JP5166004B2 - Pneumatic solar collector - Google Patents

Pneumatic solar collector Download PDF

Info

Publication number
JP5166004B2
JP5166004B2 JP2007301546A JP2007301546A JP5166004B2 JP 5166004 B2 JP5166004 B2 JP 5166004B2 JP 2007301546 A JP2007301546 A JP 2007301546A JP 2007301546 A JP2007301546 A JP 2007301546A JP 5166004 B2 JP5166004 B2 JP 5166004B2
Authority
JP
Japan
Prior art keywords
heat
heat collecting
sheet
collecting material
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007301546A
Other languages
Japanese (ja)
Other versions
JP2009127901A (en
Inventor
康臣 三木
Original Assignee
康臣 三木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 康臣 三木 filed Critical 康臣 三木
Priority to JP2007301546A priority Critical patent/JP5166004B2/en
Publication of JP2009127901A publication Critical patent/JP2009127901A/en
Application granted granted Critical
Publication of JP5166004B2 publication Critical patent/JP5166004B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/80Solar heat collectors using working fluids comprising porous material or permeable masses directly contacting the working fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic solar collector capable of producing warm air by utilizing sunlight, improving heat collecting efficiency, being miniaturized and easy in assembling work. <P>SOLUTION: This pneumatic solar collector has a hollow heat collection case 2 of which the top face is coated with a transmission body 21 having high sunlight transmittance, and a sheet-shaped heat collecting material 3 disposed in a state of being inclined to block the heat medium air flowing in the heat collection case 2, and having fine pores through which the heat medium air passes, and lower voids 31 having ventilation widths to allow the heat medium air to rise along a back face of the sheet-shaped heat collecting material 3 are formed at a lower portion of the sheet-shaped heat collecting material 3. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、太陽光を利用して温風を生成する空気式の集熱技術に関し、特に、集熱効率の高効率化およびコンパクト化を実現しうる空気式太陽集熱装置に関するものである。   The present invention relates to a pneumatic heat collecting technique for generating warm air using sunlight, and more particularly to a pneumatic solar heat collecting apparatus capable of realizing high efficiency and compactness of heat collecting efficiency.

従来、太陽光を利用して温風を生成する空気式の集熱装置が知られている。例えば、特公平8−6971号公報には、太陽光透過率にすぐれたフィルムで外周面を被覆し、底部に断熱材層を設けてなる密閉構造の風洞内と、該風洞を透過した太陽光を受光し、かつ、風洞内を通る空気流を遮るように傾斜して設けられ、熱媒空気が通過し得る微小空隙を有するシート状集熱材とを有し、風洞内の太陽光採光面と集熱材上端部との間に風洞高さの5〜20%の空隙を設けた空気集熱式コレクターが開示されている(特許文献1)。   2. Description of the Related Art Conventionally, a pneumatic heat collecting apparatus that generates warm air using sunlight is known. For example, Japanese Patent Publication No. 8-6971 discloses a closed wind tunnel in which an outer peripheral surface is covered with a film having excellent sunlight transmittance and a heat insulating material layer is provided at the bottom, and sunlight transmitted through the wind tunnel. And a sheet-like heat collecting material provided with an inclination so as to block the air flow passing through the wind tunnel, and having a minute gap through which the heat transfer air can pass, and a solar light collecting surface in the wind tunnel An air heat collecting collector is disclosed in which a gap of 5 to 20% of the height of the wind tunnel is provided between the upper end of the heat collecting material and the heat collecting material (Patent Document 1).

そして、前記特許文献1の記載によれば、前記空隙により集熱材上層部を流れる比較的低温な空気流が断熱層を形成するため、シート状集熱材からの熱放散を阻止するとともに、風洞内の空気流の速度が上層部(集熱材のない部分)と下層部(集熱材部)とで異なることで乱流が発生するため、集熱効率が向上するとされている。   And, according to the description of Patent Document 1, the relatively low temperature airflow that flows through the heat collector upper layer portion by the gap forms a heat insulating layer, thus preventing heat dissipation from the sheet-like heat collector, It is said that heat collection efficiency is improved because turbulent flow is generated when the velocity of the air flow in the wind tunnel differs between the upper layer portion (portion without the heat collecting material) and the lower layer portion (heat collecting material portion).

特公平8−6971号公報Japanese Patent Publication No. 8-6971

しかしながら、上記特許文献1に記載された発明においては、集熱効率が不十分である。すなわち、通常、集熱材によって温められた空気は、当該集熱材の裏面側に滞留する傾向にある。しかし、上記のように、集熱材の上部にだけ空隙を設けても、上層部近傍にのみ乱流を発生させるに留まり、集熱材裏面側の滞留空気を有効に活用できていないという問題がある。   However, in the invention described in Patent Document 1, the heat collection efficiency is insufficient. That is, normally, the air heated by the heat collecting material tends to stay on the back side of the heat collecting material. However, as described above, even if a gap is provided only in the upper part of the heat collector, the problem is that the turbulent flow is generated only in the vicinity of the upper layer part, and the retained air on the heat collector back side cannot be effectively utilized. There is.

一方、より大きな空気流を発生させれば、上記滞留空気を取り込めるという考え方もある。しかしながら、上記特許文献1に記載された発明を含め、従来の空気式太陽集熱装置においては、空気流を発生させるための手段としてファンを利用している。このため、上記滞留空気を取り込む程度の乱流を発生させるには、強力なファンを用いなければならず、イニシャルコストやランニングコストが高くなるという問題がある。   On the other hand, there is also an idea that the stagnant air can be taken in by generating a larger air flow. However, in the conventional pneumatic solar heat collecting apparatus including the invention described in Patent Document 1, a fan is used as a means for generating an air flow. For this reason, in order to generate the turbulent flow enough to take in the staying air, a powerful fan must be used, and there is a problem that the initial cost and running cost are increased.

また、上記特許文献1において、集熱材として例示されている炭素繊維シートは、従来、直状の炭素繊維が主流である。この直状の炭素繊維シートは、厚み方向における空気透過度が低いため圧力損失が大きい。また、面方向と厚み方向との特性に差異が大きく、特に、厚み方向の熱伝導率が低いという問題もある。   Moreover, in the said patent document 1, as for the carbon fiber sheet illustrated as a heat collecting material, the straight carbon fiber is mainstream conventionally. Since this straight carbon fiber sheet has a low air permeability in the thickness direction, the pressure loss is large. Moreover, there is a large difference in characteristics between the surface direction and the thickness direction, and in particular, there is a problem that the thermal conductivity in the thickness direction is low.

さらに、空気式太陽集熱装置に関しては、一般的に、風洞(ケーシング)の容量が大きいほど、より多くの空気を流通しうるため、温風の生成能力が向上する。このため、従来、住宅の暖房用途や、木材の乾燥用途等に適用するには、必要な性能を確保するために、ケーシングを大きくせざるを得ず、装置全体の肥大化を招くという問題もある。   Furthermore, with regard to the pneumatic solar heat collecting apparatus, generally, the larger the wind tunnel (casing) capacity, the more air can be circulated, so the hot air generating ability is improved. For this reason, conventionally, in order to ensure the required performance in order to apply to heating applications for houses, drying applications for wood, etc., there is a problem that the casing has to be enlarged and the entire apparatus is enlarged. is there.

