JP5165865B2 - Hydrogen iodide production method and hydrogen iodide production apparatus - Google Patents

Hydrogen iodide production method and hydrogen iodide production apparatus Download PDF

Info

Publication number
JP5165865B2
JP5165865B2 JP2006199303A JP2006199303A JP5165865B2 JP 5165865 B2 JP5165865 B2 JP 5165865B2 JP 2006199303 A JP2006199303 A JP 2006199303A JP 2006199303 A JP2006199303 A JP 2006199303A JP 5165865 B2 JP5165865 B2 JP 5165865B2
Authority
JP
Japan
Prior art keywords
hydrogen iodide
sulfur dioxide
sulfuric acid
liquid
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006199303A
Other languages
Japanese (ja)
Other versions
JP2008024551A (en
Inventor
陵太 高橋
秀樹 中村
昇 神保
治彦 高瀬
和矢 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006199303A priority Critical patent/JP5165865B2/en
Publication of JP2008024551A publication Critical patent/JP2008024551A/en
Application granted granted Critical
Publication of JP5165865B2 publication Critical patent/JP5165865B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gas Separation By Absorption (AREA)

Description

本発明は、熱化学分解法(IS法)を利用した水素製造方法に利用可能なヨウ化水素製造方法およびヨウ化水素製造装置に関する。   The present invention relates to a hydrogen iodide production method and a hydrogen iodide production apparatus that can be used in a hydrogen production method using a thermochemical decomposition method (IS method).

水から水素を取り出す手法として熱化学分解プロセスがある。水を化学的に、水素を含んだ化学形態に変換して、熱エネルギーを用いて水素を取り出す。使用する化学薬品の種類に依存して、その手法は多種多様である。   There is a thermochemical decomposition process as a method for extracting hydrogen from water. Water is chemically converted to a chemical form containing hydrogen, and hydrogen is extracted using thermal energy. Depending on the type of chemical used, there are many different approaches.

熱化学分解プロセスの1つにIS法がある(特許文献1ないし7ならびに非特許文献1および2参照)。IS法は以下の3つの基礎反応から成立している。   One of the thermochemical decomposition processes is the IS method (see Patent Documents 1 to 7 and Non-Patent Documents 1 and 2). The IS method is based on the following three basic reactions.

+ SO + 2HO → 2HI + HSO (1)
2HI → H + I (2)
2HSO → 2SO + 2HO + O (3)
まず水をヨウ素(I)および二酸化硫黄(SO)と反応させて、ヨウ化水素(HI)と硫酸(HSO)を生成する。この反応はブンゼン(Bunsen)反応とも呼ばれている。生成したヨウ化水素は400℃以上で熱分解し、水素(H)とヨウ素に分解される。ヨウ化水素の熱分解生成物である水素こそが、熱化学分解プロセスで製造される最終目的である。このときに生成したヨウ素はブンゼン反応に戻され再利用される。ブンゼン反応で生成した硫酸も、600℃以上の高温で熱分解され、生成する二酸化硫黄もまたブンゼン反応に戻されて再利用される。
I 2 + SO 2 + 2H 2 O → 2HI + H 2 SO 4 (1)
2HI → H 2 + I 2 ( 2)
2H 2 SO 4 → 2SO 2 + 2H 2 O + O 2 (3)
First, water is reacted with iodine (I 2 ) and sulfur dioxide (SO 2 ) to produce hydrogen iodide (HI) and sulfuric acid (H 2 SO 4 ). This reaction is also called the Bunsen reaction. The produced hydrogen iodide is thermally decomposed at 400 ° C. or higher and decomposed into hydrogen (H 2 ) and iodine. Hydrogen, which is the thermal decomposition product of hydrogen iodide, is the final goal produced by the thermochemical decomposition process. The iodine produced at this time is returned to the Bunsen reaction and reused. The sulfuric acid produced by the Bunsen reaction is also thermally decomposed at a high temperature of 600 ° C. or higher, and the generated sulfur dioxide is also returned to the Bunsen reaction and reused.

