンチル基、1,3−ジメチルペンチル基、1,4−ジメチルペンチル基、2,3−ジメチルペンチル基、2,4−ジメチルペンチル基、3,4−ジメチルペンチル基、1−エチルペンチル基、2−エチルペンチル基、3−エチルペンチル基、4−エチルペンチル基、1−メチルヘキシル基、 2−メチルヘキシル基、3−メチルヘキシル基、4−メチルヘキシル基、5−メチルヘキシル基、1,1−ジエチルプロピル基、2,2−ジエチルプロピル基、3,3−ジエチルプロピル基、1,2−ジエチルプロピル基、2,3−ジエチルプロピル基、1,1−ジメチルヘキシル基、2,2−ジメチルヘキシル基、3,3−ジメチルヘキシル基、4,4−ジメチルヘキシル基、5,5−ジメチルヘキシル基、6,6−ジメチルヘキシル基、1,2−ジメチルヘキシル基、1,3−ジメチルヘキシル基、1,4−ジメチルヘキシル基、1,5−ジメチルヘキシル基、1,6−ジメチルヘキシル基、2,3−ジメチルヘキシル基、2,4−ジメチルヘキシル基、2,5−ジメチルヘキシル基、3,4−ジメチルヘキシル基、3,5−ジメチルヘキシル基、3,6−ジメチルヘキシル基、4,5−ジメチルヘキシル基、1−エチルヘキシル基、2−エチルヘキシル基、3−エチルヘキシル基、4−エチルヘキシル基、5−エチルヘキシル基、6−メチルヘプチル基等の分枝鎖アルキル基を例示することができる。また、シクロヘキシルメチル、シクロヘキシルエチル等の環状構造を含むアルキル基であっても良い。また、置換の炭素数が3以上のアルキル基としては、上で例示したアルキル基の1以上の水素原子が、本発明の効果を過度に阻害しない置換基で置換されたものを挙げることができる。例えば、アルキル基の1以上の水素原子がハロゲン原子や置換又は無置換の芳香族基、トリフルオロメチル基、シアノ基、ニトロ基、アルコキシ基、アリ−ルオキシ基、アルキルチオ基、ジアルキルアミノ基等で置換されたものを例示することができる。
In formula (1), each R is independently a substituted or unsubstituted alkyl group having 3 or more carbon atoms. The alkyl group may contain a cyclic structure in addition to a straight chain or branched chain.
Examples of the unsubstituted alkyl group having 3 or more carbon atoms include an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, and an n-nonyl group. , N-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, etc., straight chain alkyl groups. In addition, an i-propyl group, a sec-butyl group, in which one or more hydrogen atoms other than the terminal of these linear alkyl groups are substituted with an alkyl group such as a methyl group, an ethyl group, an n-propyl group, or an isopropyl group, tert-butyl group, 1-methylbutyl group, 2-methylbutyl group, 1-ethylpropyl group, 2-ethylpropyl group, 1,2-dimethylpropyl, 1,3-dimethylpropyl, 2,3-dimethylpropyl, 1, 1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 4,4-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 1,4- Dimethylbutyl group, 2,3-dimethylbutyl group, 2,4-dimethylbutyl group, 3,4-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 3-ethylbutyl group Group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1-dimethylpentyl group, 2,2-dimethylpentyl group, 3,3-dimethylpentyl group Group, 4,4-dimethylpentyl group, 5,5-dimethylpentyl group, 1,2-dimethylpentyl group, 1,3-dimethylpentyl group, 1,4-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,4-dimethylpentyl group, 1-ethylpentyl group, 2-ethylpentyl group, 3-ethylpentyl group, 4-ethylpentyl group, 1-methylhexyl group, 2-methylhexyl Group, 3-methylhexyl group, 4-methylhexyl group, 5-methylhexyl group, 1,1-diethylpropyl group, 2,2-diethylpropyl group, 3,3 -Diethylpropyl group, 1,2-diethylpropyl group, 2,3-diethylpropyl group, 1,1-dimethylhexyl group, 2,2-dimethylhexyl group, 3,3-dimethylhexyl group, 4,4-dimethyl Hexyl group, 5,5-dimethylhexyl group, 6,6-dimethylhexyl group, 1,2-dimethylhexyl group, 1,3-dimethylhexyl group, 1,4-dimethylhexyl group, 1,5-dimethylhexyl group 1,6-dimethylhexyl group, 2,3-dimethylhexyl group, 2,4-dimethylhexyl group, 2,5-dimethylhexyl group, 3,4-dimethylhexyl group, 3,5-dimethylhexyl group, 3 , 6-dimethylhexyl group, 4,5-dimethylhexyl group, 1-ethylhexyl group, 2-ethylhexyl group, 3-ethylhexyl group, 4-ethylhexyl , It can be exemplified 5- ethylhexyl group, a branched alkyl group such as 6-methyl heptyl group. Further, it may be an alkyl group containing a cyclic structure such as cyclohexylmethyl or cyclohexylethyl. Examples of the alkyl group having 3 or more substituted carbon atoms include those in which one or more hydrogen atoms of the alkyl group exemplified above are substituted with a substituent that does not excessively inhibit the effects of the present invention. . For example, one or more hydrogen atoms of an alkyl group are halogen atoms, substituted or unsubstituted aromatic groups, trifluoromethyl groups, cyano groups, nitro groups, alkoxy groups, aryloxy groups, alkylthio groups, dialkylamino groups, and the like. A substituted one can be exemplified.

また、本発明に係る上記式(1)又は式(2)で表される可溶性ポルフィリン誘導体に存在する複数の置換基Rは、すべて同一であっても互いに異なっていてもよい。ポルフィリン誘導体の合成の観点からは、複数の置換基Rがすべて同一である場合が好ましい。   Further, the plurality of substituents R present in the soluble porphyrin derivative represented by the above formula (1) or formula (2) according to the present invention may be all the same or different from each other. From the viewpoint of the synthesis of the porphyrin derivative, it is preferable that the plurality of substituents R are all the same.

置換基Rを適宜選択することによって、本発明に係るポルフィリン誘導体の溶媒に対する溶解度や、膜の結晶性/非結晶性(アモルファス性)、熱分解温度等の熱特性など、種々の特性を調節することができる。このため、本発明のポルフィリン誘導体が適用される分野によって、置換基Rを適宜選択することができる。   By appropriately selecting the substituent R, various properties such as the solubility of the porphyrin derivative according to the present invention in the solvent, the crystallinity / non-crystallinity (amorphous) of the film, and the thermal characteristics such as the thermal decomposition temperature are adjusted. be able to. Therefore, the substituent R can be appropriately selected depending on the field to which the porphyrin derivative of the present invention is applied.

例えば、置換基Rが、炭素数が3〜6の直鎖アルキル基であると、結晶性の膜が得られやすいため、例えば有機トランジスタなどの結晶性の膜を必要とする用途に好適に用いられる。
また、置換基Rが、炭素数が7以上の直鎖アルキル基であると、アモルファス性の膜が得られやすいため、例えば有機EL素子、有機太陽電池などのアモルファス性の膜を必要とする用途に好適に用いられる。
また、置換基Rが、直鎖アルキル基であると、π−πスタッキングが起こりやすくなり、上記式(2)である場合に、白金同士の結合が容易になる。
また、置換基Rが、分岐状アルキル基であると、例えば炭素数が8の2−エチルヘキシル基である場合に、炭素数が6の直鎖アルキル基と炭素数7の直鎖アルキル基の中間の熱特性が得られるなど、直鎖アルキル基の中間の特性を得ることが可能になる。
また、置換基Rが、環状構造を含むアルキル基であると、例えば炭素数が7のシクロヘキシルメチル基である場合に、同じ炭素数が7のn−ヘプチル基である場合に比べてTgや融点が上昇するなど、同じ炭素数の置換基に比べて耐熱性が向上する傾向がある。
For example, when the substituent R is a linear alkyl group having 3 to 6 carbon atoms, a crystalline film can be easily obtained. Therefore, the substituent R is suitably used for applications requiring a crystalline film such as an organic transistor. It is done.
In addition, when the substituent R is a linear alkyl group having 7 or more carbon atoms, an amorphous film can be easily obtained. For example, an application that requires an amorphous film such as an organic EL element or an organic solar battery. Is preferably used.
Further, when the substituent R is a linear alkyl group, π-π stacking is likely to occur, and in the case of the above formula (2), the bonding between platinum is facilitated.
In addition, when the substituent R is a branched alkyl group, for example, when the substituent R is a 2-ethylhexyl group having 8 carbon atoms, the intermediate between the straight-chain alkyl group having 6 carbon atoms and the straight-chain alkyl group having 7 carbon atoms is used. Thus, it is possible to obtain intermediate characteristics of a linear alkyl group.
Further, when the substituent R is an alkyl group containing a cyclic structure, for example, when the substituent R is a cyclohexylmethyl group having 7 carbon atoms, the Tg or melting point is higher than when the same carbon number is an n-heptyl group having 7 carbon atoms. The heat resistance tends to be improved as compared with a substituent having the same number of carbon atoms, such as an increase of

本発明の可溶性ポルフィリン誘導体における置換基Rの炭素数は3以上であるが、Rの炭素数が大きすぎると、膜にした場合、排除体積効果により膜中のポルフィリン誘導体の充填密度が相対的に低くなりやすく、電荷輸送性等の物性が劣る場合がある。また、Rの炭素数が大きすぎると、アモルファス性が高くなり再結晶による精製が困難になりやすい。このような点から、置換基Rの炭素数は10以下であることが好ましい。
中でも、式(1)又は式(2)における全ての置換基Rの炭素数が7又は8で直鎖又は分岐状のアルキル基である場合には、n−ヘキサンにも容易に溶解するほど、溶剤溶解性が向上するという特徴がある上、炭素数が大きすぎる場合のデメリットも問題になり難くバランスが良い点から好ましい。
The carbon number of the substituent R in the soluble porphyrin derivative of the present invention is 3 or more. However, if the carbon number of R is too large, the packing density of the porphyrin derivative in the film is relatively reduced due to the excluded volume effect when the film is formed into a film. It tends to be low, and physical properties such as charge transportability may be inferior. On the other hand, if the carbon number of R is too large, the amorphousness becomes high and purification by recrystallization tends to be difficult. From such a point, the number of carbon atoms of the substituent R is preferably 10 or less.
Especially, when carbon number of all the substituents R in Formula (1) or Formula (2) is 7 or 8, and it is a linear or branched alkyl group, so that it dissolves easily in n-hexane, In addition to the characteristics that the solvent solubility is improved, the disadvantages when the carbon number is too large are less likely to be a problem, which is preferable from the viewpoint of good balance.

また、本発明に係る可溶性ポルフィリン誘導体は、熱分解温度が従来のテトラフェニルポルフィリンに比べて高くて熱的安定性が高い。熱分解温度等の熱物性は、式(1)又は式(2)における置換基Rの選択により変動する。本発明に係る可溶性ポルフィリン誘導体は、従来のテトラフェニルポルフィリンに比べて熱分解温度が高いので、使用時に高温になり得るデバイスへの適用が可能となる。また、本発明に係る可溶性ポルフィリン誘導体は、従来のテトラフェニルポルフィリンにはなかったガラス転移温度が発現し、アモルファス性を生じ得る。本発明に係る可溶性ポルフィリン誘導体がアモルファス性を生じる場合、湿式成膜法により均一性のある膜の作成が可能となるメリットが挙げられる。   Moreover, the soluble porphyrin derivative according to the present invention has a higher thermal decomposition temperature and higher thermal stability than conventional tetraphenylporphyrin. Thermophysical properties such as the thermal decomposition temperature vary depending on the choice of substituent R in formula (1) or formula (2). Since the soluble porphyrin derivative according to the present invention has a higher thermal decomposition temperature than conventional tetraphenylporphyrins, it can be applied to devices that can be heated at the time of use. In addition, the soluble porphyrin derivative according to the present invention exhibits a glass transition temperature that is not found in conventional tetraphenylporphyrins, and may be amorphous. When the soluble porphyrin derivative according to the present invention is amorphous, there is a merit that a uniform film can be formed by a wet film forming method.

本発明に係る下記式(1)で表される可溶性ポルフィリン誘導体の製造方法は、下記式(3)で表されるアルデヒドと、ピロ−ルとを、トリフルオロ酢酸を触媒として反応させる工程を有する。   The method for producing a soluble porphyrin derivative represented by the following formula (1) according to the present invention includes a step of reacting an aldehyde represented by the following formula (3) with pyrrole using trifluoroacetic acid as a catalyst. .

(式(3)において、Rは、それぞれ独立に、炭素数が3以上のアルキル基である。) (In Formula (3), each R is independently an alkyl group having 3 or more carbon atoms.)

(式(1)において、Rは、それぞれ独立に、炭素数が3以上のアルキル基である。) (In Formula (1), each R is independently an alkyl group having 3 or more carbon atoms.)

本発明によれば、上記工程を有することにより、下記式(1)で表される可溶性ポルフィリン誘導体を収率良く合成することができる。本発明に係る製造方法によれば、容易に上記式(1)で表される可溶性ポルフィリン誘導体を得ることができる。   According to the present invention, a soluble porphyrin derivative represented by the following formula (1) can be synthesized with high yield by having the above-described steps. According to the production method of the present invention, the soluble porphyrin derivative represented by the above formula (1) can be easily obtained.

なお、上記式(3)で表されるアルデヒドと、ピロ−ルとを、酸触媒として一般的に用いられるプロピオン酸を用いたところ、ポルフィリンへの環化反応は全く進行しなかった。上記式(3)で表されるアルデヒドは、エ−テル置換基が導入されているため、pKaが増加しているからと推定される。また、ルイス酸であるBF3・Et2Oを用いたところ、反応が進行し精製を繰り返す事により目的物を得ることができたが、収率は1%と低かった。この低収率の原因としては、ルイス酸を用いた場合には反応速度が速いため、環化反応よりポリマ−反応が優先される可能性が高いことが予想され、適切な反応速度となる酸触媒を選択することが必要と考えられた。
それに対し、本発明の製造方法のようにトリフルオロ酢酸を用いると、上記式(3)で表されるアルデヒドとピロ−ルとのポルフィリンへの環化反応が約20%程度と収率良く得られることがわかった。
In addition, when propionic acid generally used as an acid catalyst was used for the aldehyde represented by the above formula (3) and pyrrole, the cyclization reaction to porphyrin did not proceed at all. The aldehyde represented by the above formula (3) is presumed to have an increased pKa because an ether substituent is introduced. In addition, when BF 3 .Et 2 O, which is a Lewis acid, was used, the reaction progressed and the purification was repeated to obtain the desired product, but the yield was as low as 1%. The reason for this low yield is that when Lewis acid is used, the reaction rate is fast, so it is expected that the polymer reaction is likely to be prioritized over the cyclization reaction. It was considered necessary to select a catalyst.
On the other hand, when trifluoroacetic acid is used as in the production method of the present invention, a cyclization reaction of aldehyde and pyrrole represented by the above formula (3) to porphyrin can be obtained with a yield of about 20%. I found out that

本発明に係る製造方法は、例えば次のように実施することができる。
まず、3,5−ジヒドロキシベンジルアルコ−ル(1等量)並びに炭酸カリウム(2.5等量)をジメチルホルムアミド中、アルキルブロマイド(2.5〜4等量)存在下、窒素もしくはアルゴン雰囲気中90℃にて撹拌する。クロロホルム−水にて抽出した後、有機層を2回水で洗浄、飽和チオ硫酸ナトリウム水溶液にて洗浄、無水硫酸マグネシウムにて乾燥、濾別後に濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(例えば、クロマト管:内径4cm、長さ25cm、展開溶媒:ヘキサン→クロロホルム)にて精製する事により、3,5−ビスアルコキシベンジルアルコ−ルを得る。
The manufacturing method according to the present invention can be carried out, for example, as follows.
First, 3,5-dihydroxybenzyl alcohol (1 equivalent) and potassium carbonate (2.5 equivalents) in dimethylformamide in the presence of alkyl bromide (2.5-4 equivalents) in a nitrogen or argon atmosphere Stir at 90 ° C. After extraction with chloroform-water, the organic layer was washed twice with water, washed with a saturated aqueous sodium thiosulfate solution, dried over anhydrous magnesium sulfate, filtered and concentrated, and the residue obtained was concentrated on silica gel column chromatography ( For example, 3,5-bisalkoxybenzyl alcohol is obtained by purification with a chromatographic tube: inner diameter 4 cm, length 25 cm, developing solvent: hexane → chloroform.

3,5−ビスアルコキシベンジルアルコ−ル(1等量)並びに酸化マンガン(IV)(4等量)の混合物をクロロホルム中、無水硫酸マグネシウム存在下、窒素若しくはアルゴン下、室温にて数日間撹拌した。濾過後に濾液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(例えば、クロマト管:内径4cm、長さ25cm、展開溶媒: クロロホルム−ヘキサン(体積比が3:2又は4:1))にて分離精製する事により、3,5−ビス(アルコキシ)ベンズアルデヒドを得る。   A mixture of 3,5-bisalkoxybenzyl alcohol (1 equivalent) and manganese (IV) oxide (4 equivalents) was stirred in chloroform in the presence of anhydrous magnesium sulfate under nitrogen or argon at room temperature for several days. . The residue obtained by concentrating the filtrate after filtration was subjected to silica gel column chromatography (for example, chromatographic tube: inner diameter 4 cm, length 25 cm, developing solvent: chloroform-hexane (volume ratio is 3: 2 or 4: 1)). By separation and purification, 3,5-bis (alkoxy) benzaldehyde is obtained.