本発明は、このような問題点を解決するためになされたものであって、太陽光を利用して温風を生成できることはもとより、集熱効率を高効率化できるともに、コンパクト化および組み立て作業の容易化を実現することができる空気式太陽集熱装置を提供することを目的としている。   The present invention has been made to solve such problems. In addition to being able to generate hot air using sunlight, it is possible to increase the efficiency of heat collection and to reduce the size and the assembly work. An object of the present invention is to provide a pneumatic solar heat collecting device that can be easily realized.

本発明に係る空気式太陽集熱装置の特徴は、太陽光透過率の優れた透過体で上面が被覆された中空状の集熱ケースと、この集熱ケース内に流れる熱媒空気を遮るように傾斜して設けられ、前記熱媒空気が通過しうる微小空隙を有するシート状集熱材とを有し、前記シート状集熱材の下部に、前記熱媒空気が前記シート状集熱材の裏面に沿って上昇しうる通気幅を備えた下部空隙を設ける点にある。   A feature of the pneumatic solar heat collecting apparatus according to the present invention is to block a hollow heat collecting case whose upper surface is covered with a transparent body having excellent sunlight transmittance, and heat medium air flowing in the heat collecting case. And a sheet-like heat collecting material having a minute gap through which the heat-medium air can pass, and the heat-medium air is provided in the lower part of the sheet-like heat collecting material. The lower space | gap provided with the ventilation width | variety which can raise along the back surface of this is provided.

また、本発明において、前記シート状集熱材は、屈曲した炭素繊維をシート状に成形してなる曲状炭素繊維シートであることが好ましい。   Moreover, in this invention, it is preferable that the said sheet-like heat collecting material is a curved carbon fiber sheet formed by shape | molding the bent carbon fiber in a sheet form.

さらに、本発明において、前記集熱ケースの内壁面には、前記シート状集熱材を支持する集熱材支持棒が上下に交互に複数本並設されており、これら集熱材支持棒には、1枚の前記シート状集熱材が略波形状を形成するように張設されていることが好ましい。   Further, in the present invention, a plurality of heat collecting material support bars for supporting the sheet-shaped heat collecting material are alternately arranged in parallel on the inner wall surface of the heat collecting case. It is preferable that the sheet-like heat collecting material is stretched so as to form a substantially wave shape.

また、本発明において、前記シート状集熱材は、前記透過体との間に当該透過体からの熱損失を抑制する上部空隙を設けるようにして張設されていることが好ましい。   In the present invention, it is preferable that the sheet-like heat collecting material is stretched so as to provide an upper gap that suppresses heat loss from the transmissive body.

本発明によれば、太陽光を利用して温風を生成できることはもとより、集熱効率を高効率化できるともに、コンパクト化および組み立て作業の容易化を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to produce | generate warm air using sunlight, while being able to make heat collection efficiency highly efficient, it can implement | achieve compactization and the ease of an assembly operation.

以下、本発明に係る空気式太陽集熱装置の第1実施形態について図面を用いて説明する。図1は、本第1実施形態の空気式太陽集熱装置1Aを示す斜視図であり、図2は、側面から見た断面図である。   Hereinafter, a first embodiment of a pneumatic solar heat collecting apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a pneumatic solar heat collecting apparatus 1A of the first embodiment, and FIG. 2 is a cross-sectional view seen from the side.

図1および図2に示すように、本第1実施形態の空気式太陽集熱装置1Aは、主として、空気を熱媒体として太陽光から熱エネルギーを回収する集熱ケース2と、この集熱ケース2内に収容されるシート状集熱材3とを有している。   As shown in FIGS. 1 and 2, the pneumatic solar heat collecting apparatus 1A of the first embodiment mainly includes a heat collecting case 2 that collects thermal energy from sunlight using air as a heat medium, and the heat collecting case. 2 and a sheet-like heat collecting material 3 accommodated in the inside.

集熱ケース2は、熱媒体としての熱媒空気を流通させ、太陽光から熱エネルギーを回収するものである。本第1実施形態において、集熱ケース2は、アルミニウム合金、鉄鋼薄板、木材等から構成されており、図1および図2に示すように、中空状の略直方体形状に形成されている。また、集熱ケース2の上面には、太陽光透過率の優れた半強化ガラスや、ポリカーボネート等の透過体21が密閉状態で被覆されている。一方、集熱ケース2の底面には、発泡ウレタン、発泡スチレン、ガラスウール、木材等の断熱材22が敷設されている。   The heat collection case 2 circulates heat medium air as a heat medium and collects heat energy from sunlight. In the first embodiment, the heat collection case 2 is made of an aluminum alloy, a steel sheet, wood, or the like, and is formed in a hollow, substantially rectangular parallelepiped shape as shown in FIGS. Further, the upper surface of the heat collecting case 2 is covered with a semi-tempered glass excellent in sunlight transmittance and a transparent body 21 such as polycarbonate in a sealed state. On the other hand, a heat insulating material 22 such as foamed urethane, foamed styrene, glass wool, or wood is laid on the bottom surface of the heat collecting case 2.

また、集熱ケース2には、図1および図2に示すように、その長手方向における下流側の側面に吸気口23が形成され、上流側の側面に排気口24が形成されている。これらにより、例えば、排気口24側で吸気ファンを駆動させると、吸気口23から熱媒空気が取り込まれ、排気口24側へと流れる空気流が形成されるようになっている。   As shown in FIGS. 1 and 2, the heat collection case 2 is formed with an intake port 23 on the downstream side surface in the longitudinal direction and an exhaust port 24 on the upstream side surface. Accordingly, for example, when the intake fan is driven on the exhaust port 24 side, the heat transfer air is taken in from the intake port 23 and an air flow flowing toward the exhaust port 24 is formed.

シート状集熱材3は、太陽光を受けて集熱し、熱媒空気と熱交換させる役割を果たすものである。このシート状集熱材3は、熱媒空気が通過しうる微小空隙を有している。また、本第1実施形態において、シート状集熱材3は、屈曲した炭素繊維をシート状に成形してなる曲状炭素繊維シートから構成されている。この曲状炭素繊維シートは、石炭ピッチを原料とする屈曲した炭素繊維に、樹脂バインダを加えて漉くことでシート状に成形した後、炭化率の高い樹脂を含浸させて成形、硬化および黒鉛化処理を施したものである。   The sheet-shaped heat collecting material 3 plays a role of collecting heat upon receiving sunlight and exchanging heat with the heat medium air. The sheet-like heat collecting material 3 has a minute gap through which heat medium air can pass. Moreover, in this 1st Embodiment, the sheet-like heat collecting material 3 is comprised from the curved carbon fiber sheet formed by shape | molding the bent carbon fiber in a sheet form. This curved carbon fiber sheet is formed into a sheet shape by adding a resin binder to a bent carbon fiber made from coal pitch, and then impregnated with a resin with a high carbonization rate. It has been processed.