IS法は、ヨウ素と二酸化硫黄を使用して水を水素と酸素に熱分解する手法である。   The IS method is a method of thermally decomposing water into hydrogen and oxygen using iodine and sulfur dioxide.

IS法では水をヨウ化水素へ化学変化させて、熱分解することによって水素を取り出す方法であるため、ブンゼン反応におけるヨウ化水素の生成・濃縮と不純物の除去は重要である。   Since the IS method is a method in which water is chemically changed to hydrogen iodide and thermally decomposed to extract hydrogen, generation and concentration of hydrogen iodide and removal of impurities in the Bunsen reaction are important.

ヨウ化水素水溶液の濃度は大気圧条件下では、重量百分率で57%程度であり、蒸留しても水との共沸混合物として留出し、57%を超えることがない。市販の試薬で共沸組成の57%を超える70%の濃度のヨウ化水素水溶液は、開封後には水溶液中の余剰なヨウ化水素を放出し、57%にまで濃度が減少する。   The concentration of the aqueous hydrogen iodide solution is about 57% by weight under atmospheric pressure, and even when distilled, it distills as an azeotrope with water and does not exceed 57%. An aqueous hydrogen iodide solution having a concentration of 70% that exceeds 57% of the azeotropic composition with a commercially available reagent releases excess hydrogen iodide in the aqueous solution after opening, and the concentration decreases to 57%.

IS法のブンゼン反応で得られるヨウ化水素水溶液は、硫酸とヨウ化水素の混合液に過剰のヨウ素を添加して、比重差から2相に分離して得る。ヨウ化水素はヨウ素との親和性が大きいため、ヨウ素と錯体を形成して、下相液へ移行していく。おもなヨウ化物イオンとヨウ素との錯形成反応を以下に示す。   The aqueous hydrogen iodide solution obtained by the IS method Bunsen reaction is obtained by adding excess iodine to a mixed solution of sulfuric acid and hydrogen iodide and separating into two phases from the difference in specific gravity. Since hydrogen iodide has a high affinity with iodine, it forms a complex with iodine and moves to the lower phase liquid. The complex formation reaction between major iodide ions and iodine is shown below.

+ I- → I- (4)
2I + I- → I- (5)
3I + I- → I- (6)
4I + I- → I- (7)
ヨウ化物イオンはヨウ素と錯形成することにより安定に下相に濃縮していくものと考えられる。しかしながら、大気圧条件下で実施したブンゼン反応で取り出した下相液中のヨウ化水素濃度は57%を超えることがなく、下相液を蒸留することによってヨウ化水素を単離することは困難である。
I 2 + I → I 3 − (4)
2I 2 + I → I 5 − (5)
3I 2 + I - → I 7 - (6)
4I 2 + I - → I 9 - (7)
Iodide ions are thought to stably concentrate in the lower phase by complexing with iodine. However, the concentration of hydrogen iodide in the lower phase liquid extracted by the Bunsen reaction carried out under atmospheric pressure conditions does not exceed 57%, and it is difficult to isolate hydrogen iodide by distilling the lower phase liquid. It is.

また下相液中にわずかに溶解する硫酸とヨウ化水素が反応し、硫黄や硫化水素などの硫黄化合物が副生成物として発生し、下相中のヨウ化水素が減少する。   In addition, sulfuric acid and hydrogen iodide, which are slightly dissolved in the lower phase liquid, react with each other, and sulfur compounds such as sulfur and hydrogen sulfide are generated as by-products, and hydrogen iodide in the lower phase is reduced.

