JP5168089B2 - Catalyst diagnostic device - Google Patents

Catalyst diagnostic device Download PDF

Info

Publication number
JP5168089B2
JP5168089B2 JP2008284101A JP2008284101A JP5168089B2 JP 5168089 B2 JP5168089 B2 JP 5168089B2 JP 2008284101 A JP2008284101 A JP 2008284101A JP 2008284101 A JP2008284101 A JP 2008284101A JP 5168089 B2 JP5168089 B2 JP 5168089B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust
amount
diagnostic apparatus
deterioration diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008284101A
Other languages
Japanese (ja)
Other versions
JP2010112220A (en
Inventor
州平 米谷
武 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008284101A priority Critical patent/JP5168089B2/en
Publication of JP2010112220A publication Critical patent/JP2010112220A/en
Application granted granted Critical
Publication of JP5168089B2 publication Critical patent/JP5168089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、内燃機関の排気浄化用触媒の劣化診断に関し、特に、排気ガス中に含まれる可燃成分を酸化する機能を有する触媒の劣化診断に関する。   The present invention relates to deterioration diagnosis of an exhaust gas purification catalyst for an internal combustion engine, and more particularly, to deterioration diagnosis of a catalyst having a function of oxidizing a combustible component contained in exhaust gas.

内燃機関の排気ガス中に含まれる未燃炭化水素を浄化するための触媒として、未燃炭化水素を酸化させる機能を有する、いわゆる酸化触媒が知られている。   A so-called oxidation catalyst having a function of oxidizing unburned hydrocarbons is known as a catalyst for purifying unburned hydrocarbons contained in exhaust gas of an internal combustion engine.

酸化触媒の劣化診断について、特許文献1には、酸化触媒の反応熱を推定し、反応熱の大きさに基づいて劣化しているか否かを判定する方法が開示されている。
特開2003−106140号公報
Regarding the deterioration diagnosis of an oxidation catalyst, Patent Document 1 discloses a method for estimating the heat of reaction of an oxidation catalyst and determining whether the heat is deteriorated based on the magnitude of the heat of reaction.
JP 2003-106140 A

しかしながら、特許文献1では温度センサにより触媒前後の温度差を検出して反応熱を推定しており、排気流量の影響が考慮されていないので、診断精度が低い。   However, in Patent Document 1, the temperature difference between before and after the catalyst is detected by the temperature sensor to estimate the reaction heat, and the influence of the exhaust flow rate is not taken into account, so the diagnostic accuracy is low.

そこで、本発明では、酸化触媒の劣化診断を精度よく行うことができる劣化診断装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a deterioration diagnosis device that can accurately perform deterioration diagnosis of an oxidation catalyst.

本発明の触媒の診断装置は、内燃機関の排気通路に設けられ、所定温度以上の場合に排気中の未燃炭化水素を酸化する酸化機能を有する触媒の診断装置である。そして、排気温度と排気流量との積である排気熱量を触媒の入口側及び出口側の排気通路についてそれぞれ算出する排気熱量算出手段と、入口側および出口側の排気熱量に基づいて触媒での酸化反応熱量を推定する酸化反応熱量推定手段と、酸化反応熱量に基づいて触媒の劣化の有無を判定する劣化診断手段と、を備え、劣化診断手段は、所定走行期間中の酸化反応熱量の時間積分値と、劣化診断用の閾値と、を算出し、時間積分値が劣化診断用の閾値より小さいときに触媒が劣化していると判定する。 The catalyst diagnostic device of the present invention is a diagnostic device for a catalyst that is provided in an exhaust passage of an internal combustion engine and has an oxidation function for oxidizing unburned hydrocarbons in exhaust when the temperature is higher than a predetermined temperature. Exhaust heat quantity calculation means for calculating the exhaust heat quantity, which is the product of the exhaust temperature and the exhaust flow rate, for the exhaust passage on the inlet side and the outlet side of the catalyst, respectively, and oxidation in the catalyst based on the exhaust heat quantity on the inlet side and the outlet side An oxidation reaction heat quantity estimating means for estimating the reaction heat quantity, and a deterioration diagnosis means for judging the presence or absence of deterioration of the catalyst based on the oxidation reaction heat quantity . The deterioration diagnosis means is a time integration of the oxidation reaction heat quantity during a predetermined traveling period. The value and the threshold value for deterioration diagnosis are calculated, and it is determined that the catalyst is deteriorated when the time integral value is smaller than the threshold value for deterioration diagnosis.

本発明によれば、排気流量をパラメータとして含む排気熱量を用いて、劣化しているか否かの判定を行うので、排気流量の影響を加味した劣化診断を行うことができる。   According to the present invention, since it is determined whether or not the exhaust gas is deteriorated by using the exhaust heat quantity including the exhaust gas flow rate as a parameter, it is possible to perform the deterioration diagnosis in consideration of the influence of the exhaust gas flow rate.

以下本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本実施形態を適用するシステム構成図である。   FIG. 1 is a system configuration diagram to which this embodiment is applied.

1はディーゼルエンジン本体、2は各気筒の燃料噴射弁、3は高圧の燃料を蓄える蓄圧室を有する燃料噴射装置(コモンレール式燃料噴射装置)、4は吸気コレクタ、5は吸気通路、10は排気通路、9は目標再生温度の設定や再生処理時の昇温制御等、種々の制御を行うコントロールユニット、14はディーゼルエンジン本体1の駆動力を駆動軸に伝達する変速機である。なお、変速機14は有段変速機、無段変速機のいずれであっても構わない。   1 is a diesel engine body, 2 is a fuel injection valve for each cylinder, 3 is a fuel injection device having a pressure accumulating chamber for storing high-pressure fuel (common rail fuel injection device), 4 is an intake collector, 5 is an intake passage, and 10 is exhaust A passage, 9 is a control unit for performing various controls such as setting of a target regeneration temperature and temperature rise control during regeneration processing, and 14 is a transmission that transmits the driving force of the diesel engine body 1 to the drive shaft. The transmission 14 may be a stepped transmission or a continuously variable transmission.