本第1実施形態で用いた曲状炭素繊維シートのSEM(Scanning Electron Microscope:走査型電子顕微鏡)画像(230倍)を図3に示す。図3に示すように、曲状炭素繊維シートは、各炭素繊維がカールしており、3次元的な繊維構造によって優れた空気透過性を有している。また、炭素繊維は、優れた熱伝導率を有しており、熱交換材料として好適である。この曲状炭素繊維シートは、一般的な直状炭素繊維シートに比べて、空気透過度および厚み方向の熱伝導率が約2倍と、優れた性能を有している。   FIG. 3 shows an SEM (Scanning Electron Microscope) image (230 times) of the curved carbon fiber sheet used in the first embodiment. As shown in FIG. 3, each carbon fiber is curled in the curved carbon fiber sheet, and has excellent air permeability due to a three-dimensional fiber structure. Moreover, carbon fiber has an excellent thermal conductivity and is suitable as a heat exchange material. This curved carbon fiber sheet has an excellent performance, such as air permeability and thermal conductivity in the thickness direction of about twice that of a general straight carbon fiber sheet.

ただし、本発明に係る実施形態においては、シート状集熱材3として曲状炭素繊維シートを使用しているが、これに限られるものではなく、効果の程度の差はあるが、熱媒空気を通過させる微小空隙を有していれば直状の炭素繊維シートやその他の集熱材を使用してもよい。   However, in the embodiment according to the present invention, a curved carbon fiber sheet is used as the sheet-like heat collecting material 3, but the invention is not limited to this. A straight carbon fiber sheet or other heat collecting material may be used as long as it has microscopic voids through which it passes.

また、本第1実施形態では、図1および図2に示すように、複数枚のシート状集熱材3が、集熱ケース2内に流れる熱媒空気を遮るように傾斜して設けられている。具体的には、各シート状集熱材3は、太陽光を効率的に受光しつつ熱媒空気の流れを遮るように熱媒空気の流れ方向に対して所定の角度で傾斜され、かつ、その下部には、集熱ケース2の底面との間に所定幅の下部空隙31を形成するように設けられている。   Further, in the first embodiment, as shown in FIGS. 1 and 2, the plurality of sheet-like heat collecting materials 3 are provided so as to be inclined so as to block the heat transfer air flowing in the heat collecting case 2. Yes. Specifically, each sheet-like heat collecting material 3 is inclined at a predetermined angle with respect to the flow direction of the heat transfer air so as to block the flow of the heat transfer air while efficiently receiving sunlight, and A lower gap 31 having a predetermined width is formed between the lower portion and the bottom surface of the heat collecting case 2.

本第1実施形態において、下部空隙31は、シート状集熱材3を通過する熱媒空気を所定量確保し、かつ、熱媒空気がシート状集熱材3の裏面に沿って上昇しうる極細の通気幅に狭められている。当該通気幅が小さ過ぎると、下部空隙31に熱媒空気がほとんど流れなくなり、空隙を設ける意味が無くなって圧損の低減が図れない。一方、当該通気幅が大き過ぎると、単に熱媒空気が集熱ケース2の底面に沿ったまま流れる傾向が強くなる。このため、シート状集熱材3を通過する熱媒空気が減少し、集熱効率が低減してしまうし、シート状集熱材3の裏面側に滞留した温かい熱媒空気を剥ぎ取れなくなる。   In the first embodiment, the lower gap 31 secures a predetermined amount of heat medium air that passes through the sheet-shaped heat collector 3, and the heat medium air can rise along the back surface of the sheet-shaped heat collector 3. It is narrowed to an extremely fine ventilation width. If the ventilation width is too small, the heat medium air hardly flows into the lower gap 31, and there is no point in providing the gap, and the pressure loss cannot be reduced. On the other hand, when the ventilation width is too large, the tendency that the heat transfer air simply flows along the bottom surface of the heat collecting case 2 becomes strong. For this reason, the heat-medium air which passes the sheet-like heat collecting material 3 decreases, the heat collecting efficiency is reduced, and the warm heat-medium air staying on the back side of the sheet-like heat collecting material 3 cannot be peeled off.

なお、本第1実施形態では、集熱ケース2の底面とシート状集熱材3の下端部との間に下部空隙31を形成しているが、これに限られるものではない。前述した下部空隙31の効果が得られるのであれば、例えばシート状集熱材3の下端部を集熱ケース2の底面に接触させ、当該シート状集熱材3の下端近傍に極細のスリットを形成することによって下部空隙31を構成するようにしてもよい。   In the first embodiment, the lower gap 31 is formed between the bottom surface of the heat collecting case 2 and the lower end portion of the sheet-like heat collecting material 3, but the present invention is not limited to this. If the effect of the lower gap 31 described above can be obtained, for example, the lower end portion of the sheet-like heat collecting material 3 is brought into contact with the bottom surface of the heat collecting case 2, and an extremely thin slit is formed near the lower end of the sheet-like heat collecting material 3. You may make it comprise the lower space | gap 31 by forming.

また、本第1実施形態では、各シート状集熱材3の上端部と、透過体21の裏面との間にも所定幅の上部空隙32が設けられている。この上部空隙32は、透過体21を介して外部に放熱される熱損失を抑制しうる通気幅に設定されている。なぜなら、各シート状集熱材3が透過体21に接触あるいは近接していると、シート状集熱材3の面方向における熱伝導により、あるいは、周囲空気を介した自然対流や空隙を流れる強制対流に起因する熱伝達によって、透過体21の裏側に熱が移動し易くなる。このため、透過体21の温度が上昇して周囲空気への放熱量が増大し、結果として熱損失量が増えてしまうからである。   In the first embodiment, an upper gap 32 having a predetermined width is also provided between the upper end portion of each sheet-like heat collecting material 3 and the back surface of the transmission body 21. The upper gap 32 is set to a ventilation width that can suppress heat loss radiated to the outside through the transmissive body 21. This is because if each sheet-like heat collecting material 3 is in contact with or close to the transmissive body 21, it is forced to flow through natural convection or voids through ambient air due to heat conduction in the surface direction of the sheet-like heat collecting material 3. Heat transfer due to convection makes it easier for heat to move to the back side of the transmissive body 21. For this reason, the temperature of the transmissive body 21 rises and the amount of heat radiation to the surrounding air increases, resulting in an increase in the amount of heat loss.

一方、上部空隙32の通気幅が大き過ぎると、空気流の多くが上部空隙32に導かれてしまい、シート状集熱材3を通過する熱媒空気が減少するため、逆に集熱効率が低下してしまうおそれがある。したがって、下部空隙31との兼ね合いを調整しながら上部空隙32を設ける必要がある。但し、各メリットとデメリットを考慮して下部空隙31のみを形成し、上部空隙32は設けなくてもよい。例えば、本空気式太陽集熱装置1Aを一般住宅等に適用する場合には、集熱ケース2の厚みを薄くするため、上部空隙32を設けず、下部空隙31のみ設けるようにしてもよい。   On the other hand, if the ventilation width of the upper gap 32 is too large, most of the air flow is guided to the upper gap 32, and the heat transfer air passing through the sheet-like heat collecting material 3 is reduced. There is a risk of it. Therefore, it is necessary to provide the upper gap 32 while adjusting the balance with the lower gap 31. However, considering each merit and demerit, only the lower gap 31 is formed, and the upper gap 32 may not be provided. For example, when this pneumatic solar heat collecting apparatus 1A is applied to a general house or the like, only the lower gap 31 may be provided without providing the upper gap 32 in order to reduce the thickness of the heat collection case 2.

