JP5167531B2 - Method for producing oxide semiconductor electrode of dye-sensitized solar cell and oxide semiconductor electrode - Google Patents

Method for producing oxide semiconductor electrode of dye-sensitized solar cell and oxide semiconductor electrode Download PDF

Info

Publication number
JP5167531B2
JP5167531B2 JP2006112788A JP2006112788A JP5167531B2 JP 5167531 B2 JP5167531 B2 JP 5167531B2 JP 2006112788 A JP2006112788 A JP 2006112788A JP 2006112788 A JP2006112788 A JP 2006112788A JP 5167531 B2 JP5167531 B2 JP 5167531B2
Authority
JP
Japan
Prior art keywords
dye
oxide semiconductor
tio
alkali metal
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006112788A
Other languages
Japanese (ja)
Other versions
JP2007287455A (en
Inventor
裕 播磨
陽介 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2006112788A priority Critical patent/JP5167531B2/en
Publication of JP2007287455A publication Critical patent/JP2007287455A/en
Application granted granted Critical
Publication of JP5167531B2 publication Critical patent/JP5167531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、色素増感太陽電池の酸化物半導体電極の製造方法及び酸化物半導体電極に係り、特にTiO2酸化物を用いた酸化物半導体電極の製造方法及び酸化物半導体電極に関する。 The present invention relates to a method of manufacturing an oxide semiconductor electrode and an oxide semiconductor electrode of a dye-sensitized solar cell, and more particularly to a method of manufacturing an oxide semiconductor electrode using a TiO 2 oxide and an oxide semiconductor electrode.

色素増感太陽電池は、シリコン系太陽電池に比較して安価に、かつ、低い環境負荷で製造することができ、多彩な色調の太陽電池を製造することができることから注目されている。しかし、色素増感太陽電池はシリコン系太陽電池に比較してエネルギー変換効率が低いためにその向上が求められており、種々の方法が開示されているが、開放光起電圧を向上することはエネルギー変換効率を向上させる有効な方法の一つである。   Dye-sensitized solar cells are attracting attention because they can be manufactured at a lower cost and with a lower environmental load than silicon-based solar cells, and solar cells with various colors can be manufactured. However, since dye-sensitized solar cells have low energy conversion efficiency compared to silicon-based solar cells, their improvement is required, and various methods have been disclosed. This is one of the effective methods for improving the energy conversion efficiency.

例えば、特許文献1に、色素により増感した半導体微粒子層および電荷移動層を有する光電変換素子において、該半導体微粒子層が、これを構成する主たる第一の金属元素と共に少なくとも一種の第二の金属元素を、主たる金属元素の0.01mol%以上50mol%未満含有する光電変換素子が開示されている。ここで、第一の金属元素はシリコン、ゲルマニウム等の単体あるいは化合物の金属元素であり、第二の金属元素はアルカリ金属、アルカリ土類金属等であるとしている。そして、このような第二の金属元素の添加により半導体微粒子層の伝導体エネルギーレベルをコントロールすることができ、取り出し電圧に優れた変換効率の高い色素増感太陽電池を得ることができることが開示されている。   For example, in Patent Document 1, in a photoelectric conversion element having a semiconductor fine particle layer and a charge transfer layer sensitized with a dye, the semiconductor fine particle layer includes at least one second metal together with a main first metal element constituting the semiconductor fine particle layer. A photoelectric conversion element that contains 0.01 mol% or more and less than 50 mol% of a main metal element is disclosed. Here, the first metal element is a simple or compound metal element such as silicon or germanium, and the second metal element is an alkali metal, alkaline earth metal, or the like. And it is disclosed that by adding such a second metal element, the conductor energy level of the semiconductor fine particle layer can be controlled, and a dye-sensitized solar cell with excellent conversion voltage and high conversion efficiency can be obtained. ing.

非特許文献1と2には、逆電流を防ぎ開放光起電圧を高める4-tert-butyl pyridine(TBP)のようなピリジン誘導体やケノデオキシコール酸などを電解質溶液に添加する方法が開示されている。   Non-Patent Documents 1 and 2 disclose a method of adding a pyridine derivative such as 4-tert-butyl pyridine (TBP), chenodeoxycholic acid, or the like that prevents a reverse current and increases an open photovoltaic voltage to an electrolyte solution.

また、特許文献2にはタンデム型色素増感太陽電池により開放光起電圧を向上させようとする、粒子径が0.1nm〜1000nmであって、Cu、Al、Ag、Ni、Co、In、Fe、Zn、Rh、Ga、Sr、Li、Nのいずれかを含むp型無機酸化物半導体からなる酸化物半導体電極が開示されている。   Patent Document 2 discloses that a tandem dye-sensitized solar cell is intended to improve the open photovoltaic voltage, the particle diameter is 0.1 nm to 1000 nm, and Cu, Al, Ag, Ni, Co, In, Fe An oxide semiconductor electrode made of a p-type inorganic oxide semiconductor containing any one of Zn, Rh, Ga, Sr, Li, and N is disclosed.

特開2002-8741号公報JP 2002-8741 A 特開2006-66215号公報JP 2006-66215 A Electrochimica Acta、47(2002)p4213-4225Electrochimica Acta, 47 (2002) p4213-4225 J. Phys. Chem.、97(1993)p6272-6277J. Phys. Chem., 97 (1993) p6272-6277

しかしながら、従来の方法よりさらに開放光起電圧又は開放光起電圧向上率を高め、また、エネルギー変換効率を向上させる方法、手段が求められている。そして、特許文献1に記載の色素増感太陽電池は、均質な性能を有する色素増感太陽電池を製造するのが必ずしも容易ではないという問題がある。特許文献2に記載の酸化物半導体電極は複雑な構造をしており、容易かつ安価に製造することができないという問題がある。非特許文献1又は2に記載の方法は、ある程度の開放光起電圧又はエネルギー変換効率の向上効果しか得られないという問題がある。   However, there is a need for a method and means for further increasing the open photovoltaic voltage or the open photovoltaic voltage improvement rate and improving the energy conversion efficiency compared to conventional methods. And the dye-sensitized solar cell of patent document 1 has the problem that it is not necessarily easy to manufacture the dye-sensitized solar cell which has homogeneous performance. The oxide semiconductor electrode described in Patent Document 2 has a complicated structure and has a problem that it cannot be easily and inexpensively manufactured. The method described in Non-Patent Document 1 or 2 has a problem that only an improvement effect of a certain degree of open photovoltaic voltage or energy conversion efficiency can be obtained.

本発明は、色彩を多彩に変えることができ簡単な構造で開放光起電圧の高い又は開放光起電圧向上率の高い、また、エネルギー変換効率の高い経済性に優れた色素増感太陽電池の酸化物半導体電極の製造方法及びその方法により得られる酸化物半導体電極を提供することを目的とする。   The present invention provides a dye-sensitized solar cell that can change colors in a variety of ways and has a simple structure with a high open photovoltage or a high open photovoltage improvement rate and a high energy conversion efficiency and economy. An object of the present invention is to provide a method for manufacturing an oxide semiconductor electrode and an oxide semiconductor electrode obtained by the method.