燃料噴射弁2には、コモンレール式燃料噴射装置3によって高圧燃料が供給される。また、各燃料噴射弁2は制御手段としてのコントロールユニット(ECU)9からの噴射信号に応じて開閉動作し、高圧燃料を気筒内に噴射する。   High pressure fuel is supplied to the fuel injection valve 2 by a common rail fuel injection device 3. Each fuel injection valve 2 opens and closes in response to an injection signal from a control unit (ECU) 9 as control means, and injects high-pressure fuel into the cylinder.

ディーゼルエンジン本体1の各吸気ポートに接続する吸気コレクタ4には、吸気通路5が接続し、吸気通路5には、上流側からの過給のための可変ノズル式ターボチャージャ6のコンプレッサ6a、加圧されて高温となった空気を冷却するインタークーラ7、吸気量を制御する吸気絞弁8を配置する。また、排気通路10には、その上流側から、可変ノズル式ターボチャージャ6のタービン6b、排気中の未燃焼成分(HC)を酸化処理する酸化触媒11、PMを補集するフィルタとしてのパティキュレートフィルタ(DPF)13を順次配置する。   An intake passage 4 is connected to an intake collector 4 connected to each intake port of the diesel engine body 1, and a compressor 6 a of a variable nozzle turbocharger 6 for supercharging from the upstream side is added to the intake passage 5. An intercooler 7 for cooling air that has been pressurized and heated, and an intake throttle valve 8 for controlling the intake air amount are arranged. Further, from the upstream side of the exhaust passage 10, the turbine 6 b of the variable nozzle turbocharger 6, the oxidation catalyst 11 that oxidizes unburned components (HC) in the exhaust, and the particulates as a filter that collects PM. Filters (DPF) 13 are sequentially arranged.

また、排気通路10のタービン6bの上流から分岐して吸気コレクタ4に接続するEGR通路15を設け、このEGR通路15にはEGR弁16を設置し、運転条件に応じて吸気中に還流する排気量を制御する。   Further, an EGR passage 15 branched from the upstream of the turbine 6b in the exhaust passage 10 and connected to the intake collector 4 is provided, and an EGR valve 16 is installed in the EGR passage 15 so that the exhaust gas recirculates into the intake air according to the operating conditions. Control the amount.

ECU9には、エンジン回転数を検出するクランク角センサ17、アクセルペダルの開度を検出するアクセル開度センサ18、また酸化触媒11の上流側の排気温度を検出する排気温度センサ19、同じく下流側の排気温度を検出する排気温度センサ12、DPF13の下流の排気空燃比を検出する排気空燃比センサ20、DPF13のベッド温度を検出する温度センサ21、からの各検出信号が入力される。   The ECU 9 includes a crank angle sensor 17 that detects the engine speed, an accelerator opening sensor 18 that detects the opening of the accelerator pedal, an exhaust temperature sensor 19 that detects an exhaust temperature upstream of the oxidation catalyst 11, and a downstream side. The detection signals from the exhaust temperature sensor 12 for detecting the exhaust temperature of the exhaust gas, the exhaust air / fuel ratio sensor 20 for detecting the exhaust air / fuel ratio downstream of the DPF 13, and the temperature sensor 21 for detecting the bed temperature of the DPF 13 are input.

そして、これら検出信号に基づいて可変ノズル式ターボチャージャ6の可変ノズルベーンの開度を制御するための信号、EGR弁16の開度を制御するための信号、吸気絞弁8の開度を制御するための信号、燃料噴射弁2による燃料噴射量を制御するための信号、DPF再生のための排気温度上昇に必要な燃料供給をする燃料噴射弁2を作動させるための信号等の演算、及びDPF13内のPM堆積量の推定及び再生時期の判断、酸化触媒11の劣化診断等を行う。   Based on these detection signals, a signal for controlling the opening degree of the variable nozzle vane of the variable nozzle type turbocharger 6, a signal for controlling the opening degree of the EGR valve 16, and the opening degree of the intake throttle valve 8 are controlled. A signal for controlling the amount of fuel injected by the fuel injection valve 2, a signal for operating the fuel injection valve 2 for supplying fuel necessary for increasing the exhaust temperature for DPF regeneration, and the DPF 13 The estimation of the amount of accumulated PM, judgment of the regeneration timing, deterioration diagnosis of the oxidation catalyst 11 and the like are performed.

ここで、酸化触媒11の劣化診断について説明する。図2は、酸化触媒11の劣化診断制御の構成を示すブロック図である。   Here, the deterioration diagnosis of the oxidation catalyst 11 will be described. FIG. 2 is a block diagram showing a configuration of deterioration diagnosis control of the oxidation catalyst 11.

出口熱量算出部B11では、酸化触媒11の下流側の排気温度センサ12で検出した出口側温度Texh-inと排気流量Qexhとを乗じて出口側熱量houtを算出する。排気流量Qexhは、ディーゼルエンジン本体1の吸入空気量と燃料噴射量とに基づいて算出する。吸入空気量は、吸気絞弁8の開度、機関回転数及びバルブタイミング等に基づいて推定する。なお、エアフローメータを備える場合はその検出値を用いてもよい。また、吸入空気量の検出位置から排気温度センサ12、19までの経路長により生じる時間遅れを考慮し、熱量の算出に用いる排気流量Qexhを遅れ時間分だけ前の吸入空気量検出値とすれば、診断精度がより高まる。   In the outlet heat quantity calculation unit B11, the outlet side heat quantity hout is calculated by multiplying the outlet side temperature Texh-in detected by the exhaust temperature sensor 12 on the downstream side of the oxidation catalyst 11 and the exhaust flow rate Qexh. The exhaust flow rate Qexh is calculated based on the intake air amount and the fuel injection amount of the diesel engine body 1. The intake air amount is estimated based on the opening degree of the intake throttle valve 8, the engine speed, the valve timing, and the like. In addition, when an air flow meter is provided, the detected value may be used. Further, in consideration of the time delay caused by the path length from the intake air amount detection position to the exhaust temperature sensors 12 and 19, if the exhaust flow rate Qexh used for calculating the heat amount is set to the intake air amount detection value before the delay time, , Diagnostic accuracy is further increased.