つぎに、以上のような構成を備えた本第1実施形態における空気式太陽集熱装置1Aの作用について、図面を参照しつつ説明する。   Next, the operation of the pneumatic solar heat collecting apparatus 1A according to the first embodiment having the above-described configuration will be described with reference to the drawings.

まず、本第1実施形態の空気式太陽集熱装置1Aによって温風を生成する場合、シート状集熱材3の受光面(上面)に太陽光が照射されるように空気式太陽集熱装置1Aを設置する。これにより、太陽光が透過体21を透過して各シート状集熱材3に照射されるため、各シート状集熱材3は、太陽熱を蓄える。なお、太陽光の照射方向に対して、シート状集熱材3の受光面を略垂直に近づけるほど集熱効率が向上する。   First, when hot air is generated by the pneumatic solar heat collecting apparatus 1A of the first embodiment, a pneumatic solar heat collecting apparatus is applied so that sunlight is irradiated on the light receiving surface (upper surface) of the sheet-shaped heat collecting material 3. Install 1A. Thereby, since sunlight permeate | transmits the permeation | transmission body 21 and is irradiated to each sheet-like heat collecting material 3, each sheet-like heat collecting material 3 stores solar heat. Note that the heat collection efficiency is improved as the light receiving surface of the sheet-shaped heat collecting material 3 is made substantially perpendicular to the sunlight irradiation direction.

つづいて、集熱ケース2の排気口24側で吸気ファンを駆動すると、吸気口23から熱媒空気を取り込み、排気口24側へと流れる空気流を形成する。これにより、各シート状集熱材3は、微小空隙を介して熱媒空気をゆっくりと通過させるため、熱交換が促進され熱媒空気が効果的に昇温する。また、各シート状集熱材3は、空気透過度が高いため、圧力損失を低減する。   Subsequently, when the intake fan is driven on the exhaust port 24 side of the heat collecting case 2, heat medium air is taken in from the intake port 23 and an air flow flowing toward the exhaust port 24 is formed. Thereby, since each sheet-like heat collecting material 3 allows the heat medium air to slowly pass through the minute gaps, heat exchange is promoted and the temperature of the heat medium air is effectively increased. Moreover, since each sheet-like heat collecting material 3 has high air permeability, pressure loss is reduced.

また、本第1実施形態では、図2に示すように、適度に狭められた下部空隙31が、熱媒空気を各シート状集熱材3の裏面に沿って上昇するように誘導する。これにより、各シート状集熱材3の裏面に滞留した温かい熱媒空気が剥ぎ取られるようにして移動するため、より一層、効果的な集熱が実現される。また、下部空隙31が下面通気による熱伝達を促進し、全体の集熱効率を向上させる。さらに、下部空隙31は、各シート状集熱材3の下端部から集熱ケース2の底面への熱伝導が熱橋となってしまうのを防止する。   In the first embodiment, as shown in FIG. 2, the moderately narrowed lower gap 31 guides the heat medium air so as to rise along the back surface of each sheet-like heat collecting material 3. Thereby, since the warm heat-medium air staying on the back surface of each sheet-like heat collecting material 3 moves so as to be peeled off, more effective heat collection is realized. Moreover, the lower space | gap 31 accelerates | stimulates the heat transfer by lower surface ventilation, and improves the whole heat collection efficiency. Furthermore, the lower space | gap 31 prevents that the heat conduction from the lower end part of each sheet-like heat collecting material 3 to the bottom face of the heat collecting case 2 becomes a heat bridge.

一方、上部空隙32は、集熱ケース2の上層部に多めの熱媒空気を誘導し断熱層を形成する。これにより、シート状集熱材3からの熱放散が阻止されるとともに、熱媒空気に乱流が発生するため、さらなる集熱効率が期待される。   On the other hand, the upper air gap 32 induces a larger amount of heat transfer air in the upper layer portion of the heat collecting case 2 to form a heat insulating layer. Thereby, heat dissipation from the sheet-like heat collecting material 3 is prevented and turbulent flow is generated in the heat transfer medium air, so that further heat collecting efficiency is expected.

以上のように、各シート状集熱材3において温められた熱媒空気は、排気口24へと流された後、住宅の換気・暖房・給湯・デシカント冷房用熱媒空気や、木材の乾燥用熱媒空気等として有効活用される。   As described above, the heat medium air warmed in each sheet-like heat collecting material 3 is flowed to the exhaust port 24, and then the heat medium air for ventilation, heating, hot water supply, desiccant cooling of the house, or drying of wood It is effectively used as a heating medium air.

以上のような本第1実施形態の空気式太陽集熱装置1Aによれば、
1.シート状集熱材3の裏面に滞留する温風を積極的に取り込み、集熱効率を向上することができる。
2.シート状集熱材3による圧力損失を低減し、空気流を発生させるのにかかるランニングコストを低減することができる。
3.集熱効率を高効率化でき、装置全体をコンパクト化することができる等の効果を奏する。
According to the pneumatic solar heat collecting apparatus 1A of the first embodiment as described above,
1. The hot air staying on the back surface of the sheet-like heat collecting material 3 can be actively taken in, and the heat collecting efficiency can be improved.
2. The pressure loss due to the sheet-like heat collecting material 3 can be reduced, and the running cost for generating the airflow can be reduced.
3. The heat collection efficiency can be increased, and the entire apparatus can be made compact.

つぎに、本発明に係る空気式太陽集熱装置1Bの第2実施形態について説明する。なお、本第2実施形態の構成のうち、上述した第1実施形態の構成と同等または相当する構成については同一の符号を付し、再度の説明を省略する。   Below, 2nd Embodiment of the pneumatic solar heat collecting device 1B which concerns on this invention is described. Note that, in the configuration of the second embodiment, the same or equivalent configuration as the configuration of the first embodiment described above is denoted by the same reference numeral, and the description thereof is omitted.

図4は、本第2実施形態の空気式太陽集熱装置1Bを示す斜視図であり、図5は、側面から見た断面図である。本第2実施形態の特徴は、図4および図5に示すように、複数本の集熱材支持棒4に1枚のシート状集熱材3を張設する点にある。   FIG. 4 is a perspective view showing the pneumatic solar heat collecting apparatus 1B of the second embodiment, and FIG. 5 is a cross-sectional view seen from the side. As shown in FIGS. 4 and 5, the second embodiment is characterized in that one sheet-like heat collecting material 3 is stretched on a plurality of heat collecting material support bars 4.

集熱材支持棒4は、シート状集熱材3を支持するためのものであり、小径の棒状に形成されている。各集熱材支持棒4は、集熱ケース2の横幅と略同じ長さを有し、その両端が集熱ケース2の内壁面に固定されている。また、各集熱材支持棒4は、図5に示すように、集熱ケース2内の空気流と略直交する方向に沿って、上下に交互に並設されている。   The heat collecting material support rod 4 is for supporting the sheet-shaped heat collecting material 3 and is formed in a small-diameter rod shape. Each heat collecting material support rod 4 has a length substantially the same as the lateral width of the heat collecting case 2, and both ends thereof are fixed to the inner wall surface of the heat collecting case 2. Further, as shown in FIG. 5, the heat collecting material support bars 4 are alternately arranged in the vertical direction along a direction substantially orthogonal to the air flow in the heat collecting case 2.