下相液中のヨウ化水素濃度が共沸組成を超えない原因として、大気圧条件下での二酸化硫黄の水に対する溶解度が重量百分率で5%程度と大きくないことが考えられる。二酸化硫黄は水に溶解すると以下の反応式の示すとおり、水和して亜硫酸(HSO)に変化する。二酸化硫黄1分子あたり水1分子が水和した化学種が、一般に知られている亜硫酸である。 As a reason why the concentration of hydrogen iodide in the lower phase liquid does not exceed the azeotropic composition, it is considered that the solubility of sulfur dioxide in water under atmospheric pressure conditions is not so large as about 5% by weight. When dissolved in water, sulfur dioxide hydrates and changes to sulfurous acid (H 2 SO 3 ) as shown in the following reaction formula. A chemical species in which one molecule of water is hydrated per one molecule of sulfur dioxide is generally known sulfurous acid.

SO +HO → HSO (8−1)
SO +nHO → SO・nHO (8−2)
亜硫酸は還元性を示し、ヨウ素と酸化還元反応を起こしてヨウ化水素と硫酸を生成する。
SO 2 + H 2 O → H 2 SO 3 (8-1)
SO 2 + nH 2 O → SO 2 .nH 2 O (8-2)
Sulfurous acid is reducible and causes an oxidation-reduction reaction with iodine to produce hydrogen iodide and sulfuric acid.

SO + I + HO → 2HI + HSO (9)
したがって、IS法のブンゼン反応は二酸化硫黄が水に溶解して亜硫酸を生成する反応式(8−1)と亜硫酸とヨウ素が反応してヨウ化水素と硫酸が生成する反応式(9)の2つの素反応から形成されている。
H 2 SO 3 + I 2 + H 2 O → 2HI + H 2 SO 4 (9)
Therefore, the IS method Bunsen reaction involves reaction formula (8-1) in which sulfur dioxide dissolves in water to produce sulfurous acid and reaction formula (9) in which sulfurous acid and iodine react to produce hydrogen iodide and sulfuric acid. It is formed from two elementary reactions.

大気圧条件下では式(8−1)の化学反応平衡定数が大きくなく、生成する亜硫酸が少ないためと、化学反応式(9)の進行に伴い、硫黄化合物が生成する副反応の進行も生じてくるために、下相液中のヨウ化水素濃度が共沸組成を超えることが難しい。
特公昭60−52081号公報 特公昭60−48442号公報 特公平4−37001号公報 特公平4−37002号公報 特許第4089939号公報 特許第4089940号公報 特許第4127644号公報 M. Sakurai, H. Nakajima, R. Amir, K. Onuki, and S. Shimizu著, Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process, International Journal of Hydrogen Energy, 25 (2000) 613-619. M. Sakurai, H. Nakajima, K. Onuki, and S. Shimizu著, Investigation of 2 liquid phase separation characteristic on the iodine-sulfur thermochemical hydrogen production process, International Journal of Hydrogen Energy, 25 (2000) 605-611.
Under atmospheric pressure conditions, the chemical reaction equilibrium constant of the formula (8-1) is not large, and less sulfurous acid is produced. As the chemical reaction formula (9) proceeds, a side reaction in which a sulfur compound is generated also occurs. Therefore, it is difficult for the hydrogen iodide concentration in the lower phase liquid to exceed the azeotropic composition.
Japanese Patent Publication No. 60-52081 Japanese Examined Patent Publication No. 60-48442 Japanese Examined Patent Publication No. 4-37001 Japanese Examined Patent Publication No. 4-37002 Japanese Patent No. 40899939 Japanese Patent No. 4089940 Japanese Patent No. 4127644 M. Sakurai, H. Nakajima, R. Amir, K. Onuki, and S. Shimizu, Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process, International Journal of Hydrogen Energy, 25 (2000) 613-619. M. Sakurai, H. Nakajima, K. Onuki, and S. Shimizu, Investigation of 2 liquid phase separation characteristic on the iodine-sulfur thermochemical hydrogen production process, International Journal of Hydrogen Energy, 25 (2000) 605-611.