ピロ−ル(1等量)並びに3,5−ビス(アルコキシ)ベンズアルデヒド(1等量)の混合物をクロロホルム中(約0.01M)、室温にて撹拌した。この溶液にアルゴンを1時間バブリングさせた。続いてトリフルオロ酢酸(1.0〜1.5等量)を加え、室温にて一晩撹拌した。この溶液に2,3−ジクロロ−5,6−ジシアノベンゾキノン(1等量)を加え、更に5時間撹拌した。トリエチルアミン(1.5等量)を添加して加水分解後に溶液を濃縮して残渣を得る。クロロホルムを展開溶媒として、得られた残渣をシリカゲルに通し、5,10,15,20−テトラキス[3,5−ビス(アルコキシ)フェニル]ポルフィリンを得る。必要であれば更にシリカゲルカラムクロマトグラフィ−(展開溶媒:クロロホルム−ヘキサン(体積比が3:2又は1:1))などで精製する。
なお、上記反応時間については適宜調節すれば良く、特に制限されない。
A mixture of pyrrole (1 equivalent) and 3,5-bis (alkoxy) benzaldehyde (1 equivalent) was stirred in chloroform (about 0.01 M) at room temperature. This solution was bubbled with argon for 1 hour. Subsequently, trifluoroacetic acid (1.0 to 1.5 equivalents) was added and stirred overnight at room temperature. To this solution, 2,3-dichloro-5,6-dicyanobenzoquinone (1 equivalent) was added and stirred for another 5 hours. Triethylamine (1.5 equivalents) is added and after hydrolysis, the solution is concentrated to give a residue. The resulting residue is passed through silica gel using chloroform as a developing solvent to obtain 5,10,15,20-tetrakis [3,5-bis (alkoxy) phenyl] porphyrin. If necessary, it is further purified by silica gel column chromatography (developing solvent: chloroform-hexane (volume ratio is 3: 2 or 1: 1)) and the like.
The reaction time may be appropriately adjusted and is not particularly limited.

本発明に係る可溶性ポルフィリン誘導体は、良好な溶剤溶解性を有するため、湿式成膜法により、膜を形成することが可能である。
湿式成膜法により膜を形成する場合には、まず、可溶性ポルフィリン誘導体と溶剤と必要に応じてその他成分を含む塗工液を用意する。
有機溶剤としては、可溶性ポルフィリン誘導体が溶解し、用途により適宜選択されれば特に限定されない。例えばエレクトロニクス関係に用いられる場合に、一貫して不活性雰囲気下で形成する点からは、水を含まない溶剤が好ましく、非水系溶剤が好ましい。非水系溶剤としては、例えば、ベンゼン、トルエン、キシレンの各異性体およびそれらの混合物、メシチレン、テトラリン、p−シメン、クメン、エチルベンゼン、ジエチルベンゼン、ブチルベンゼン、クロロベンゼン、ジクロロベンゼンの各異性体およびそれらの混合物等をはじめとする芳香族系溶媒、アニソ−ル、フェネト−ル、ブチルフェニルエ−テル、テトラヒドロフラン、2−ブタノン、1,4−ジオキサン、ジエチルエ−テル、ジイソプロピルエ−テル、ジフェニルエ−テル、ジベンジルエ−テル、ジグライム等をはじめとするエ−テル系溶媒、ジクロロメタン、1,1−ジクロロエタン、1,2−ジクロロエタン、トリクロロエチレン、テトラクロロエチレン、クロロホルム、四塩化炭素、1−クロロナフタレン等のクロル系溶媒、シクロヘキサノンなどが挙げられる。その他、本発明に係る可溶性ポルフィリン誘導体は置換基Rの選択により、n−ヘキサン、シクロヘキサン、n−ペンタンなどの非極性アルカン系溶媒なども溶剤として用いることが可能である。用いられる溶剤としては、2種以上の混合溶媒であっても良い。
上記塗工液を用いてポルフィリン誘導体を含有する膜を形成する際の塗工方法としては、スピンコ−ティング法、キャスティング法、ディッピング法、バ−コ−ト法、ブレ−ドコ−ト法、ロ−ルコ−ト法、グラビアコ−ト法、フレキソ印刷法、スプレ−コ−ト法、インクジェット法等が挙げられる。
Since the soluble porphyrin derivative according to the present invention has good solvent solubility, it is possible to form a film by a wet film forming method.
In the case of forming a film by a wet film forming method, first, a coating solution containing a soluble porphyrin derivative, a solvent, and other components as required is prepared.
The organic solvent is not particularly limited as long as it dissolves a soluble porphyrin derivative and is appropriately selected depending on the application. For example, when used in electronics, a solvent that does not contain water is preferable and a non-aqueous solvent is preferable from the viewpoint of consistently forming in an inert atmosphere. Non-aqueous solvents include, for example, benzene, toluene, xylene isomers and mixtures thereof, mesitylene, tetralin, p-cymene, cumene, ethylbenzene, diethylbenzene, butylbenzene, chlorobenzene, dichlorobenzene and isomers thereof. Aromatic solvents including mixtures, anisole, phenetol, butylphenyl ether, tetrahydrofuran, 2-butanone, 1,4-dioxane, diethyl ether, diisopropyl ether, diphenyl ether Ether solvents such as dibenzyl ether, diglyme, etc., chloro solvents such as dichloromethane, 1,1-dichloroethane, 1,2-dichloroethane, trichloroethylene, tetrachloroethylene, chloroform, carbon tetrachloride, 1-chloronaphthalene Medium, and cyclohexanone. In addition, the soluble porphyrin derivative according to the present invention can use a non-polar alkane-based solvent such as n-hexane, cyclohexane, and n-pentane as a solvent depending on the selection of the substituent R. As a solvent used, two or more kinds of mixed solvents may be used.
As a coating method for forming a film containing a porphyrin derivative using the above coating solution, a spin coating method, a casting method, a dipping method, a bar coating method, a blade coating method, -The coat method, the gravure coat method, the flexographic printing method, the spray coat method, the ink jet method and the like.

本発明に係る可溶性ポルフィリン誘導体は、有機化合物が比較的難溶のn−ヘキサン等にも溶解し得るので、本発明に係る可溶性ポルフィリン誘導体によれば、有機化合物からなる多層膜を湿式成膜法により形成可能である。例えば、下層の有機化合物がクロロホルム等の有機溶剤に溶解するがn−ヘキサンに溶解しないものであれば、下層をクロロホルム溶液にて湿式成膜法により形成した後、その層上に、可溶性ポルフィリン誘導体のn−ヘキサン溶液を用いて湿式成膜法により塗膜を形成しても、下層がn−ヘキサンによって溶解して混合することがない。   Since the soluble porphyrin derivative according to the present invention can be dissolved in n-hexane or the like in which the organic compound is relatively hardly soluble, according to the soluble porphyrin derivative according to the present invention, a multilayer film composed of the organic compound is formed by a wet film formation method. Can be formed. For example, if the organic compound in the lower layer is dissolved in an organic solvent such as chloroform but not in n-hexane, the lower layer is formed by a wet film formation method in a chloroform solution, and then a soluble porphyrin derivative is formed on the layer. Even if a coating film is formed by a wet film forming method using the n-hexane solution, the lower layer is not dissolved and mixed by n-hexane.

本発明に係る可溶性ポルフィリン誘導体は、大きなπ電子共役系を有するため、電子キャリアとして使用可能であり、広くエレクトロニクス分野に応用可能である。例えば、有機半導体として有機トランジスタ、有機太陽電池等に好適に用いられる。また、有機EL素子のような有機発光デバイスの有機層などとして好適に用いられる。
更に、本発明に係る可溶性ポルフィリン誘導体は、特定の波長領域に鋭い吸収ピ−クを有すること等から、色素の他、光吸収により生じた励起状態を利用した光触媒、光ラジカル発生、光起電力、光電流など、広く、電子材料、光学材料、医療材料、表示材料等、種々の用途への応用が可能である。
Since the soluble porphyrin derivative according to the present invention has a large π electron conjugated system, it can be used as an electron carrier and can be widely applied to the electronics field. For example, the organic semiconductor is suitably used for an organic transistor, an organic solar cell, and the like. Further, it is suitably used as an organic layer of an organic light emitting device such as an organic EL element.
Furthermore, since the soluble porphyrin derivative according to the present invention has a sharp absorption peak in a specific wavelength region, etc., in addition to the dye, a photocatalyst utilizing an excited state generated by light absorption, photoradical generation, photovoltaic power Widely applicable to various uses such as electronic materials, optical materials, medical materials, display materials, etc.

以下の実施例において、全ての試薬は市販品を用いて行った。ピロ−ルは減圧蒸留し、アルゴン雰囲気下で保存した。その他の試薬は精製せずに反応に用いた。精製時のシリカゲルカラムクロマトグラフィ−としては、メルク製silica gel 60、クロマト管:内径4cm、長さ25cmを使用した。   In the following examples, all reagents were obtained using commercially available products. The pyrrole was distilled under reduced pressure and stored under an argon atmosphere. Other reagents were used in the reaction without purification. As silica gel column chromatography at the time of purification, Merca silica gel 60, chromatographic tube: inner diameter 4 cm, length 25 cm was used.

(実施例1)
下記スキ−ムに従って、上記式(1)で表される可溶性ポルフィリン誘導体(5,10,15,20−テトラキス[3,5−ビス(シクロヘキシルメチロキシ)フェニル]ポルフィリン)を製造した。
Example 1
A soluble porphyrin derivative (5,10,15,20-tetrakis [3,5-bis (cyclohexylmethyloxy) phenyl] porphyrin) represented by the above formula (1) was produced according to the following scheme.

(1)3,5−ビス(シクロヘキシルメチロキシ)ベンジルアルコ−ルの合成
3,5−ジヒドロキシベンジルアルコ−ル(6.040g,43.100mmol)並びに炭酸カリウム(14.575g,0.105mol)をジメチルホルムアミド(DMF)40ml中、シクロヘキシルメチルブロミド(14.8ml,0.107mol)存在下、窒素もしくはアルゴン雰囲気中90℃にて撹拌した。クロロホルム−水にて抽出した後、有機層を2回水で洗浄、飽和チオ硫酸ナトリウム水溶液にて洗浄、無水硫酸マグネシウムにて乾燥、濾別後に濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒: ヘキサン→クロロホルム)にて精製する事により、目的物(3,5−ビス(シクロヘキシルメチロキシ)ベンジルアルコ−ル、式[A]のRがシクロヘキシルメチル)(固体、4.450g、収率31.1%)を得た。
(1) Synthesis of 3,5-bis (cyclohexylmethyloxy) benzyl alcohol 3,5-dihydroxybenzyl alcohol (6.040 g, 43.100 mmol) and potassium carbonate (14.575 g, 0.105 mol) were added to dimethylformamide (DMF). The mixture was stirred at 90 ° C. in a nitrogen or argon atmosphere in the presence of cyclohexylmethyl bromide (14.8 ml, 0.107 mol) in 40 ml. After extraction with chloroform-water, the organic layer was washed twice with water, washed with a saturated aqueous sodium thiosulfate solution, dried over anhydrous magnesium sulfate, filtered and concentrated, and the residue obtained was concentrated on silica gel column chromatography ( The target product (3,5-bis (cyclohexylmethyloxy) benzyl alcohol, R in formula [A] is cyclohexylmethyl) (solid, 4.450 g, yield) 31.1%).

得られた化合物のHNMR、13CNMRを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 1.00−1.10 (m, 4H, CH2), 1.15−1.36 (m, 6H, CH2), 1.69−1.88 (m, 12H, CH2+CH), 6.69 (t, J=2.0 Hz, 1H, arom. H), 6.98 (d, J=2.0 Hz, 2H, arom. H), 9.89 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 25.73, 26.45, 29.82, 37.57 (aliphatic), 73.84 (ether), 107.52, 107.98, 138.23, 160.89 (aromatic), 192.18 (aldehyde).
When 1 HNMR and 13 CNMR of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 1.00−1.10 (m, 4H, CH 2 ), 1.15−1.36 (m, 6H, CH 2 ), 1.69−1.88 (m, 12H, CH 2 + CH), 6.69 (t, J = 2.0 Hz, 1H, arom.H), 6.98 (d, J = 2.0 Hz, 2H, arom.H), 9.89 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 25.73, 26.45, 29.82, 37.57 (aliphatic), 73.84 (ether), 107.52, 107.98, 138.23, 160.89 (aromatic), 192.18 (aldehyde).

(2)3,5−ビス(シクロヘキシルメチロキシ)ベンズアルデヒドの合成
3,5−ビス(シクロヘキシルメチロキシ)ベンジルアルコ−ル(4.436g,13.342mmol)並びに酸化マンガン(IV)(4.082g,46.954mol)の混合物をクロロホルム45ml中、無水硫酸マグネシウム存在下、窒素若しくはアルゴン下、室温にて数日間撹拌した。濾過後に濾液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒:クロロホルム−ヘキサン(3:2 v/v))にて分離精製する事により、目的化合物(3,5−ビス(シクロヘキシルメチロキシ)ベンズアルデヒド、式[B]のRがシクロヘキシルメチル)(固体、3.576g、収率81.1%)を得た。
(2) Synthesis of 3,5-bis (cyclohexylmethyloxy) benzaldehyde 3,5-bis (cyclohexylmethyloxy) benzyl alcohol (4.436 g, 13.342 mmol) and manganese (IV) oxide (4.082 g, 46.954 mol) The mixture was stirred in 45 ml of chloroform in the presence of anhydrous magnesium sulfate under nitrogen or argon at room temperature for several days. The residue obtained by concentrating the filtrate after filtration was separated and purified by silica gel column chromatography (developing solvent: chloroform-hexane (3: 2 v / v)) to obtain the target compound (3,5-bis (cyclohexyl). Methyloxy) benzaldehyde, R of formula [B] was cyclohexylmethyl) (solid, 3.576 g, yield 81.1%).

得られた化合物のHNMR、13CNMRを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 1.00−1.10 (m, 4H, CH2), 1.15−1.36 (m, 6H, CH2), 1.69−1.88 (m, 12H, CH2+CH), 6.69 (t, J=2.0 Hz, 1H, arom. H), 6.98 (d, J=2.0 Hz, 2H, arom. H), 9.89 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 25.73, 26.45, 29.82, 37.57 (aliphatic), 73.84 (ether), 107.52, 107.98, 138.23, 160.89 (aromatic), 192.18 (aldehyde).
When 1 HNMR and 13 CNMR of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 1.00−1.10 (m, 4H, CH 2 ), 1.15−1.36 (m, 6H, CH 2 ), 1.69−1.88 (m, 12H, CH 2 + CH), 6.69 (t, J = 2.0 Hz, 1H, arom.H), 6.98 (d, J = 2.0 Hz, 2H, arom.H), 9.89 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 25.73, 26.45, 29.82, 37.57 (aliphatic), 73.84 (ether), 107.52, 107.98, 138.23, 160.89 (aromatic), 192.18 (aldehyde).

(3)5,10,15,20−テトラキス [3,5−ビス(シクロヘキシルメチロキシ)フェニル]ポルフィリンの合成
ピロ−ル(0.55ml)、及び3,5−ビス(シクロヘキシルメチロキシ)ベンズアルデヒド(2.547g,7.707mmol)の混合物をクロロホルム中(700ml)、室温にて撹拌した。この溶液にアルゴンを1時間バブリングさせた。続いてトリフルオロ酢酸(0.86ml)を加え、室温にて一晩撹拌した。この溶液に2,3−ジクロロ−5,6−ジシアノベンゾキノン(1.801 g, 7.934 mmol)を加え、更に5時間撹拌した。トリエチルアミン(1.7ml)を添加して加水分解後に溶液を濃縮し、クロロホルムを展開溶媒として得られた残渣をシリカゲルに通した。更にシリカゲルカラムクロマトグラフィ−(展開溶媒: クロロホルム)にて精製した。最後にジクロロメタン−メタノ−ルにて再結晶させる事により、目的の化合物(5,10,15,20−テトラキス [3,5−ビス(シクロヘキシルメチロキシ)フェニル]ポルフィリン、式[C]のRがシクロヘキシルメチル)(赤紫粉体、0.390g、収率13.4%)を得た。
(3) Synthesis of 5,10,15,20-tetrakis [3,5-bis (cyclohexylmethyloxy) phenyl] porphyrin Pyrrol (0.55 ml) and 3,5-bis (cyclohexylmethyloxy) benzaldehyde (2.547) g, 7.707 mmol) was stirred in chloroform (700 ml) at room temperature. This solution was bubbled with argon for 1 hour. Subsequently, trifluoroacetic acid (0.86 ml) was added, and the mixture was stirred overnight at room temperature. To this solution was added 2,3-dichloro-5,6-dicyanobenzoquinone (1.801 g, 7.934 mmol), and the mixture was further stirred for 5 hours. After hydrolysis by adding triethylamine (1.7 ml), the solution was concentrated, and the resulting residue was passed through silica gel using chloroform as a developing solvent. Further purification was performed by silica gel column chromatography (developing solvent: chloroform). Finally, by recrystallization from dichloromethane-methanol, the target compound (5,10,15,20-tetrakis [3,5-bis (cyclohexylmethyloxy) phenyl] porphyrin, R of formula [C] (Cyclohexylmethyl) (red purple powder, 0.390 g, yield 13.4%) was obtained.

得られた化合物のHNMR、MALDI−TOF−MSを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) −2.86 (s, 2H, NH), 1.04−1.36 (m, 40H, CH2), 1.68−1.93 (m, 48H, CH2+CH), 3.91 (d, J=6.0 Hz, 16H, ArOCH2), 6.87 (t, J=2.2 Hz, 4H, arom. H), 7.36 (d, J=2.0 Hz, 8H, arom. H), 8.95 (s, 8H, pyrrole H).
MALDI−TOF−MS (no matrix): m/z=1512.50 (M+)
When 1 HNMR and MALDI-TOF-MS of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) −2.86 (s, 2H, NH), 1.04-1.36 (m, 40H, CH 2 ), 1.68−1.93 (m, 48H, CH 2 + CH), 3.91 (d, J = 6.0 Hz, 16H, ArOCH 2 ), 6.87 (t, J = 2.2 Hz, 4H, arom.H), 7.36 (d, J = 2.0 Hz, 8H, arom.H), 8.95 (s, 8H, pyrrole H).
MALDI-TOF-MS (no matrix): m / z = 1512.50 (M + )

(実施例2)
実施例1と同様のスキ−ムに従って、5,10,15,20−テトラキス[3,5−ビス(2−エチルヘキシロキシ)フェニル]ポルフィリンを製造した。
(Example 2)
According to the same scheme as in Example 1, 5,10,15,20-tetrakis [3,5-bis (2-ethylhexyloxy) phenyl] porphyrin was produced.