また、本第2実施形態では、図5に示すように、下方側の各集熱材支持棒4は、下部空隙31を形成する高さ位置であって、かつ、空気流方向に等間隔で固定されている。また、上方側の各集熱材支持棒4は、上部空隙32を形成する高さ位置であって、かつ、空気流方向には、下方側の各集熱材支持棒4に対して略直径分だけ下流側に固定されている。もちろんこれら集熱材支持棒4の配設位置は適宜変更可能である。   Further, in the second embodiment, as shown in FIG. 5, the lower heat collecting material support bars 4 are at a height position where the lower gap 31 is formed, and at equal intervals in the air flow direction. It is fixed. Further, each of the upper heat collecting material support rods 4 is at a height position where the upper gap 32 is formed, and has a substantially diameter with respect to each of the lower heat collecting material support rods 4 in the air flow direction. It is fixed downstream by the amount. Of course, the arrangement position of these heat collecting material support rods 4 can be changed as appropriate.

一方、シート状集熱材3は、集熱ケース2の横幅と略同幅であって、集熱ケース2の縦幅よりも長い1枚の曲状炭素繊維シートから構成されている。そして、図4および図5に示すように、シート状集熱材3は、上下の各集熱材支持棒4に順次、巻き付けられて略波形状を形成するように張設されている。   On the other hand, the sheet-like heat collecting material 3 is composed of a single bent carbon fiber sheet that is substantially the same width as the heat collecting case 2 and is longer than the vertical width of the heat collecting case 2. 4 and 5, the sheet-like heat collecting material 3 is stretched so as to be wound around the upper and lower heat collecting material support rods 4 in order to form a substantially wave shape.

したがって、本第2実施形態の空気式太陽集熱装置1Bは、集熱ケース2内に固定された各集熱材支持棒4に、1枚のシート状集熱材3を順次巻き付けるだけで、簡単に下部空隙31および上部空隙32が形成され、その組み立て作業が容易化し、製品が低価格化する。   Therefore, the pneumatic solar heat collecting apparatus 1B of the second embodiment simply winds one sheet of heat collecting material 3 around each heat collecting material support rod 4 fixed in the heat collecting case 2 in order, The lower gap 31 and the upper gap 32 are easily formed, the assembly work is facilitated, and the price of the product is reduced.

以上のような本第2実施形態によれば、上述した第1実施形態の作用効果に加えて、空気式太陽集熱装置1Bを簡単かつ迅速に組み立てることができ、製品価格を低コスト化できるという効果を奏する。   According to the second embodiment as described above, in addition to the effects of the first embodiment described above, the pneumatic solar heat collecting apparatus 1B can be easily and quickly assembled, and the product price can be reduced. There is an effect.

つぎに、本発明に係る空気式太陽集熱装置の具体的な実施例について説明する。本実施例では、本第1実施形態の空気式太陽集熱装置1Aを試作し、その性能を測定する実験を行った。   Next, specific examples of the pneumatic solar heat collecting apparatus according to the present invention will be described. In this example, the pneumatic solar heat collecting apparatus 1A according to the first embodiment was prototyped and an experiment was performed to measure its performance.

まず、本実施例で用いた空気式太陽集熱装置1Aについて説明する。集熱ケース2は、アルミニウム合金製であって、寸法は980mm×1,500mm(有効集熱面積1.397m2)、厚さは70mmである。また、シート状集熱材3としては、図6に示す特性を有する曲状炭素繊維シート(大阪ガスケミカル株式会社製)を4枚使用した。集熱ケース2の底面には、厚さ15mmの発泡ウレタン保温材を敷設し、集熱ケース2の上面には透過体21として、厚さ4mmの半強化ガラスを被覆した。 First, the pneumatic solar heat collecting apparatus 1A used in the present embodiment will be described. The heat collection case 2 is made of an aluminum alloy and has a size of 980 mm × 1,500 mm (effective heat collection area of 1.397 m 2 ) and a thickness of 70 mm. Further, as the sheet-like heat collecting material 3, four curved carbon fiber sheets (manufactured by Osaka Gas Chemical Co., Ltd.) having the characteristics shown in FIG. 6 were used. The bottom surface of the heat collection case 2 was laid with a urethane foam heat insulating material having a thickness of 15 mm, and the upper surface of the heat collection case 2 was coated with a semi-tempered glass with a thickness of 4 mm as a transmission body 21.

集熱ケース2の内壁面には、アルミニウム合金製L字アングルを所定間隔で架設し、これに各シート状集熱材3の上端部をネジとワッシャーで締め付けて固定した。また、各シート状集熱材3の下端部は、15mm幅のアルミニウム製パンチングメタルで挟んでネジ止めし、これを集熱ケース2の内壁面の二箇所にタッピングして吊り下げ状態とした。これにより、各シート状集熱材3を空気流に交差させ、かつ、15mm幅の下部空隙31を形成した。なお、アルミニウム製パンチングメタルの受光面には、ツヤ消しブラックで塗装した。   On the inner wall surface of the heat collecting case 2, aluminum alloy L-shaped angles were installed at predetermined intervals, and the upper end portions of the respective sheet-like heat collecting materials 3 were fastened and fixed thereto with screws and washers. Further, the lower end portion of each sheet-like heat collecting material 3 was sandwiched between 15 mm-wide aluminum punching metal and screwed, and tapped at two locations on the inner wall surface of the heat collecting case 2 to be suspended. Thereby, each sheet-like heat collecting material 3 was made to cross | intersect an air flow, and the 15 mm width lower space | gap 31 was formed. The light-receiving surface of the aluminum punching metal was painted with matte black.

一方、本実施例では、比較例として、下部空隙31および上部空隙32のない従来の空気式太陽集熱装置についても同様の実験を行った。比較例として用いた集熱装置を図7に示す。集熱ケースの寸法は1,000mm×2,000mmで、厚さは190mmである。シート状集熱材としては、直状炭素繊維シートを5枚使用した。集熱ケースの底面には、直状炭素繊維シートおよび断熱材を敷設し、集熱ケースの上面には、カバーガラスを被覆した。   On the other hand, in the present example, as a comparative example, a similar experiment was performed on a conventional pneumatic solar heat collecting apparatus without the lower gap 31 and the upper gap 32. A heat collecting apparatus used as a comparative example is shown in FIG. The dimensions of the heat collection case are 1,000mm x 2,000mm and the thickness is 190mm. As the sheet-like heat collecting material, five straight carbon fiber sheets were used. A straight carbon fiber sheet and a heat insulating material were laid on the bottom surface of the heat collection case, and a cover glass was coated on the top surface of the heat collection case.