本発明に係る色素増感太陽電池の酸化物半導体電極の製造方法は、透明電極の導電面上にTiO2の多孔質層を形成する工程と、前記TiO2にアルカリ金属イオンをインターカレートさせる工程と、そのインターカレートされたアルカリ金属イオンを排出除去後前記多孔質層に色素を吸着させる工程と、からなる。 The method for producing an oxide semiconductor electrode of a dye-sensitized solar cell according to the present invention includes a step of forming a porous layer of TiO 2 on a conductive surface of a transparent electrode, and intercalating alkali metal ions into the TiO 2 And a step of adsorbing the dye to the porous layer after discharging and removing the intercalated alkali metal ions.

上記発明において、TiO2にアルカリ金属イオンをインターカレートさせる工程は、非水溶媒にアルカリ金属塩を溶解した電解液中でTiO2の多孔質層を電解還元する電解処理であるものとすることができ、アルカリ金属塩は、LiX、NaX、KXのいずれかであるのがよい。ここで、XはF、Cl、Br、I、PF6、BF4、ClO4のいずれかである。 In the above invention, the process, it is assumed that an electrolytic process for electrolytic reduction the porous layer of TiO 2 in the non-aqueous electrolyte solution as the solvent dissolves the alkali metal salt to be intercalated alkali metal ions in TiO 2 The alkali metal salt is preferably LiX, NaX, or KX. Here, X is any one of F, Cl, Br, I, PF 6 , BF 4 , and ClO 4 .

また、TiO2にアルカリ金属イオンをインターカレートさせる工程は、有機アルカリ金属化合物を含む溶液にTiO2の多孔質層を浸漬する化学処理であるものとすることができ、有機アルカリ金属化合物は、MeLi(メチルリチウム)、BuLi(ブチルリチウム)、PhLi(フェニルリチウム)、thienyllithium(チエニルリチウム)、t-BuOLi(ターシャルブトキシリチウム)、MeONa(ナトリウムメトキシド)、EtONa(ナトリウムエトキシド)、t-BuOK(カリウムブトキシド)のいずれかであるのがよい。
Further, the step of intercalating alkali metal ions in TiO 2 can be assumed to be the chemical treatment of immersing the porous layer of TiO 2 to a solution containing an organic alkali metal compound, an organic alkali metal compound, MeLi (methyl lithium), BuLi (butyl lithium), PhLi (phenyl lithium), thienyllithium (thienyl lithium), t-BuOLi (tertiary butoxy lithium), MeONa (sodium methoxide), EtONa (sodium ethoxide), t- It should be one of BuOK (potassium butoxide) .

また、TiO2にインターカレートされたアルカリ金属イオンは、アルカリ金属塩又は有機アルカリ金属化合物でTiO21mol当たり0.001〜0.5mol含有されているのがよい。色素は、Eosin Y(エオシンY)、Rhodamine B(ローダミンB)、Chicago Sky Blue(シカゴスカイブルー)、Alizarin(アリザリン)、Coumarin 343(クマリン343)のいずれかであるのがよい。
Further, alkali metal ions intercalated into TiO 2 is better to be contained 0.001~0.5mol per TiO 2 1 mol with an alkali metal salt or an organic alkali metal compound. The dye may be any one of Eosin Y (Rhodamine B), Chicago Sky Blue, Alizarin, and Coumarin 343 .

上記発明により、開放光起電圧又は開放光起電圧向上率の高い、エネルギー変換効率の高い色素増感太陽電池用の酸化物半導体電極を製造することができる。すなわち、導電性の透明電極と、該透明電極の導電面上に形成されたTiO2の多孔質層と、該多孔質層に吸着させた有機色素と、を有する色素増感太陽電池の酸化物半導体電極であって、TiO2の仕事関数が5eV以下である色素増感太陽電池の酸化物半導体電極を製造することができる。 By the said invention, the oxide semiconductor electrode for dye-sensitized solar cells with a high open photovoltaic voltage or an open photovoltaic voltage improvement rate and a high energy conversion efficiency can be manufactured. That is, an oxide of a dye-sensitized solar cell having a conductive transparent electrode, a porous layer of TiO 2 formed on the conductive surface of the transparent electrode, and an organic dye adsorbed on the porous layer An oxide semiconductor electrode of a dye-sensitized solar cell, which is a semiconductor electrode and has a work function of TiO 2 of 5 eV or less, can be manufactured.

本発明に係る色素増感太陽電池の酸化物半導体電極の製造方法により、色彩を多彩に変えることができ簡単な構造で経済的な開放光起電圧又は開放光起電圧向上率の高い、また、エネルギー変換効率の高い色素増感太陽電池用の酸化物半導体電極を製造することができる。この酸化物半導体電極を用いて色素増感太陽電池を製造し、建物の屋根、外装あるいは広告宣伝用に好適な多彩な色調の太陽電池組み込みパネルを容易かつ安価に製造することができる。   According to the method for manufacturing an oxide semiconductor electrode of a dye-sensitized solar cell according to the present invention, the color can be changed in various ways, and the open photovoltage or the open photovoltage improvement rate is high with a simple structure and economically. An oxide semiconductor electrode for a dye-sensitized solar cell with high energy conversion efficiency can be manufactured. By using this oxide semiconductor electrode, a dye-sensitized solar cell can be manufactured, and a solar cell built-in panel with various colors suitable for building roofs, exteriors, or advertisements can be easily and inexpensively manufactured.

以下本発明に係る色素増感太陽電池の酸化物半導体電極の製造方法の実施の態様について説明する。図1に示すように、色素増感太陽電池10は、透明電極12の導電面上に色素16を吸着させた多孔質層15が形成された酸化物半導体電極11と、導電性の対極18と、酸化物半導体電極11と対極18の間に介在させた酸化還元体を含む電解質溶液(ゲル又は固体状のものを含む)17からなる。本発明に係る酸化物半導体電極11の製造方法は、透明電極12の導電面上にTiO2の多孔質層を形成する工程と、前記TiO2にアルカリ金属イオンをインターカレートさせる工程と、そのインターカレートされたアルカリ金属イオンを排出除去後前記多孔質層に色素を吸着させる工程と、からなる。 Hereinafter, embodiments of the method for producing an oxide semiconductor electrode of a dye-sensitized solar cell according to the present invention will be described. As shown in FIG. 1, the dye-sensitized solar cell 10 includes an oxide semiconductor electrode 11 in which a porous layer 15 in which a dye 16 is adsorbed is formed on a conductive surface of a transparent electrode 12, and a conductive counter electrode 18. And an electrolyte solution (including a gel or a solid) 17 containing a redox substance interposed between the oxide semiconductor electrode 11 and the counter electrode 18. The manufacturing method of the oxide semiconductor electrode 11 according to the present invention includes a step of forming a porous layer of TiO 2 on the conductive surface of the transparent electrode 12, a step of intercalating alkali metal ions into the TiO 2 , And a step of adsorbing the dye to the porous layer after discharging and removing the intercalated alkali metal ions.