(1)3,5−ビス(2−エチルヘキシロキシ)ベンジルアルコ−ルの合成
3,5−ジヒドロキシベンジルアルコ−ル(5.000g,35.679mmol)並びに炭酸カリウム(12.328g,89.200mol)をジメチルホルムアミド(DMF)30ml中、2−エチルヘキシルブロミド(15.5ml,89.889mmol)存在下、窒素もしくはアルゴン雰囲気中90℃にて撹拌した。クロロホルム−水にて抽出した後、有機層を2回水で洗浄、飽和チオ硫酸ナトリウム水溶液にて洗浄、無水硫酸マグネシウムにて乾燥、濾別後に濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒: ヘキサン→クロロホルム)にて精製する事により、目的物(3,5−ビス(2−エチルヘキシロキシ)ベンジルアルコ−ル、式[A]のRが2−エチルヘキシル)(油状、8.017g、収率61.6%)を得た。
(1) Synthesis of 3,5-bis (2-ethylhexyloxy) benzyl alcohol 3,5-dihydroxybenzyl alcohol (5.000 g, 35.679 mmol) and potassium carbonate (12.328 g, 89.200 mol) were added to dimethylformamide. The mixture was stirred at 90 ° C. in a nitrogen or argon atmosphere in the presence of 2-ethylhexyl bromide (15.5 ml, 89.889 mmol) in 30 ml of (DMF). After extraction with chloroform-water, the organic layer was washed twice with water, washed with a saturated aqueous sodium thiosulfate solution, dried over anhydrous magnesium sulfate, filtered and concentrated, and the residue obtained was concentrated on silica gel column chromatography ( The target product (3,5-bis (2-ethylhexyloxy) benzyl alcohol, R in formula [A] is 2-ethylhexyl) (oil, 8.017 g) Yield 61.6%).

得られた化合物のHNMR、13CNMRを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.905 (t, J=7.0 Hz, 6H, CH3), 0.93 (t, J=7.4 Hz, 6H, CH3), 1.30−1.54 (m, 19H, CH3+CH2), 1.67−1.76 (m, 2H, CH), 3.83−3.89 (m, 4H, ArOCH2), 4.36 (q, J=7.2 Hz, 2H, CH2O), 6.64 (t, J=2.2 Hz, 1H, arom. H), 7.16 (d, J=2.8 Hz, 2H, arom. H)
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 11.10, 14.05, 14.33, 23.03, 23.89, 29.09, 30.55, 39.41 (aliphatic), 61.03, 70.76 (ether), 106.34, 107.59, 132.19, 160.39, 166.57 (aromatic).
When 1 HNMR and 13 CNMR of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.905 (t, J = 7.0 Hz, 6H, CH 3 ), 0.93 (t, J = 7.4 Hz, 6H, CH 3 ), 1.30−1.54 (m, 19H, CH 3 + CH 2 ), 1.67−1.76 (m, 2H, CH), 3.83−3.89 (m, 4H, ArOCH 2 ), 4.36 (q, J = 7.2 Hz, 2H, CH 2 O) , 6.64 (t, J = 2.2 Hz, 1H, arom.H), 7.16 (d, J = 2.8 Hz, 2H, arom.H)
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 11.10, 14.05, 14.33, 23.03, 23.89, 29.09, 30.55, 39.41 (aliphatic), 61.03, 70.76 (ether), 106.34, 107.59, 132.19, 160.39, 166.57 (aromatic).

(2)3,5−ビス(2−エチルヘキシロキシ)ベンズアルデヒドの合成
3,5−ビス(2−エチルヘキシロキシ)ベンジルアルコ−ル(5.208g,14.285mmol)並びに酸化マンガン(IV)(5.208g,14.285mol)の混合物をクロロホルム30ml中、無水硫酸マグネシウム存在下、窒素若しくはアルゴン下、室温にて数日間撹拌した。濾過後に濾液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒:クロロホルム−ヘキサン(1:1 v/v))にて分離精製する事により、目的化合物(3,5−ビス(2−エチルヘキシロキシ)ベンズアルデヒド、式[B]のRが2−エチルヘキシル)(油状、4.720g、収率91.1%)を得た。
(2) Synthesis of 3,5-bis (2-ethylhexyloxy) benzaldehyde 3,5-bis (2-ethylhexyloxy) benzyl alcohol (5.208 g, 14.285 mmol) and manganese (IV) oxide (5.208 g) , 14.285 mol) was stirred in 30 ml of chloroform in the presence of anhydrous magnesium sulfate under nitrogen or argon at room temperature for several days. The residue obtained by concentrating the filtrate after filtration was separated and purified by silica gel column chromatography (developing solvent: chloroform-hexane (1: 1 v / v)) to obtain the target compound (3,5-bis (2 -Ethylhexyloxy) benzaldehyde, R of formula [B] was 2-ethylhexyl) (oil, 4.720 g, yield 91.1%).

得られた化合物のHNMR、13CNMRを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.91 (t, J=6.8 Hz, 6H, CH3), 0.93 (t, J=7.2 Hz, 6H, CH3), 1.30−1.545 (m, 16H, CH2), 1.69−1.78 (m, 2H, CH), 3.845 (m, 4H, ArOCH2), 6.71 (t, J=2.2 Hz, 1H, arom. H), 6.99 (d, J=2.4 Hz, 2H, arom. H), 9.90 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 11.08, 14.06, 23.01, 23.83, 29.04, 30.48, 39.32 (aliphatic), 70.83 (ether), 107.51, 107.99, 138.25, 160.97 (aromatic), 192.16 (aldehyde).
When 1 HNMR and 13 CNMR of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.91 (t, J = 6.8 Hz, 6H, CH 3 ), 0.93 (t, J = 7.2 Hz, 6H, CH 3 ), 1.30−1.545 (m, 16H, CH 2 ), 1.69−1.78 (m, 2H, CH), 3.845 (m, 4H, ArOCH 2 ), 6.71 (t, J = 2.2 Hz, 1H, arom.H), 6.99 (d, J = 2.4 Hz, 2H, arom.H), 9.90 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 11.08, 14.06, 23.01, 23.83, 29.04, 30.48, 39.32 (aliphatic), 70.83 (ether), 107.51, 107.99, 138.25, 160.97 (aromatic), 192.16 ( aldehyde).

(3)5,10,15,20−テトラキス [3,5−ビス(2−エチルヘキシロキシ)フェニル]ポルフィリンの合成
ピロ−ル(0.40ml)、及び3,5−ビス(2−エチルヘキシロキシ)ベンズアルデヒド(2.020g,5.572mmol)の混合物をクロロホルム中(450ml)、室温にて撹拌した。この溶液にアルゴンを1時間バブリングさせた。続いてトリフルオロ酢酸(0.62ml)を加え、室温にて一晩撹拌した。この溶液に2,3−ジクロロ−5,6−ジシアノベンゾキノン(1.894g, 8.343mmol)を加え、更に5時間撹拌した。トリエチルアミン(1.4ml)を添加して加水分解後に溶液を濃縮し、クロロホルムを展開溶媒として得られた残渣をシリカゲルに通した。更にシリカゲルカラムクロマトグラフィ−(展開溶媒: クロロホルム−ヘキサン(1:1 v/v))にて精製した。最後に減圧下で固体化させる事により、目的の化合物(5,10,15,20−テトラキス [3,5−ビス(2−エチルヘキシロキシ)フェニル]ポルフィリン、式[C]のRが2−エチルヘキシル)(赤紫粘性固体、0.477g、収率20.9%)を得た。
(3) Synthesis of 5,10,15,20-tetrakis [3,5-bis (2-ethylhexyloxy) phenyl] porphyrin Pyrrol (0.40 ml) and 3,5-bis (2-ethylhexyloxy) ) A mixture of benzaldehyde (2.020 g, 5.572 mmol) was stirred in chloroform (450 ml) at room temperature. This solution was bubbled with argon for 1 hour. Subsequently, trifluoroacetic acid (0.62 ml) was added, and the mixture was stirred overnight at room temperature. To this solution was added 2,3-dichloro-5,6-dicyanobenzoquinone (1.894 g, 8.343 mmol), and the mixture was further stirred for 5 hours. After hydrolysis by adding triethylamine (1.4 ml), the solution was concentrated, and the resulting residue was passed through silica gel using chloroform as a developing solvent. Further purification was performed by silica gel column chromatography (developing solvent: chloroform-hexane (1: 1 v / v)). Finally, by solidifying under reduced pressure, the target compound (5,10,15,20-tetrakis [3,5-bis (2-ethylhexyloxy) phenyl] porphyrin, R in formula [C] is 2- Ethylhexyl) (red purple viscous solid, 0.477 g, yield 20.9%) was obtained.

得られた化合物のHNMR、MALDI−TOF−MSを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) −2.82 (s, 2H, NH), 0.88 (t, J=6.8 Hz, 24H, CH3), 0.95 (t, J=7.6 Hz, 24H, CH3), 1.26−1.62 (m, 64H, CH2), 1.77−1.83 (m, 8H, CH), 4.00 (d, J=6.0 Hz, 16H, ArOCH2), 6.89 (t, J=2.2 Hz, 4H, arom. H), 7.37 (d, J=2.0 Hz, 8H, arom. H), 8.97 (s, 8H, pyrrole H).
MALDI−TOF−MS (no matrix): m/z=1640.574 (M+)
When 1 HNMR and MALDI-TOF-MS of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) −2.82 (s, 2H, NH), 0.88 (t, J = 6.8 Hz, 24H, CH 3 ), 0.95 (t, J = 7.6 Hz , 24H, CH 3 ), 1.26−1.62 (m, 64H, CH 2 ), 1.77−1.83 (m, 8H, CH), 4.00 (d, J = 6.0 Hz, 16H, ArOCH 2 ), 6.89 (t, J = 2.2 Hz, 4H, arom.H), 7.37 (d, J = 2.0 Hz, 8H, arom.H), 8.97 (s, 8H, pyrrole H).
MALDI-TOF-MS (no matrix): m / z = 1640.574 (M + )

(実施例3)
実施例1と同様のスキ−ムに従って、5,10,15,20−テトラキス[3,5−ビス(オクチロキシ)フェニル]ポルフィリンを製造した。
(Example 3)
According to the same scheme as in Example 1, 5,10,15,20-tetrakis [3,5-bis (octyloxy) phenyl] porphyrin was produced.

(1)3,5−ビス(オクチロキシ)ベンジルアルコ−ルの合成
3,5−ジヒドロキシベンジルアルコ−ル(7.017g,50.072mmol)並びに炭酸カリウム(17.221g,0.125mol)をジメチルホルムアミド(DMF)65ml中、n−オクチルブロミド(22.0ml,0.126mol)存在下、窒素もしくはアルゴン雰囲気中90℃にて撹拌した。クロロホルム−水にて抽出した後、有機層を2回水で洗浄、飽和チオ硫酸ナトリウム水溶液にて洗浄、無水硫酸マグネシウムにて乾燥、濾別後に濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒: ヘキサン→クロロホルム)にて精製する事により、目的物(3,5−ビス(オクチロキシ)ベンジルアルコ−ル、式[A]のRがn−オクチル)(油状、14.150 g、収率77.5%)を得た。
(1) Synthesis of 3,5-bis (octyloxy) benzyl alcohol 3,5-dihydroxybenzyl alcohol (7.017 g, 50.072 mmol) and potassium carbonate (17.221 g, 0.125 mol) were added to 65 ml of dimethylformamide (DMF). In the presence of n-octyl bromide (22.0 ml, 0.126 mol), the mixture was stirred at 90 ° C. in a nitrogen or argon atmosphere. After extraction with chloroform-water, the organic layer was washed twice with water, washed with a saturated aqueous sodium thiosulfate solution, dried over anhydrous magnesium sulfate, filtered and concentrated, and the residue obtained was concentrated on silica gel column chromatography ( The target product (3,5-bis (octyloxy) benzyl alcohol, R in formula [A] is n-octyl) (oil, 14.150 g, yield 77.5) was purified by developing solvent: hexane → chloroform. %).

得られた化合物のHNMR、13CNMRを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.89 (t, J=7.2 Hz, 6H, CH3), 1.24−1.36 (m, 16H, CH2), 1.40−1.475 (m, 4H, CH2), 1.64 (t, J=6.2 Hz, 1H, OH), 1.73−1.80 (m, 4H, CH2), 3.93 (t, J=6.6 Hz, 4H, ArOCH2), 4.62 (d, J=6.4 Hz, 2H, CH2O), 6.38 (t, J=2.2 Hz, 1H, arom. H), 6.50 (d, J=2.4 Hz, 2H, arom. H)
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 14.08, 22.64, 26.04, 29.23, 29.25, 29.33, 31.80 (aliphatic), 65.48, 68.08 (ether), 100.55, 105.05, 143.17, 160.54 (aromatic).
When 1 HNMR and 13 CNMR of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.89 (t, J = 7.2 Hz, 6H, CH 3 ), 1.24−1.36 (m, 16H, CH 2 ), 1.40−1.475 (m, 4H, CH 2 ), 1.64 (t, J = 6.2 Hz, 1H, OH), 1.73−1.80 (m, 4H, CH 2 ), 3.93 (t, J = 6.6 Hz, 4H, ArOCH 2 ), 4.62 (d , J = 6.4 Hz, 2H, CH 2 O), 6.38 (t, J = 2.2 Hz, 1H, arom.H), 6.50 (d, J = 2.4 Hz, 2H, arom.H)
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 14.08, 22.64, 26.04, 29.23, 29.25, 29.33, 31.80 (aliphatic), 65.48, 68.08 (ether), 100.55, 105.05, 143.17, 160.54 (aromatic).

(2)3,5−ビス(オクチロキシ)ベンズアルデヒドの合成
3,5−ビス(オクチロキシ)ベンジルアルコ−ル(7.159g,19.637mmol)並びに酸化マンガン(IV)(7.002g,80.541mol)の混合物をクロロホルム45ml中、無水硫酸マグネシウム存在下、窒素若しくはアルゴン下、室温にて数日間撹拌した。濾過後に濾液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒:クロロホルム−ヘキサン(3: 2 v/v))にて分離精製する事により、目的化合物(3,5−ビス(オクチロキシ)ベンズアルデヒド、式[B]のRがn−オクチル)(油状、5.521g、収率77.5%)を得た。
(2) Synthesis of 3,5-bis (octyloxy) benzaldehyde A mixture of 3,5-bis (octyloxy) benzyl alcohol (7.159 g, 19.637 mmol) and manganese (IV) oxide (7.002 g, 80.541 mol) was mixed with chloroform. The mixture was stirred in 45 ml in the presence of anhydrous magnesium sulfate under nitrogen or argon for several days at room temperature. The residue obtained by concentrating the filtrate after filtration was separated and purified by silica gel column chromatography (developing solvent: chloroform-hexane (3: 2 v / v)) to obtain the target compound (3,5-bis (octyloxy). Benzaldehyde, R in formula [B] is n-octyl) (oil, 5.521 g, yield 77.5%).

得られた化合物のHNMR、13CNMRを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.89 (t, J=6.8 Hz, 6H, CH3), 1.26−1.39 (m, 16H, CH2), 1.435−1.49 (m, 4H, CH2), 1.75−1.82 (m, 4H, CH2), 3.98 (t, J=6.6 Hz, 4H, ArOCH2), 6.695 (t, J=2.6 Hz, 1H, arom. H), 6.98 (d, J=2.4 Hz, 2H, arom. H), 9.89 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 14.08, 22.64, 25.99, 29.12, 29.21, 29.30, 31.79 (aliphatic), 68.44 (ether), 107.59, 108.02, 138.30, 160.76 (aromatic), 192.10 (aldehyde).
When 1 HNMR and 13 CNMR of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.89 (t, J = 6.8 Hz, 6H, CH 3 ), 1.26−1.39 (m, 16H, CH 2 ), 1.435−1.49 (m, 4H, CH 2 ), 1.75−1.82 (m, 4H, CH 2 ), 3.98 (t, J = 6.6 Hz, 4H, ArOCH 2 ), 6.695 (t, J = 2.6 Hz, 1H, arom.H), 6.98 (d, J = 2.4 Hz, 2H, arom.H), 9.89 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 14.08, 22.64, 25.99, 29.12, 29.21, 29.30, 31.79 (aliphatic), 68.44 (ether), 107.59, 108.02, 138.30, 160.76 (aromatic), 192.10 ( aldehyde).

(3)5,10,15,20−テトラキス [3,5−ビス(オクチロキシ)フェニル]ポルフィリンの合成
ピロ−ル(0.40ml)、及び3,5−ビス(オクチロキシ)ベンズアルデヒド(1.997g,5.508mmol)の混合物をクロロホルム中(450ml)、室温にて撹拌した。この溶液にアルゴンを1時間バブリングさせた。続いてトリフルオロ酢酸(0.62ml)を加え、室温にて一晩撹拌した。この溶液に2,3−ジクロロ−5,6−ジシアノベンゾキノン(1.991g, 8.771mmol)を加え、更に5時間撹拌した。トリエチルアミン(1.3ml)を添加して加水分解後に溶液を濃縮し、クロロホルムを展開溶媒として得られた残渣をシリカゲルに通した更にシリカゲルカラムクロマトグラフィ−(展開溶媒: クロロホルム−ヘキサン(3:2 v/v))にて精製した。最後に減圧下で固体化させる事により、目的の化合物(5,10,15,20−テトラキス [3,5−ビス(オクチロキシ)フェニル]ポルフィリン、式[C]のRがn−オクチル)(赤紫粘性固体、0.490g、収率21.7%)を得た。
(3) Synthesis of 5,10,15,20-tetrakis [3,5-bis (octyloxy) phenyl] porphyrin Pyrrol (0.40 ml) and 3,5-bis (octyloxy) benzaldehyde (1.997 g, 5.508 mmol ) Was stirred in chloroform (450 ml) at room temperature. This solution was bubbled with argon for 1 hour. Subsequently, trifluoroacetic acid (0.62 ml) was added, and the mixture was stirred overnight at room temperature. To this solution was added 2,3-dichloro-5,6-dicyanobenzoquinone (1.991 g, 8.771 mmol), and the mixture was further stirred for 5 hours. Triethylamine (1.3 ml) was added and the solution was concentrated after hydrolysis. The residue obtained using chloroform as a developing solvent was passed through silica gel. Further silica gel column chromatography (developing solvent: chloroform-hexane (3: 2 v / v )). Finally, by solidifying under reduced pressure, the target compound (5,10,15,20-tetrakis [3,5-bis (octyloxy) phenyl] porphyrin, R in formula [C] is n-octyl) (red A purple viscous solid, 0.490 g, yield 21.7%) was obtained.