また、比較例では、図7に示すように、集熱ケースの内部が、3つのチャンネルに分割されて熱媒空気の通路を形成している。そして、吸気口23として下部ヘッダを設けるとともに、排気口24として上部ヘッダを設け、下部ヘッダから各チャンネルを介して上部ヘッダへと流れる空気流が形成されるようになっている。   In the comparative example, as shown in FIG. 7, the inside of the heat collecting case is divided into three channels to form a passage for the heat transfer air. A lower header is provided as the intake port 23 and an upper header is provided as the exhaust port 24 so that an air flow flowing from the lower header to the upper header through each channel is formed.

つぎに、本実施例における実験装置および実験方法について説明する。図8は、本実施例で用いた実験装置を示す全体図である。本実施例では、財団法人日本品質保証機構(JQA)における試験方法に準拠し、大型ソーラーシミュレータによる室内実験を行った。ソーラーシミュレータ(W1,200mm×L2,200m)は、その光源部に20個のキセノンランプ(8kW)を有しており、これらを調節して人工光を照射しうるようになっている。そして、ソーラーシミュレータを傾斜角度42°(エアマスAM1.5)で設置し、これと平行に向き合うように本実施例の空気式太陽集熱装置1Aを設置した。また、透過体21上の9点に日射計を配置し、各日射計で測定された強度の平均値を照射強度とした。   Next, an experimental apparatus and an experimental method in this example will be described. FIG. 8 is an overall view showing the experimental apparatus used in this example. In this example, a laboratory experiment using a large solar simulator was performed in accordance with a test method in Japan Quality Assurance Organization (JQA). The solar simulator (W1,200mm × L2,200m) has 20 xenon lamps (8kW) in its light source, and these can be adjusted to emit artificial light. Then, a solar simulator was installed at an inclination angle of 42 ° (air mass AM1.5), and the pneumatic solar heat collecting apparatus 1A of this example was installed so as to face in parallel with this. Moreover, the pyranometer was arrange | positioned at nine points on the transmission body 21, and the average value of the intensity | strength measured with each pyranometer was made into irradiation intensity.

また、実験室では、対偶に設けた外気取入口より隣接する二階部に設けたダクトを介して外気を導入し、冷房することにより、室内気温をほぼ一定に保持した。そして、排気口24に接続されたダクトの最下流にシロッコファンを設置し、吸気口23から熱媒空気を取り入れた。シロッコファンによる通気量は、安定化電源とボルトスライダーにより調節し、整流エレメントとピトー管を組み合わせて測定した。また、吸気口23に接続されたダクトには、加熱器あるいは冷風機を設置し、ボルトスライダーで加熱量を調整することで吸気温度を調節した。   In the laboratory, the outside air was introduced from the outside air inlet provided in the kinematic pair through a duct provided on the second floor adjacent to the room, and the room temperature was kept constant by cooling. Then, a sirocco fan was installed on the most downstream side of the duct connected to the exhaust port 24, and heat medium air was taken in from the intake port 23. The amount of air flow through the sirocco fan was adjusted with a stabilized power supply and a bolt slider, and measured by combining a rectifying element and a Pitot tube. In addition, a heater or a cool air fan was installed in the duct connected to the intake port 23, and the intake air temperature was adjusted by adjusting the heating amount with a bolt slider.

集熱ケース2の吸気口23および排気口24(以下、出入口という)には、予め較正済みのT型熱電対(φ0.32mm)をそれぞれ12箇所(半径方向に3点、円周方向に4点)設置し、出入口の熱媒空気温度を測定した。また、上記12点の他、透過体21の表面に3点(上流・中流・下流)、透過体21とシート状集熱材3間に3点、シート状集熱材3上に3点、シート状集熱材3と集熱ケース2の底面間に3点、集熱ケース2底面に3点、集熱ケース2の裏面に3点、同様の熱電対を計18点設置した。   In the inlet 23 and the outlet 24 (hereinafter referred to as the inlet / outlet) of the heat collecting case 2, 12 calibrated T-type thermocouples (φ0.32mm) are provided in 12 locations (3 in the radial direction and 4 in the circumferential direction). Point) Installed and measured the air temperature at the entrance and exit. In addition to the above 12 points, 3 points (upstream / middle / downstream) on the surface of the transmission body 21, 3 points between the transmission body 21 and the sheet-shaped heat collecting material 3, 3 points on the sheet-shaped heat collecting material 3, A total of 18 similar thermocouples were installed: 3 points between the bottom surface of the sheet-like heat collecting material 3 and the heat collecting case 2, 3 points on the bottom surface of the heat collecting case 2, 3 points on the back surface of the heat collecting case 2.

また、各ダクトには、ガラスウール保温材付のアルミフィルム被覆ワイヤーフレキダクト(φ150mm)を使用した。一方、出入口の温度測定部には、塩化ビニール管(φ150mm)を使用し、流量測定部には、スチール管(φ100mm)を使用し、それぞれ厚さ50mmのウレタンフォーム保温筒で保温した。   For each duct, an aluminum film-covered wire flexible duct (φ150 mm) with glass wool insulation was used. On the other hand, a vinyl chloride pipe (φ150 mm) was used for the temperature measurement part at the entrance and exit, and a steel pipe (φ100 mm) was used for the flow rate measurement part, and each was kept warm with a urethane foam insulation cylinder having a thickness of 50 mm.

なお、本実施例のように、空気を熱媒体とする場合、出入口付近の温度には、特に、半径方向の温度むらが生じる。このため、本実施例では、出入口の温度測定部に、アルミ蒸着フイルム付きの保温材で覆ったガードヒーターを設置し、温度むらを最小限に抑えた。   When air is used as the heat medium as in this embodiment, the temperature in the vicinity of the entrance / exit is particularly uneven in the radial direction. For this reason, in the present Example, the guard heater covered with the heat insulating material with the aluminum vapor deposition film was installed in the temperature measurement part of the entrance / exit, and temperature unevenness was suppressed to the minimum.

また、パネルの圧力損失は、上下プレナムに設置した各々静圧取出し口(φ1.5mm)を設けて測定した。さらに、周囲の外気温および相対湿度の測定は、空気式太陽集熱装置1Bの後方であって、地上面から1.4mの高さ位置に設置したアスマン通風温湿計を使用し、露場圧力も併せて測定した。   Moreover, the pressure loss of the panel was measured by providing each of the static pressure outlets (φ1.5 mm) installed in the upper and lower plenums. In addition, ambient air temperature and relative humidity are measured using an Asman ventilation thermo-hygrometer installed at a position 1.4m above the ground surface behind the pneumatic solar heat collector 1B. Was also measured.

以上の実験条件において、通気量Vが100m3/hr、周囲風速Wが0m/sの場合における集熱効率ηを測定した。また、比較例の集熱装置についても同様の条件下において、集熱効率ηJを測定した。その結果を図9に示す。なお、本実施例による相関式を下記式(1)に示す。
η=−0.96Δt/I+89.9, r2=0.924 …式(1)
ただし、Δtは出入口温度の平均値と外気温との差、Iは照射強度、rは相関係数である。
Under the above experimental conditions, the heat collection efficiency η t was measured when the air flow rate V was 100 m 3 / hr and the ambient wind speed W was 0 m / s. In addition, the heat collection efficiency η J of the heat collecting apparatus of the comparative example was measured under the same conditions. The result is shown in FIG. The correlation formula according to this example is shown in the following formula (1).
η t = −0.96Δt / I + 89.9, r 2 = 0.924 (1)
However, Δt is the difference between the average value of the entrance and exit temperatures and the outside air temperature, I is the irradiation intensity, and r is the correlation coefficient.