従来技術では、大気圧条件下でブンゼン反応を行ない、その後に2相分離を行なって、生成したヨウ化水素と硫酸を比重差で分離しているが、この段階ではヨウ化水素の重量百分率濃度(=(下相液に含まれるヨウ化水素の質量)/(下相液に含まれるヨウ化水素と水の質量の和))が共沸組成を超えることはできず、下相液に含まれるヨウ化水素濃度は57%以下であった。   In the prior art, the Bunsen reaction is performed under atmospheric pressure conditions, and then two-phase separation is performed to separate the produced hydrogen iodide and sulfuric acid by the difference in specific gravity. At this stage, the concentration percentage by weight of hydrogen iodide (= (Mass of hydrogen iodide contained in lower phase liquid) / (sum of mass of hydrogen iodide and water contained in lower phase liquid)) cannot exceed the azeotropic composition and is contained in the lower phase liquid The hydrogen iodide concentration was 57% or less.

ところで、下相液からヨウ化水素を単離することを困難にさせている原因として、下相液に溶け込んでいる硫酸がある。下相液を蒸留すると、硫酸が存在するためにヨウ化水素と反応を起こして硫黄および硫化水素を生成してしまう。   By the way, as a cause of making it difficult to isolate hydrogen iodide from the lower phase liquid, there is sulfuric acid dissolved in the lower phase liquid. When the lower phase liquid is distilled, it reacts with hydrogen iodide due to the presence of sulfuric acid and produces sulfur and hydrogen sulfide.

14HI + 2HSO → HS + 7I + S + 8HO (11)
硫酸1molあたり7molのヨウ化水素を消費してしまうため、硫酸がわずかにでも存在すれば、下相に濃縮できたヨウ化水素は消失してしまう。二酸化硫黄についても同様な反応が起こる。二酸化硫黄1molあたり5molのヨウ化水素を消費してしまう。
14HI + 2H 2 SO 4 → H 2 S + 7I 2 + S + 8H 2 O (11)
Since 7 mol of hydrogen iodide is consumed per 1 mol of sulfuric acid, if there is a slight amount of sulfuric acid, hydrogen iodide concentrated in the lower phase disappears. A similar reaction occurs with sulfur dioxide. 5 mol of hydrogen iodide is consumed per 1 mol of sulfur dioxide.

10HI + 2SO → HS + 5I + S + 4HO (12)
したがって、蒸留によりヨウ化水素を単離する前に、下相液から硫黄化合物を除去しておく必要がある。
10HI + 2SO 2 → H 2 S + 5I 2 + S + 4H 2 O (12)
Therefore, it is necessary to remove the sulfur compound from the lower phase liquid before isolating hydrogen iodide by distillation.

本発明では、ブンゼン反応で得ることができたヨウ化水素を含んだ下相液から効率的にヨウ化水素を単離できるようにすることを目的としている。   An object of the present invention is to make it possible to efficiently isolate hydrogen iodide from a lower phase solution containing hydrogen iodide obtained by the Bunsen reaction.

上記目的を達成するために、本発明に係るヨウ化水素製造方法は、ゲージ圧で0.1MPa以上の加圧条件下で二酸化硫黄とヨウ素と水とを反応させてヨウ化水素と硫酸を生成する反応工程と、ヨウ化水素と硫酸の中間の比重を有してかつヨウ化水素および硫酸に対して化学的に安定な分離液を添加する工程と、ヨウ化水素が下相液になり、硫酸が上相液になり、前記分離液が前記下相液と前記上相液の間に形成される中間相液になるように3相分離する分離工程と、前記相液から硫黄化合物を除去する除去工程と、を有することを特徴とする。
In order to achieve the above object, the method for producing hydrogen iodide according to the present invention generates hydrogen iodide and sulfuric acid by reacting sulfur dioxide, iodine and water under a pressure condition of 0.1 MPa or more in gauge pressure. A reaction step of adding a separation solution having a specific gravity intermediate between hydrogen iodide and sulfuric acid and chemically stable to hydrogen iodide and sulfuric acid, and hydrogen iodide becomes a lower phase liquid, A separation step of separating three phases so that sulfuric acid becomes an upper phase liquid and the separated liquid becomes an intermediate phase liquid formed between the lower phase liquid and the upper phase liquid; and a sulfur compound is removed from the upper phase liquid. And a removing step for removing.