透明電極12の導電面上にTiO2の多孔質層を形成する工程は、公知の方法を使用することができる。例えば、ガラス製の基板13に95%酸化インジウムと5%酸化錫の化合物(ITO)を蒸着し、または、酸化錫を蒸着後にフッ素をドープ(FTO)して導電膜14を形成した導電性ガラス(TCO)の導電面上に、TiO2の粉末をポリエチレングリコールや10%アセチルアセトン、水等と混ぜて調整されたペーストを、ドクターブレード法、スキージ法等により塗布し、これを乾燥後焼成することにより透明電極12の導電面上にTiO2の多孔質層を形成することができる。 A known method can be used for the step of forming the porous layer of TiO 2 on the conductive surface of the transparent electrode 12. For example, conductive glass in which a conductive film 14 is formed by depositing 95% indium oxide and 5% tin oxide compound (ITO) on a glass substrate 13 or by doping fluorine (FTO) after depositing tin oxide. Apply paste prepared by mixing TiO 2 powder with polyethylene glycol, 10% acetylacetone, water, etc. on the conductive surface of (TCO) by the doctor blade method, squeegee method, etc., and drying and firing this Thus, a porous layer of TiO 2 can be formed on the conductive surface of the transparent electrode 12.

つぎに、本発明においては、上記工程により形成された多孔質層を構成するTiO2にアルカリ金属イオンをインターカレートさせる工程を設ける。ここで、インターカレートとは、アルカリ金属イオンをTiO2(チタニヤ)のアナタース層間に挿入することをいい、例えば、リチウムの場合は、Li0.5TiO2(青色)となるまでリチウムイオンをアナタース層間に挿入することをいう。本発明において、アルカリ金属イオンをTiO2にインターカレートし、開放光起電圧の向上等の効果を得るには、TiO2にアルカリ金属塩又は有機アルカリ金属化合物でTiO21mol当たり0.001〜0.5mol含有されるようにインターカレートするのがよい。アルカリ金属塩又は有機アルカリ金属化合物が0.001mol未満であるとその効果が少なく、0.5molを超えるとその効果の程度が飽和するからである。 Next, in the present invention, a step of intercalating alkali metal ions into TiO 2 constituting the porous layer formed by the above steps is provided. Here, intercalation means that an alkali metal ion is inserted between the anatase layers of TiO 2 (titania). For example, in the case of lithium, lithium ions are intercalated until Li 0.5 TiO 2 (blue). It means to insert into. In the present invention, the alkali metal ions to intercalate into TiO 2, open to obtain the effect of improvement of photovoltaic voltage, 0.001 to 0.5 mol TiO 2 1 mol per an alkali metal salt or an organic alkali metal compound to TiO 2 It is good to intercalate so that it may be contained. This is because the effect is small when the alkali metal salt or the organic alkali metal compound is less than 0.001 mol, and the degree of the effect is saturated when the amount exceeds 0.5 mol.

本発明は、透明電極12の導電面上に形成されたTiO2の多孔質層にアルカリ金属イオンをインターカレートし、以下に説明するようにTiO2の構造を変化させ、変化させたTiO2の多孔質層に色素、特に有機色素を効果的に吸着させる方法である。このため、色素を効果的にTiO2の多孔質層に吸着させるには、アルカリ金属イオンをTiO2にインターカレートした後であるのがよく、また、アルカリ金属イオンをインターカレートさせる前に色素を吸着させた場合は、以下に説明する電気化学的又は化学的処理により色素の破壊、脱落を生ずるおそれがあるので、本発明においては、アルカリ金属イオンのインターカレートは色素の吸着前に行うということが重要である。 The present invention intercalates alkali metal ions into the porous layer of TiO 2 formed on the conductive surface of the transparent electrode 12, changes the structure of TiO 2 as described below, and changes the changed TiO 2 In this method, a dye, particularly an organic dye, is effectively adsorbed on the porous layer. Therefore, the dye effectively adsorbed on the porous layer of TiO 2 and may have the alkali metal ion is then intercalated into TiO 2, also prior to intercalating the alkali metal ions When the dye is adsorbed, the dye may be destroyed or dropped by the electrochemical or chemical treatment described below. In the present invention, the intercalation of alkali metal ions is performed before the dye is adsorbed. It is important to do.

アルカリ金属イオンをTiO2にインターカレートさせる方法は、特に問わないが、電気化学的又は化学的方法を使用することができる。例えば、非水溶媒にアルカリ金属塩を溶解した電解液中でTiO2の多孔質層を電解還元する電解処理がよい。非水溶媒としてアセトニトリルを使用することができる。アルカリ金属塩として、XをF、Cl、Br、I、PF6、BF4、ClO4のいずれかとするLiX、NaX、KXが好ましい。特にLiClO4が好ましい。 The method for intercalating alkali metal ions into TiO 2 is not particularly limited, but an electrochemical or chemical method can be used. For example, an electrolytic treatment in which a porous layer of TiO 2 is electrolytically reduced in an electrolytic solution in which an alkali metal salt is dissolved in a nonaqueous solvent is preferable. Acetonitrile can be used as the non-aqueous solvent. As the alkali metal salt, LiX, NaX, and KX in which X is any of F, Cl, Br, I, PF 6 , BF 4 , and ClO 4 are preferable. LiClO 4 is particularly preferable.

非水溶媒とは、例えばアセトニトリル溶媒をいう。水溶媒の場合は、水自身が還元され、アルカリ金属イオンをTiO2にインターカレートさせることができないので不適である。 The nonaqueous solvent refers to, for example, an acetonitrile solvent. In the case of an aqueous solvent, water itself is reduced, and alkali metal ions cannot be intercalated into TiO 2 , which is not suitable.

また、アルカリ金属イオンをTiO2にインターカレートさせる方法は、有機アルカリ金属化合物を含む溶液にTiO2の多孔質層を浸漬する化学的処理であってもよい。有機アルカリ金属化合物は、MeLi(メチルリチウム)、BuLi(ブチルリチウム)、PhLi(フェニルリチウム)、thienyllithium(チエニルリチウム)、t-BuOLi(ターシャルブトキシリチウム)、MeONa(ナトリウムメトキシド)、EtONa(ナトリウムエトキシド)、t-BuOK(カリウムブトキシド)のいずれかが好ましい。特にBuLiが好ましい。
The method of intercalating alkali metal ions into TiO 2 may be a chemical treatment in which a porous layer of TiO 2 is immersed in a solution containing an organic alkali metal compound. Organic alkali metal compounds are MeLi (methyl lithium), BuLi (butyl lithium), PhLi (phenyl lithium), thienyllithium (thienyl lithium), t-BuOLi (tertiary butoxy lithium), MeONa (sodium methoxide), EtONa (sodium) Ethoxide) or t-BuOK (potassium butoxide) is preferable. In particular, BuLi is preferable.

つぎに、本発明においては、インターカレートされたアルカリ金属イオンを排出除去後前記多孔質層に色素を吸着させる工程を設ける。TiO2にインターカレートされたアルカリ金属イオンは、電気化学的処理又は化学的処理の後処理液から取り出されたときに、TiO2表面に拡散し大気中の水分と結合して水酸化物を形成する。このため、つぎの工程である色素吸着工程の前に、多孔質層13に付着したアルカリ金属の水酸化物や上記の電気化学的又は化学的処理に使用した処理液により色素吸着反応が妨げられないように、まず、多孔質層13を洗浄・乾燥してそれらの付着物を除去する。乾燥は、加熱乾燥でも自然乾燥でもよい。 Next, in the present invention, a step of adsorbing the dye to the porous layer after discharging and removing the intercalated alkali metal ions is provided. Intercalated alkali metal ions in TiO 2, when taken out of the post-treatment liquid for the electrochemical treatment or a chemical treatment, a hydroxide combines with moisture in the atmosphere diffuses into the TiO 2 surface Form. For this reason, the dye adsorption reaction is hindered by the alkali metal hydroxide adhering to the porous layer 13 or the treatment liquid used for the electrochemical or chemical treatment before the dye adsorption process, which is the next process. First, the porous layer 13 is washed and dried so as to remove these deposits. Drying may be heat drying or natural drying.