図9に示すように、本実施例では、集熱効率変数Δt/Iに対する集熱効率ηの負の勾配が、比較例よりもやや大きいものの、本実験の範囲では、集熱効率ηの値が比較例を上回っており、集熱効率が向上していることが示された。集熱温度が高い、つまりΔt/Iが大きい範囲での集熱効率の向上が望ましいが、集熱温度が高いと保温性が良好なことは集熱効率の向上に有利である。本実施例は比較例と比べて、ケーシングの厚さおよび断熱材の厚さが約1/3と保温性に劣る構造であり、かつ、炭素繊維シートの厚さも1/2であるにも関わらず、上記結果が得られたことを考慮すると、本実施例は比較例に比べて極めて効率的に集熱していることが明らかであり、実用性の高いものといえる。 As shown in FIG. 9, in this embodiment, the negative slope of the heat collection efficiency eta t for heat collection efficiency variable Delta] t / I is, although slightly larger than that of the comparative example, in the range of this experiment, the value of the heat collection efficiency eta t Compared with the comparative example, it was shown that the heat collection efficiency was improved. It is desirable to improve the heat collection efficiency in a range where the heat collection temperature is high, that is, Δt / I is large. However, if the heat collection temperature is high, good heat retention is advantageous for improving the heat collection efficiency. Compared with the comparative example, this example has a structure in which the thickness of the casing and the thickness of the heat insulating material are about 1/3, which is inferior in heat retention, and the thickness of the carbon fiber sheet is also ½. However, considering that the above results were obtained, it is clear that the present example collects heat very efficiently compared to the comparative example, and it can be said that the practicality is high.

以上のような本実施例によれば、下部空隙31および上部空隙32のない従来の集熱装置に比べて、集熱効率が向上することが示された。また、上部空隙32のみ設けた上記特許文献1の図3と比較しても、本実施例の集熱ケース2は、厚さが約1/3、熱媒空気流方向長さが約1/4であるにも関わらず、集熱効率が向上していることがわかる。   According to the present embodiment as described above, it has been shown that the heat collection efficiency is improved as compared with the conventional heat collection apparatus without the lower gap 31 and the upper gap 32. Compared with FIG. 3 of the above-mentioned Patent Document 1 in which only the upper gap 32 is provided, the heat collecting case 2 of this embodiment has a thickness of about 1/3 and a heat medium airflow direction length of about 1 /. In spite of being 4, it can be seen that the heat collection efficiency is improved.

なお、本発明に係る空気式太陽集熱装置1A,1Bは、上述した実施形態に限定されるものではなく、適宜変更することができる。   In addition, the pneumatic solar heat collecting apparatuses 1A and 1B according to the present invention are not limited to the above-described embodiments, and can be appropriately changed.

例えば、シート状集熱材3の枚数や傾斜角度は、特に限定されるものではなく、使用用途などに応じて、適宜増減するようにしてもよい。   For example, the number of sheets and the inclination angle of the sheet-like heat collecting material 3 are not particularly limited, and may be appropriately increased or decreased according to the usage application.

また、集熱材支持棒4を取り付ける方法としては、例えば、図10に示すように、集熱材支持棒4の両端に差し込み接着される取付用キャップ41を使用してもよい。この取付用キャップ41は、アルミニウム合金等の金属製薄板や、耐熱性のプラスチック材料から形成されている。また、取付用キャップ41には、基端部側に向けてテーパ状に拡径された係止部42が形成されている。この係止部42は、コイルバネ等からなるスプリング43を係止しうるようになっている。   Moreover, as a method of attaching the heat collecting material support rod 4, for example, as shown in FIG. 10, an attachment cap 41 that is inserted and bonded to both ends of the heat collecting material support rod 4 may be used. The mounting cap 41 is made of a thin metal plate such as an aluminum alloy or a heat-resistant plastic material. Further, the mounting cap 41 is formed with a locking portion 42 whose diameter is increased in a tapered shape toward the base end side. The locking portion 42 can lock a spring 43 made of a coil spring or the like.

一方、集熱ケース2は、軽量化および防錆機能を考慮して、アルミニウム合金製の薄板から構成されている。そして、集熱ケース2の内壁面には、集熱材支持棒4を取り付ける高さ位置に、互いに対向する一対の挿入穴25が形成されている。この挿入穴25は、取付用キャップ41を嵌入しうる穴径を有している。   On the other hand, the heat collecting case 2 is made of a thin plate made of aluminum alloy in consideration of weight reduction and rust prevention function. A pair of insertion holes 25 facing each other are formed on the inner wall surface of the heat collecting case 2 at a height position where the heat collecting material support rod 4 is attached. The insertion hole 25 has a hole diameter into which the mounting cap 41 can be fitted.

以上の構成において、集熱材支持棒4を集熱ケース2に取り付ける場合、まず、係止部42と集熱ケース2の内壁面との間にスプリング43を狭持させるように取付用キャップ41を挿入穴25に差し込む。そして、スプリング43を圧縮した状態で、集熱材支持棒4の他端を他方の挿入穴25に差し込む。これにより、スプリング43が、他方側の取付用キャップ41を集熱ケース2の内壁面側に付勢し、係止部42を係止させるため、簡単かつ確実に集熱材支持棒4が取り付けられる。   In the above configuration, when the heat collecting material support rod 4 is attached to the heat collecting case 2, first, the attachment cap 41 so as to sandwich the spring 43 between the locking portion 42 and the inner wall surface of the heat collecting case 2. Is inserted into the insertion hole 25. Then, with the spring 43 compressed, the other end of the heat collecting material support rod 4 is inserted into the other insertion hole 25. As a result, the spring 43 urges the mounting cap 41 on the other side toward the inner wall surface side of the heat collecting case 2 and locks the locking portion 42, so that the heat collecting material support rod 4 can be easily and securely attached. It is done.

本発明に係る空気式太陽集熱装置の第1実施形態を示す斜視図である。1 is a perspective view showing a first embodiment of a pneumatic solar heat collecting apparatus according to the present invention. 本第1実施形態の空気式太陽集熱装置を示す断面図である。It is sectional drawing which shows the pneumatic solar heat collecting device of this 1st Embodiment. 本第1実施形態におけるシート状集熱材のSEM(Scanning Electron Microscope:走査型電子顕微鏡)画像である。It is a SEM (Scanning Electron Microscope: scanning electron microscope) image of the sheet-like heat collecting material in the first embodiment. 本発明に係る空気式太陽集熱装置の第2実施形態を示す斜視図である。It is a perspective view which shows 2nd Embodiment of the pneumatic solar heat collecting device which concerns on this invention. 本第2実施形態の空気式太陽集熱装置を示す断面図である。It is sectional drawing which shows the pneumatic solar heat collecting device of this 2nd Embodiment. 本実施例で使用した曲状炭素繊維シートの特性を示す表である。It is a table | surface which shows the characteristic of the curved carbon fiber sheet used by the present Example. 本実施例において、比較例として用いた集熱装置を示す斜視図である。In a present Example, it is a perspective view which shows the heat collecting apparatus used as a comparative example. 本実施例における実験装置を示す全体図である。It is a general view which shows the experimental apparatus in a present Example. 本実施例の実験結果を示すグラフである。It is a graph which shows the experimental result of a present Example. 集熱材支持棒の取り付け方法の一例を示す図である。It is a figure which shows an example of the attachment method of a heat collecting material support bar.