また、本発明に係るヨウ化水素製造装置は、二酸化硫黄とヨウ素と水とを反応させてヨウ化水素を生成するためのヨウ化水素製造装置において、ヨウ化水素と硫酸の中間の比重を有してかつヨウ化水素および硫酸に対して化学的に安定な分離液を収容して、ゲージ圧で0.1MPa以上の加圧条件下で二酸化硫黄とヨウ素と水とを反応させてヨウ化水素と硫酸を生成するための反応槽と、前記反応槽で生成されて相分離して得られた下相液を蒸留する蒸留塔と、を有することを特徴とする。 The hydrogen iodide production apparatus according to the present invention is a hydrogen iodide production apparatus for producing hydrogen iodide by reacting sulfur dioxide, iodine and water, and has an intermediate specific gravity between hydrogen iodide and sulfuric acid. And containing a chemically stable separation solution against hydrogen iodide and sulfuric acid, and reacting sulfur dioxide, iodine and water under pressure conditions of 0.1 MPa or more in gauge pressure to produce hydrogen iodide. And a reaction vessel for producing sulfuric acid, and a distillation column for distilling a lower phase solution produced in the reaction vessel and obtained by three- phase separation.

本発明によれば、ブンゼン反応で得ることができたヨウ化水素を含んだ下相液から効率的にヨウ化水素を単離できる。   According to the present invention, hydrogen iodide can be efficiently isolated from the lower phase solution containing hydrogen iodide obtained by the Bunsen reaction.

以下、本発明に係るヨウ化水素製造方法およびヨウ化水素製造装置の実施形態を説明する。   Embodiments of a hydrogen iodide production method and a hydrogen iodide production apparatus according to the present invention will be described below.

[第1の実施形態]
図1は本発明の第1の実施形態に係るヨウ化水素製造方法を示すフロー図である。
[First Embodiment]
FIG. 1 is a flowchart showing a method for producing hydrogen iodide according to the first embodiment of the present invention.

すなわち、二酸化硫黄(SO)を供給し、加圧条件下で水へ二酸化硫黄を溶解する。そして、加圧条件下でヨウ素と二酸化硫黄の水溶液を反応させる(ブンゼン反応)。これにより、ヨウ化水素と硫酸を生成させる。さらに、加圧条件下で生成液へヨウ素と水を添加して2相分離させ、さらに二酸化硫黄水溶液を添加してブンゼン反応を起こしながら、下相へヨウ化水素を取り込み、ヨウ化水素を共沸組成以上に濃縮させる。 That is, sulfur dioxide (SO 2 ) is supplied and sulfur dioxide is dissolved in water under pressurized conditions. Then, an aqueous solution of iodine and sulfur dioxide is reacted under a pressurized condition (Bunsen reaction). Thereby, hydrogen iodide and sulfuric acid are produced. Furthermore, iodine and water are added to the product solution under pressure conditions to separate the two phases, and further, an aqueous sulfur dioxide solution is added to cause the Bunsen reaction, while hydrogen iodide is taken into the lower phase and hydrogen iodide is shared. Concentrate above boiling composition.