多孔質層の十分な洗浄及び乾燥を行った後に、多孔質層への色素の吸着を行う。多孔質層へ吸着させる色素は、有機色素であるのがよい。特にEosin Y(エオシンY)、Rhodamine B(ローダミンB)、Chicago Sky Blue(シカゴスカイブルー)、Alizarin(アリザリン)、Coumarin 343(クマリン343)のいずれかの有機色素であるのが好ましい。ルテニウム錯体のような金属錯体色素の場合は、本発明による電気化学的処理又は化学的処理を行っても開放光起電圧、エネルギー変換効率の向上効果が少ないので好ましくない。 After sufficiently washing and drying the porous layer, the dye is adsorbed onto the porous layer. The dye adsorbed on the porous layer is preferably an organic dye. In particular, an organic dye of any one of Eosin Y, Rhodamine B (Rhodamine B), Chicago Sky Blue, Alizarin, and Coumarin 343 is preferable. In the case of a metal complex dye such as a ruthenium complex, an electrochemical treatment or a chemical treatment according to the present invention is not preferable because the effect of improving the open photovoltaic voltage and energy conversion efficiency is small.

以上このような工程により、本発明に係る透明電極12の導電面上に色素16を吸着させた多孔質層15が形成された酸化物半導体電極11を製造することができる。この酸化物半導体電極11を用いた色素増感太陽電池により、短絡光電流密度を変化させず又はほとんど減少させずに開放光起電圧を向上させることができ、さらにはエネルギー変換効率を向上させることができる。   As described above, the oxide semiconductor electrode 11 in which the porous layer 15 in which the dye 16 is adsorbed is formed on the conductive surface of the transparent electrode 12 according to the present invention can be manufactured by such steps. The dye-sensitized solar cell using this oxide semiconductor electrode 11 can improve the open photovoltage without changing or almost reducing the short-circuit photocurrent density, and further improve the energy conversion efficiency. Can do.

上記の方法により作製した酸化物半導体電極を用いて図1に示す色素増感太陽電池を作製し、電池性能試験を行った。酸化物半導体電極11は以下のように作製した。まず、TiO2粉末P-25(日本エアロジル社製の、平均粒径20〜30nm、ルチル-アナタース混晶)1.3gをジルコニア製ポットに取り、水310μmを加えて、遊星型ボールミル(フリッチュ・ジャパン社製P-7)を用いて10分間ミリングした。さらに、同量の水を加えて、同様の処理を4回繰り返した。これに、EtOH310μlを加えて、10分間ミリングした。その後。PEG(平均分子量は500000)を80mg、硝酸適量(パスツールピペットで3〜5滴)を加えて、3〜4時間ミリングし、TiO2ペーストを作成した。 A dye-sensitized solar cell shown in FIG. 1 was produced using the oxide semiconductor electrode produced by the above method, and a battery performance test was conducted. The oxide semiconductor electrode 11 was produced as follows. First, 1.3 g of TiO 2 powder P-25 (produced by Nippon Aerosil Co., Ltd., average particle size 20-30 nm, rutile-anaters mixed crystal) is placed in a zirconia pot, added with 310 μm of water, and a planetary ball mill (Fritsch Japan) Milling was performed for 10 minutes using P-7). Furthermore, the same amount of water was added and the same treatment was repeated 4 times. To this, 310 μl of EtOH was added and milled for 10 minutes. after that. 80 mg of PEG (average molecular weight: 500,000) and an appropriate amount of nitric acid (3-5 drops with a Pasteur pipette) were added and milled for 3-4 hours to prepare a TiO 2 paste.

TiO2の多孔質層の電気化学的処理は以下のように行った。まず、アセトニトリル(AN)溶媒に各種アルカリ金属塩を0.1M溶解した電解液、対極に白金線を用い、定電流-0.5mAとした二電極系の還元処理により行った。ポテンショスタットは、北斗電工株式会社製HA−501Gを使用した。 The electrochemical treatment of the porous layer of TiO 2 was performed as follows. First, an electrolytic solution in which 0.1 M of various alkali metal salts were dissolved in acetonitrile (AN) solvent, a platinum wire as a counter electrode, and a two-electrode system reduction treatment at a constant current of −0.5 mA were performed. As the potentiostat, HA-501G manufactured by Hokuto Denko Co., Ltd. was used.

TiO2の多孔質層の電気化学的処理の後、TiO2の多孔質層を形成させた透明電極12を洗浄及び乾燥し、これを表1に示す各種の色素溶液に浸漬処理することにより色素を多孔質層に吸着させ、色素16がTiO2の多孔質層15に吸着した酸化物半導体電極11を作製した。 After the electrochemical treatment of the TiO 2 porous layer, the dye by washing and drying the transparent electrode 12 to form a porous layer of TiO 2, which is immersed in a variety of dye solution shown in Table 1 Was adsorbed on the porous layer, and the oxide semiconductor electrode 11 in which the dye 16 was adsorbed on the porous layer 15 of TiO 2 was produced.

Figure 0005167531
Figure 0005167531

この酸化物半導体電極11に、電解質溶液17及び対極18を設けて0.5cm×0.5cmの色素増感太陽電池を作製し電池性能試験を行った。電解質溶液17は、アセトニトリル溶媒に0.5MのLiIと0.05MのI2を溶解させたものを用いた。対極18は、スライドガラスにCrを2nm蒸着させた上に、Ptを50nm蒸着したものを用いた。対極18は、ガラス板に白金蒸着膜を設けたものを用いた。なお、比較のためTiO2の多孔質層の電気化学的処理を行わないで色素増感太陽電池を作製したもの、上記電解質溶液17にTBPを添加して色素増感太陽電池を作製したものについても電池性能試験を行った。 The oxide semiconductor electrode 11 was provided with an electrolyte solution 17 and a counter electrode 18 to produce a 0.5 cm × 0.5 cm dye-sensitized solar cell, and a battery performance test was performed. As the electrolyte solution 17, a solution obtained by dissolving 0.5 M LiI and 0.05 M I 2 in an acetonitrile solvent was used. As the counter electrode 18, Cr was deposited on a slide glass by 2 nm and Pt was deposited by 50 nm. As the counter electrode 18, a glass plate provided with a platinum vapor deposition film was used. For comparison, a dye-sensitized solar cell produced without electrochemical treatment of the porous layer of TiO 2 and a dye-sensitized solar cell produced by adding TBP to the above electrolyte solution 17 A battery performance test was also conducted.

色素増感太陽電池の電池性能試験(I-V特性の測定)は、光源にソーラーシュミレータ(セリック株式会社製SERICSXL-500V2、AM1.5、93mW/cm2)を使用し、ポテンショスタット(北斗電工株式会社製HA-501G)を用いて行った。 For the battery performance test (measurement of IV characteristics) of the dye-sensitized solar cell, a solar simulator (SERICSXL-500V2, AM1.5, 93mW / cm 2 ) manufactured by Celic Co., Ltd. was used as the light source, and a potentiostat (Hokuto Denko Co., Ltd.) HA-501G).

図2に、TiO2の多孔質層の電気化学的処理の効果を示す。図2は、TiO2の多孔質層をLiClO4の電解溶液中で電解還元し、リチウムイオンをTiO2にインターカレートした後、色素Coumarin 343を吸着させた酸化物半導体電極11を用いて色素増感太陽電池を作製したものの電池性能試験の結果を示すグラフである。図2において、横軸は電解処理の処理時間、縦軸は短絡光電流密度Isc(mA/cm2)、開放光起電圧Voc(mV)、フィルファクターFF、エネルギー変換効率η(%)の電解処理を行った場合の電解処理を行わない場合に対する相対比を示す。 FIG. 2 shows the effect of electrochemical treatment of the porous layer of TiO 2 . Figure 2 is a porous layer of TiO 2 and electrolytic reduction in an electrolytic solution of LiClO 4, after intercalating lithium ions into TiO 2, an oxide semiconductor electrode 11 having adsorbed a dye Coumarin 343 dye It is a graph which shows the result of the battery performance test of what produced the sensitized solar cell. In FIG. 2, the horizontal axis represents the electrolytic treatment time, the vertical axis represents the electrolysis of the short-circuit photocurrent density Isc (mA / cm 2 ), the open photovoltaic voltage Voc (mV), the fill factor FF, and the energy conversion efficiency η (%). The relative ratio with respect to the case where the electrolytic treatment is not performed when the treatment is performed is shown.

図2によると、処理時間が5minまで、短絡光電流密度比(Isc)は変化せず、開放光起電圧比(Voc)及びエネルギー変換効率比(η)は急速に増大し、開放光起電圧比(Voc)及びエネルギー変換効率比は1.5になる。フィルファクター比(FF)はわずかであるが次第に増大している。一方、処理時間が5minを超えると、短絡光電流密度比及びエネルギー変換効率比は次第に減少するが、開放光起電圧比はなお増大し処理時間15nimで相対比1.9になりその後次第に減少する。処理時間15nimにおいて、短絡光電流密度比は0.5、エネルギー変換効率比は1.0になる。すなわち、本発明により、高い開放光起電圧、高いエネルギー変換効率の色素増感太陽電池を得ることができることが分かる。   According to FIG. 2, the short-circuit photocurrent density ratio (Isc) does not change until the processing time is 5 min, the open photovoltaic voltage ratio (Voc) and the energy conversion efficiency ratio (η) increase rapidly, and the open photovoltaic voltage The ratio (Voc) and the energy conversion efficiency ratio are 1.5. The fill factor ratio (FF) is slight but gradually increasing. On the other hand, when the processing time exceeds 5 min, the short-circuit photocurrent density ratio and the energy conversion efficiency ratio gradually decrease, but the open photovoltaic voltage ratio still increases and reaches a relative ratio of 1.9 at the processing time of 15 nim, and then gradually decreases. At the processing time of 15 nim, the short-circuit photocurrent density ratio is 0.5 and the energy conversion efficiency ratio is 1.0. That is, it can be seen that the present invention can provide a dye-sensitized solar cell having a high open photovoltaic voltage and a high energy conversion efficiency.

図3に、TiO2にインターカレートさせるアルカリ金属の効果を調べた結果を示す。図3は、各種アルカリ金属塩の電解液中でTiO2の多孔質層の電気化学的処理を行った酸化物半導体電極を用いて作製した色素増感太陽電池の開放光起電圧と、電解処理の処理時間との関係を示すグラフである。図3において、横軸は処理時間で縦軸は開放光起電圧を示し、Li曲線は電解処理をLiClO4の電解液中で行った場合、Na曲線は電解処理をNaClO4の電解液中で行った場合、K曲線は電解処理をKClO4の電解液中で行った場合を示す。 FIG. 3 shows the results of investigating the effect of an alkali metal intercalated with TiO 2 . Fig. 3 shows the open photovoltage of a dye-sensitized solar cell fabricated using an oxide semiconductor electrode obtained by electrochemical treatment of a porous layer of TiO 2 in various alkali metal salt electrolytes, and electrolytic treatment. It is a graph which shows the relationship with the processing time. In FIG. 3, the horizontal axis represents the treatment time and the vertical axis represents the open photovoltage, the Li curve represents the electrolytic treatment performed in the LiClO 4 electrolyte, and the Na curve represents the electrolytic treatment in the NaClO 4 electrolytic solution. When performed, the K curve shows the case where the electrolytic treatment was performed in an electrolytic solution of KClO 4 .

図3によると、開放光起電圧の向上効果はLiClO4電解液中の電解処理が最も効果があり、次にNaClO4電解液中の電解処理であることが分かる。また、図3によると、いずれの処理の場合も開放光起電圧が最も高くなる最適な処理時間があることが分かる。 According to FIG. 3, it can be seen that the effect of improving the open photovoltaic voltage is most effective in the electrolytic treatment in the LiClO 4 electrolytic solution, and then in the electrolytic treatment in the NaClO 4 electrolytic solution. Further, according to FIG. 3, it can be seen that there is an optimum processing time in which the open photovoltaic voltage is the highest in any processing.

つぎに、本発明における色素の効果を示す。表2は、LiClO4の電解液中でTiO2の多孔質層の電気化学的処理を行った酸化物半導体電極を用いて作製した色素増感太陽電池(処理あり)と、そのような電気化学的処理を行わなかった酸化物半導体電極を用いて作製した色素増感太陽電池(処理なし)の電池性能試験の結果である。表2によると、本発明において開放光起電圧を向上させる効果は、色素Coumarin 343の場合が最も高く、つづいて、Alizarin、Chicago Sky Blueの順に高い。これに対し、色素がルテニウム金属錯体である場合は、開放光起電圧向上効果が少ないことが分かる。 Next, the effect of the pigment in the present invention will be shown. Table 2 shows a dye-sensitized solar cell (with treatment) prepared using an oxide semiconductor electrode obtained by electrochemically treating a porous layer of TiO 2 in an electrolyte solution of LiClO 4 , and such electrochemical It is the result of the battery performance test of the dye-sensitized solar cell (it did not process) produced using the oxide semiconductor electrode which did not perform an organic process. According to Table 2, the effect of improving the open photovoltaic voltage in the present invention is highest in the case of the dye Coumarin 343, followed by Alizarin and Chicago Sky Blue in this order. On the other hand, when the dye is a ruthenium metal complex, it can be seen that the effect of improving the open photovoltaic voltage is small.

Figure 0005167531
Figure 0005167531

表3及び図4に、本発明による効果と電解質溶液17に逆電流を防ぎ開放光起電圧を高めるTBPを添加した場合の効果を比較した結果を示す。図4は、色素増感太陽電池の光照射時のI-V特性曲線を示すグラフであり、横軸は電圧で縦軸は電流密度を示す。表3及び図4において、処理ありとは、LiClO4の電解液中でTiO2の多孔質層の電気化学的処理を行った後、色素Coumarin 343を吸着させた酸化物半導体電極を用いて作製した色素増感太陽電池の場合を示す。処理なしとは、そのような電気化学的処理を行わず色素Coumarin 343を吸着させた酸化物半導体電極を用いて作製した色素増感太陽電池の場合を示す。 Table 3 and FIG. 4 show the results of comparing the effects of the present invention with the effects of adding TBP that prevents reverse current and increases the open photovoltaic voltage to the electrolyte solution 17. FIG. 4 is a graph showing an IV characteristic curve during light irradiation of the dye-sensitized solar cell, in which the horizontal axis represents voltage and the vertical axis represents current density. In Table 3 and FIG. 4, “with treatment” means that an oxide semiconductor electrode in which the dye Coumarin 343 is adsorbed after electrochemical treatment of the porous layer of TiO 2 in an electrolyte solution of LiClO 4 is used. This shows the case of the dye-sensitized solar cell. “No treatment” indicates a case of a dye-sensitized solar cell manufactured using an oxide semiconductor electrode in which the dye Coumarin 343 is adsorbed without performing such an electrochemical treatment.

表3の処理あり(本発明)の場合と処理なし(比較例)の場合を比較すると、本発明の場合は、短絡光電流密度Iscがほとんど比較例の場合と変わらないのに開放光起電圧Vocが1.7倍になり、エネルギー変換効率ηが1.8倍になっている。これに対し、TBP添加処理と処理なしの場合を比較すると、TBP添加処理の場合は処理なしの場合に対し、開放光起電圧Vocは1.2倍に高めることができるが、短絡光電流密度Isc及びエネルギー効率ηは1/3に減少してしまうことが分かる。   Comparing the case with treatment (invention) and the case without treatment (comparative example) in Table 3, in the case of the invention, the open-circuit photovoltage is almost the same as in the comparative example, although the short-circuit photocurrent density Isc is almost the same as in the comparative example. Voc has increased 1.7 times, and energy conversion efficiency η has increased 1.8 times. In contrast, when the TBP addition treatment and the case without treatment are compared, the open photovoltage Voc can be increased by a factor of 1.2 compared to the case without treatment in the case of TBP addition treatment, but the short-circuit photocurrent density Isc and It can be seen that the energy efficiency η decreases to 1/3.

Figure 0005167531
Figure 0005167531

図4によると、TBP添加処理の場合は、処理なしの場合と比較してI-V曲線がマイナス側に70mVシフトし、処理ありの場合はさらに170mVマイナス側にシフトしていることが分かる。以上、表3及び図4から分かるように、本発明による開放光起電圧及びエネルギー効率の向上効果は高く、それらの効果はTBP添加処理に比較して相当に高いことが分かる。   According to FIG. 4, it can be seen that in the case of TBP addition treatment, the I-V curve is shifted to the negative side by 70 mV compared to the case without treatment, and when the treatment is performed, it is further shifted to the negative side of 170 mV. As described above, as can be seen from Table 3 and FIG. 4, it can be seen that the effect of improving the open photovoltaic voltage and the energy efficiency according to the present invention is high, and those effects are considerably higher than those of the TBP addition treatment.

図5は、表3及び図4の試験で作製したと同様な酸化物半導体電極を用いてTiO2の仕事関数を求めた結果を示すグラフである。図5において、横軸は試料番号を示し、縦軸は仕事関数を示す。なお、仕事関数はKelvin Probe法を用いて測定した。測定前に、仕事関数が既知の試料(HOPG,Au)の仕事関数を測定し、参照電極の校正を行った。参照電極として、円筒状のガラスの底に金を蒸着したものを用いた。その参照電極にピエゾ素子(日本電気株式会社製AE023D08)を固定し、ピエゾドライバー(Mestek社製M-2633)を用いて500Hzで振動させた。このとき、試料と参照電極の間に流れる電流をプリアンプ(NF社製LI-76、gain:106 V/A) を用いて電圧に変換し、ロックインアンプ(NF社製LI-574A)で検出した。試料と参照電極間の電圧を10mV/s、または1mV/sで掃引し、印加電圧とロックインアンプの出力信号をX-Yレコーダ(理研電子株式会社製F-57)で記録した。 FIG. 5 is a graph showing the results of obtaining the work function of TiO 2 using the same oxide semiconductor electrode as produced in the tests of Table 3 and FIG. In FIG. 5, the horizontal axis indicates the sample number, and the vertical axis indicates the work function. The work function was measured using the Kelvin Probe method. Before the measurement, the work function of a sample (HOPG, Au) with a known work function was measured, and the reference electrode was calibrated. As the reference electrode, a cylindrical glass bottom with gold deposited was used. A piezo element (AE023D08 manufactured by NEC Corporation) was fixed to the reference electrode, and was vibrated at 500 Hz using a piezo driver (M-2633 manufactured by Mestek). At this time, the current flowing between the sample and the reference electrode is converted into a voltage using a preamplifier (NF-LI-76, gain: 10 6 V / A), and the lock-in amplifier (NF-LI-574A) is used. Detected. The voltage between the sample and the reference electrode was swept at 10 mV / s or 1 mV / s, and the applied voltage and the output signal of the lock-in amplifier were recorded with an XY recorder (F-57 manufactured by Riken Denshi Co., Ltd.).

図5によると、TiO2の多孔質層の電気化学的処理により、処理前にTiO2の仕事関数が5.1eVであったものを4.9eVに低下させることができることが分かる。これは、アルカリ金属イオンをTiO2にインターカレートさせることによりTiO2の構造を変化させたことに起因するものと考えられる。すなわち、本発明により、多孔質層15を形成するTiO2の仕事関数を低下させることができ、そのような多孔質層15を有する酸化物半導体電極11を用いて色素増感太陽電池を作製すると、開放光起電圧又は開放光起電圧向上率の高い、エネルギー効率の高い色素増感太陽電池を得ることができる。 According to FIG. 5, the electrochemical treatment of the TiO 2 porous layer, the work function of the TiO 2 prior to treatment it can be seen that it is possible to reduce what was 5.1eV to 4.9 eV. This is considered due to the fact that the structure of TiO 2 was changed by intercalating alkali metal ions into TiO 2 . That is, according to the present invention, the work function of TiO 2 forming the porous layer 15 can be lowered, and when a dye-sensitized solar cell is produced using the oxide semiconductor electrode 11 having such a porous layer 15 It is possible to obtain a dye-sensitized solar cell having high energy efficiency and high open photovoltage or open photovoltage improvement rate.

なお、処理ありの酸化物半導体電極11について多孔質層15を構成するTiO2の結晶構造のX線解析及び多孔質層15に存在するアルカリ金属微量成分の分析を誘導結合プラズマ発光分光分析(ICP-AES)により行った。その結果によると、洗浄及び乾燥されてその後色素を吸着させた多孔質層15にはアルカリ金属が存在しないことが分かった。しかし、例えば、電気化学的処理により青色を呈した多孔質層(リチウムイオンがTiO2にインターカレートし、Li0.5TiO2が形成されている)を電解液から取り出し大気中に数分間以上放置・安定させた後(多孔質層の青色は消え、白色又は透明になる)、リチウムの残留量を測定するとLiが、分子量換算でTi021molに対して0.14mol含まれていた。Liの検量線の作製は、Liがそれぞれ1ppm、10ppm含まれた溶液のICP-AES分析を行って作製した。X線解析は、XRD測定装置(マックサイエンス社製M18XHF-SRA)を用いて行った。ICP-AESは、ICP発光分光分析装置(Perkin-Elmer社製Optima3000)を用いて行った。 For the oxide semiconductor electrode 11 with treatment, X-ray analysis of the crystal structure of TiO2 constituting the porous layer 15 and analysis of trace elements of alkali metals present in the porous layer 15 are performed by inductively coupled plasma emission spectroscopy (ICP- AES). According to the result, it was found that no alkali metal was present in the porous layer 15 that had been washed and dried and subsequently adsorbed with the dye. However, for example, a porous layer exhibited blue by electrochemical treatment (lithium ions are intercalated into TiO 2, Li 0.5 TiO 2 are formed) of more than a few minutes in the atmosphere taken out from the electrolyte left -After stabilization (the blue color of the porous layer disappears and becomes white or transparent), when the residual amount of lithium was measured, Li was contained in an amount of 0.14 mol per 1 mol of Ti0 2 in terms of molecular weight. The calibration curve for Li was prepared by ICP-AES analysis of a solution containing 1 ppm and 10 ppm of Li, respectively. X-ray analysis was performed using an XRD measurement apparatus (M18XHF-SRA manufactured by Mac Science). ICP-AES was performed using an ICP emission spectrometer (Optima 3000 manufactured by Perkin-Elmer).

TiO2の多孔質層の化学的処理を行って作製した酸化物半導体電極11を用いて色素増感太陽電池を作製し、電池性能試験を行った。色素増感太陽電池の作製及び試験方法は上記と同様に行った。化学処理は、THF30ml中に1.58MのBuLi(n-ヘキサン溶液)1.5mlを溶解させた溶液中にTiO2電極を10分間浸漬させることで行った。 A dye-sensitized solar cell was fabricated using an oxide semiconductor electrode 11 fabricated by chemical treatment of a porous layer of TiO 2 , and a battery performance test was performed. The dye-sensitized solar cell was prepared and tested in the same manner as described above. The chemical treatment was performed by immersing the TiO 2 electrode for 10 minutes in a solution in which 1.5 ml of 1.58M BuLi (n-hexane solution) was dissolved in 30 ml of THF.

ブチルリチウム(BuLi)溶液中で化学的処理を行った試験結果を表4に示す。表4に示すように、化学的処理によっても上記の電気化学的処理と同様に、TiO2にアルカリ金属イオンをインターカレートさせることによって開放光起電圧を向上させ、エネルギー変換効率を向上させることができることが分かる。 Table 4 shows the test results of chemical treatment in butyllithium (BuLi) solution. As shown in Table 4, the open photovoltage is improved by intercalating alkali metal ions into TiO 2 and the energy conversion efficiency is improved by chemical treatment as well as the above electrochemical treatment. You can see that

Figure 0005167531
Figure 0005167531

TiO2の多孔質層の電気化学的処理を、過塩素酸テトラメチルアンモニウム(TMAP)、過塩素酸テトラブチルアンモニウム(TBAP)、テトラアルキルアンモニウム(TEAP)溶液中で行った酸化物半導体電極を用いて上記同様に色素増感太陽電池を作製し、電池性能試験を行った。短絡光電流密度、開放光起電圧、フィルファクター及びエネルギー変換効率のいずれについても、いずれの処理を行った場合も処理を行わなかった場合と変わらなかった。 Electrochemical treatment of porous layer of TiO 2 using oxide semiconductor electrode in tetramethylammonium perchlorate (TMAP), tetrabutylammonium perchlorate (TBAP), tetraalkylammonium (TEAP) solution A dye-sensitized solar cell was prepared in the same manner as described above, and a battery performance test was performed. All of the short-circuit photocurrent density, the open photovoltage, the fill factor, and the energy conversion efficiency were the same when either treatment was performed as when the treatment was not performed.

色素増感太陽電池の構成を示す模式図である。It is a schematic diagram which shows the structure of a dye-sensitized solar cell. リチウムインターカレート処理を行った酸化物半導体電極からなる色素増感太陽電池の処理時間と電池性能特性の関係を示すグラフである。It is a graph which shows the relationship between the processing time of a dye-sensitized solar cell which consists of an oxide semiconductor electrode which performed the lithium intercalation process, and a battery performance characteristic. 各種アルカリ金属のインターカレート処理を行った酸化物半導体電極からなる色素増感太陽電池の処理時間と開放光起電圧の関係を示すグラフである。It is a graph which shows the relationship between the processing time of the dye-sensitized solar cell which consists of an oxide semiconductor electrode which performed the intercalation process of various alkali metals, and an open photovoltage. リチウムインターカレート処理を行った酸化物半導体電極からなる色素増感太陽電池のI-V特性曲線を示すグラフである。It is a graph which shows the IV characteristic curve of the dye-sensitized solar cell which consists of an oxide semiconductor electrode which performed the lithium intercalation process. リチウムインターカレート処理の有無によるTiO2の仕事関数の相違を示すグラフである。Is a graph showing the difference in work function of the TiO 2 with and without lithium intercalating process.

符号の説明Explanation of symbols

10 色素増感太陽電池
11 酸化物半導体電極
12 透明電極
13 基板
14 導電膜
15 多孔質層
16 色素
17 電解質溶液
18 対極
10 Dye-sensitized solar cell
11 Oxide semiconductor electrode
12 Transparent electrode
13 Board
14 Conductive film
15 Porous layer
16 Dye
17 Electrolyte solution
18 counter electrode

Claims (8)

透明電極の導電面上にTiO2の多孔質層を形成する工程と、前記TiO2にアルカリ金属イオンをインターカレートさせる工程と、そのインターカレートされたアルカリ金属イオンを排出除去後前記多孔質層に色素を吸着させる工程と、からなる色素増感太陽電池の酸化物半導体電極の製造方法。 A step of forming a porous layer of TiO 2 on the conductive surface of the transparent electrode, a step of intercalating alkali metal ions into the TiO 2 , and discharging and removing the intercalated alkali metal ions And a method for producing an oxide semiconductor electrode of a dye-sensitized solar cell. TiO2にアルカリ金属イオンをインターカレートさせる工程は、非水溶媒にアルカリ金属塩を溶解した電解液中でTiO2の多孔質層を電解還元する電解処理であることを特徴とする請求項1に記載の色素増感太陽電池の酸化物半導体電極の製造方法。 2. The step of intercalating alkali metal ions into TiO 2 is an electrolytic treatment for electrolytic reduction of a porous layer of TiO 2 in an electrolytic solution in which an alkali metal salt is dissolved in a non-aqueous solvent. The manufacturing method of the oxide semiconductor electrode of the dye-sensitized solar cell of description. アルカリ金属塩は、LiX、NaX、KXのいずれかであることを特徴とする請求項2に記載の色素増感太陽電池の酸化物半導体電極の製造方法。
ここで、XはF、Cl、Br、I、PF6、BF4、ClO4のいずれかである。
The method for producing an oxide semiconductor electrode of a dye-sensitized solar cell according to claim 2, wherein the alkali metal salt is any one of LiX, NaX, and KX.
Here, X is any one of F, Cl, Br, I, PF 6 , BF 4 , and ClO 4 .
TiO2にアルカリ金属イオンをインターカレートさせる工程は、有機アルカリ金属化合物を含む溶液にTiO2の多孔質層を浸漬する化学処理であることを特徴とする請求項1に記載の色素増感太陽電池の酸化物半導体電極の製造方法。 2. The dye-sensitized solar cell according to claim 1, wherein the step of intercalating alkali metal ions into TiO2 is a chemical treatment in which a porous layer of TiO2 is immersed in a solution containing an organic alkali metal compound. Of manufacturing an oxide semiconductor electrode. 有機アルカリ金属化合物は、MeLi(メチルリチウム)、BuLi(ブチルリチウム)、PhLi(フェニルリチウム)、thienyllithium(チエニルリチウム)、t-BuOLi(ターシャルブトキシリチウム)、MeONa(ナトリウムメトキシド)、EtONa(ナトリウムエトキシド)、t-BuOK(カリウムブトキシド)のいずれかであることを特徴とする請求項4に記載の色素増感太陽電池の酸化物半導体電極の製造方法。 Organic alkali metal compounds are MeLi (methyl lithium), BuLi (butyl lithium), PhLi (phenyl lithium), thienyllithium (thienyl lithium), t-BuOLi (tertiary butoxy lithium), MeONa (sodium methoxide), EtONa (sodium) The method for producing an oxide semiconductor electrode of a dye-sensitized solar cell according to claim 4, wherein the oxide semiconductor electrode is either ethoxide) or t-BuOK (potassium butoxide) . TiO2にインターカレートされたアルカリ金属イオンは、アルカリ金属塩又は有機アルカリ金属化合物でTiO21mol当たり0.001〜0.5mol含有されることを特徴とする請求項1〜5のいずれかに記載の色素増感太陽電池の酸化物半導体電極の製造方法。 Intercalated alkali metal ions in TiO 2, dyes of any one of claims 1 to 5, characterized in that it is contained 0.001 to 0.5 mol TiO 2 1 mol per an alkali metal salt or an organic alkali metal compound A method for producing an oxide semiconductor electrode of a sensitized solar cell. 色素は、Eosin Y(エオシンY)、Rhodamine B(ローダミンB)、Chicago Sky Blue(シカゴスカイブルー)、Alizarin(アリザリン)、Coumarin 343(クマリン343)のいずれかの有機色素であることを特徴とする請求項1〜6のいずれかに記載の色素増感太陽電池の酸化物半導体電極の製造方法。 The dye is characterized by being an organic dye of any one of Eosin Y, Rhodamine B (Rhodamine B), Chicago Sky Blue, Alizarin, Coumarin 343 The manufacturing method of the oxide semiconductor electrode of the dye-sensitized solar cell in any one of Claims 1-6. 導電性の透明電極と、該透明電極の導電面上に形成されたTiO2の多孔質層と、該多孔質層に吸着させた有機色素と、を有する色素増感太陽電池の酸化物半導体電極であって、TiO2の仕事関数が5eV以下であることを特徴とする色素増感太陽電池の酸化物半導体電極。 An oxide semiconductor electrode for a dye-sensitized solar cell, comprising: a conductive transparent electrode; a porous layer of TiO 2 formed on the conductive surface of the transparent electrode; and an organic dye adsorbed on the porous layer An oxide semiconductor electrode for a dye-sensitized solar cell, wherein the work function of TiO 2 is 5 eV or less.
JP2006112788A 2006-04-14 2006-04-14 Method for producing oxide semiconductor electrode of dye-sensitized solar cell and oxide semiconductor electrode Active JP5167531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006112788A JP5167531B2 (en) 2006-04-14 2006-04-14 Method for producing oxide semiconductor electrode of dye-sensitized solar cell and oxide semiconductor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006112788A JP5167531B2 (en) 2006-04-14 2006-04-14 Method for producing oxide semiconductor electrode of dye-sensitized solar cell and oxide semiconductor electrode

Publications (2)

Publication Number Publication Date
JP2007287455A JP2007287455A (en) 2007-11-01
JP5167531B2 true JP5167531B2 (en) 2013-03-21

Family

ID=38759038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006112788A Active JP5167531B2 (en) 2006-04-14 2006-04-14 Method for producing oxide semiconductor electrode of dye-sensitized solar cell and oxide semiconductor electrode

Country Status (1)

Country Link
JP (1) JP5167531B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041746A (en) * 2012-08-22 2014-03-06 Sekisui Chem Co Ltd Dye-sensitized solar cell, and method of manufacturing the same
KR101526298B1 (en) * 2013-04-22 2015-06-10 서울대학교산학협력단 Method of manufacturing a titanium oxide electrode, system for generating oxidative reactive species, system for generating chlorine, dye-sensitized solar cell, and electric double-layer capacitor including the same

Also Published As

Publication number Publication date
JP2007287455A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
Wang et al. FeSe 2 films with controllable morphologies as efficient counter electrodes for dye-sensitized solar cells
Jasim Natural dye-sensitized solar cell based on nanocrystalline TiO2
Chen et al. Dextran based highly conductive hydrogel polysulfide electrolyte for efficient quasi-solid-state quantum dot-sensitized solar cells
Wang et al. CdS and CdSe quantum dot co-sensitized nanocrystalline TiO2 electrode: Quantum dot distribution, thickness optimization, and the enhanced photovoltaic performance
JP2007311336A (en) Semiconductor electrode containing phosphate and solar battery using the same
Kim et al. Cost-effective and morphology controllable PVP based highly efficient CuS counter electrodes for high-efficiency quantum dot-sensitized solar cells
He et al. Holistically modulating charge recombination via trisiloxane surface treatment for efficient dye-sensitized solar cells
Li et al. Photovoltaic properties of high efficiency plastic dye-sensitized solar cells employing interparticle binding agent “nanoglue”
Canto-Aguilar et al. ZnO-based dye-sensitized solar cells: Effects of redox couple and dye aggregation
CN102332356A (en) DSSC and manufacturing approach thereof
KR101635758B1 (en) Sensitizing dye solution, working electrode prepared thereby, and dye-sensitized solar cell comprising the same
El Tayyan Dye sensitized solar cell: parameters calculation and model integration
Zhang et al. Novel bilayer structure ZnO based photoanode for enhancing conversion efficiency in dye-sensitized solar cells
Chen et al. High catalytic activity of a PbS counter electrode prepared via chemical bath deposition for quantum dots-sensitized solar cells
Marimuthu et al. Growth and characterization of ZnO nanostructure on TiO2-ZnO films as a light scattering layer for dye sensitized solar cells
Syrrokostas et al. Novel photoelectrochromic devices incorporating carbon-based perovskite solar cells
Jasim et al. Henna (Lawsonia inermis L.) Dye‐Sensitized Nanocrystalline Titania Solar Cell
Feng et al. TiO2 flowers and spheres for ionic liquid electrolytes based dye-sensitized solar cells
Rao et al. The synthesis and characterization of lead sulfide with cube-like structure as a counter electrode in the presence of urea using a hydrothermal method
Yue et al. CdTe quantum dots-sensitized solar cells featuring PCBM/P3HT as hole transport material and assistant sensitizer provide 3.40% efficiency
Cha et al. Li+ doped anodic TiO2 nanotubes for enhanced efficiency of Dye-sensitized solar cells
Miao et al. Enhancement of the efficiency of dye-sensitized solar cells with highly ordered Pt-decorated nanostructured silicon nanowires based counter electrodes
JP5167531B2 (en) Method for producing oxide semiconductor electrode of dye-sensitized solar cell and oxide semiconductor electrode
Ma et al. Device optimization of CsSnI 2.95 F 0.05-based all-solid-state dye-sensitized solar cells with non-linear charge-carrier-density dependent photovoltaic behaviors
JP2003243053A (en) Manufacturing method for photoelectric transducing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121128