符号の説明Explanation of symbols

1A 空気式太陽集熱装置(第1実施形態)
1B 空気式太陽集熱装置(第2実施形態)
2 集熱ケース
3 シート状集熱材
4 集熱材支持棒
21 透過体
22 断熱材
23 吸気口
24 排気口
25 挿入穴
31 下部空隙
32 上部空隙
41 取付用キャップ
42 係止部
43 スプリング
1A Pneumatic solar collector (first embodiment)
1B Pneumatic solar collector (second embodiment)
DESCRIPTION OF SYMBOLS 2 Heat collection case 3 Sheet-shaped heat collection material 4 Heat collection material support rod 21 Transmission body 22 Heat insulating material 23 Intake port 24 Exhaust port 25 Insertion hole 31 Lower space | gap 32 Upper space | gap 41 Mounting cap 42 Lock part 43 Spring

Claims (3)

太陽光透過率の優れた透過体で上面が被覆された中空状の集熱ケースと、
この集熱ケース内に流れる熱媒空気を遮るように傾斜して設けられ、前記熱媒空気が通過しうる微小空隙を有するシート状集熱材とを有し、
前記シート状集熱材の下部に、前記熱媒空気が前記シート状集熱材の裏面に沿って上昇しうる通気幅を備えた下部空隙を設けるとともに、
前記集熱ケースの内壁面には、前記シート状集熱材を支持する集熱材支持棒が上下に交互に複数本並設されており、これら集熱材支持棒には、1枚の前記シート状集熱材が略波形状を形成するように張設されている、空気式太陽集熱装置。
A hollow heat collecting case whose upper surface is covered with a transparent body having excellent sunlight transmittance,
A sheet-like heat collecting material provided with an inclination so as to block the heat medium air flowing in the heat collecting case, and having a minute gap through which the heat medium air can pass,
In the lower part of the sheet-like heat collector, a lower gap having a ventilation width that allows the heating medium air to rise along the back surface of the sheet-like heat collector ,
On the inner wall surface of the heat collecting case, a plurality of heat collecting material support bars for supporting the sheet-shaped heat collecting material are alternately arranged in the vertical direction. A pneumatic solar collector in which the sheet-like heat collector is stretched so as to form a substantially wave shape .
請求項1において、
前記シート状集熱材は、屈曲した炭素繊維をシート状に成形してなる曲状炭素繊維シートであることを特徴とする空気式太陽集熱装置。
In claim 1,
The pneumatic solar collector, wherein the sheet-shaped heat collecting material is a curved carbon fiber sheet formed by bending bent carbon fibers into a sheet shape.
請求項1または請求項において、前記シート状集熱材は、前記透過体との間に当該透過体からの熱損失を抑制する上部空隙を設けるようにして張設されていることを特徴とする空気式太陽集熱装置。 The sheet-shaped heat collecting material according to claim 1 or 2 , wherein the sheet-like heat collecting material is stretched so as to provide an upper gap that suppresses heat loss from the transmission body. Pneumatic solar heat collector.
JP2007301546A 2007-11-21 2007-11-21 Pneumatic solar collector Expired - Fee Related JP5166004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007301546A JP5166004B2 (en) 2007-11-21 2007-11-21 Pneumatic solar collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301546A JP5166004B2 (en) 2007-11-21 2007-11-21 Pneumatic solar collector

Publications (2)

Publication Number Publication Date
JP2009127901A JP2009127901A (en) 2009-06-11
JP5166004B2 true JP5166004B2 (en) 2013-03-21

Family

ID=40819026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301546A Expired - Fee Related JP5166004B2 (en) 2007-11-21 2007-11-21 Pneumatic solar collector

Country Status (1)

Country Link
JP (1) JP5166004B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107883597B (en) * 2017-12-14 2023-08-04 天津城建大学 Movable multifunctional heat collection box

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56952A (en) * 1979-06-14 1981-01-08 Fuji Electric Co Ltd Air-heating type solar heat collector
JPH086971B2 (en) * 1986-08-18 1996-01-29 住友金属工業株式会社 Air heat collector
JPH0547754U (en) * 1991-03-25 1993-06-25 旭エンジニアリング有限会社 Hot air device using solar heat
JPH0578182A (en) * 1991-06-27 1993-03-30 Dainippon Ink & Chem Inc Production of porous carbon formed product and electrode material
JP2652769B2 (en) * 1994-08-05 1997-09-10 元旦ビューティ工業株式会社 Solar heat collector
JPH08138651A (en) * 1994-11-08 1996-05-31 Dainippon Ink & Chem Inc Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery
JP2955750B2 (en) * 1997-06-17 1999-10-04 和田 弘 Heat collection panel and greenhouse using it

Also Published As

Publication number Publication date
JP2009127901A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
Singh et al. Experimental investigation of a double pass converging finned wire mesh packed bed solar air heater
Abdullah et al. Performance evaluation of a new counter flow double pass solar air heater with turbulators
Ramani et al. Performance of a double pass solar air collector
Kabeel et al. On the performance of a baffled glazed-bladed entrance solar air heater
Nowzari et al. Single and double pass solar air heaters with partially perforated cover and packed mesh
Ho et al. The influences of recycle on performance of baffled double-pass flat-plate solar air heaters with internal fins attached
Bliss Jr The derivations of several “plate-efficiency factors” useful in the design of flat-plate solar heat collectors
Ma et al. Experimental and theoretical study of the efficiency of a dual-function solar collector
Zukowski Experimental investigations of thermal and flow characteristics of a novel microjet air solar heater
Karmare et al. Experimental investigation of optimum thermohydraulic performance of solar air heaters with metal rib grits roughness
US5950720A (en) Ceiling radiator
Maheshwari et al. Performance Study of Solar Air Heater Having Absorber Plate with Half‐Perforated Baffles
Garg et al. Theoretical analysis on a new finned type solar air heater
US4086908A (en) Perforated heat transfer sheet
Reddy et al. Performance evaluation of sand coated absorber based solar air collector
JP5166004B2 (en) Pneumatic solar collector
Luampon et al. A study thermal efficiency of solar air heater with wire mesh stainless installation: using solar simulator
Arunachalam et al. Experimental investigations on thermal performance of solar air heater with different absorber plates
Alam et al. Thermohydraulic performance of hybrid ribs pattern combining V and arc shape ribs in solar air heater
Halici et al. Experimental study of the airside performance of tube row spacing in finned tube heat exchangers
Yousif et al. Experimental evaluation of thermohydraulic performance of tubular solar air heater
CN207585022U (en) The indoor unit and transducer air conditioning of transducer air conditioning
Hachemi Thermal heat performance enhancement by interaction between the radiation and convection in solar air heaters
JP4618632B2 (en) Heat collection duct and ventilation system using heat collection duct
KR20150024585A (en) Solar Heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees