JP5168869B2 - ReRAM - Google Patents

ReRAM Download PDF

Info

Publication number
JP5168869B2
JP5168869B2 JP2006269063A JP2006269063A JP5168869B2 JP 5168869 B2 JP5168869 B2 JP 5168869B2 JP 2006269063 A JP2006269063 A JP 2006269063A JP 2006269063 A JP2006269063 A JP 2006269063A JP 5168869 B2 JP5168869 B2 JP 5168869B2
Authority
JP
Japan
Prior art keywords
reram
metal wiring
memory cell
wiring layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006269063A
Other languages
Japanese (ja)
Other versions
JP2008091519A (en
Inventor
正樹 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006269063A priority Critical patent/JP5168869B2/en
Publication of JP2008091519A publication Critical patent/JP2008091519A/en
Application granted granted Critical
Publication of JP5168869B2 publication Critical patent/JP5168869B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Description

本発明は、可変抵抗素子で構成したメモリセル、即ち、ReRAM(resistive random access memory)素子の配置構造を改善し、メモリセル選択トランジスタの更なる微細化に対処できるようにしたReRAMに関する。   The present invention relates to a ReRAM in which the arrangement structure of a memory cell composed of variable resistance elements, that is, a ReRAM (resistive random access memory) element, is improved to cope with further miniaturization of a memory cell selection transistor.

従来、CMOS論理回路とメモリとを混載するシステムLSIが多用されている。その場合のメモリは、CMOS回路からなるメモリセル選択トランジスタを形成した層の上に積層した半導体層に作り込まれるのが普通である。   Conventionally, a system LSI in which a CMOS logic circuit and a memory are mixedly mounted is widely used. In this case, the memory is usually built in a semiconductor layer stacked on a layer in which a memory cell selection transistor formed of a CMOS circuit is formed.

一般に、メモリセルのサイズは、最小加工寸法F、即ち、第1層目メタル配線のハーフピッチで規定されている。例えば、1メモリセル選択トランジスタ・1可変抵抗素子(1T1R)のReRAM素子の場合、8F2 のメモリセルサイズになるように、基本的にCMOSトランジスタの設計ルールを基にして設計するようにしている。 In general, the size of the memory cell is defined by the minimum processing dimension F, that is, the half pitch of the first layer metal wiring. For example, in the case of a ReRAM element of 1 memory cell selection transistor and 1 variable resistance element (1T1R), the design is basically made based on the design rules of the CMOS transistor so that the memory cell size is 8F 2 . .

図4は従来のReRAMを表す要部切断側面図であり、図に於いて、1はメモリセル選択トランジスタのゲート(=ワード線WL)、2は絶縁膜、3は導電プラグ、4は0層目メタル配線、5は絶縁膜、6は下部電極コンタクト、7は遷移金属酸化物(transition metal oxide:TMO)を用いて作製したReRAM素子、8は絶縁膜、9は上部電極コンタクト、10は第1層目メタル配線(=ビット線BL)、GNDは接地線をそれぞれ示している(例えば、非特許文献1或いは特許文献1を参照。)。尚、0層目メタル配線4に於ける「0層目」は文献を忠実に転記したことに依る表示であり、一般には「第1層目」とするのが普通である。   FIG. 4 is a cutaway side view showing a main part of a conventional ReRAM. In FIG. 4, 1 is a gate (= word line WL) of a memory cell selection transistor, 2 is an insulating film, 3 is a conductive plug, and 4 is a 0 layer. Eye metal wiring, 5 is an insulating film, 6 is a lower electrode contact, 7 is a ReRAM element manufactured using transition metal oxide (TMO), 8 is an insulating film, 9 is an upper electrode contact, and 10 is a first electrode contact. The first-layer metal wiring (= bit line BL) and GND indicate ground lines (see, for example, Non-Patent Document 1 or Patent Document 1). Note that the “0th layer” in the 0th layer metal wiring 4 is a display that is based on faithful transcription of the literature, and is generally “first layer”.

近年、CMOS装置の微細化は更に進行しつつあり、第1層目メタル配線のハーフピッチを基準にした場合、32nm世代以降になると、メモリセルの微細化がトランジスタの微細化に追いつかなくなる懸念がある。   In recent years, the miniaturization of CMOS devices is further progressing, and there is a concern that the memory cell miniaturization cannot catch up with the miniaturization of the transistor after the 32 nm generation when the half pitch of the first layer metal wiring is used as a reference. is there.

図5はメモリセル選択トランジスタを微細化した際に起こる問題を説明する為のReRAMを表す要部切断側面図であり、図4に於いて用いた記号と同じ記号で指示した部分は同一或いは同効の部分を表すものであり、また、M1は第1層目メタル配線、PH は第1層目メタル配線M1のハーフピッチ、GR はReRAM素子7の間隔、BLはビット線をそれぞれ示している。 FIG. 5 is a cutaway side view showing the main part of the ReRAM for explaining a problem that occurs when the memory cell selection transistor is miniaturized. The parts indicated by the same symbols as those used in FIG. 4 are the same or the same. are those representing the portion of the effect, also, M1 represents a first-layer metal wiring, P H is the half pitch of the first-layer metal wirings M1, G R the distance ReRAM element 7, BL is a bit line, respectively ing.

図示のReRAMに於いて、メモリセル選択トランジスタの加工ルールを適用して、例えば、矢印で示したハーフピッチPH を32nmとしてレイアウトした場合、ReRAM素子7の間隔GR は加工ルール違反になってしまう。一般に、ReRAM素子7は通常のメタル配線に比較して加工し難いので、間隔GR は大きく採る必要がある。 In the ReRAM shown, by applying the processing rule of the memory cell selection transistors, for example, when laying out the half pitch P H indicated by an arrow as 32 nm, the spacing G R of the ReRAM element 7 turned processing rule violation End up. In general, since it is difficult to process compared to the ReRAM element 7 is normally metal wires, the spacing G R is required to take a large.

逆に、ReRAM素子7の間隔GR を加工ルール、例えばハーフピッチで100nmに適合させた場合には、メモリセル選択トランジスタの部分では、疎なレイアウト、即ち、無駄な空所が多くなってしまう。 Conversely, processing the distance G R of the ReRAM device 7 rules, for example, when adapted for 100nm in half pitch, in the portion of the memory cell select transistor, sparse layout, i.e., becomes much wasted space .

図6はReRAM素子の間隔に加工ルールを適用して構成したReRAMを表す要部説明図であり、(A)は要部切断側面を、(B)はReRAM素子からなるメモリセルアレイの要部平面を、(C)はメモリセル選択トランジスタアレイの要部平面をそれぞれ示すものであり、図4及び図5に於いて用いた記号と同じ記号で指示した部分は同一或いは同効の部分を表すものとし、また、SLは接地(GND)線、WLはワード線、11はコラム(列)系制御回路、12は接続領域をそれぞれ示している。尚、コラム系制御回路11内には、読み出し回路、書き込み回路、コラムセレクタなどが含まれる。   6A and 6B are explanatory views of a main part showing a ReRAM configured by applying a processing rule to the interval between ReRAM elements. FIG. 6A is a cut side view of the main part, and FIG. 6B is a main part plane of a memory cell array composed of ReRAM elements. (C) shows the plane of the principal part of the memory cell selection transistor array, and the parts designated by the same symbols as those used in FIGS. 4 and 5 represent the same or equivalent parts. SL denotes a ground (GND) line, WL denotes a word line, 11 denotes a column control circuit, and 12 denotes a connection region. The column-related control circuit 11 includes a read circuit, a write circuit, a column selector, and the like.

図では、ReRAM素子及びメモリセル選択トランジスタの寸法関係を比較的正確に表してあるので、ReRAM素子の間隔GR に加工ルールを適用して加工を行った場合、メモリセル選択トランジスタアレイには大きな空所が発生してしまうことを看取できよう。
特開2005−25914号公報 I.G.Baek et al.,“Highly scalable non−volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses”,Tech.Digest IEDM 2004,p.587
In the figure, since the dimensional relationship between the ReRAM element and the memory cell selection transistor is expressed relatively accurately, when processing is performed by applying a processing rule to the interval G R between the ReRAM elements, the memory cell selection transistor array has a large size. Let's see that there is a void.
JP 2005-25914 A I. G. Baek et al. , “Highly scalable non-volatile resilient memory using simple binary drive by asymmetry unipolar voltage pulses”, Tech. Digest IEDM 2004, p. 587

本発明では、ReRAMに於ける電極(ビア)及びReRAM素子の配置構造に簡単な改変を加えることに依り、微細化すべきメモリセル選択トランジスタアレイには所要の加工ルールを適用して加工し、且つ、ReRAM素子には別の加工ルールを適用して加工することを可能にし、ReRAM素子の間隔がルール違反にならないようにする。   In the present invention, by applying a simple modification to the arrangement structure of electrodes (vias) and ReRAM elements in ReRAM, the memory cell selection transistor array to be miniaturized is processed by applying a required processing rule, and The ReRAM element can be processed by applying another processing rule so that the interval between the ReRAM elements does not violate the rule.

本発明に依るReRAMに於いては、メモリセル選択トランジスタ上に形成された多層メタル配線層と、多層メタル配線層の上層部分に在って且つ前記メモリセル選択トランジスタに接続されたReRAM素子とを備え、前記ReRAM素子の素子ピッチが、前記メモリセル選択トランジスタのソース或いはドレインに接続されるとともに前記上層部分に在る配線を介して前記ReRAM素子に接続される前記多層メタル配線層の下層部分に在る配線のピッチに比較して広いピッチであることを基本とする。 In the ReRAM according to the present invention, a multilayer metal wiring layer formed on the memory cell selection transistor, and a ReRAM element that is in an upper layer portion of the multilayer metal wiring layer and connected to the memory cell selection transistor are provided. provided, the element pitch of the ReRAM device, the lower layer portion of the multilayer metal wiring layer connected to the ReRAM device via a wire located in the upper part is connected to the source or drain of the memory cell select transistor Basically, the pitch is wider than the pitch of existing wiring.

前記手段を採ることに依り、ReRAM素子がメモリセル選択トランジスタに比較して大きい場合であっても、ReRAM素子アレイを適正な加工ルールに沿って無理なく加工することができ、しかも、メモリを全体としてみると小型化することができる。   By adopting the above means, even if the ReRAM element is larger than the memory cell selection transistor, the ReRAM element array can be processed without difficulty according to an appropriate processing rule, and the entire memory can be processed. As a result, the size can be reduced.

このように、メモリセル選択トランジスタに比較して大きいReRAM素子を組み込むに足るメモリ内の領域は、メモリセル選択トランジスタから上層配線層に在るReRAM素子に至る間に各層に形成されるビアの間隔、従って、配線の間隔を漸増させる手段を採ることで作り出し、そして、その漸増を行うことで新たに必要となる領域は、周辺回路の上方に在る空所を利用し、また、システムLSIの混載メモリの場合には、システムLSIのロジックを構成する為の4層乃至10層のメタル配線層のうち、メモリ領域上に展延する配線層はダミーとなるので、それをメモリに於ける例えば接続配線層に利用してシステムLSIを小型化することができる。   As described above, an area in the memory sufficient to incorporate a ReRAM element larger than the memory cell selection transistor is an interval between vias formed in each layer between the memory cell selection transistor and the ReRAM element in the upper wiring layer. Therefore, it is created by taking means for gradually increasing the interval between wirings, and the area that is newly required by performing the incremental increase uses the empty space above the peripheral circuit. In the case of the embedded memory, the wiring layer extending on the memory area among the 4th to 10th metal wiring layers for constituting the logic of the system LSI is a dummy. The system LSI can be miniaturized by using the connection wiring layer.

本発明では、ReRAM素子をメタル配線層の上層部分に作製するようにし、メモリセル選択トランジスタに比較して大きいReRAM素子を配置するようにし、それを可能にする為、メモリセル選択トランジスタとReRAM素子を接続するメタル配線層に至るまでの間に於いて、メタル配線とビア(Via)との接続を行う際、隣り合うビアの間隔、従って、隣り合うReRAM素子の間隔を拡げるようにする。   In the present invention, the ReRAM element is fabricated in the upper layer portion of the metal wiring layer, and the ReRAM element larger than the memory cell selection transistor is arranged. In order to enable this, the memory cell selection transistor and the ReRAM element are arranged. When the metal wiring and the via (Via) are connected in the period up to the metal wiring layer connecting the two, the interval between the adjacent vias, that is, the interval between the adjacent ReRAM elements is increased.

図1は本発明の原理を説明するReRAMの要部切断側面図であり、図4乃至図6に於いて用いた記号と同じ記号で指示した部分は同一或いは同効の部分を表すものとし、そして、M1、M2、M3は第1層目、第2層目、第3層目のメタル配線、V1乃至V5は第1乃至第5のビア、PL は配線ピッチ、PR はReRAM素子ピッチをそれぞれ示している。尚、第4のビアV4はReRAM素子の下部電極、第5のビアV5はReRAM素子の上部電極になっている。 FIG. 1 is a sectional side view of an essential part of a ReRAM for explaining the principle of the present invention. The parts indicated by the same symbols as those used in FIGS. 4 to 6 represent the same or equivalent parts. Then, M1, M2, M3 first layer is the second layer, the third layer metal wiring, V1 to V5 are first to fifth vias, P L is the wiring pitch, P R is ReRAM device pitch Respectively. The fourth via V4 is a lower electrode of the ReRAM element, and the fifth via V5 is an upper electrode of the ReRAM element.

図では、ReRAM素子の下部電極である第4のビアV4の間隔を第3のビアV3の間隔に比較して拡大してあるので、ReRAM素子7のピッチPR も同様に拡大され、加工ルールをクリアしている。 In the figure, since the distance between the fourth via V4 is a lower electrode of the ReRAM device are enlarged in comparison to the distance between the third via V3, is also expanded in the same manner the pitch P R of the ReRAM element 7, the processing rules Has cleared.

この場合、チップ内のReRAM素子全体を一纏めとして、前記手段を実施することは不可能であるから、ReRAM素子アレイを小グループのブロックに分けてチップ内に配置し、その各ブロックの周辺領域にコラム系制御回路や接続領域などの周辺回路を作り込み、多層配線層に於ける各配線層が上層になるにつれてビア間隔を拡げ、ReRAM素子を加工ルール通りに配置する為に新たに必要となる拡大された領域を周辺回路上に求める構成とする。   In this case, since it is impossible to carry out the above-mentioned means by collecting all the ReRAM elements in the chip, the ReRAM element array is divided into small groups of blocks and arranged in the chip, and the peripheral areas of the respective blocks are arranged. Peripheral circuits such as column control circuits and connection areas are built in, and the via spacing is increased as each wiring layer in the multilayer wiring layer becomes an upper layer, which is newly required to arrange the ReRAM elements in accordance with the processing rules. The enlarged region is obtained on the peripheral circuit.

この構成、即ち、ReRAM素子アレイの形成領域が周辺回路上にまで及んでも、何も問題は起こらず、特に、システムLSIの混載メモリである場合、通常、ReRAMの部分は周辺回路も含めてメタル配線層は3層程度を使えば充分であり、また、ロジックはメタル配線層を4〜10層程度を必要とするのであるが、それ等のメタル配線層は、ReRAMの部分上ではダミー配線パターンになっているのが現状であるから、前記したReRAM素子アレイの形成領域が周辺回路上にまで展延し、また、ロジックに用いる為に形成した層に入り込んでも他の回路に対して影響を与えることは皆無である。   Even if this configuration, that is, the region where the ReRAM element array is formed extends to the peripheral circuit, no problem occurs. Especially, in the case of a system LSI embedded memory, the ReRAM part usually includes the peripheral circuit. It is sufficient to use about 3 metal wiring layers, and logic requires about 4 to 10 metal wiring layers. These metal wiring layers are dummy wirings on the ReRAM portion. Since the current pattern is in the form of a pattern, the area where the ReRAM element array is formed extends to the peripheral circuit, and even if it enters a layer formed for use in logic, it affects other circuits. There is nothing to give.

前記したところを換言すると、ReRAMに於ける1T1Rメモリセルに於ける1Tであるメモリセル選択トランジスタのデザインルールと、1RであるReRAM素子のデザインルールを別にすることであり、このようにすることで、従来、メモリセルアレイの周辺回路を形成していた領域上にメモリセルを形成することが可能になる。   In other words, the design rule of the memory cell selection transistor which is 1T in the 1T1R memory cell in the ReRAM is different from the design rule of the ReRAM element which is 1R. Conventionally, it becomes possible to form a memory cell on a region where a peripheral circuit of the memory cell array has been formed.

本発明に依れば、ReRAM素子がある程度大きくなっても、総合して、ReRAMの領域を小さく抑えることができ、また、後の工程でメモリセルを形成するので、プロセス中で劣化の影響を受けにくいという副次的な利点もある。   According to the present invention, even if the size of the ReRAM element is increased to some extent, the area of the ReRAM can be kept small overall, and the memory cell is formed in a later process. There is also a secondary advantage that it is difficult to receive.

図2は本発明の実施例1であるReRAMを表す要部説明図であり、(A)は要部切断側面を、(B)はReRAM素子からなるメモリセルアレイの要部平面を、(C)はメモリセル選択トランジスタアレイの要部平面をそれぞれ示し、図1及び図4乃至図6に於いて用いた記号と同じ記号で指示した部分は同一或いは同効の部分を表すものする。   2A and 2B are main part explanatory views showing the ReRAM according to the first embodiment of the present invention, in which FIG. 2A is a cut side view of the main part, FIG. 2B is a main part plane of a memory cell array composed of ReRAM elements, and FIG. Indicates the principal planes of the memory cell selection transistor array, and the parts designated by the same symbols as those used in FIGS. 1 and 4 to 6 represent the same or equivalent parts.

図示のReRAMは、1ブロック分を中心Cから見た略半ブロック分を表し、その中心Cから少しずつ、メタル配線とビアとの接続を周辺方向に拡げ、ブロックの周辺領域に周辺回路を構成するCMOSトランジスタ領域、及び、メタル配線層の2〜3層程度を配設することができる領域を確保してある。   The illustrated ReRAM represents approximately half a block as viewed from the center C, and the connection between the metal wiring and the via is gradually extended from the center C in the peripheral direction, and a peripheral circuit is configured in the peripheral area of the block. A region in which about 2 to 3 layers of a CMOS transistor region and a metal wiring layer can be provided is secured.

図示の1ブロック分のReRAMは、ワード線WLが8本(図示してあるのは4本)、接地線BLが8本(図示してあるのは4本)、メタル配線がM1乃至M5の記号を付与した5層からなる64ビットのメモリセルアレイブロックである。   In the illustrated ReRAM for one block, there are eight word lines WL (four are shown), eight ground lines BL (four are shown), and metal wirings M1 to M5. This is a 64-bit memory cell array block consisting of five layers to which symbols are assigned.

図から明らかであるが、メタル配線M2からメタル配線M3に上がるところから、メタル配線とビアとの接続点を周辺方向に拡げ、ビアV2からV4に至るまで、上層になるにつれて拡がるようにしてある。コラム系制御回路11は、メタル配線の3層まで用いて作り込んであり、接続領域12に於いてビット線BLの端と結合されている。   As is apparent from the figure, the connection point between the metal wiring and the via extends from the metal wiring M2 to the metal wiring M3 in the peripheral direction, and expands from the via V2 to V4 as the upper layer. . The column-related control circuit 11 is formed using up to three layers of metal wiring, and is coupled to the end of the bit line BL in the connection region 12.

図3は本発明の実施例2であるReRAMを表す要部切断側面図であり、ReRAM素子を積層した場合の例を示していて、図1及び図2、図4乃至図6に於いて用いた記号と同じ記号で指示した部分は同一或いは同効の部分を表すものする。   FIG. 3 is a cutaway side view showing an essential part of a ReRAM according to a second embodiment of the present invention, showing an example in which ReRAM elements are stacked, and is used in FIGS. 1 and 2 and FIGS. The parts indicated by the same symbols as those shown represent the same or equivalent parts.

実施例2に於いては、メタル配線M6及びM7の2層が付加され、ReRAM素子アレイが全部で3層になっていることが実施例1と相違するところである。尚、このような構成を採っても、前記したように、システムLSI混載メモリの場合、ReRAM素子アレイの上方には、ロジックに於ける配線がダミーとなって存在するのみであるから、全く問題は起こらない。   The second embodiment is different from the first embodiment in that two layers of metal wirings M6 and M7 are added, and the ReRAM element array has a total of three layers. Even if such a configuration is adopted, in the case of a system LSI mixed memory, as described above, the wiring in the logic exists only as a dummy above the ReRAM element array, so there is no problem. Does not happen.

本発明の原理を説明するReRAMの要部切断側面図である。It is a principal part cutting side view of ReRAM explaining the principle of this invention. 実施例1であるReRAMを表す要部説明図である。FIG. 3 is a main part explanatory diagram illustrating a ReRAM that is Embodiment 1. 実施例2であるReRAMを表す要部切断側面図である。It is a principal part cutting side view showing ReRAM which is Example 2. FIG. 従来のReRAMを表す要部切断側面図である。It is a principal part cutting side view showing the conventional ReRAM. 微細化する際に起こる問題を説明する為のReRAMを表す要部切断側面図である。It is a principal part cutting side view showing ReRAM for demonstrating the problem which arises when reducing in size. ReRAM素子の間隔に加工ルールを適用して構成したReRAMを表す要部説明図である。It is principal part explanatory drawing showing ReRAM comprised by applying a process rule to the space | interval of a ReRAM element.

符号の説明Explanation of symbols

M1乃至M7 メタル配線
V1乃至V5 ビア
L 配線ピッチ
R ReRAM素子ピッチ
WL ワード線
SL 接地(GND)線
BL ビット線
7 ReRAM素子
11 コラム(列)系制御回路
12 接続領域
M1 to M7 Metal wiring V1 to V5 Via P L Wiring pitch P R ReRAM element pitch WL Word line SL Ground (GND) line BL Bit line 7 ReRAM element 11 Column (column) system control circuit 12 Connection region

Claims (3)

メモリセル選択トランジスタ上に形成された多層メタル配線層と、
前記多層メタル配線層の上層部分に在って且つ前記メモリセル選択トランジスタに接続されたReRAM素子と
を備え、
前記ReRAM素子の素子ピッチが、前記メモリセル選択トランジスタのソース或いはドレインに接続されるとともに前記上層部分に在る配線を介して前記ReRAM素子に接続される前記多層メタル配線層の下層部分に在る配線のピッチに比較して広いピッチである
ことを特徴とするReRAM。
A multilayer metal wiring layer formed on the memory cell selection transistor;
A ReRAM element in an upper layer portion of the multilayer metal wiring layer and connected to the memory cell selection transistor;
Element pitch of the ReRAM device is located in the lower portion of the multilayer metal wiring layer connected to the ReRAM device via a wire located in the upper part is connected to the source or drain of the memory cell select transistor A ReRAM characterized in that the pitch is wider than the pitch of wiring.
前記メモリセル選択トランジスタ上に形成された多層メタル配線層に於いて、
下層メタル配線層から前記ReRAM素子が形成される上層メタル配線層に至る間に介在する配線層がピッチを漸増して形成されてなること
を特徴とする請求項1記載のReRAM。
In the multilayer metal wiring layer formed on the memory cell selection transistor,
ReRAM of claim 1 in which the wiring layer interposed between reaching the upper metal wiring layer, wherein the ReRAM device from the lower metal wiring layer is formed is characterized by comprising formed by increasing the pitch.
前記多層メタル配線層に於ける下層メタル配線層に形成されたReRAMの周辺回路と、
一部が前記周辺回路上に展延するReRAM素子と
を備えてなることを特徴とする請求項1或いは請求項2記載のReRAM。
And ReRAM peripheral circuit formed in the in the lower metal wiring layer in the multilayer metal wiring layer,
ReRAM of claim 1 or claim 2 part is characterized by including a ReRAM element spread on the peripheral circuit.
JP2006269063A 2006-09-29 2006-09-29 ReRAM Expired - Fee Related JP5168869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006269063A JP5168869B2 (en) 2006-09-29 2006-09-29 ReRAM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006269063A JP5168869B2 (en) 2006-09-29 2006-09-29 ReRAM

Publications (2)

Publication Number Publication Date
JP2008091519A JP2008091519A (en) 2008-04-17
JP5168869B2 true JP5168869B2 (en) 2013-03-27

Family

ID=39375394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006269063A Expired - Fee Related JP5168869B2 (en) 2006-09-29 2006-09-29 ReRAM

Country Status (1)

Country Link
JP (1) JP5168869B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5180913B2 (en) * 2009-06-02 2013-04-10 シャープ株式会社 Nonvolatile semiconductor memory device
JP5566776B2 (en) 2010-05-21 2014-08-06 株式会社東芝 Resistance change memory
JP2013201247A (en) 2012-03-23 2013-10-03 Toshiba Corp Semiconductor storage device and manufacturing method of the same
KR20200014745A (en) 2017-05-31 2020-02-11 소니 세미컨덕터 솔루션즈 가부시키가이샤 Memory device and manufacturing method of the memory device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256508A (en) * 1997-01-09 1998-09-25 Sony Corp Semiconductor memory and its manufacture
JP2004047943A (en) * 2002-03-20 2004-02-12 Fujitsu Ltd Semiconductor device
JP2005311071A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JP2008091519A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP4280302B2 (en) Variable resistance nonvolatile memory device
JP2009199713A5 (en)
JP2009004725A (en) Variable resistance nonvolatile memory device
JP5931659B2 (en) Storage device
JP4939528B2 (en) Decoding circuit for non-binary group of memory line drivers
JP4611443B2 (en) Nonvolatile memory device and manufacturing method thereof
US9224635B2 (en) Connections for memory electrode lines
TWI549126B (en) Semiconductor storage device
US8284584B2 (en) Semiconductor integrated circuit device and method of arranging wirings in the semiconductor integrated circuit device
US8233310B2 (en) Resistance-change memory
JP4970760B2 (en) Line arrangement structure of semiconductor memory device
JP6829733B2 (en) Random access memory with variable resistance
US10535658B2 (en) Memory device with reduced-resistance interconnect
TWI754385B (en) Sram cell, method of forming the same, and memory array
JP5168869B2 (en) ReRAM
KR20110002261A (en) Semiconductor device including a dummy
JP5605600B2 (en) Decryption technology for read-only memory
CN106683697B (en) Memory device with reduced resistance interconnect
JP4901515B2 (en) Ferroelectric semiconductor memory device
WO2021104411A1 (en) Integrated circuit and electronic apparatus
KR101654693B1 (en) semiconductor device including a dummy
TWI254416B (en) Layout method for miniaturized memory array area
JP2016072536A (en) Storage device
US10468090B1 (en) Multilayered network of power supply lines
TWI806812B (en) Three-dimensional resistive random access memory structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110801

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

LAPS Cancellation because of no payment of annual fees