入口熱量算出部B12では、酸化触媒11の上流側の排気温度センサ19で検出した入口側温度Texh-outと排気流量Qexhとを乗じて入口側熱量hinを算出する。   In the inlet heat quantity calculation unit B12, the inlet side heat quantity Hin is calculated by multiplying the inlet side temperature Texh-out detected by the exhaust temperature sensor 19 upstream of the oxidation catalyst 11 and the exhaust gas flow rate Qexh.

そして、出入口熱量差算出部B13で、出口側熱量houtと入口側熱量hinとの差を算出する。   Then, the difference between the outlet side heat quantity hout and the inlet side heat quantity hin is calculated in the inlet / outlet heat quantity difference calculation unit B13.

車速補正量算出部B14では、車速に応じた補正量を予め設定したマップに基づいて算出する。ここで用いるマップは、図2中に示したように、車速が高くなるほど補正量が大きくなっている。これは、車速が高くなるほど走行風が強くなり、放熱量が増加するためである。   The vehicle speed correction amount calculation unit B14 calculates a correction amount corresponding to the vehicle speed based on a preset map. In the map used here, as shown in FIG. 2, the correction amount increases as the vehicle speed increases. This is because the higher the vehicle speed, the stronger the traveling wind and the greater the heat radiation.

また、外気温度補正量算出部B15では、外気温度に応じた補正量を予め設定したマップに基づいて算出する。ここで用いるマップは、図2中に示したように、外気温度が高くなるほど補正量が小さくなっている。これは、外気温度が高くなると酸化触媒11からの放熱量が減少するからである。   The outside air temperature correction amount calculation unit B15 calculates a correction amount according to the outside air temperature based on a preset map. In the map used here, as shown in FIG. 2, the correction amount decreases as the outside air temperature increases. This is because the amount of heat released from the oxidation catalyst 11 decreases as the outside air temperature increases.

そして、環境補正項算出部B16では、車速補正量及び外気温度補正量に基づいて、酸化触媒11から放熱される熱量である環境補正項hlossを算出する。   Then, the environmental correction term calculation unit B16 calculates an environmental correction term hloss that is the amount of heat radiated from the oxidation catalyst 11 based on the vehicle speed correction amount and the outside air temperature correction amount.

触媒反応熱算出部B17では、上記の出口側熱量houtと入口側熱量hinとの差を環境補正項hlossで補正して触媒反応熱量haを算出する。具体的には、出口側熱量houtから入口側熱量hinを差し引いて、さらに環境補正項hlossを差し引く。   In the catalytic reaction heat calculation unit B17, the difference between the outlet side heat quantity hout and the inlet side heat quantity hin is corrected by the environmental correction term hloss to calculate the catalytic reaction heat quantity ha. Specifically, the inlet-side heat quantity hin is subtracted from the outlet-side heat quantity hout, and the environment correction term hloss is further subtracted.

積算部B18では、触媒反応熱量haの時間積分値(熱量積算値)Σhaを算出する。   In the integrating unit B18, a time integrated value (heat integrated value) Σha of the catalytic reaction heat quantity ha is calculated.

一方、診断閾値補正量算出部B19〜B21では、それぞれ平均車速、平均出力、燃料噴射量積算値に応じて、後述する診断閾値を算出する。なお、平均出力は、機関回転数及びアクセル開度、つまりクランク角センサ17及びアクセル開度センサ18の検出値に基づいて算出する。   On the other hand, in the diagnostic threshold correction amount calculation units B19 to B21, diagnostic thresholds to be described later are calculated according to the average vehicle speed, the average output, and the fuel injection amount integrated value, respectively. The average output is calculated based on the engine speed and the accelerator opening, that is, the detected values of the crank angle sensor 17 and the accelerator opening sensor 18.

診断閾値選択部B22で、診断閾値算出部B19〜B21で算出した診断閾値のいずれかを選択し、選択した診断閾値を劣化判定閾値設定部B23で劣化判定閾値として設定する。   The diagnosis threshold selection unit B22 selects any one of the diagnosis thresholds calculated by the diagnosis threshold calculation units B19 to B21, and the selected diagnosis threshold is set as the deterioration determination threshold by the deterioration determination threshold setting unit B23.

劣化診断部B24では、熱量積算値Σhaが劣化判定閾値より大きいか否かを判定し、劣化判定部B25では劣化診断部B24での結果に基づいて、劣化判定値閾値より大きければ劣化している、小さければ劣化していない、との判定をする。   The deterioration diagnosis unit B24 determines whether or not the heat amount integrated value Σha is larger than the deterioration determination threshold. The deterioration determination unit B25 is deteriorated if it is larger than the deterioration determination value threshold based on the result of the deterioration diagnosis unit B24. If it is small, it is determined that it has not deteriorated.

ここで、酸化触媒11の劣化と熱量積算値Σhaとの関係、および診断閾値について説明する。   Here, the relationship between the deterioration of the oxidation catalyst 11 and the heat integrated value Σha and the diagnostic threshold will be described.