得られた化合物のHNMR、MALDI−TOF−MSを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) −2.84 (s, 2H, NH), 0.85 (t, J=6.8 Hz, 24H, CH3), 1.265−1.375 (m, 64H, CH2), 1.45−1.505 (m, 16H, CH2), 1.82−1.89 (m, 16H, CH2), 4.11 (t, J=6.6 Hz, 16H, ArOCH2), 6.88 (t, J=2.2 Hz, 4H, arom. H), 7.36 (d, J=2.0 Hz, 8H, arom. H), 8.93 (s, 8H, pyrrole H).
MALDI−TOF−MS (no matrix): m/z=1640.272 (M+)
When 1 HNMR and MALDI-TOF-MS of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) −2.84 (s, 2H, NH), 0.85 (t, J = 6.8 Hz, 24H, CH 3 ), 1.265−1.375 (m, 64H, CH 2 ), 1.45−1.505 (m, 16H, CH 2 ), 1.82-1−1.89 (m, 16H, CH 2 ), 4.11 (t, J = 6.6 Hz, 16H, ArOCH 2 ), 6.88 (t, J = 2.2 Hz, 4H, arom.H), 7.36 (d, J = 2.0 Hz, 8H, arom.H), 8.93 (s, 8H, pyrrole H).
MALDI-TOF-MS (no matrix): m / z = 1640.272 (M + )

(実施例4)
実施例1と同様のスキ−ムに従って、5,10,15,20−テトラキス[3,5−ビス(ヘプチロキシ)フェニル]ポルフィリンを製造した。
Example 4
According to the same scheme as in Example 1, 5,10,15,20-tetrakis [3,5-bis (heptyloxy) phenyl] porphyrin was produced.

(1)3,5−ビス(ヘプチロキシ)ベンジルアルコ−ルの合成
3,5−ジヒドロキシベンジルアルコ−ル(6.017g,42.936mmol)並びに炭酸カリウム(114.906g,0.108mol)をジメチルホルムアミド(DMF)60ml中、n−ヘプチルブロミド(20.5ml,0.130mol)存在下、窒素もしくはアルゴン雰囲気中90℃にて撹拌した。クロロホルム−水にて抽出した後、有機層を2回水で洗浄、飽和チオ硫酸ナトリウム水溶液にて洗浄、無水硫酸マグネシウムにて乾燥、濾別後に濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒: ヘキサン→クロロホルム)にて精製する事により、目的物(3,5−ビス(ヘプチロキシ)ベンジルアルコ−ル、式[A]のRがn−ヘプチル)(油状、9.308 g、収率64.4%)を得た。
(1) Synthesis of 3,5-bis (heptyloxy) benzyl alcohol 3,5-dihydroxybenzyl alcohol (6.017 g, 42.936 mmol) and potassium carbonate (114.906 g, 0.108 mol) were added to 60 ml of dimethylformamide (DMF). In the presence of n-heptyl bromide (20.5 ml, 0.130 mol), the mixture was stirred at 90 ° C. in a nitrogen or argon atmosphere. After extraction with chloroform-water, the organic layer was washed twice with water, washed with a saturated aqueous sodium thiosulfate solution, dried over anhydrous magnesium sulfate, filtered and concentrated, and the residue obtained was concentrated on silica gel column chromatography ( The target product (3,5-bis (heptyloxy) benzyl alcohol, R in formula [A] is n-heptyl) (oil, 9.308 g, yield 64.4) was purified by developing solvent: hexane → chloroform. %).

得られた化合物のHNMR、13CNMRを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.89 (t, J=7.0 Hz, 6H, CH3), 1.26−1.47 (m, 16H, CH2), 1.685 (t, J=6.0 Hz, 1H, OH), 1.73−1.80 (m, 4H, CH2), 3.93 (t, J=6.6 Hz, 4H, ArOCH2), 4.61 (d, J=6.0 Hz, 2H, CH2O), 6.37 (t, J=2.2 Hz, 1H, arom. H), 6.495 (d, J=2.4 Hz, 2H, arom. H)
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 14.05, 22.59, 26.00, 29.03, 29.25, 31.77 (aliphatic), 65.46, 68.07 (ether), 100.59, 105.07, 143.19, 160.55 (aromatic).
When 1 HNMR and 13 CNMR of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.89 (t, J = 7.0 Hz, 6H, CH 3 ), 1.26−1.47 (m, 16H, CH 2 ), 1.685 (t, J = 6.0 Hz, 1H, OH), 1.73-1.80 (m, 4H, CH 2 ), 3.93 (t, J = 6.6 Hz, 4H, ArOCH 2 ), 4.61 (d, J = 6.0 Hz, 2H, CH 2 O) , 6.37 (t, J = 2.2 Hz, 1H, arom.H), 6.495 (d, J = 2.4 Hz, 2H, arom.H)
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 14.05, 22.59, 26.00, 29.03, 29.25, 31.77 (aliphatic), 65.46, 68.07 (ether), 100.59, 105.07, 143.19, 160.55 (aromatic).

(2)3,5−ビス(ヘプチロキシ)ベンズアルデヒドの合成
3,5−ビス(ヘプチロキシ)ベンジルアルコ−ル(9.308g,27.660mmol)並びに酸化マンガン(IV)(9.726g,0.112mol)の混合物をクロロホルム60ml中、無水硫酸マグネシウム存在下、窒素若しくはアルゴン下、室温にて数日間撹拌した。濾過後に濾液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒:クロロホルム−ヘキサン(3:2 v/v))にて分離精製する事により、目的化合物(3,5−ビス(ヘプチロキシ)ベンズアルデヒド、式[B]のRがn−ヘプチル)(油状、7.127g、収率77.0%)を得た。
(2) Synthesis of 3,5-bis (heptyloxy) benzaldehyde A mixture of 3,5-bis (heptyloxy) benzyl alcohol (9.308 g, 27.660 mmol) and manganese (IV) oxide (9.726 g, 0.112 mol) in chloroform The mixture was stirred in 60 ml in the presence of anhydrous magnesium sulfate under nitrogen or argon at room temperature for several days. The residue obtained by concentrating the filtrate after filtration was separated and purified by silica gel column chromatography (developing solvent: chloroform-hexane (3: 2 v / v)) to obtain the target compound (3,5-bis (heptyloxy). Benzaldehyde, R of formula [B] is n-heptyl) (oil, 7.127 g, yield 77.0%).

得られた化合物のHNMR、13CNMRを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.90 (t, J=7.2 Hz, 6H, CH3), 1.285−1.49 (m, 16H, CH2), 1.75−1.82 (m, 4H, CH2), 3.98 (t, J=6.4 Hz, 4H, ArOCH2), 6.69 (t, J=2.2 Hz, 1H, arom. H), 6.98 (d, J=2.4 Hz, 2H, arom. H), 9.89 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 14.05, 22.58, 25.95, 29.00, 29.12, 31.75 (aliphatic), 68.44 (ether), 107.60, 108.04, 138.32, 160.77 (aromatic), 192.06 (aldehyde).
When 1 HNMR and 13 CNMR of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.90 (t, J = 7.2 Hz, 6H, CH 3 ), 1.285−1.49 (m, 16H, CH 2 ), 1.75−1.82 (m, 4H, CH 2 ), 3.98 (t, J = 6.4 Hz, 4H, ArOCH 2 ), 6.69 (t, J = 2.2 Hz, 1H, arom.H), 6.98 (d, J = 2.4 Hz, 2H, arom. H), 9.89 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 14.05, 22.58, 25.95, 29.00, 29.12, 31.75 (aliphatic), 68.44 (ether), 107.60, 108.04, 138.32, 160.77 (aromatic), 192.06 (aldehyde) .

(3)5,10,15,20−テトラキス [3,5−ビス(ヘプチロキシ)フェニル]ポルフィリンの合成
ピロ−ル(0.40ml)、及び3,5−ビス(ヘプチロキシ)ベンズアルデヒド(1.638g,4.897mmol)の混合物をクロロホルム中(450ml)、室温にて撹拌した。この溶液にアルゴンを1時間バブリングさせた。続いてトリフルオロ酢酸(0.54ml)を加え、室温にて一晩撹拌した。この溶液に2,3−ジクロロ−5,6−ジシアノベンゾキノン(1.098g, 4.837mmol)を加え、更に5時間撹拌した。トリエチルアミン(1.1ml)を添加して加水分解後に溶液を濃縮し、クロロホルムを展開溶媒として得られた残渣をシリカゲルに通した。更にシリカゲルカラムクロマトグラフィ−(展開溶媒: クロロホルム−ヘキサン(1:1 v/v))にて精製した。最後にジクロロメタン−メタノ−ルにて再結晶させる事により、目的の化合物(5,10,15,20−テトラキス [3,5−ビス(ヘプチロキシ)フェニル]ポルフィリン、式[C]のRがn−ヘプチル)(赤紫粉体、0.228g、収率12.2%)を得た。
(3) Synthesis of 5,10,15,20-tetrakis [3,5-bis (heptyloxy) phenyl] porphyrin Pyrrol (0.40 ml) and 3,5-bis (heptyloxy) benzaldehyde (1.638 g, 4.897 mmol) ) Was stirred in chloroform (450 ml) at room temperature. This solution was bubbled with argon for 1 hour. Subsequently, trifluoroacetic acid (0.54 ml) was added, and the mixture was stirred overnight at room temperature. To this solution was added 2,3-dichloro-5,6-dicyanobenzoquinone (1.098 g, 4.837 mmol), and the mixture was further stirred for 5 hours. After hydrolysis by adding triethylamine (1.1 ml), the solution was concentrated, and the resulting residue was passed through silica gel using chloroform as a developing solvent. Further purification was performed by silica gel column chromatography (developing solvent: chloroform-hexane (1: 1 v / v)). Finally, by recrystallization from dichloromethane-methanol, the target compound (5,10,15,20-tetrakis [3,5-bis (heptyloxy) phenyl] porphyrin, R in the formula [C] is n- (Heptyl) (red purple powder, 0.228 g, yield 12.2%).

得られた化合物のHNMR、MALDI−TOF−MSを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) −2.84 (s, 2H, NH), 0.865 (t, J=6.8 Hz, 24H, CH3), 1.25−1.40 (m, 48H, CH2), 1.45−1.53 (m, 16H, CH2), 1.82−1.89 (m, 16H, CH2), 4.11 (t, J=6.6 Hz, 16H, ArOCH2), 6.88 (t, J=2.2 Hz, 4H, arom. H), 7.36 (d, J=2.4 Hz, 8H, arom. H), 8.93 (s, 8H, pyrrole H).
MALDI−TOF−MS (no matrix): m/z=1526.570 (M+)
When 1 HNMR and MALDI-TOF-MS of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) −2.84 (s, 2H, NH), 0.865 (t, J = 6.8 Hz, 24H, CH 3 ), 1.25−1.40 (m, 48H, CH 2 ), 1.45−1.53 (m, 16H, CH 2 ), 1.82-1−1.89 (m, 16H, CH 2 ), 4.11 (t, J = 6.6 Hz, 16H, ArOCH 2 ), 6.88 (t, J = 2.2 Hz, 4H, arom.H), 7.36 (d, J = 2.4 Hz, 8H, arom.H), 8.93 (s, 8H, pyrrole H).
MALDI-TOF-MS (no matrix): m / z = 1526.570 (M + )

(実施例5)
実施例1と同様のスキ−ムに従って、5,10,15,20−テトラキス[3,5−ビス(ヘキシロキシ)フェニル]ポルフィリンを製造した。
(Example 5)
According to the same scheme as in Example 1, 5,10,15,20-tetrakis [3,5-bis (hexyloxy) phenyl] porphyrin was produced.

(1)3,5−ビス(ヘキシロキシ)ベンジルアルコ−ルの合成
3,5−ジヒドロキシベンジルアルコ−ル(7.004g,49.979mmol)並びに炭酸カリウム(17.266g,0.125mol)をジメチルホルムアミド(DMF)60ml中、n−ヘキシルブロミド(18.0ml,0.128mol)存在下、窒素もしくはアルゴン雰囲気中90℃にて撹拌した。クロロホルム−水にて抽出した後、有機層を2回水で洗浄、飽和チオ硫酸ナトリウム水溶液にて洗浄、無水硫酸マグネシウムにて乾燥、濾別後に濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒: ヘキサン→クロロホルム)にて精製する事により、目的物(3,5−ビス(ヘプチロキシ)ベンジルアルコ−ル、式[A]のRがn−ヘキシル)(油状、10.455g、収率67.8%)を得た。
(1) Synthesis of 3,5-bis (hexyloxy) benzyl alcohol 3,5-dihydroxybenzyl alcohol (7.004 g, 49.979 mmol) and potassium carbonate (17.266 g, 0.125 mol) were added to 60 ml of dimethylformamide (DMF). In the presence of n-hexyl bromide (18.0 ml, 0.128 mol), the mixture was stirred at 90 ° C. in a nitrogen or argon atmosphere. After extraction with chloroform-water, the organic layer was washed twice with water, washed with a saturated aqueous sodium thiosulfate solution, dried over anhydrous magnesium sulfate, filtered and concentrated, and the residue obtained was concentrated on silica gel column chromatography ( The target product (3,5-bis (heptyloxy) benzyl alcohol, R in formula [A] is n-hexyl) (oil, 10.455 g, yield 67.8) was purified by developing solvent: hexane → chloroform. %).

得られた化合物のHNMR、13CNMRを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.90 (t, J=7.2 Hz, 6H, CH3), 1.31−1.35 (m, 8H, CH2), 1.41−1.48 (m, 4H, CH2), 1.71 (t, J=6.0 Hz, 1H, OH), 1.73−1.80 (m, 4H, CH2), 3.93 (t, J=6.6 Hz, 4H, ArOCH2), 4.61 (d, J=6.0 Hz, 2H, CH2O), 6.375 (t, J=2.6 Hz, 1H, arom. H), 6.50 (d, J=2.4 Hz, 2H, arom. H)
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 14.01, 22.59, 25.70, 29.21, 31.56 (aliphatic), 65.45, 68.06 (ether), 100.55, 105.05, 143.18, 160.53 (aromatic).
When 1 HNMR and 13 CNMR of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.90 (t, J = 7.2 Hz, 6H, CH 3 ), 1.31-1.35 (m, 8H, CH 2 ), 1.41-1.48 (m, 4H, CH 2 ), 1.71 (t, J = 6.0 Hz, 1H, OH), 1.73−1.80 (m, 4H, CH 2 ), 3.93 (t, J = 6.6 Hz, 4H, ArOCH 2 ), 4.61 (d , J = 6.0 Hz, 2H, CH 2 O), 6.375 (t, J = 2.6 Hz, 1H, arom.H), 6.50 (d, J = 2.4 Hz, 2H, arom.H)
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 14.01, 22.59, 25.70, 29.21, 31.56 (aliphatic), 65.45, 68.06 (ether), 100.55, 105.05, 143.18, 160.53 (aromatic).

(2)3,5−ビス(ヘキシロキシ)ベンズアルデヒドの合成
3,5−ビス(ヘキシロキシ)ベンジルアルコ−ル(10.437g,33.836mmol)並びに酸化マンガン(IV)(13.314g,0.153mol)の混合物をクロロホルム60ml中、無水硫酸マグネシウム存在下、窒素若しくはアルゴン下、室温にて数日間撹拌した。濾過後に濾液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒:クロロホルム−ヘキサン(3: 2 v/v))にて分離精製する事により、目的化合物(3,5−ビス(ヘキシロキシ)ベンズアルデヒド、式[B]のRがn−ヘキシル)(油状、9.420g、収率90.9%)を得た。
(2) Synthesis of 3,5-bis (hexyloxy) benzaldehyde A mixture of 3,5-bis (hexyloxy) benzyl alcohol (10.437 g, 33.836 mmol) and manganese (IV) oxide (13.314 g, 0.153 mol) was mixed with chloroform. The mixture was stirred in 60 ml in the presence of anhydrous magnesium sulfate under nitrogen or argon at room temperature for several days. The residue obtained by concentrating the filtrate after filtration was separated and purified by silica gel column chromatography (developing solvent: chloroform-hexane (3: 2 v / v)) to obtain the target compound (3,5-bis (hexyloxy). Benzaldehyde, R in formula [B] is n-hexyl) (oil, 9.420 g, yield 90.9%).

得られた化合物のHNMR、13CNMRを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.91 (t, J=7.0 Hz, 6H, CH3), 1.32−1.365 (m, 8H, CH2), 1.42−1.50 (m, 4H, CH2), 1.75−1.82 (m, 4H, CH2), 3.99 (t, J=6.6 Hz, 4H, ArOCH2), 6.70 (t, J=2.4 Hz, 1H, arom. H), 6.98 (d, J=2.4 Hz, 2H, arom. H), 9.89 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 13.99, 22.57, 25.66, 29.08, 31.52 (aliphatic), 68.44 (ether), 107.59, 108.03, 138.32, 160.76 (aromatic), 192.07 (aldehyde).
When 1 HNMR and 13 CNMR of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.91 (t, J = 7.0 Hz, 6H, CH 3 ), 1.32−1.365 (m, 8H, CH 2 ), 1.42−1.50 (m, 4H, CH 2 ), 1.75−1.82 (m, 4H, CH 2 ), 3.99 (t, J = 6.6 Hz, 4H, ArOCH 2 ), 6.70 (t, J = 2.4 Hz, 1H, arom.H), 6.98 (d, J = 2.4 Hz, 2H, arom.H), 9.89 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 13.99, 22.57, 25.66, 29.08, 31.52 (aliphatic), 68.44 (ether), 107.59, 108.03, 138.32, 160.76 (aromatic), 192.07 (aldehyde).

(3)5,10,15,20−テトラキス [3,5−ビス(ヘキシロキシ)フェニル]ポルフィリンの合成
ピロ−ル(0.35ml)、及び3,5−ビス(ヘキシロキシ)ベンズアルデヒド(1.515g,4.911mmol)の混合物をクロロホルム中(450ml)、室温にて撹拌した。この溶液にアルゴンを1時間バブリングさせた。続いてトリフルオロ酢酸(0.54ml)を加え、室温にて一晩撹拌した。この溶液に2,3−ジクロロ−5,6−ジシアノベンゾキノン(1.143g, 5.035mmol)を加え、更に5時間撹拌した。トリエチルアミン(1.2ml)を添加して加水分解後に溶液を濃縮し、クロロホルムを展開溶媒として得られた残渣をシリカゲルに通した。更にシリカゲルカラムクロマトグラフィ−(展開溶媒: クロロホルム−ヘキサン(3:2 v/v))にて精製した。最後にジクロロメタン−メタノ−ルにて再結晶させる事により、目的の化合物(5,10,15,20−テトラキス [3,5−ビス(ヘキシロキシ)フェニル]ポルフィリン、式[C]のRがn−ヘキシル)(赤紫粉末、0.351g、収率20.1%)を得た。
(3) Synthesis of 5,10,15,20-tetrakis [3,5-bis (hexyloxy) phenyl] porphyrin Pyrrol (0.35 ml) and 3,5-bis (hexyloxy) benzaldehyde (1.515 g, 4.911 mmol ) Was stirred in chloroform (450 ml) at room temperature. This solution was bubbled with argon for 1 hour. Subsequently, trifluoroacetic acid (0.54 ml) was added, and the mixture was stirred overnight at room temperature. To this solution was added 2,3-dichloro-5,6-dicyanobenzoquinone (1.143 g, 5.035 mmol), and the mixture was further stirred for 5 hours. After hydrolysis by adding triethylamine (1.2 ml), the solution was concentrated, and the resulting residue was passed through silica gel using chloroform as a developing solvent. The product was further purified by silica gel column chromatography (developing solvent: chloroform-hexane (3: 2 v / v)). Finally, by recrystallization from dichloromethane-methanol, the target compound (5,10,15,20-tetrakis [3,5-bis (hexyloxy) phenyl] porphyrin, R of formula [C] is n- (Hexyl) (red purple powder, 0.351 g, yield 20.1%).

得られた化合物のHNMR、MALDI−TOF−MSを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) −2.84 (s, 2H, NH), 0.88 (t, J=7.2 Hz, 24H, CH3), 1.29−1.38 (m, 32H, CH2), 1.46−1.52 (m, 16H, CH2), 1.82−1.89 (m, 16H, CH2), 4.11 (t, J=6.6 Hz, 16H, ArOCH2), 6.88 (t, J=2.6 Hz, 4H, arom. H), 7.37 (d, J=2.0 Hz, 8H, arom. H), 8.94 (s, 8H, pyrrole H).
MALDI−TOF−MS (no matrix): m/z=1526.570 (M+)
When 1 HNMR and MALDI-TOF-MS of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) −2.84 (s, 2H, NH), 0.88 (t, J = 7.2 Hz, 24H, CH 3 ), 1.29−1.38 (m, 32H, CH 2 ), 1.46−1.52 (m, 16H, CH 2 ), 1.82-1-1.89 (m, 16H, CH 2 ), 4.11 (t, J = 6.6 Hz, 16H, ArOCH 2 ), 6.88 (t, J = 2.6 Hz, 4H, arom.H), 7.37 (d, J = 2.0 Hz, 8H, arom.H), 8.94 (s, 8H, pyrrole H).
MALDI-TOF-MS (no matrix): m / z = 1526.570 (M + )

(実施例6)
実施例1と同様のスキ−ムに従って、5,10,15,20−テトラキス[3,5−ビス(ペンチロキシ)フェニル]ポルフィリンを製造した。
(Example 6)
According to the same scheme as in Example 1, 5,10,15,20-tetrakis [3,5-bis (pentyloxy) phenyl] porphyrin was produced.

(1)3,5−ビス(ペンチロキシ)ベンジルアルコ−ルの合成
3,5−ジヒドロキシベンジルアルコ−ル(7.016g,50.065 mmol)並びに炭酸カリウム(17.277g,0.125 mol)をジメチルホルムアミド(DMF)60ml中、n−ペンチルブロミド(18.5ml,0.149mol)存在下、窒素もしくはアルゴン雰囲気中90℃にて撹拌した。クロロホルム−水にて抽出した後、有機層を2回水で洗浄、飽和チオ硫酸ナトリウム水溶液にて洗浄、無水硫酸マグネシウムにて乾燥、濾別後に濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒: ヘキサン→クロロホルム)にて精製する事により、目的物(3,5−ビス(ペンチロキシ)ベンジルアルコ−ル、式[A]のRがn−ペンチル)(油状、9.880g、収率70.4%)を得た。
(1) Synthesis of 3,5-bis (pentyloxy) benzyl alcohol 3,5-dihydroxybenzyl alcohol (7.016 g, 50.065 mmol) and potassium carbonate (17.277 g, 0.125 mol) were added to 60 ml of dimethylformamide (DMF). The mixture was stirred at 90 ° C. in a nitrogen or argon atmosphere in the presence of n-pentyl bromide (18.5 ml, 0.149 mol). After extraction with chloroform-water, the organic layer was washed twice with water, washed with a saturated aqueous sodium thiosulfate solution, dried over anhydrous magnesium sulfate, filtered and concentrated, and the residue obtained was concentrated on silica gel column chromatography ( The target product (3,5-bis (pentyloxy) benzyl alcohol, R in formula [A] is n-pentyl) (oil, 9.880 g, yield 70.4) %).

得られた化合物のHNMR、13CNMRを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.93 (t, J=7.0 Hz, 6H, CH3), 1.33−1.47 (m, 8H, CH2), 1.66 (t, J=6.0 Hz, 1H, OH), 1.74−1.81 (m, 4H, CH2), 3.93 (t, J=6.6 Hz, 4H, ArOCH2), 4.61 (d, J=5.6 Hz, 2H, CH2O), 6.38 (t, J=2.4 Hz, 1H, arom. H), 6.50 (d, J=2.0 Hz, 2H, arom. H)
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 13.99, 22.43, 28.20, 28.945 (aliphatic), 65.47, 68.06 (ether), 100.59, 105.08, 143.19, 160.555 (aromatic).
When 1 HNMR and 13 CNMR of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.93 (t, J = 7.0 Hz, 6H, CH 3 ), 1.33-1.47 (m, 8H, CH 2 ), 1.66 (t, J = 6.0 Hz, 1H, OH), 1.74−1.81 (m, 4H, CH 2 ), 3.93 (t, J = 6.6 Hz, 4H, ArOCH 2 ), 4.61 (d, J = 5.6 Hz, 2H, CH 2 O) , 6.38 (t, J = 2.4 Hz, 1H, arom.H), 6.50 (d, J = 2.0 Hz, 2H, arom.H)
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 13.99, 22.43, 28.20, 28.945 (aliphatic), 65.47, 68.06 (ether), 100.59, 105.08, 143.19, 160.555 (aromatic).

(2)3,5−ビス(ペンチロキシ)ベンズアルデヒドの合成
3,5−ビス(ペンチロキシ)ベンジルアルコ−ル(9.873g,35.209mmol)並びに酸化マンガン(IV)(12.304g,0.142mol)の混合物をクロロホルム60ml中、無水硫酸マグネシウム存在下、窒素若しくはアルゴン下、室温にて数日間撹拌した。濾過後に濾液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒:クロロホルム−ヘキサン(3: 2 v/v)にて分離精製する事により、目的化合物(3,5−ビス(ペンチロキシ)ベンズアルデヒド、式[B]のRがn−ペンチル)(油状、8.012g、収率81.7%)を得た。
(2) Synthesis of 3,5-bis (pentyloxy) benzaldehyde A mixture of 3,5-bis (pentyloxy) benzyl alcohol (9.873 g, 35.209 mmol) and manganese (IV) oxide (12.304 g, 0.142 mol) was mixed with chloroform. The mixture was stirred in 60 ml in the presence of anhydrous magnesium sulfate under nitrogen or argon at room temperature for several days. The residue obtained by concentrating the filtrate after filtration was separated and purified by silica gel column chromatography (developing solvent: chloroform-hexane (3: 2 v / v)) to obtain the target compound (3,5-bis (pentyloxy) Benzaldehyde, R of formula [B] was n-pentyl) (oil, 8.012 g, yield 81.7%) was obtained.

得られた化合物のHNMR、13CNMRを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.94 (t, J=7.2 Hz, 6H, CH3), 1.34−1.48 (m, 8H, CH2), 1.76−1.83 (m, 4H, CH2), 3.99 (t, J=6.6 Hz, 4H, ArOCH2), 6.70 (t, J=2.4 Hz, 1H, arom. H), 6.98 (d, J=2.4 Hz, 2H, arom. H), 9.89 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 13.97, 22.40, 28.14, 28.81 (aliphatic), 68.43 (ether), 107.60, 108.04, 138.325, 160.77 (aromatic), 192.06 (aldehyde).
When 1 HNMR and 13 CNMR of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.94 (t, J = 7.2 Hz, 6H, CH 3 ), 1.34−1.48 (m, 8H, CH 2 ), 1.76−1.83 (m, 4H, CH 2 ), 3.99 (t, J = 6.6 Hz, 4H, ArOCH 2 ), 6.70 (t, J = 2.4 Hz, 1H, arom.H), 6.98 (d, J = 2.4 Hz, 2H, arom. H), 9.89 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 13.97, 22.40, 28.14, 28.81 (aliphatic), 68.43 (ether), 107.60, 108.04, 138.325, 160.77 (aromatic), 192.06 (aldehyde).

(3)5,10,15,20−テトラキス [3,5−ビス(ペンチロキシ)フェニル]ポルフィリンの合成
ピロ−ル(0.40ml)、及び3,5−ビス(ペンチロキシ)ベンズアルデヒド(1.534g,5.510mmol)の混合物をクロロホルム中(500ml)、室温にて撹拌した。この溶液にアルゴンを1時間バブリングさせた。続いてトリフルオロ酢酸(0.60ml)を加え、室温にて一晩撹拌した。この溶液に2,3−ジクロロ−5,6−ジシアノベンゾキノン(1.280g, 5.639mmol)を加え、更に5時間撹拌した。トリエチルアミン(1.2ml)を添加して加水分解後に溶液を濃縮し、クロロホルムを展開溶媒として得られた残渣をシリカゲルに通した。更にシリカゲルカラムクロマトグラフィ−(展開溶媒: クロロホルム−ヘキサン(3:2 v/v))にて精製した。最後にジクロロメタン−メタノ−ルにて再結晶させる事により、目的の化合物(5,10,15,20−テトラキス [3,5−ビス(ペンチロキシ)フェニル]ポルフィリン、式[C]のRがn−ペンチル)(赤紫結晶、0.334g、収率18.6%)を得た。
(3) Synthesis of 5,10,15,20-tetrakis [3,5-bis (pentyloxy) phenyl] porphyrin Pyrrol (0.40 ml) and 3,5-bis (pentyloxy) benzaldehyde (1.534 g, 5.510 mmol) ) Was stirred in chloroform (500 ml) at room temperature. This solution was bubbled with argon for 1 hour. Subsequently, trifluoroacetic acid (0.60 ml) was added, and the mixture was stirred overnight at room temperature. To this solution was added 2,3-dichloro-5,6-dicyanobenzoquinone (1.280 g, 5.639 mmol), and the mixture was further stirred for 5 hours. After hydrolysis by adding triethylamine (1.2 ml), the solution was concentrated, and the resulting residue was passed through silica gel using chloroform as a developing solvent. The product was further purified by silica gel column chromatography (developing solvent: chloroform-hexane (3: 2 v / v)). Finally, by recrystallization from dichloromethane-methanol, the target compound (5,10,15,20-tetrakis [3,5-bis (pentyloxy) phenyl] porphyrin, R of formula [C] is n- Pentyl) (red purple crystals, 0.334 g, yield 18.6%).

得られた化合物のHNMR、MALDI−TOF−MSを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) −2.83 (s, 2H, NH), 0.93 (t, J=7.4 Hz, 24H, CH3), 1.35−1.53 (m, 32H, CH2), 1.84−1.91 (m, 16H, CH2), 4.12 (t, J=6.6 Hz, 16H, ArOCH2), 6.89 (t, J=2.6 Hz, 4H, arom. H), 7.37 (d, J=2.4 Hz, 8H, arom. H), 8.94 (s, 8H, pyrrole H).
MALDI−TOF−MS (no matrix): m/z=1303.791 (M+)
When 1 HNMR and MALDI-TOF-MS of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) −2.83 (s, 2H, NH), 0.93 (t, J = 7.4 Hz, 24H, CH 3 ), 1.35−1.53 (m, 32H, CH 2 ), 1.84−1.91 (m, 16H, CH 2 ), 4.12 (t, J = 6.6 Hz, 16H, ArOCH 2 ), 6.89 (t, J = 2.6 Hz, 4H, arom.H), 7.37 (d , J = 2.4 Hz, 8H, arom.H), 8.94 (s, 8H, pyrrole H).
MALDI-TOF-MS (no matrix): m / z = 1303.791 (M + )

(実施例7)
実施例1と同様のスキ−ムに従って、5,10,15,20−テトラキス[3,5−ジブトキシフェニル]ポルフィリンを製造した。
(Example 7)
According to the same scheme as in Example 1, 5,10,15,20-tetrakis [3,5-dibutoxyphenyl] porphyrin was produced.

(1)3,5−ジブトキシベンジルアルコ−ルの合成
3,5−ジヒドロキシベンジルアルコ−ル(7.008g,50.007mmol)並びに炭酸カリウム(17.288g,0.125mol)をジメチルホルムアミド(DMF)60ml中、n−ブチルブロミド(14.0ml,0.131mol)存在下、窒素もしくはアルゴン雰囲気中90℃にて撹拌した。クロロホルム−水にて抽出した後、有機層を2回水で洗浄、飽和チオ硫酸ナトリウム水溶液にて洗浄、無水硫酸マグネシウムにて乾燥、濾別後に濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒: ヘキサン→クロロホルム)にて精製する事により、目的物(3,5−ジブトキシベンジルアルコ−ル、式[A]のRがn−ブチル)(油状、5.268g、収率41.7%)を得た。
(1) Synthesis of 3,5-dibutoxybenzyl alcohol 3,5-dihydroxybenzyl alcohol (7.008 g, 50.007 mmol) and potassium carbonate (17.288 g, 0.125 mol) in 60 ml of dimethylformamide (DMF) The mixture was stirred at 90 ° C. in a nitrogen or argon atmosphere in the presence of n-butyl bromide (14.0 ml, 0.131 mol). After extraction with chloroform-water, the organic layer was washed twice with water, washed with a saturated aqueous sodium thiosulfate solution, dried over anhydrous magnesium sulfate, filtered and concentrated, and the residue obtained was concentrated on silica gel column chromatography ( The target product (3,5-dibutoxybenzyl alcohol, R of formula [A] is n-butyl) (oil, 5.268 g, yield 41.7%) by purifying with developing solvent: hexane → chloroform Got.

得られた化合物のHNMR、13CNMRを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.90 (t, J=7.2 Hz, 6H, CH3), 1.31−1.35 (m, 8H, CH2), 1.41−1.48 (m, 4H, CH2), 1.71 (t, J=6.0 Hz, 1H, OH), 1.73−1.80 (m, 4H, CH2), 3.93 (t, J=6.6 Hz, 4H, ArOCH2), 4.61 (d, J=6.0 Hz, 2H, CH2O), 6.375 (t, J=2.6 Hz, 1H, arom. H), 6.50 (d, J=2.4 Hz, 2H, arom. H)
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 14.01, 22.59, 25.70, 29.21, 31.56 (aliphatic), 65.45, 68.06 (ether), 100.55, 105.05, 143.18, 160.53 (aromatic).
When 1 HNMR and 13 CNMR of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.90 (t, J = 7.2 Hz, 6H, CH 3 ), 1.31-1.35 (m, 8H, CH 2 ), 1.41-1.48 (m, 4H, CH 2 ), 1.71 (t, J = 6.0 Hz, 1H, OH), 1.73−1.80 (m, 4H, CH 2 ), 3.93 (t, J = 6.6 Hz, 4H, ArOCH 2 ), 4.61 (d , J = 6.0 Hz, 2H, CH 2 O), 6.375 (t, J = 2.6 Hz, 1H, arom.H), 6.50 (d, J = 2.4 Hz, 2H, arom.H)
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 14.01, 22.59, 25.70, 29.21, 31.56 (aliphatic), 65.45, 68.06 (ether), 100.55, 105.05, 143.18, 160.53 (aromatic).

(2)3,5−ジブトキシベンズアルデヒドの合成
3,5−ジブトキシベンジルアルコ−ル(5.268g,20.875mmol)並びに酸化マンガン(IV)(7.259 g, 83.502mmol)の混合物をクロロホルム50ml中、無水硫酸マグネシウム存在下、窒素若しくはアルゴン下、室温にて数日間撹拌した。濾過後に濾液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒:クロロホルム−ヘキサン(3: 2 v/v))にて分離精製する事により、目的化合物(3,5−ジブトキシベンズアルデヒド、式[B]のRがn−ブチル)(油状、4.405g、収率84.3%)を得た。
(2) Synthesis of 3,5-dibutoxybenzaldehyde A mixture of 3,5-dibutoxybenzyl alcohol (5.268 g, 20.875 mmol) and manganese (IV) oxide (7.259 g, 83.502 mmol) was anhydrous in 50 ml of chloroform. The mixture was stirred for several days at room temperature under nitrogen or argon in the presence of magnesium sulfate. The residue obtained by concentrating the filtrate after filtration was separated and purified by silica gel column chromatography (developing solvent: chloroform-hexane (3: 2 v / v)) to obtain the target compound (3,5-dibutoxybenzaldehyde. , R in formula [B] was n-butyl) (oil, 4.405 g, yield 84.3%).

得られた化合物のHNMR、13CNMRを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.98 (t, J=7.4 Hz, 6H, CH3), 1.45−1.54 (m, 4H, CH2), 3.995 (t, J=6.4 Hz, 4H, ArOCH2), 6.70 (t, J=2.2 Hz, 1H, arom. H), 6.98 (d, J=2.4 Hz, 2H, arom. H), 9.89 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 13.775, 19.18, 31.15 (aliphatic), 68.115 (ether), 107.59, 108.03, 138.32, 160.77 (aromatic), 192.05 (aldehyde).
When 1 HNMR and 13 CNMR of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.98 (t, J = 7.4 Hz, 6H, CH 3 ), 1.45−1.54 (m, 4H, CH 2 ), 3.995 (t, J = 6.4 Hz, 4H, ArOCH 2 ), 6.70 (t, J = 2.2 Hz, 1H, arom.H), 6.98 (d, J = 2.4 Hz, 2H, arom.H), 9.89 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 13.775, 19.18, 31.15 (aliphatic), 68.115 (ether), 107.59, 108.03, 138.32, 160.77 (aromatic), 192.05 (aldehyde).

(3)5,10,15,20−テトラキス [3,5−ジブトキシフェニル]ポルフィリンの合成
ピロ−ル(0.40ml)、及び3,5−ビス(ブチロキシ)ベンズアルデヒド(1.260g,5.033mmol)の混合物をクロロホルム中(500ml)、室温にて撹拌した。この溶液にアルゴンを1時間バブリングさせた。続いてトリフルオロ酢酸(0.56ml)を加え、室温にて一晩撹拌した。この溶液に2,3−ジクロロ−5,6−ジシアノベンゾキノン(1.153g, 5.079mmol)を加え、更に5時間撹拌した。トリエチルアミン(1.2ml)を添加して加水分解後に溶液を濃縮し、クロロホルムを展開溶媒として得られた残渣をシリカゲルに通した。続いてジクロロメタン−メタノ−ルにて再結晶させる事により、目的の化合物(5,10,15,20−テトラキス [3,5−ジブトキシフェニル]ポルフィリン、式[C]のRがn−ブチル)(赤紫結晶、0.319g、収率21.3%)を得た。
(3) Synthesis of 5,10,15,20-tetrakis [3,5-dibutoxyphenyl] porphyrin of pyrrole (0.40 ml) and 3,5-bis (butyroxy) benzaldehyde (1.260 g, 5.033 mmol) The mixture was stirred in chloroform (500 ml) at room temperature. This solution was bubbled with argon for 1 hour. Subsequently, trifluoroacetic acid (0.56 ml) was added, and the mixture was stirred overnight at room temperature. To this solution was added 2,3-dichloro-5,6-dicyanobenzoquinone (1.153 g, 5.079 mmol), and the mixture was further stirred for 5 hours. After hydrolysis by adding triethylamine (1.2 ml), the solution was concentrated, and the resulting residue was passed through silica gel using chloroform as a developing solvent. Subsequently, the target compound (5,10,15,20-tetrakis [3,5-dibutoxyphenyl] porphyrin, R in the formula [C] is n-butyl) by recrystallization from dichloromethane-methanol. (Red purple crystals, 0.319 g, 21.3% yield) was obtained.

得られた化合物のHNMR、MALDI−TOF−MSを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) −2.84 (s, 2H, NH), 0.98 (t, J=7.4 Hz, 24H, CH3), 1.49−1.58 (m, 16H, CH2), 1.81−1.88 (m, 16H, CH2), 4.12 (t, J=6.6 Hz, 16H, ArOCH2), 6.88 (t, J=2.2 Hz, 4H, arom. H), 7.37 (d, J=2.4 Hz, 8H, arom. H), 8.94 (s, 8H, pyrrole H).
MALDI−TOF−MS (no matrix): m/z=1189.258 (M+)
When 1 HNMR and MALDI-TOF-MS of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) −2.84 (s, 2H, NH), 0.98 (t, J = 7.4 Hz, 24H, CH 3 ), 1.49−1.58 (m, 16H, CH 2 ), 1.81-1.88 (m, 16H, CH 2 ), 4.12 (t, J = 6.6 Hz, 16H, ArOCH 2 ), 6.88 (t, J = 2.2 Hz, 4H, arom.H), 7.37 (d , J = 2.4 Hz, 8H, arom.H), 8.94 (s, 8H, pyrrole H).
MALDI-TOF-MS (no matrix): m / z = 1189.258 (M + )

(実施例8)
実施例1と同様のスキ−ムに従って、5,10,15,20−テトラキス[3,5−ビス(プロポキシ)フェニル]ポルフィリンを製造した。
(Example 8)
According to the same scheme as in Example 1, 5,10,15,20-tetrakis [3,5-bis (propoxy) phenyl] porphyrin was produced.

(1)3,5−ビス(プロポキシ)ベンジルアルコ−ルの合成
3,5−ジヒドロキシベンジルアルコ−ル(7.023g,50.115mmol)並びに炭酸カリウム(17.305g,0.125mol)をジメチルホルムアミド(DMF)60ml中、n−プロピルブロミド(18.5ml,0.111mol)存在下、窒素もしくはアルゴン雰囲気中90℃にて撹拌した。クロロホルム−水にて抽出した後、有機層を2回水で洗浄、飽和チオ硫酸ナトリウム水溶液にて洗浄、無水硫酸マグネシウムにて乾燥、濾別後に濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒: ヘキサン→クロロホルム)にて精製する事により、目的物(3,5−ビス(プロポキシ)ペンチルアルコ−ル、式[A]のRがn−プロピル)(固体、4.903g、収率43.6%)を得た。
(1) Synthesis of 3,5-bis (propoxy) benzyl alcohol 3,5-dihydroxybenzyl alcohol (7.023 g, 50.115 mmol) and potassium carbonate (17.305 g, 0.125 mol) were added to 60 ml of dimethylformamide (DMF). In the presence of n-propyl bromide (18.5 ml, 0.111 mol), the mixture was stirred at 90 ° C. in a nitrogen or argon atmosphere. After extraction with chloroform-water, the organic layer was washed twice with water, washed with a saturated aqueous sodium thiosulfate solution, dried over anhydrous magnesium sulfate, filtered and concentrated, and the residue obtained was concentrated on silica gel column chromatography ( The target product (3,5-bis (propoxy) pentyl alcohol, R in formula [A] is n-propyl) (solid, 4.903 g, yield 43.6) %).

得られた化合物のHNMR、13CNMRを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 1.02 (t, J=7.4 Hz, 6H, CH3), 1.74 (t, J=6.2 Hz, 1H, OH), 1.75−1.84 (m, 4H, CH2), 3.90 (t, J=6.6 Hz, 4H, ArOCH2), 4.61 (d, J=6.0 Hz, 2H, CH2O), 6.38 (t, J=2.4 Hz, 1H, arom. H), 6.50 (d, J=2.0 Hz, 2H, arom. H)
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 10.49, 22.55 (aliphatic), 65.42, 69.56 (ether), 100.57, 105.07, 143.19, 160.51 (aromatic).
When 1 HNMR and 13 CNMR of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 1.02 (t, J = 7.4 Hz, 6H, CH 3 ), 1.74 (t, J = 6.2 Hz, 1H, OH), 1.75−1.84 ( m, 4H, CH 2 ), 3.90 (t, J = 6.6 Hz, 4H, ArOCH 2 ), 4.61 (d, J = 6.0 Hz, 2H, CH 2 O), 6.38 (t, J = 2.4 Hz, 1H, arom.H), 6.50 (d, J = 2.0 Hz, 2H, arom.H)
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 10.49, 22.55 (aliphatic), 65.42, 69.56 (ether), 100.57, 105.07, 143.19, 160.51 (aromatic).

(2)3,5−ビス(プロポキシ)ベンズアルデヒドの合成
3,5−ビス(プロポキシ)ベンジルアルコ−ル(4.888g,21.792mmol)並びに酸化マンガン(IV)(7.703g,88.604mmol)の混合物をクロロホルム50ml中、無水硫酸マグネシウム存在下、窒素若しくはアルゴン下、室温にて数日間撹拌した。濾過後に濾液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒:クロロホルム−ヘキサン(3: 2 v/v)にて分離精製する事により、目的化合物(3,5−ビス(プロポキシ)ベンズアルデヒド、式[B]のRがn−プロピル)(油状、4.201g、収率86.7%)を得た。
(2) Synthesis of 3,5-bis (propoxy) benzaldehyde A mixture of 3,5-bis (propoxy) benzyl alcohol (4.888 g, 21.792 mmol) and manganese (IV) oxide (7.703 g, 88.604 mmol) was mixed with chloroform. The mixture was stirred in 50 ml in the presence of anhydrous magnesium sulfate under nitrogen or argon at room temperature for several days. After filtration, the residue obtained by concentrating the filtrate is separated and purified by silica gel column chromatography (developing solvent: chloroform-hexane (3: 2 v / v)) to obtain the target compound (3,5-bis (propoxy) Benzaldehyde, R of formula [B] was n-propyl) (oil, 4.201 g, yield 86.7%) was obtained.

得られた化合物のHNMR、13CNMRを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 1.04 (t, J=7.2 Hz, 6H, CH3), 1.78−1.865 (m, 4H, CH2), 3.96 (t, J=6.6 Hz, 4H, ArOCH2), 6.71 (t, J=2.2 Hz, 1H, arom. H), 6.99 (d, J=2.0 Hz, 2H, arom. H), 9.89 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 10.44, 22.45 (aliphatic), 69.91 (ether), 107.60, 108.04, 138.32, 160.75 (aromatic), 192.05 (aldehyde).
When 1 HNMR and 13 CNMR of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 1.04 (t, J = 7.2 Hz, 6H, CH 3 ), 1.78−1.865 (m, 4H, CH 2 ), 3.96 (t, J = 6.6 Hz, 4H, ArOCH 2 ), 6.71 (t, J = 2.2 Hz, 1H, arom.H), 6.99 (d, J = 2.0 Hz, 2H, arom.H), 9.89 (s, 1H, CHO).
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 10.44, 22.45 (aliphatic), 69.91 (ether), 107.60, 108.04, 138.32, 160.75 (aromatic), 192.05 (aldehyde).

(3)5,10,15,20−テトラキス [3,5−ビス(プロポキシ)フェニル]ポルフィリンの合成
ピロ−ル(0.40ml)、及び3,5−ビス(プロポキシ)ベンズアルデヒド(1.108g,4.985mmol)の混合物をクロロホルム中(500 ml)、室温にて撹拌した。この溶液にアルゴンを1時間バブリングさせた。続いてトリフルオロ酢酸(0.56ml)を加え、室温にて一晩撹拌した。この溶液に2,3−ジクロロ−5,6−ジシアノベンゾキノン(1.139g, 5.017mmol)を加え、更に5時間撹拌した。トリエチルアミン(1.1ml)を添加して加水分解後に溶液を濃縮し、クロロホルムを展開溶媒として得られた残渣をシリカゲルに通した。更にシリカゲルカラムクロマトグラフィ−(展開溶媒: クロロホルム)にて精製した。最後にジクロロメタン−メタノ−ルにて再結晶させる事により、目的の化合物(5,10,15,20−テトラキス [3,5−ビス(プロポキシ)フェニル]ポルフィリン、式[C]のRがn−プロピル)(赤紫結晶、0.208g、収率15.5%)を得た。
(3) Synthesis of 5,10,15,20-tetrakis [3,5-bis (propoxy) phenyl] porphyrin Pyrrol (0.40 ml) and 3,5-bis (propoxy) benzaldehyde (1.108 g, 4.985 mmol) ) Was stirred in chloroform (500 ml) at room temperature. This solution was bubbled with argon for 1 hour. Subsequently, trifluoroacetic acid (0.56 ml) was added, and the mixture was stirred overnight at room temperature. To this solution was added 2,3-dichloro-5,6-dicyanobenzoquinone (1.139 g, 5.017 mmol), and the mixture was further stirred for 5 hours. After hydrolysis by adding triethylamine (1.1 ml), the solution was concentrated, and the resulting residue was passed through silica gel using chloroform as a developing solvent. Further purification was performed by silica gel column chromatography (developing solvent: chloroform). Finally, by recrystallization from dichloromethane-methanol, the target compound (5,10,15,20-tetrakis [3,5-bis (propoxy) phenyl] porphyrin, R in the formula [C] is n- Propyl) (red purple crystals, 0.208 g, yield 15.5%).

得られた化合物のHNMR、MALDI−TOF−MSを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) −2.835 (s, 2H, NH), 1.07 (t, J=7.2 Hz, 24H, CH3), 1.84−1.93 (m, 16H, CH2), 4.08 (t, J=6.6 Hz, 16H, ArOCH2), 6.89 (t, J=2.2 Hz, 4H, arom. H), 7.37 (d, J=2.0 Hz, 8H, arom. H), 8.94 (s, 8H, pyrrole H).
MALDI−TOF−MS (no matrix): m/z=1077.691(M+)
When 1 HNMR and MALDI-TOF-MS of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) −2.835 (s, 2H, NH), 1.07 (t, J = 7.2 Hz, 24H, CH 3 ), 1.84−1.93 (m, 16H, CH 2 ), 4.08 (t, J = 6.6 Hz, 16H, ArOCH 2 ), 6.89 (t, J = 2.2 Hz, 4H, arom.H), 7.37 (d, J = 2.0 Hz, 8H, arom.H) , 8.94 (s, 8H, pyrrole H).
MALDI-TOF-MS (no matrix): m / z = 1077.691 (M + )

(実施例9)
下記スキ−ムに従って、上記式(2)で表される可溶性ポルフィリン誘導体(5,10,15,20−テトラキス[3,5−ビス(シクロヘキシルメチロキシ)フェニル]ポルフィリン白金(II))を製造した。
Example 9
According to the following scheme, a soluble porphyrin derivative represented by the above formula (2) (5,10,15,20-tetrakis [3,5-bis (cyclohexylmethyloxy) phenyl] porphyrin platinum (II)) was produced. .

5,10,15,20−テトラキス[3,5−ビス(シクロヘキシルメチロキシ)フェニル]ポルフィリン(0.152g,100.521μmol)、並びに塩化白金(II)(0.131g,0.492mmol)の混合物を窒素もしくはアルゴン雰囲気下、ベンゾニトリル30ml中で9時間加熱還流した。冷却後にベンゾニトリルを留去し、得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒: クロロホルム)にて精製、続いてジクロロメタン−メタノ−ルから再結晶させる事により目的物(5,10,15,20−テトラキス[3,5−ビス(シクロヘキシルメチロキシ)フェニル]ポルフィリン白金(II)、式[D]のRがシクロヘキシルメチル)(橙粉末、0.155g、収率90.4%)を得た。   A mixture of 5,10,15,20-tetrakis [3,5-bis (cyclohexylmethyloxy) phenyl] porphyrin (0.152 g, 100.521 μmol) and platinum (II) chloride (0.131 g, 0.492 mmol) was added to nitrogen or argon. Under an atmosphere, the mixture was refluxed for 9 hours in 30 ml of benzonitrile. After cooling, benzonitrile was distilled off, and the resulting residue was purified by silica gel column chromatography (developing solvent: chloroform), followed by recrystallization from dichloromethane-methanol to obtain the desired product (5, 10, 15, 20-tetrakis [3,5-bis (cyclohexylmethyloxy) phenyl] porphyrin platinum (II), R in formula [D] was cyclohexylmethyl) (orange powder, 0.155 g, yield 90.4%).

得られた化合物のHNMR、13CNMR、及びMALDI−TOF−MSを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 1.03−1.35 (m, 40H, CH2), 1.665−1.92 (m, 48H, CH2+CH), 3.89 (d, J=5.6 Hz, 16H, ArOCH2), 6.85 (t, J=2.0 Hz, 4H, arom. H), 7.29 (d, J=2.4 Hz, 8H, arom. H), 8.85 (s, 8H, pyrrole H) .
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 25.815, 26.52, 29.95, 37.81 (aliphatic), 73.81 (ether), 101.24, 113.54, 122.14, 130.63, 140.60, 143.05, 158.62 (aromatic).
MALDI−TOF−MS (no matrix): m/z=1705.42(M+)
When 1 HNMR, 13 CNMR, and MALDI-TOF-MS of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 1.03-1.35 (m, 40H, CH 2 ), 1.665-1.92 (m, 48H, CH 2 + CH), 3.89 (d, J = 5.6 Hz, 16H, ArOCH 2 ), 6.85 (t, J = 2.0 Hz, 4H, arom. H), 7.29 (d, J = 2.4 Hz, 8H, arom. H), 8.85 (s, 8H, pyrrole H).
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 25.815, 26.52, 29.95, 37.81 (aliphatic), 73.81 (ether), 101.24, 113.54, 122.14, 130.63, 140.60, 143.05, 158.62 (aromatic).
MALDI-TOF-MS (no matrix): m / z = 1705.42 (M + )

(実施例10)
実施例9と同様にして、上記式(2)で表される可溶性ポルフィリン誘導体(5,10,15,20−テトラキス[3,5−ビス(2−エチルヘキシロキシ)フェニル]ポルフィリン白金(II))を製造した。
(Example 10)
In the same manner as in Example 9, the soluble porphyrin derivative represented by the above formula (2) (5,10,15,20-tetrakis [3,5-bis (2-ethylhexyloxy) phenyl] porphyrin platinum (II) ) Was manufactured.

5,10,15,20−テトラキス[3,5−ビス(2−エチルヘキシロキシ)フェニル]ポルフィリン(0.160g,97.533μmol)、並びに塩化白金(II)(0.123g,0.462mmol)の混合物を窒素もしくはアルゴン雰囲気下、ベンゾニトリル30ml中で9時間加熱還流した。冷却後にベンゾニトリルを留去し、得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒: クロロホルム)にて精製、続いてジクロロメタン−メタノ−ルから再結晶させる事により目的物(5,10,15,20−テトラキス[3,5−ビス(2−エチルヘキシロキシ)フェニル]ポルフィリン白金(II)、式[D]のRが2−エチルヘキシル)(橙固体、0.156g、収率87.2%)を得た。   A mixture of 5,10,15,20-tetrakis [3,5-bis (2-ethylhexyloxy) phenyl] porphyrin (0.160 g, 97.533 μmol) and platinum (II) chloride (0.123 g, 0.462 mmol) was added to nitrogen. Alternatively, the mixture was heated to reflux for 9 hours in 30 ml of benzonitrile under an argon atmosphere. After cooling, benzonitrile was distilled off, and the resulting residue was purified by silica gel column chromatography (developing solvent: chloroform), followed by recrystallization from dichloromethane-methanol to obtain the desired product (5, 10, 15, 20-tetrakis [3,5-bis (2-ethylhexyloxy) phenyl] porphyrin platinum (II), R in formula [D] was 2-ethylhexyl) (orange solid, 0.156 g, yield 87.2%) was obtained. .

得られた化合物のHNMR、13CNMR、及びMALDI−TOF−MSを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.88 (t, J=6.8 Hz, 24H, CH3), 0.94 (t, J=7.6 Hz, 24H, CH3), 1.25−1.60 (m, 64H, CH2), 1.76−1.82 (m, 8H, CH), 3.975 (d, J=6.0 Hz, 16H, ArOCH2), 6.86 (t, J=2.2 Hz, 4H, arom. H), 7.30 (d, J=2.0 Hz, 8H, arom. H), 8.87 (s, 8H, pyrrole H).
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 11.15, 14.06, 23.04, 23.93, 29.11, 30.58, 39.52 (aliphatic), 70.92 (ether), 101.295, 113.55, 122.175, 130.64, 140.62, 143.04, 158.70 (aromatic).
MALDI−TOF−MS (no matrix): m/z=1833.392(M+)
When 1 HNMR, 13 CNMR, and MALDI-TOF-MS of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.88 (t, J = 6.8 Hz, 24H, CH 3 ), 0.94 (t, J = 7.6 Hz, 24H, CH 3 ), 1.25−1.60 (m, 64H, CH 2 ), 1.76−1.82 (m, 8H, CH), 3.975 (d, J = 6.0 Hz, 16H, ArOCH 2 ), 6.86 (t, J = 2.2 Hz, 4H, arom.H) 7.30 (d, J = 2.0 Hz, 8H, arom. H), 8.87 (s, 8H, pyrrole H).
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 11.15, 14.06, 23.04, 23.93, 29.11, 30.58, 39.52 (aliphatic), 70.92 (ether), 101.295, 113.55, 122.175, 130.64, 140.62, 143.04, 158.70 (aromatic).
MALDI-TOF-MS (no matrix): m / z = 1833.392 (M + )

(実施例11)
実施例9と同様にして、上記式(2)で表される可溶性ポルフィリン誘導体(5,10,15,20−テトラキス[3,5−ビス(オクチロキシ)フェニル]ポルフィリン白金(II))を製造した。
(Example 11)
In the same manner as in Example 9, a soluble porphyrin derivative (5,10,15,20-tetrakis [3,5-bis (octyloxy) phenyl] porphyrin platinum (II)) represented by the above formula (2) was produced. .

5,10,15,20−テトラキス[3,5−ビス(オクチロキシ)フェニル]ポルフィリン(0.153g,93.266μmol)、並びに塩化白金(II)(0.136g,0.511mmol)の混合物を窒素もしくはアルゴン雰囲気下、ベンゾニトリル30ml中で9時間加熱還流した。冷却後にベンゾニトリルを留去し、得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒: クロロホルム)にて精製する事により目的物(5,10,15,20−テトラキス[3,5−ビス(オクチロキシ)フェニル]ポルフィリン白金(II)、式[D]のRがn−オクチル)(橙固体、0.168g、収率98.2%)を得た。   A mixture of 5,10,15,20-tetrakis [3,5-bis (octyloxy) phenyl] porphyrin (0.153 g, 93.266 μmol) and platinum (II) chloride (0.136 g, 0.511 mmol) under nitrogen or argon atmosphere The mixture was heated to reflux in 30 ml of benzonitrile for 9 hours. After cooling, benzonitrile was distilled off, and the resulting residue was purified by silica gel column chromatography (developing solvent: chloroform) to obtain the desired product (5,10,15,20-tetrakis [3,5-bis (octyloxy). ) Phenyl] porphyrin platinum (II), R in formula [D] is n-octyl) (orange solid, 0.168 g, yield 98.2%).

得られた化合物のHNMR、13CNMR、及びMALDI−TOF−MSを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.85 (t, J=6.8 Hz, 24H, CH3), 1.22−1.39 (m, 64H, CH2), 1.43−1.54 (m, 16H, CH2), 1.81−1.88 (m, 16H, CH2), 4.09 (t, J=6.6 Hz, 16H, ArOCH2), 6.86 (t, J=2.2 Hz, 4H, arom. H), 7.29 (d, J=2.4 Hz, 8H, arom. H), 8.84 (s, 8H, pyrrole H).
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 14.06, 22.64, 26.11, 29.235, 29.39, 29.72, 31.81 (aliphatic), 68.42 (ether), 101.325, 113.65, 122.13, 130.65, 140.64, 143.11, 158.50 (aromatic).
MALDI−TOF−MS (no matrix): m/z=1833.903(M+)
When 1 HNMR, 13 CNMR, and MALDI-TOF-MS of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.85 (t, J = 6.8 Hz, 24H, CH 3 ), 1.22-1.39 (m, 64H, CH 2 ), 1.43-1.54 (m, 16H, CH 2 ), 1.81-1.88 (m, 16H, CH 2 ), 4.09 (t, J = 6.6 Hz, 16H, ArOCH 2 ), 6.86 (t, J = 2.2 Hz, 4H, arom.H), 7.29 (d, J = 2.4 Hz, 8H, arom. H), 8.84 (s, 8H, pyrrole H).
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 14.06, 22.64, 26.11, 29.235, 29.39, 29.72, 31.81 (aliphatic), 68.42 (ether), 101.325, 113.65, 122.13, 130.65, 140.64, 143.11, 158.50 (aromatic).
MALDI-TOF-MS (no matrix): m / z = 1833.903 (M + )

(実施例12)
実施例9と同様にして、上記式(2)で表される可溶性ポルフィリン誘導体(5,10,15,20−テトラキス[3,5−ビス(ヘプチロキシ)フェニル]ポルフィリン白金(II))を製造した。
(Example 12)
In the same manner as in Example 9, a soluble porphyrin derivative (5,10,15,20-tetrakis [3,5-bis (heptyloxy) phenyl] porphyrin platinum (II)) represented by the above formula (2) was produced. .

5,10,15,20−テトラキス[3,5−ビス(ヘプチロキシ)フェニル]ポルフィリン(0.152g,99.460μmol)、並びに塩化白金(II)(0.122g,0.459mmol)の混合物を窒素もしくはアルゴン雰囲気下、ベンゾニトリル30ml中で9時間加熱還流した。冷却後にベンゾニトリルを留去し、得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒: クロロホルム)にて精製、続いてジクロロメタン−メタノ−ルから再結晶させる事により目的物(5,10,15,20−テトラキス[3,5−ビス(ヘプチロキシ)フェニル]ポルフィリン白金(II)、式[D]のRがn−ヘプチル)(橙固体、0.154g、収率90.0%)を得た。   A mixture of 5,10,15,20-tetrakis [3,5-bis (heptyloxy) phenyl] porphyrin (0.152 g, 99.460 μmol) and platinum (II) chloride (0.122 g, 0.459 mmol) under nitrogen or argon atmosphere The mixture was heated to reflux in 30 ml of benzonitrile for 9 hours. After cooling, benzonitrile was distilled off, and the resulting residue was purified by silica gel column chromatography (developing solvent: chloroform), followed by recrystallization from dichloromethane-methanol to obtain the desired product (5, 10, 15, 20-tetrakis [3,5-bis (heptyloxy) phenyl] porphyrin platinum (II), R in formula [D] was n-heptyl) (orange solid, 0.154 g, yield 90.0%) was obtained.

得られた化合物のHNMR、13CNMR、及びMALDI−TOF−MSを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.86 (t, J=6.8 Hz, 24H, CH3), 1.26−1.51 (m, 48H, CH2), 1.81−1.88 (m, 16H, CH2), 4.09 (t, J=6.6 Hz, 16H, ArOCH2), 6.86 (t, J=2.2 Hz, 4H, arom. H), 7.295 (d, J=2.4 Hz, 8H, arom. H), 8.84 (s, 8H, pyrrole H).
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 14.05, 22.58, 26.05, 29.08, 29.37, 31.77 (aliphatic), 68.39 (ether), 101.30, 113.63, 122.11, 130.63, 140.62, 143.09, 158.48 (aromatic).
MALDI−TOF−MS (no matrix): m/z=1722.270(M+)
When 1 HNMR, 13 CNMR, and MALDI-TOF-MS of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.86 (t, J = 6.8 Hz, 24H, CH 3 ), 1.26−1.51 (m, 48H, CH 2 ), 1.81-1.88 (m, 16H, CH 2 ), 4.09 (t, J = 6.6 Hz, 16H, ArOCH 2 ), 6.86 (t, J = 2.2 Hz, 4H, arom.H), 7.295 (d, J = 2.4 Hz, 8H, arom. H), 8.84 (s, 8H, pyrrole H).
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 14.05, 22.58, 26.05, 29.08, 29.37, 31.77 (aliphatic), 68.39 (ether), 101.30, 113.63, 122.11, 130.63, 140.62, 143.09, 158.48 (aromatic ).
MALDI-TOF-MS (no matrix): m / z = 1722.270 (M + )

(実施例13)
実施例9と同様にして、上記式(2)で表される可溶性ポルフィリン誘導体(5,10,15,20−テトラキス[3,5−ビス(ヘキシロキシ)フェニル]ポルフィリン白金(II))を製造した。
(Example 13)
In the same manner as in Example 9, a soluble porphyrin derivative (5,10,15,20-tetrakis [3,5-bis (hexyloxy) phenyl] porphyrin platinum (II)) represented by the above formula (2) was produced. .

5,10,15,20−テトラキス[3,5−ビス(ヘキシロキシ)フェニル]ポルフィリン(0.152g,99.460μmol)、並びに塩化白金(II)(0.122g,0.459mmol)の混合物を窒素もしくはアルゴン雰囲気下、ベンゾニトリル30ml中で9時間加熱還流した。冷却後にベンゾニトリルを留去し、得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒: クロロホルム)にて精製、続いてジクロロメタン−メタノ−ルから再結晶させる事により目的物(5,10,15,20−テトラキス[3,5−ビス(ヘキシロキシ)フェニル]ポルフィリン白金(II)、式[D]のRがn−ヘキシル)(橙固体、0.154g、収率90.0%)を得た。   A mixture of 5,10,15,20-tetrakis [3,5-bis (hexyloxy) phenyl] porphyrin (0.152 g, 99.460 μmol) and platinum (II) chloride (0.122 g, 0.459 mmol) under nitrogen or argon atmosphere The mixture was heated to reflux in 30 ml of benzonitrile for 9 hours. After cooling, benzonitrile was distilled off, and the resulting residue was purified by silica gel column chromatography (developing solvent: chloroform), followed by recrystallization from dichloromethane-methanol to obtain the desired product (5, 10, 15, 20-tetrakis [3,5-bis (hexyloxy) phenyl] porphyrin platinum (II), R in formula [D] was n-hexyl) (orange solid, 0.154 g, yield 90.0%) was obtained.

得られた化合物のHNMR、13CNMR、及びMALDI−TOF−MSを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.86 (t, J=6.8 Hz, 24H, CH3), 1.26−1.51 (m, 48H, CH2), 1.81−1.88 (m, 16H, CH2), 4.09 (t, J=6.6 Hz, 16H, ArOCH2), 6.86 (t, J=2.2 Hz, 4H, arom. H), 7.295 (d, J=2.4 Hz, 8H, arom. H), 8.84 (s, 8H, pyrrole H).
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 14.05, 22.58, 26.05, 29.08, 29.37, 31.77 (aliphatic), 68.39 (ether), 101.30, 113.63, 122.11, 130.63, 140.62, 143.09, 158.48 (aromatic).
MALDI−TOF−MS (no matrix): m/z=1722.270(M+)
When 1 HNMR, 13 CNMR, and MALDI-TOF-MS of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.86 (t, J = 6.8 Hz, 24H, CH 3 ), 1.26−1.51 (m, 48H, CH 2 ), 1.81-1.88 (m, 16H, CH 2 ), 4.09 (t, J = 6.6 Hz, 16H, ArOCH 2 ), 6.86 (t, J = 2.2 Hz, 4H, arom.H), 7.295 (d, J = 2.4 Hz, 8H, arom. H), 8.84 (s, 8H, pyrrole H).
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 14.05, 22.58, 26.05, 29.08, 29.37, 31.77 (aliphatic), 68.39 (ether), 101.30, 113.63, 122.11, 130.63, 140.62, 143.09, 158.48 (aromatic ).
MALDI-TOF-MS (no matrix): m / z = 1722.270 (M + )

(実施例14)
実施例9と同様にして、上記式(2)で表される可溶性ポルフィリン誘導体(5,10,15,20−テトラキス[3,5−ビス(ペンチロキシ)フェニル]ポルフィリン白金(II))を製造した。
(Example 14)
In the same manner as in Example 9, a soluble porphyrin derivative (5,10,15,20-tetrakis [3,5-bis (pentyloxy) phenyl] porphyrin platinum (II)) represented by the above formula (2) was produced. .

5,10,15,20−テトラキス[3,5−ビス(ペンチロキシ)フェニル]ポルフィリン(0.147g,112.746μmol)、並びに塩化白金(II)(0.153g,0.575mmol)の混合物を窒素もしくはアルゴン雰囲気下、ベンゾニトリル30ml中で9時間加熱還流した。冷却後にベンゾニトリルを留去し、得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒: クロロホルム)にて精製、続いてジクロロメタン−メタノ−ルから再結晶させる事により目的物(5,10,15,20−テトラキス[3,5−ビス(ペンチロキシ)フェニル]ポルフィリン白金(II)、式[D]のRがn−ペンチル)(橙結晶、0.144g、収率85.4%)を得た。   A mixture of 5,10,15,20-tetrakis [3,5-bis (pentyloxy) phenyl] porphyrin (0.147 g, 112.746 μmol) and platinum (II) chloride (0.153 g, 0.575 mmol) under a nitrogen or argon atmosphere. The mixture was heated to reflux in 30 ml of benzonitrile for 9 hours. After cooling, benzonitrile was distilled off, and the resulting residue was purified by silica gel column chromatography (developing solvent: chloroform), followed by recrystallization from dichloromethane-methanol to obtain the desired product (5, 10, 15, 20-tetrakis [3,5-bis (pentyloxy) phenyl] porphyrin platinum (II), R in formula [D] was n-pentyl) (orange crystals, 0.144 g, yield 85.4%).

得られた化合物のHNMR、13CNMR、及びMALDI−TOF−MSを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.92 (t, J=7.4 Hz, 24H, CH3), 1.34−1.51 (m, 32H, CH2), 1.82−1.89 (m, 16H, CH2), 4.095 (t, J=6.8 Hz, 16H, ArOCH2), 6.86 (t, J=2.2 Hz, 4H, arom. H), 7.30 (d, J=2.4 Hz, 8H, arom. H), 8.845 (s, 8H, pyrrole H).
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 14.00, 22.48, 28.25, 29.05 (aliphatic), 68.37 (ether), 101.28, 113.635, 122.105, 130.63, 140.61, 143.09, 158.47 (aromatic).
MALDI−TOF−MS (no matrix): m/z=1496.645(M+)
When 1 HNMR, 13 CNMR, and MALDI-TOF-MS of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.92 (t, J = 7.4 Hz, 24H, CH 3 ), 1.34−1.51 (m, 32H, CH 2 ), 1.82-1−1.89 (m, 16H, CH 2 ), 4.095 (t, J = 6.8 Hz, 16H, ArOCH 2 ), 6.86 (t, J = 2.2 Hz, 4H, arom.H), 7.30 (d, J = 2.4 Hz, 8H, arom. H), 8.845 (s, 8H, pyrrole H).
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 14.00, 22.48, 28.25, 29.05 (aliphatic), 68.37 (ether), 101.28, 113.635, 122.105, 130.63, 140.61, 143.09, 158.47 (aromatic).
MALDI-TOF-MS (no matrix): m / z = 1496.645 (M + )

(実施例15)
実施例9と同様にして、上記式(2)で表される可溶性ポルフィリン誘導体(5,10,15,20−テトラキス[3,5−ビス(ブトキシ)フェニル]ポルフィリン白金(II))を製造した。
(Example 15)
In the same manner as in Example 9, a soluble porphyrin derivative (5,10,15,20-tetrakis [3,5-bis (butoxy) phenyl] porphyrin platinum (II)) represented by the above formula (2) was produced. .

5,10,15,20−テトラキス[3,5−ビス(ブトキシ)フェニル]ポルフィリン(0.159g,133.433μmol)、並びに塩化白金(II)(0.176g,0.662mmol)の混合物を窒素もしくはアルゴン雰囲気下、ベンゾニトリル30ml中で9時間加熱還流した。冷却後にベンゾニトリルを留去し、得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒: クロロホルム)にて精製、続いてジクロロメタン−メタノ−ルから再結晶させる事により目的物(5,10,15,20−テトラキス[3,5−ビス(ブトキシ)フェニル]ポルフィリン白金(II)、式[D]のRがn−ブチル)(橙結晶、0.157g、収率85.0%)を得た。   A mixture of 5,10,15,20-tetrakis [3,5-bis (butoxy) phenyl] porphyrin (0.159 g, 133.433 μmol) and platinum (II) chloride (0.176 g, 0.662 mmol) under a nitrogen or argon atmosphere. The mixture was heated to reflux in 30 ml of benzonitrile for 9 hours. After cooling, benzonitrile was distilled off, and the resulting residue was purified by silica gel column chromatography (developing solvent: chloroform), followed by recrystallization from dichloromethane-methanol to obtain the desired product (5, 10, 15, 20-tetrakis [3,5-bis (butoxy) phenyl] porphyrin platinum (II), R in formula [D] was n-butyl) (orange crystals, 0.157 g, yield 85.0%).

得られた化合物のHNMR、13CNMR、及びMALDI−TOF−MSを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 0.98 (t, J=7.6 Hz, 24H, CH3), 1.475−1.57 (m, 16H, CH2), 4.12 (t, J=6.6 Hz, 16H, ArOCH2), 6.86 (t, J=2.4 Hz, 4H, arom. H), 7.30 (d, J=2.8 Hz, 8H, arom. H), 8.85 (s, 8H, pyrrole H).
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 13.88, 19.29, 31.42 (aliphatic), 68.07 (ether), 101.28, 113.63, 122.105, 130.63, 140.61, 143.09, 158.48 (aromatic).
MALDI−TOF−MS (no matrix): m/z=1384.197(M+)
When 1 HNMR, 13 CNMR, and MALDI-TOF-MS of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 0.98 (t, J = 7.6 Hz, 24H, CH 3 ), 1.475−1.57 (m, 16H, CH 2 ), 4.12 (t, J = 6.6 Hz, 16H, ArOCH 2 ), 6.86 (t, J = 2.4 Hz, 4H, arom.H), 7.30 (d, J = 2.8 Hz, 8H, arom.H), 8.85 (s, 8H, pyrrole H) .
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 13.88, 19.29, 31.42 (aliphatic), 68.07 (ether), 101.28, 113.63, 122.105, 130.63, 140.61, 143.09, 158.48 (aromatic).
MALDI-TOF-MS (no matrix): m / z = 1384.197 (M + )

(実施例16)
実施例9と同様にして、上記式(2)で表される可溶性ポルフィリン誘導体(5,10,15,20−テトラキス[3,5−ビス(プロポキシ)フェニル]ポルフィリン白金(II))を製造した。
(Example 16)
In the same manner as in Example 9, a soluble porphyrin derivative (5,10,15,20-tetrakis [3,5-bis (propoxy) phenyl] porphyrin platinum (II)) represented by the above formula (2) was produced. .

5,10,15,20−テトラキス[3,5−ビス(プロポキシ)フェニル]ポルフィリン(0.151g,139.894μmol)、並びに塩化白金(II)(0.189g,0.711mmol)の混合物を窒素もしくはアルゴン雰囲気下、ベンゾニトリル30ml中で9時間加熱還流した。冷却後にベンゾニトリルを留去し、得られた残渣をシリカゲルカラムクロマトグラフィ−(展開溶媒: クロロホルム)にて精製、続いてジクロロメタン−メタノ−ルから再結晶させる事により目的物(5,10,15,20−テトラキス[3,5−ビス(プロポキシ)フェニル]ポルフィリン白金(II)、式[D]のRがn−プロピル)(橙結晶、0.141g、収率79.2%)を得た。   A mixture of 5,10,15,20-tetrakis [3,5-bis (propoxy) phenyl] porphyrin (0.151 g, 139.894 μmol) and platinum (II) chloride (0.189 g, 0.711 mmol) under nitrogen or argon atmosphere The mixture was heated to reflux in 30 ml of benzonitrile for 9 hours. After cooling, benzonitrile was distilled off, and the resulting residue was purified by silica gel column chromatography (developing solvent: chloroform), followed by recrystallization from dichloromethane-methanol to obtain the desired product (5, 10, 15, 20-tetrakis [3,5-bis (propoxy) phenyl] porphyrin platinum (II), R in formula [D] was n-propyl) (orange crystals, 0.141 g, yield 79.2%).

得られた化合物のHNMR、13CNMR、及びMALDI−TOF−MSを測定したところ、下記デ−タが得られた。
1 H NMR (400 MHz, CDCl3, TMS): δ(ppm) 1.06 (t, J=7.2 Hz, 24H, CH3), 1.83−1.92 (m, 16H, CH2), 4.065 (t, J=6.6 Hz, 16H, ArOCH2), 6.87 (t, J=2.2 Hz, 4H, arom. H), 7.30 (d, J=2.4 Hz, 8H, arom. H), 8.85 (s, 8H, pyrrole H).
13 C NMR (100.4 MHz, CDCl3): δ(ppm) 10.56, 22.68 (aliphatic), 69.86 (ether), 101.33, 113.64, 122.11, 130.63, 140.62, 143.10, 158.47 (aromatic).
MALDI−TOF−MS (no matrix): m/z=1273.003(M+)
When 1 HNMR, 13 CNMR, and MALDI-TOF-MS of the obtained compound were measured, the following data was obtained.
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm) 1.06 (t, J = 7.2 Hz, 24H, CH 3 ), 1.83−1.92 (m, 16H, CH 2 ), 4.065 (t, J = 6.6 Hz, 16H, ArOCH 2 ), 6.87 (t, J = 2.2 Hz, 4H, arom.H), 7.30 (d, J = 2.4 Hz, 8H, arom.H), 8.85 (s, 8H, pyrrole H) .
13 C NMR (100.4 MHz, CDCl 3 ): δ (ppm) 10.56, 22.68 (aliphatic), 69.86 (ether), 101.33, 113.64, 122.11, 130.63, 140.62, 143.10, 158.47 (aromatic).
MALDI-TOF-MS (no matrix): m / z = 1273.003 (M + )

上記で得られたポルフィリン誘導体について、下記のような評価を行った。なお、比較例1として、テトラフェニルポルフィリン(OR置換基が水素)を用い、比較例2として、テトラフェニルポルフィリン白金(II)(OR置換基が水素)を用いて実施例と同様に評価を行った。
(1)熱物性評価
示差熱・熱重量同時測定(TG−DTA)はTG/DTA同時測定装置(製品名:DTG−60A、島津製作所(株)製)を用いて、窒素雰囲気下、10℃/minの昇温速度で、2%の重量減少温度を熱分解温度とした。また示差走査熱量測定(DSC)の測定は、示差走査熱量測定装置(DSC204、NETZSCH製)を用いて、アルゴン雰囲気下、5℃/minの昇温・冷却速度で、融温度(Tm)、結晶化温度(Tc)、ガラス転移点(Tg)を測定した。表1に結果を示す。
The following evaluation was performed about the porphyrin derivative obtained above. As Comparative Example 1, tetraphenylporphyrin (OR substituent is hydrogen) was used, and as Comparative Example 2, tetraphenylporphyrin platinum (II) (OR substituent was hydrogen) was evaluated in the same manner as in Example. It was.
(1) Thermophysical property evaluation Differential thermal and thermogravimetric simultaneous measurement (TG-DTA) is performed at 10 ° C. in a nitrogen atmosphere using a TG / DTA simultaneous measurement device (product name: DTG-60A, manufactured by Shimadzu Corporation). At a rate of temperature increase of / min, a weight loss temperature of 2% was defined as the thermal decomposition temperature. The differential scanning calorimetry (DSC) is measured using a differential scanning calorimeter (DSC204, manufactured by NETZSCH) at a heating / cooling rate of 5 ° C./min in an argon atmosphere, melting temperature (Tm), crystal The conversion temperature (Tc) and glass transition point (Tg) were measured. Table 1 shows the results.

表1の結果から、熱物性は中心金属には依存せず、置換基の種類に依存することが示唆された。更に、Rが全て2−エチルヘキシルの場合には、Rが全てn−ヘキシルとRが全てn−ヘプチルの中間の値を示したことから、熱物性は、Rの鎖のうち長い方(2−エチルヘキシルの場合はヘキシル部分)に依存することが示唆された。   From the results in Table 1, it was suggested that the thermophysical properties do not depend on the central metal but on the type of substituent. Furthermore, when R is all 2-ethylhexyl, since R is an intermediate value between all n-hexyl and R are all n-heptyl, the thermophysical properties are longer in the R chain (2- In the case of ethylhexyl, it was suggested that it depends on the hexyl moiety.

(2)吸収スペクトル測定
ポルフィリン誘導体について、クロロホルム溶液と、膜状での吸収スペクトルを測定した。
(i)クロロホルム溶液の吸収スペクトル測定
濃度が1.0×10−6mol/dmの実施例1〜16のポルフィリン誘導体、及び比較例1、2のポルフィリン誘導体のクロロホルム溶液について、(製品名:UV−2550、島津製作所(株)製)を用いて、大気下、室温という条件下で、吸収スペクトルを測定した。
(ii)膜の吸収スペクトル測定
実施例1〜16のポルフィリン誘導体の10mg/1mlクロロホルム溶液を準備し、石英上に2000rpm/10secでスピンコ−トして、実施例1〜16のポルフィリン誘導体からなる膜を湿式成膜法により形成した(厚み40〜60nm)。一方、比較例1、2のポルフィリン誘導体は、塗膜を作成するための高濃度(10mg/1ml)でクロロホルムに溶解することができず、湿式成膜法により膜を形成することができなかった。
実施例1〜16のポルフィリン誘導体からなる膜について、(製品名:UV−2550、島津製作所(株)製)を用いて、大気下、室温という条件下で、吸収スペクトルを測定した。
(2) Absorption spectrum measurement About the porphyrin derivative, the chloroform solution and the absorption spectrum in the form of a film were measured.
(I) porphyrin derivative of Examples 1 to 16 of the absorption spectrum measured concentration of the chloroform solution is 1.0 × 10 -6 mol / dm 3 , and the chloroform solution of porphyrin derivatives of Comparative Examples 1 and 2, (product name: The absorption spectrum was measured using UV-2550 (manufactured by Shimadzu Corporation) under the conditions of air and room temperature.
(Ii) Measurement of absorption spectrum of film A 10 mg / 1 ml chloroform solution of the porphyrin derivatives of Examples 1 to 16 was prepared, spin-coated on quartz at 2000 rpm / 10 sec, and a film comprising the porphyrin derivatives of Examples 1 to 16 Was formed by a wet film formation method (thickness 40-60 nm). On the other hand, the porphyrin derivatives of Comparative Examples 1 and 2 could not be dissolved in chloroform at a high concentration (10 mg / 1 ml) for forming a coating film, and a film could not be formed by a wet film formation method. .
About the film | membrane consisting of the porphyrin derivative of Examples 1-16, the absorption spectrum was measured on the conditions of air | atmosphere and room temperature using (Product name: UV-2550, Shimadzu Corporation Corp.).

図1に、実施例1〜8のポルフィリン誘導体、及びTPPのクロロホルム溶液の吸収スペクトルの結果を示す。図2に、実施例9〜16のポルフィリン誘導体、及びPtが配位したTPPのクロロホルム溶液の吸収スペクトルの結果を示す。また、図3に、実施例1〜8のポルフィリン誘導体からなる膜の吸収スペクトルの結果を示す。図4に、実施例9〜16のポルフィリン誘導体からなる膜の吸収スペクトルの結果を示す。なお、図3と図4は、吸光度の最大値が1となるように規格化して示している。   In FIG. 1, the result of the absorption spectrum of the porphyrin derivative of Examples 1-8 and the chloroform solution of TPP is shown. FIG. 2 shows the results of absorption spectra of the porphyrin derivatives of Examples 9 to 16 and the TPP chloroform solution coordinated with Pt. Moreover, the result of the absorption spectrum of the film | membrane which consists of a porphyrin derivative of Examples 1-8 is shown in FIG. In FIG. 4, the result of the absorption spectrum of the film | membrane which consists of a porphyrin derivative of Examples 9-16 is shown. 3 and 4 are normalized so that the maximum absorbance is 1. FIG.

また、図1の結果から、実施例1〜8のポルフィリン誘導体は、分子を希薄にした状態で吸収スペクトルを測定すると、置換基導入によりSoret−bandが変化することが明らかになった。特にシクロヘキシルメチロキシ誘導体は他の化合物に比べて特異的なスペクトルを示していた。
それに対し、図2の結果から、実施例1〜8のポルフィリン誘導体にそれぞれ白金を集積化した実施例9〜16のポルフィリン誘導体は、分子を希薄にした状態で吸収スペクトルを測定してもSoret−bandのピ−クが1つになり、置換基導入による変化は観測されず、TPPと同様のスペクトルになった。白金の集積化により、ポルフィリンの構造が固定されることが推定される。
From the results of FIG. 1, it was revealed that the porphyrin derivatives of Examples 1 to 8 change the Soret-band due to the introduction of substituents when the absorption spectrum is measured with the molecule diluted. In particular, the cyclohexylmethyloxy derivative showed a specific spectrum as compared with other compounds.
On the other hand, from the results of FIG. 2, the porphyrin derivatives of Examples 9 to 16 in which platinum is integrated in the porphyrin derivatives of Examples 1 to 8, respectively, even if the absorption spectrum is measured in a dilute state, Soret- The peak of the band became one, no change due to the introduction of substituents was observed, and the spectrum was the same as that of TPP. It is presumed that the porphyrin structure is fixed by the integration of platinum.

また、図3の結果から、実施例1〜8のポルフィリン誘導体は、膜にした状態でスペクトルを測定すると、Soret−bandが1つに統合され、Q−bandは分裂又は新たなピ−クを示すことが明らかになった。膜にした場合には、ポルフィリン誘導体同士の一部(face to edge)及び/又は全部(face to face)の重なりが生じることが示唆される。   In addition, from the results of FIG. 3, when the spectra of the porphyrin derivatives of Examples 1 to 8 are measured in a film state, the Soret-band is integrated into one, and the Q-band is split or has a new peak. It became clear to show. In the case of a membrane, it is suggested that part (face to edge) and / or all (face to face) overlap of porphyrin derivatives occurs.

また、図2と図4を比較すると、実施例9〜16のポルフィリン誘導体は、膜にした状態になると、Soret−band、Q−bandが共に数nmの長波長シフトが観測され、中でも、置換基として直鎖型構造を有する分子において、約590nm付近に新たな吸収が観測される。これは、ポルフィリン誘導体同士の一部(face to edge)及び/又は全部(face to face)の重なりの他、分子間での白金のd−d結合の形成が示唆され、白金を配位していない場合に比べて更なる導電性の向上が示唆される。   2 and 4, when the porphyrin derivatives of Examples 9 to 16 are in the form of a film, both Soret-band and Q-band are observed to have a long wavelength shift of several nanometers. In a molecule having a linear structure as a group, a new absorption is observed around 590 nm. This suggests the formation of dd bonds of platinum between molecules in addition to the overlap of part (face to edge) and / or the whole (face to face) of porphyrin derivatives. This suggests further improvement in conductivity as compared with the case without the above.

実施例1〜8のポルフィリン誘導体、及びTPPのクロロホルム溶液の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum of the porphyrin derivative of Examples 1-8, and the chloroform solution of TPP. 実施例9〜16のポルフィリン誘導体、及びPtが配位したTPPのクロロホルム溶液の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum of the chloroform solution of the porphyrin derivative of Examples 9-16 and TPP which Pt coordinated. 実施例1〜8のポルフィリン誘導体からなる膜の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum of the film | membrane consisting of the porphyrin derivative of Examples 1-8. 実施例9〜16のポルフィリン誘導体からなる膜の吸収スペクトル示す図である。It is a figure which shows the absorption spectrum of the film | membrane consisting of the porphyrin derivative of Examples 9-16.

Claims (2)

下記式(2)で表される可溶性ポルフィリン誘導体。
(式(2)において、Rは、それぞれ独立に、置換もしくは無置換の炭素数が3以上のアルキル基である。)
A soluble porphyrin derivative represented by the following formula (2).
(In Formula (2), each R is independently a substituted or unsubstituted alkyl group having 3 or more carbon atoms.)
前記式(2)において、Rが、置換もしくは無置換の炭素数が7以上のアルキル基である、請求項に記載の可溶性ポルフィリン誘導体。 The soluble porphyrin derivative according to claim 1 , wherein, in the formula (2), R is a substituted or unsubstituted alkyl group having 7 or more carbon atoms.
JP2007207987A 2007-08-09 2007-08-09 Soluble porphyrin derivative Expired - Fee Related JP5169064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007207987A JP5169064B2 (en) 2007-08-09 2007-08-09 Soluble porphyrin derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007207987A JP5169064B2 (en) 2007-08-09 2007-08-09 Soluble porphyrin derivative

Publications (2)

Publication Number Publication Date
JP2009040726A JP2009040726A (en) 2009-02-26
JP5169064B2 true JP5169064B2 (en) 2013-03-27

Family

ID=40441864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007207987A Expired - Fee Related JP5169064B2 (en) 2007-08-09 2007-08-09 Soluble porphyrin derivative

Country Status (1)

Country Link
JP (1) JP5169064B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116336A (en) * 2008-11-12 2010-05-27 Dainippon Printing Co Ltd Liquid porphyrin derivative

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253634A4 (en) * 2008-03-11 2012-03-21 Dainippon Printing Co Ltd Liquid porphyrin derivative and method for producing the same
WO2011142184A1 (en) * 2010-05-12 2011-11-17 大日本印刷株式会社 Composite of liquid porphyrin derivative and nanocarbon material, method for producing the same, charge-transporting material, and electronic component
WO2023127331A1 (en) * 2021-12-27 2023-07-06 株式会社トクヤマ Peptide production method, protecting group removing method, removing agent, and benzyl compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615221B2 (en) * 2004-07-23 2009-11-10 Oncologic, Inc. Compositions and methods for treating cancer
JP2006245559A (en) * 2005-02-07 2006-09-14 Mitsubishi Chemicals Corp Field-effect transistor and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116336A (en) * 2008-11-12 2010-05-27 Dainippon Printing Co Ltd Liquid porphyrin derivative

Also Published As

Publication number Publication date
JP2009040726A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
Yu et al. Reversible Crystal‐to‐Crystal Phase Transitions with High‐Contrast Luminescent Alterations for a Thermally Activated Delayed Fluorescence Emitter
CN112778327B (en) Organic non-fullerene electron acceptor material and preparation method and application thereof
CN112300201B (en) Synthesis and preparation method of trimeric indenyl coumarin-corrole-porphyrin quaternary system star-shaped compound
JP5169064B2 (en) Soluble porphyrin derivative
Liao et al. Synthesis, optical and electrochemical properties of novel meso-triphenylamine-BODIPY dyes with aromatic moieties at 3, 5-positions
KR20200026162A (en) Organic semiconducting material and its synthesis and organic semiconducting component with the material
CN106674083A (en) Synthesis method of photoelectric material intermediate 9-(4'-chlorobiphenyl-2-yl) carbazole
CN112409374B (en) Preparation method of rigid core direct-connected graphene-like benzophenanthrene discotic liquid crystal and mesomorphism
CN107001926B (en) Aggregation-induced emission and aggregation-promoted photochromism of bis (diarylmethylene) -dihydroacenes
JP5490421B2 (en) Compound, method for producing organic pigment, and method for producing organic electronic device
JP4625947B2 (en) Optoelectronic device
JP5381976B2 (en) Liquid porphyrin derivative and method for producing the same
JP7427318B2 (en) Novel compounds and organic light-emitting devices using them
CN111057008B (en) D-A type excited proton transfer high-efficiency fluorescent material and preparation method and application thereof
JP2012236777A (en) Indolocarbazole-containing imide compound, and intermediate for synthesizing the same, method for producing them, organic semiconductor composition, and organic solar cell element
JP2011068635A (en) Composite comprising liquid porphyrin derivative and nanocarbon material, manufacturing method of the same, charge-transporting material and electronic article
Roy et al. Synthesis and photophysical properties of stilbenoid dendrimers via Heck reaction on a tetraphenylethylene core
JP5381033B2 (en) Liquid porphyrin derivatives
JP5858416B2 (en) Quinoid type carbon-bridged phenylene vinylene compound and method for stabilizing quinoid type phenylene vinylene compound
CN112724374B (en) Preparation of novel conjugated microporous polymer based on boron-containing fluorescent dye and photocatalytic application of novel conjugated microporous polymer
Zhou et al. Blue emissive dimethylmethylene-bridged triphenylamine derivatives appending cross-linkable groups
CN108285442A (en) A kind of organic semiconductor laser material and the preparation method and application thereof
KR100601039B1 (en) Novel fluorescent dendrimers and manufacturing method thereof
JP3712037B2 (en) Cyclic compounds and organic electroluminescent materials
Cassar Diketopyrrolopyrrole Derivatives for Single Material Solar Cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

LAPS Cancellation because of no payment of annual fees