図3は、熱量積算値Σhaの絶対値と機関運転時間の関係を示す図であり、実線Aは酸化触媒11が劣化していない状態、実線Bは酸化触媒11が劣化している状態を示す。   FIG. 3 is a diagram showing the relationship between the absolute value of the heat quantity integrated value Σha and the engine operating time. A solid line A shows a state where the oxidation catalyst 11 has not deteriorated, and a solid line B shows a state where the oxidation catalyst 11 has deteriorated. .

t0で酸化触媒11が活性化すると、劣化の有無にかかわらず、時間の経過と共に熱量積算値Σhaは大きくなっているが、劣化している状態の方が、熱量積算値Σhaの絶対値が小さくなっている。これは、劣化によって触媒反応熱が小さくなっているためである。   When the oxidation catalyst 11 is activated at t0, regardless of the presence or absence of deterioration, the heat amount integrated value Σha increases with time, but in the deteriorated state, the absolute value of the heat amount integrated value Σha is smaller. It has become. This is because the heat of catalytic reaction is reduced due to deterioration.

すなわち、酸化触媒11が劣化すると、劣化前に比べて熱量積算値Σhaは小さくなる。   That is, when the oxidation catalyst 11 deteriorates, the heat amount integrated value Σha becomes smaller than before the deterioration.

図4、図5は、それぞれ大気中に排出されるHC量(テールパイプHC排出量T.P.HC)と熱量積算値Σhaとの関係、酸化触媒11内に吸蔵されるHC量(吸蔵HC量ηHC)と熱量積算値Σhaとの関係を示している。   4 and 5 show the relationship between the amount of HC discharged into the atmosphere (tail pipe HC discharge amount TPHC) and the integrated heat quantity Σha, and the amount of HC stored in the oxidation catalyst 11 (storage HC). The relationship between the amount ηHC) and the heat integrated value Σha is shown.

図4に示すように、テールパイプHC排出量T.P.HCは、熱量積算値Σhaが小さくなるほど多くなる。また、図5に示すように、吸蔵HC量ηHCは熱量積算値Σhaが小さくなるほど少なくなる。   As shown in FIG. P. HC increases as the heat value integrated value Σha decreases. Further, as shown in FIG. 5, the occluded HC amount ηHC decreases as the heat amount integrated value Σha decreases.

そこで、熱量積算値Σhaを算出し、テールパイプHC排出量T.P.HCが許容量以下となる熱量積算値Σha1、または吸蔵HC量ηHCが許容量以上となる熱量積算値Σha2を算出し、これを診断閾値として診断閾値補正量算出部B19〜B21のように設定することで、酸化触媒11の劣化を診断することができる。診断閾値は、適用するエンジン及び酸化触媒11の仕様等に応じて、予め設定するものとする。   Therefore, the calorific value integrated value Σha is calculated, and the tail pipe HC discharge amount T.P. P. A calorific value integrated value Σha1 at which HC is less than or equal to an allowable amount or a calorific value integrated value Σha2 at which the occluded HC amount ηHC is equal to or greater than an allowable amount is calculated, and this is set as a diagnostic threshold value as in diagnostic threshold correction amount calculation units B19 to B21. Thus, the deterioration of the oxidation catalyst 11 can be diagnosed. The diagnosis threshold value is set in advance according to the specifications of the engine to be applied and the oxidation catalyst 11.

なお、診断閾値は、平均車速が高いほど、平均出力が高いほど、燃料噴射量積算値が多いほど、大きくなる。これは、平均車速が高いほど、平均出力が高いほど、または燃料噴射量積算値が大きいほど、ディーゼルエンジン本体1から排出されるHC量が多くなることで触媒反応熱haが大きくなるので、劣化している場合でもその分だけ熱量積算値Σhaが大きくなるからである。   The diagnostic threshold increases as the average vehicle speed increases, the average output increases, and the fuel injection amount integrated value increases. This is because the higher the average vehicle speed, the higher the average output, or the larger the fuel injection amount integrated value, the greater the amount of HC discharged from the diesel engine body 1 and the greater the catalytic reaction heat ha. This is because, even in this case, the amount of heat integrated value Σha increases accordingly.

図6は、上記の劣化診断制御のフローチャートの一例である。この制御は、例えば1トリップ中に1回、または所定時間ごとに実行する。なお、ここでは平均出力に基づいて診断閾値を設定するものとする。   FIG. 6 is an example of a flowchart of the above-described deterioration diagnosis control. This control is executed, for example, once during one trip or every predetermined time. Here, the diagnosis threshold value is set based on the average output.

ステップS100では、暖機状態か否かを冷却水温に基づいて判定し、暖機状態であればステップS101に進み、暖機前であれば判定を繰り返す。   In step S100, it is determined based on the coolant temperature whether or not it is in a warm-up state. If it is in a warm-up state, the process proceeds to step S101, and if it is before warm-up, the determination is repeated.

ステップS101では、酸化触媒11の出口側熱量houtおよび入口側熱量hinを算出する。本ステップは、上述した出口熱量算出部B11及び入口熱量算出部B12に相当する。   In step S101, the outlet side heat quantity hout and the inlet side heat quantity hin of the oxidation catalyst 11 are calculated. This step corresponds to the outlet heat quantity calculation unit B11 and the inlet heat quantity calculation unit B12 described above.

ステップS102では、触媒反応熱量haを算出する。本ステップは、上述した出入口熱量差算出部B13、触媒反応熱算出部B17に相当する。   In step S102, a catalytic reaction heat quantity ha is calculated. This step corresponds to the aforementioned inlet / outlet heat quantity difference calculation unit B13 and catalytic reaction heat calculation unit B17.

ステップS103では、熱量積算値Σhaを算出する。本ステップは上述した積算部B18に相当する。さらに、熱量積算値Σhaを積算した期間におけるディーゼルエンジン本体1の平均出力を算出する。   In step S103, the heat amount integrated value Σha is calculated. This step corresponds to the integration unit B18 described above. Further, the average output of the diesel engine main body 1 during the period in which the heat amount integrated value Σha is integrated is calculated.

ステップS104では、劣化診断を許可するか否かの判断を行う。劣化診断を許可するのは、熱量を積算する時間が所定時間を経過していること、熱量を積算している期間中の走行距離が所定値を超えていること、または熱量を積算している期間中の出力の積算値が所定値を超えていること、のいずれかが成立した場合とする。許可条件が成立したらステップS105に進み、成立していなければステップS101に戻る。本ステップで判定用に用いる所定値は、エンジンや酸化触媒11の仕様に応じて予め設定しておく。   In step S104, it is determined whether or not the deterioration diagnosis is permitted. Deterioration diagnosis is permitted because the amount of time for which the amount of heat is accumulated has passed a predetermined time, the travel distance during the period for which the amount of heat is being accumulated exceeds a predetermined value, or the amount of heat is accumulated It is assumed that either of the accumulated output values during the period exceeds a predetermined value is established. If the permission condition is satisfied, the process proceeds to step S105. If the permission condition is not satisfied, the process returns to step S101. The predetermined value used for determination in this step is set in advance according to the specifications of the engine and the oxidation catalyst 11.

ステップS105では、平均出力に応じた診断閾値を設定する。本ステップは診断閾値補正量算出部B20に相当する。   In step S105, a diagnosis threshold value corresponding to the average output is set. This step corresponds to the diagnostic threshold correction amount calculation unit B20.

ステップS106では、熱量積算値Σhaと診断閾値に基づいて劣化診断を行う。本ステップは劣化診断部B24に相当する。熱量積算値Σhaの方が小さければステップS107に進み、大きければステップS108に進む。   In step S106, deterioration diagnosis is performed based on the heat amount integrated value Σha and the diagnosis threshold value. This step corresponds to the deterioration diagnosis unit B24. If the integrated heat value Σha is smaller, the process proceeds to step S107, and if larger, the process proceeds to step S108.

ステップS107では、酸化触媒11は劣化していると判定し、警告灯を点灯する等する。ステップS108では酸化触媒11は正常と判定し、上述した各変数をクリアする。本ステップは劣化判定部B25に相当する。   In step S107, it is determined that the oxidation catalyst 11 has deteriorated, and a warning lamp is turned on. In step S108, it is determined that the oxidation catalyst 11 is normal, and the above-described variables are cleared. This step corresponds to the deterioration determination unit B25.

上記のように、酸化触媒11の触媒反応熱を用いて診断を行うので、酸素ストレージ機能やリーンNOx触媒を備えない場合であっても、劣化診断を行うことが可能である。また、リッチスパイクやポスト噴射等の特別な制御が不要となり、診断のために燃費が悪化することを防止できる。さらに、熱量の時間積算値を用いて診断するので、温度が持つ時定数の大きさに起因する、瞬時値による判定の困難さを回避することができる。   As described above, since the diagnosis is performed using the catalytic reaction heat of the oxidation catalyst 11, it is possible to perform the deterioration diagnosis even when the oxygen storage function and the lean NOx catalyst are not provided. In addition, special control such as rich spike and post injection becomes unnecessary, and it is possible to prevent fuel consumption from deteriorating for diagnosis. Furthermore, since the diagnosis is performed using the time integrated value of the amount of heat, it is possible to avoid the difficulty of determination based on the instantaneous value due to the magnitude of the time constant of the temperature.

なお、上記説明では、触媒反応熱haを時間積分した熱量積算値Σhaを用いて劣化判定を行っているが、より簡単な構成にする場合には、触媒反応熱haと閾値とを比較するようにしてもよい。この場合には、診断閾値も平均値や積算値ではなく、瞬間値を用いる。   In the above description, the deterioration determination is performed using the heat amount integrated value Σha obtained by time-integrating the catalyst reaction heat ha. However, in the case of a simpler configuration, the catalyst reaction heat ha and the threshold value are compared. It may be. In this case, the diagnostic threshold is not an average value or an integrated value, but an instantaneous value is used.

以上のように、本実施形態によれば次の効果を得ることができる。   As described above, according to the present embodiment, the following effects can be obtained.

(1)内燃機関の排気通路に設けられ、所定温度以上の場合に排気中の未燃炭化水素を酸化する酸化機能を有する触媒の診断装置において、
排気温度Texhと排気流量Qexhとの積である排気熱量hを酸化触媒11の入口側及び出口側の排気通路についてそれぞれ算出し、入口側および出口側の排気熱量に基づいて酸化触媒11での酸化反応熱量haを推定し、酸化反応熱量haに基づいて酸化触媒11の劣化の有無を判定するので、排気流量によらず精度のよい劣化診断が可能となる。また、酸素ストレージ機能を有しない場合や、NOx触媒を備えないシステムについての診断も可能である。さらに、触媒反応熱を用いて診断するので、リッチスパイクやポスト噴射等の特別な制御を行うことなく診断することができる。
(1) In a diagnostic apparatus for a catalyst provided in an exhaust passage of an internal combustion engine and having an oxidation function of oxidizing unburned hydrocarbons in exhaust when a predetermined temperature or higher is reached,
The exhaust heat quantity h, which is the product of the exhaust temperature Texh and the exhaust flow rate Qexh, is calculated for the exhaust passages on the inlet side and the outlet side of the oxidation catalyst 11, respectively, and oxidation in the oxidation catalyst 11 is performed based on the exhaust heat quantities on the inlet side and the outlet side. Since the reaction heat amount ha is estimated and the presence / absence of deterioration of the oxidation catalyst 11 is determined based on the oxidation reaction heat amount ha, accurate deterioration diagnosis can be performed regardless of the exhaust gas flow rate. Further, it is possible to diagnose a system that does not have an oxygen storage function or a system that does not include a NOx catalyst. Furthermore, since the diagnosis is performed using the catalytic reaction heat, the diagnosis can be performed without performing special control such as rich spike or post injection.

(2)酸化反応熱量推定手段は、出口側の排気熱量houtと入口側の排気熱量hinとの差を酸化反応熱量haとして算出し、さらに酸化反応熱量haを、車速または外気温度の少なくとも一方に応じて補正するので、酸化反応熱量haを高精度で算出することが可能となり、結果として走行条件等によらず精度のよい劣化診断が可能となる。   (2) The oxidation reaction heat quantity estimation means calculates a difference between the exhaust heat quantity hout on the outlet side and the exhaust heat quantity hin on the inlet side as the oxidation reaction heat quantity ha, and further converts the oxidation reaction heat quantity ha into at least one of the vehicle speed and the outside air temperature. Accordingly, the oxidation reaction heat quantity ha can be calculated with high accuracy, and as a result, accurate deterioration diagnosis can be performed regardless of the driving conditions.

(3)所定走行期間中の酸化反応熱量haの時間積分値Σhaを算出し、これが劣化診断用の閾値より小さいときに酸化触媒11が劣化していると判定するので、時定数が大きく走行履歴の影響が残り易い排気温度が酸化反応熱量haのパラメータとして含まれていても、精度よく劣化診断を行うことができる。   (3) The time integral value Σha of the oxidation reaction heat quantity ha during a predetermined traveling period is calculated, and it is determined that the oxidation catalyst 11 has deteriorated when this is smaller than the deterioration diagnosis threshold value. Even if the exhaust temperature at which the influence of the exhaust gas is likely to remain is included as a parameter of the oxidation reaction heat quantity ha, the deterioration diagnosis can be performed with high accuracy.

(4)酸化反応熱量積算中の経過時間、走行距離、または積算出力のいずれかが所定値に達してから劣化の有無を判定するので、温度がもつ時定数の大きさに起因する瞬時値での判定に比べて、精度よく劣化診断を行うことができる。   (4) Since the presence or absence of deterioration is determined after any of the elapsed time, travel distance, or integrated output during the oxidation reaction calorie integration reaches a predetermined value, the instantaneous value resulting from the time constant of the temperature is used. Compared to the determination, deterioration diagnosis can be performed with high accuracy.

(5)劣化診断用の閾値を、酸化反応熱量積算中の平均車速、平均出力、または燃料噴射量積算値のいずれかに基づいて算出するので、走行履歴に応じた閾値を用いた診断を行うことができる。   (5) Since the threshold value for deterioration diagnosis is calculated based on one of the average vehicle speed, average output, and fuel injection amount integrated value during the oxidation reaction heat integration, diagnosis using the threshold corresponding to the travel history is performed. be able to.

(6)空気が吸入空気量を検出する位置から排気温度を検出する位置まで移動するのに要する時間だけ排気温度検出時よりも前に検出した吸入空気量を、排気熱量haを算出するための排気流量として用いるので、より正確な排気熱量haを算出することができ、結果として高精度の診断が可能となる。   (6) For calculating the exhaust heat amount ha, the intake air amount detected before the exhaust temperature detection for the time required for the air to move from the position for detecting the intake air amount to the position for detecting the exhaust temperature. Since it is used as the exhaust flow rate, a more accurate exhaust heat quantity ha can be calculated, and as a result, a highly accurate diagnosis is possible.

(7)冷却水温度が所定値以下の場合には診断を禁止するので、誤診断を防止することができる。   (7) Since diagnosis is prohibited when the cooling water temperature is equal to or lower than a predetermined value, erroneous diagnosis can be prevented.

なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

システム構成図である。It is a system configuration diagram. 劣化診断制御のブロック図である。It is a block diagram of deterioration diagnosis control. 熱量積算値と走行時間との関係を示す図である。It is a figure which shows the relationship between calorie | heat amount integrated value and travel time. テールパイプHCと熱量積算値との関係を示す図である。It is a figure which shows the relationship between the tail pipe HC and the calorie | heat amount integrated value. HC吸蔵量と熱量積算値との関係を示す図である。It is a figure which shows the relationship between HC occlusion amount and a calorie | heat amount integrated value. 劣化診断制御のフローチャートの一例である。It is an example of the flowchart of deterioration diagnosis control.

符号の説明Explanation of symbols

1 ディーゼルエンジン本体
2 燃料噴射弁
3 燃料噴射装置(コモンレール式燃料噴射装置)
4 吸気コレクタ
5 吸気通路
6 可変ノズル式ターボチャージャ
7 インタークーラ
8 吸気絞弁
9 コントロールユニット(ECU)
10 排気通路
11 酸化触媒
12 排気温度センサ
13 パティキュレートフィルタ(DPF)
14 変速機
15 EGR通路
16 EGR弁
19 排気温度センサ
DESCRIPTION OF SYMBOLS 1 Diesel engine body 2 Fuel injection valve 3 Fuel injection device (common rail type fuel injection device)
4 Intake Collector 5 Intake Passage 6 Variable Nozzle Turbocharger 7 Intercooler 8 Inlet Throttle Valve 9 Control Unit (ECU)
10 Exhaust passage 11 Oxidation catalyst 12 Exhaust temperature sensor 13 Particulate filter (DPF)
14 Transmission 15 EGR passage 16 EGR valve 19 Exhaust temperature sensor

Claims (15)

内燃機関の排気通路に設けられ、所定温度以上の場合に排気中の未燃炭化水素を酸化する酸化機能を有する触媒の診断装置において、
排気温度と排気流量との積である排気熱量を前記触媒の入口側及び出口側の排気通路についてそれぞれ算出する排気熱量算出手段と、
前記入口側および出口側の排気熱量に基づいて前記触媒での酸化反応熱量を推定する酸化反応熱量推定手段と、
前記酸化反応熱量に基づいて前記触媒の劣化の有無を判定する劣化診断手段と、
を備え
前記劣化診断手段は、所定走行期間中の前記酸化反応熱量の時間積分値と、劣化診断用の閾値と、を算出し、時間積分値が劣化診断用の閾値より小さいときに前記触媒が劣化していると判定することを特徴とする触媒の診断装置。
In a diagnostic apparatus for a catalyst that is provided in an exhaust passage of an internal combustion engine and has an oxidation function for oxidizing unburned hydrocarbons in exhaust when the temperature is equal to or higher than a predetermined temperature,
Exhaust heat amount calculating means for calculating an exhaust heat amount which is a product of an exhaust temperature and an exhaust flow rate for the exhaust passage on the inlet side and the outlet side of the catalyst;
An oxidation reaction heat quantity estimating means for estimating an oxidation reaction heat quantity at the catalyst based on the exhaust heat quantity on the inlet side and the outlet side;
Deterioration diagnosis means for determining the presence or absence of deterioration of the catalyst based on the amount of heat of oxidation reaction;
Equipped with a,
The deterioration diagnosis means calculates a time integral value of the oxidation reaction heat quantity during a predetermined travel period and a threshold value for deterioration diagnosis, and the catalyst deteriorates when the time integral value is smaller than the deterioration diagnosis threshold value. A diagnostic apparatus for a catalyst, characterized in that it is determined that the catalyst is present.
前記酸化反応熱量推定手段は、前記出口側の排気熱量と前記入口側の排気熱量との差を酸化反応熱量として算出することを特徴とする請求項1に記載の触媒の診断装置。 2. The catalyst diagnosis apparatus according to claim 1, wherein the oxidation reaction heat quantity estimating unit calculates a difference between the exhaust heat quantity on the outlet side and the exhaust heat quantity on the inlet side as an oxidation reaction heat quantity. 前記酸化反応熱量推定手段により算出した酸化反応熱量を、車速または外気温度の少なくとも一方に応じて補正する反応熱量補正手段を備えることを特徴とする請求項2に記載の触媒の診断装置。 3. The catalyst diagnostic apparatus according to claim 2, further comprising a reaction calorie correcting unit that corrects the oxidation reaction calorie calculated by the oxidation reaction calorie estimating unit according to at least one of a vehicle speed and an outside air temperature. 前記反応熱量補正手段は、車速が高いほど補正量を大きくすることを特徴とする請求項3に記載の触媒の診断装置。 4. The catalyst diagnosis apparatus according to claim 3, wherein the reaction heat amount correction means increases the correction amount as the vehicle speed increases. 前記反応熱量補正手段は、外気温度が高いほど補正量を小さくすることを特徴とする請求項3に記載の触媒の診断装置。 4. The catalyst diagnostic apparatus according to claim 3, wherein the reaction heat amount correction means decreases the correction amount as the outside air temperature increases. 前記劣化診断手段は、前記酸化反応熱量積算中の経過時間、走行距離、または積算出力のいずれかが所定値に達してから前記触媒の劣化の有無を判定することを特徴とする請求項1から5のいずれかに記載の触媒の診断装置。 The deterioration diagnosis means, the elapsed time in the oxidation reaction heat accumulation, claim 1, the travel distance or integrated either output, is characterized by determining the presence or absence of deterioration of the catalyst after reaching a predetermined value 6. The catalyst diagnostic apparatus according to any one of 5 above. 前記劣化診断手段は、前記劣化診断用の閾値を前記酸化反応熱量積算中の平均車速、平均出力、または燃料噴射量積算値のいずれかに応じて設定することを特徴とする請求項1から6のいずれかに記載の触媒の診断装置。 The deterioration diagnosis means, claim 1, characterized in that the set according to the threshold for the deterioration diagnosis to any one of the average vehicle speed during the oxidation reaction heat accumulation, average power, or fuel injection amount accumulated value 6 The diagnostic apparatus for a catalyst according to any one of the above. 前記劣化診断手段は、前記酸化反応熱量積算中の平均車速が高いほど、平均出力が高いほど、燃料噴射量積算値が大きいほど、前記劣化診断用の閾値を大きく設定することを特徴とする請求項に記載の触媒の診断装置。 The deterioration diagnosis means sets the deterioration diagnosis threshold value larger as the average vehicle speed during the oxidation reaction heat integration is higher, as the average output is higher, or as the fuel injection amount integration value is larger. Item 8. The catalyst diagnostic device according to Item 7 . 前記劣化診断装置は、前記反応熱量が劣化診断用の閾値より小さい場合に前記触媒が劣化していると判定することを特徴とする請求項1からのいずれかに記載の触媒の診断装置。 The degradation diagnostic device, diagnostic apparatus of a catalyst for any crab of claims 1 to 8, characterized in that to determine that the catalyst when the reaction heat is less than the threshold value for deterioration diagnosis is deteriorated. 前記劣化診断装置は、前記劣化診断用の閾値を機関運転状態に基づいて算出することを特徴とする請求項1から9のいずれかに記載の触媒の診断装置。 The degradation diagnostic device, diagnostic apparatus of a catalyst for any crab of claims 1 to 9, characterized in that calculated on the basis of a threshold for the deterioration diagnosis of the engine operating condition. 前記機関運転状態は、機関回転数、アクセル開度、燃料噴射量、車速、のいずれか一つまたは二つ以上であることを特徴とする請求項10に記載の触媒の診断装置。 11. The catalyst diagnostic apparatus according to claim 10 , wherein the engine operating state is any one or more of an engine speed, an accelerator opening, a fuel injection amount, and a vehicle speed. 前記排気温度は、排気通路中に設けた排気温度検出手段により検出することを特徴とする請求項1から11のいずれかに記載の触媒の診断装置。 The exhaust temperature, diagnostic apparatus of a catalyst for any crab of claims 1 to 11, characterized by detecting the exhaust gas temperature detection means provided in the exhaust passage. 前記排気流量は、吸入空気量と燃料噴射量とに基づいて算出することを特徴とする請求項1から12のいずれかに記載の触媒の診断装置。 The exhaust flow rate, diagnostic apparatus of a catalyst for any crab of claims 1 to 12, characterized in that calculated on the basis of the intake air amount and the fuel injection amount. 前記排気熱量算出手段は、吸入空気量を検出する位置から排気温度を検出する位置までに要する遅れ時間だけ排気温度検出時よりも前に検出した吸入空気量を、前記排気熱量を算出するための排気流量として用いることを特徴とする請求項1から13のいずれかに記載の触媒の診断装置。 The exhaust heat quantity calculating means calculates the exhaust heat quantity based on the intake air quantity detected before the exhaust temperature detection by a delay time required from the position where the intake air quantity is detected to the position where the exhaust temperature is detected. diagnostic apparatus of the catalyst for any crab of claims 1 to 13, which comprises using as the exhaust flow rate. 冷却水温度が所定値以下の場合に、前記排気熱量算出手段及び前記酸化反応熱量推定手段による演算、または前記劣化診断手段による診断を禁止する禁止手段を備えることを特徴とする請求項1から14のいずれかに記載の触媒の診断装置。 If the coolant temperature is below a predetermined value, the preceding claims, characterized in that it comprises inhibiting means for inhibiting the diagnosis by the exhaust heat calculation unit and the calculation by the oxidation reaction heat estimating means or the deterioration diagnosis means, 14 The diagnostic apparatus for a catalyst according to any one of the above.
JP2008284101A 2008-11-05 2008-11-05 Catalyst diagnostic device Active JP5168089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284101A JP5168089B2 (en) 2008-11-05 2008-11-05 Catalyst diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284101A JP5168089B2 (en) 2008-11-05 2008-11-05 Catalyst diagnostic device

Publications (2)

Publication Number Publication Date
JP2010112220A JP2010112220A (en) 2010-05-20
JP5168089B2 true JP5168089B2 (en) 2013-03-21

Family

ID=42300958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284101A Active JP5168089B2 (en) 2008-11-05 2008-11-05 Catalyst diagnostic device

Country Status (1)

Country Link
JP (1) JP5168089B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6163995B2 (en) * 2013-09-18 2017-07-19 いすゞ自動車株式会社 Diagnostic equipment
JP6163996B2 (en) * 2013-09-18 2017-07-19 いすゞ自動車株式会社 Diagnostic equipment
JP6191355B2 (en) * 2013-09-18 2017-09-06 いすゞ自動車株式会社 Diagnostic equipment
JP2015059472A (en) * 2013-09-18 2015-03-30 いすゞ自動車株式会社 Diagnostic system
JP6213118B2 (en) 2013-10-04 2017-10-18 いすゞ自動車株式会社 Diagnostic equipment
JP6229542B2 (en) 2014-02-28 2017-11-15 マツダ株式会社 Exhaust purification catalyst deterioration diagnosis method and deterioration diagnosis apparatus
JP7083083B2 (en) * 2019-03-28 2022-06-10 ヤンマーパワーテクノロジー株式会社 engine
JP2021014827A (en) * 2019-07-12 2021-02-12 いすゞ自動車株式会社 Exhaust emission control device for internal combustion engine
JP7310720B2 (en) * 2020-05-29 2023-07-19 いすゞ自動車株式会社 Catalyst state detector
CN115163267B (en) * 2022-08-26 2023-11-17 潍柴动力股份有限公司 DOC diagnosis method and aftertreatment system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2860866B2 (en) * 1993-11-02 1999-02-24 株式会社ユニシアジェックス Vehicle catalyst temperature detector
JP2005030407A (en) * 1996-11-22 2005-02-03 Denso Corp Exhaust emission control device and method
JPWO2002070873A1 (en) * 2001-03-02 2004-07-02 株式会社日立製作所 Apparatus and method for diagnosing internal combustion engine and method for controlling internal combustion engine using the same
JP4122849B2 (en) * 2001-06-22 2008-07-23 株式会社デンソー Catalyst degradation detector
JP2005351153A (en) * 2004-06-10 2005-12-22 Toyota Motor Corp Catalytic deterioration determining device
JP5003054B2 (en) * 2006-08-15 2012-08-15 いすゞ自動車株式会社 Catalyst deterioration amount detection method and catalyst deterioration amount detection device

Also Published As

Publication number Publication date
JP2010112220A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP5168089B2 (en) Catalyst diagnostic device
US7877985B2 (en) Exhaust gas purification system for internal combustion engine
EP2840240B1 (en) Device for detecting remaining amount of liquid
EP1882088B1 (en) Exhaust gas purification system for internal combustion engine
US7404291B2 (en) Exhaust gas purifying apparatus for internal combustion engine
US9500110B2 (en) Exhaust purifying apparatus for internal combustion engine
WO2009101667A1 (en) Exhaust gas collecting performance judging method and device therefor
JP4640318B2 (en) Control device for internal combustion engine
JP5834906B2 (en) Exhaust gas purification device for internal combustion engine
US11536209B2 (en) Control device, engine, and control method of engine
JP4341456B2 (en) Method and apparatus for determining deterioration of exhaust gas purification catalyst for internal combustion engine
US8387364B2 (en) Exhaust gas purifying apparatus for internal combustion engine
EP1471219B1 (en) Exhaust gas cleaning system and SOx poisoning recovery method for internal combustion engine
JP5699922B2 (en) Exhaust gas purification device for internal combustion engine
CN107407175B (en) Exhaust gas purification system and catalyst regeneration method
JP2010275891A (en) Exhaust emission control device for internal combustion engine
JP4270156B2 (en) Internal combustion engine exhaust purification control device
KR101801717B1 (en) Control apparatus for internal combustion engine
JP2019116876A (en) Sensor diagnostic system
JP6904167B2 (en) Exhaust gas flow rate measuring device for internal combustion engine
JP2013113210A (en) Engine catalyst deterioration detection device
JP2019035380A (en) Exhaust emission control device for internal combustion engine
JP6911638B2 (en) Exhaust purification device for internal combustion engine
JP6911639B2 (en) Exhaust purification device for internal combustion engine
JP5573817B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

R150 Certificate of patent or registration of utility model

Ref document number: 5168089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150