このときブンゼン反応槽には、硫酸水溶液から成る上相とヨウ素とヨウ化水素から成る下相との間の比重を持つ液体(分離液)を添加しておく。この分離液は上相液および下相液とは混合することなく、相分離のときに中間相を形成する。濃縮工程以降は、上相液中の硫酸水溶液は硫酸分解工程へ、下相のヨウ化水素はヨウ化水素の蒸留工程へ移送する。   At this time, a liquid (separated liquid) having a specific gravity between an upper phase composed of an aqueous sulfuric acid solution and a lower phase composed of iodine and hydrogen iodide is added to the Bunsen reactor. This separated liquid does not mix with the upper phase liquid and the lower phase liquid, and forms an intermediate phase during phase separation. After the concentration step, the aqueous sulfuric acid solution in the upper phase liquid is transferred to the sulfuric acid decomposition step, and the lower phase hydrogen iodide is transferred to the hydrogen iodide distillation step.

加圧条件としては、たとえばゲージ圧で0.1MPa以上であることが好ましい。   As the pressurizing condition, for example, the gauge pressure is preferably 0.1 MPa or more.

分離液の比重は、上相液と下相液の中間であることが必要で、たとえば、1.5〜2.3程度が好ましい。   The specific gravity of the separated liquid needs to be intermediate between the upper phase liquid and the lower phase liquid, and is preferably about 1.5 to 2.3, for example.

分離液としては、上相液および下相液と化学的に反応しにくく、水に溶けにくいものが好ましく、たとえばイオン性液体が好ましい。イオン性液体は、イオンのみ(アニオン、カチオン)から構成される「塩」であって、特に液体化合物をイオン液体という。「常温溶融塩」、「室温溶融塩」などと呼ばれることもある。   As the separation liquid, a liquid that hardly chemically reacts with the upper phase liquid and the lower phase liquid and is hardly soluble in water is preferable. For example, an ionic liquid is preferable. An ionic liquid is a “salt” composed of only ions (anions and cations), and in particular, a liquid compound is called an ionic liquid. Sometimes called “room temperature molten salt”, “room temperature molten salt”, or the like.

ここで利用可能なイオン性液体の例として、(a)1−エチル−3−メチルイミダゾリウム ビス(トリフルオロメチルスルフォニル)イミド(1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide)、(b)1−プロピル−3−メチルイモダゾリウム−ヨウ化物(1-propyl-3-methylimidazolium iodide)、(c)1−エチル−2,3,5−トリメチルピラゾリウム ビス(トリフルオロメタンスルフォニル)イミド(1-ethyl-2,3,5-trimethylpyrazolium bis(trifluoromethanesulfonyl)imide)、(d)N,N,N’,N’−テトラメチル−N’’−エチルグアニジニウム トリス(ペンタフルオエチル)トリフルオロフォスフェート(N,N,N,N',N'-tetramethyl-N''-ethylguanidinium tris(pentafluoroethyl)trifluorophosphate)などがある。これらのイオン性流体の化学構造をそれぞれ図2(a)〜(d)に示す。   Examples of ionic liquids that can be used here include (a) 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, (b) 1-propyl-3-methylimidazolium iodide, (c) 1-ethyl-2,3,5-trimethylpyrazolium bis (trifluoromethanesulfonyl) imide (1 -ethyl-2,3,5-trimethylpyrazolium bis (trifluoromethanesulfonyl) imide), (d) N, N, N ′, N′-tetramethyl-N ″ -ethylguanidinium tris (pentafluoroethyl) trifluorophosphate (N, N, N, N ′, N′-tetramethyl-N ″ -ethylguanidinium tris (pentafluoroethyl) trifluorophosphate). The chemical structures of these ionic fluids are shown in FIGS. 2 (a) to 2 (d), respectively.

上記工程の中で、ヨウ素と二酸化硫黄と水を反応させてヨウ化水素と硫酸を生成する前に、まず加圧条件下で二酸化硫黄を水へ溶解させ、水和させる。水和した二酸化硫黄は還元性を有するため、ヨウ素へ添加することにより、ヨウ素と酸化還元反応を起こしてヨウ化水素と硫酸を生成する。ブンゼン反応で生成するヨウ化水素の物質量に対してヨウ素の物質量が過剰に存在する段階では、ブンゼン反応と同時に相分離が起こる。ヨウ素とヨウ化水素は親和性が大きいため、ヨウ化物イオンとヨウ素との錯形成反応(式(4)〜(7))が進み、ポリヨウ化水素が生成し、下相へ濃縮される。   In the above steps, before reacting iodine, sulfur dioxide and water to produce hydrogen iodide and sulfuric acid, sulfur dioxide is first dissolved in water under pressure and hydrated. Since hydrated sulfur dioxide has reducibility, when it is added to iodine, it causes an oxidation-reduction reaction with iodine to produce hydrogen iodide and sulfuric acid. In the stage where the amount of iodine is excessive with respect to the amount of hydrogen iodide produced by the Bunsen reaction, phase separation occurs simultaneously with the Bunsen reaction. Since iodine and hydrogen iodide have a high affinity, a complex-forming reaction between iodide ions and iodine (formulas (4) to (7)) proceeds to produce polyiodide, which is concentrated to the lower phase.

比重の小さい硫酸水溶液は上相へと相分離される。このときに上相と下相の中間の比重を持つ分離液の中間相を入れることにより、下相中にわずかに残留している硫酸水溶液が比重差による相分離を受けると同時に、中間相は上相とも下相とも混合しないため、中間相から下相へ硫酸水溶液が化学平衡まで拡散していくことがなく、下相へ硫酸水溶液が持ち込まれることがない。したがって、ブンゼン反応で生成したヨウ化水素と硫酸は中間相を入れることにより完全に相分離する。   The sulfuric acid aqueous solution having a small specific gravity is phase-separated into the upper phase. At this time, by adding an intermediate phase of the separated liquid having an intermediate specific gravity between the upper phase and the lower phase, the sulfuric acid aqueous solution slightly remaining in the lower phase undergoes phase separation due to the specific gravity difference, and at the same time, Since neither the upper phase nor the lower phase is mixed, the aqueous sulfuric acid solution does not diffuse from the intermediate phase to the lower phase until chemical equilibrium, and the aqueous sulfuric acid solution is not brought into the lower phase. Therefore, hydrogen iodide and sulfuric acid produced by the Bunsen reaction are completely phase-separated by adding an intermediate phase.

本実施形態によれば、上相および下相と相互に溶解しない中間相を入れることにより、下相中への硫酸水溶液の残留および接触を防ぐことになる。これにより、ブンゼン反応で生成したヨウ化水素と硫酸との副反応(式(11))を抑制できる。そのことにより、ブンゼン反応および相分離時に、副反応による硫黄の生成およびヨウ化水素の濃縮妨害を防ぐことができ、高濃度のヨウ化水素を含む下相液を得ることができる。   According to the present embodiment, by adding an intermediate phase that is not mutually soluble with the upper phase and the lower phase, it is possible to prevent the sulfuric acid aqueous solution from remaining in and contacting with the lower phase. Thereby, the side reaction (Formula (11)) with the hydrogen iodide and sulfuric acid which were produced | generated by the Bunsen reaction can be suppressed. As a result, during the Bunsen reaction and phase separation, it is possible to prevent the generation of sulfur and interference with hydrogen iodide concentration due to side reactions, and a lower phase liquid containing a high concentration of hydrogen iodide can be obtained.

さらに、本実施形態によれば、ブンゼン反応を、ゲージ圧0.1MPa以上加圧条件下で行なう。この加圧により、次に説明する効果が得られる。   Furthermore, according to this embodiment, the Bunsen reaction is performed under a pressurized condition of a gauge pressure of 0.1 MPa or more. This pressurization provides the effects described below.

図3に、二酸化硫黄をヨウ素水溶液へ通気させたときにヨウ素と反応してヨウ化水素および硫酸を生成した二酸化硫黄の転化率を、ゲージ圧力に対してプロットしたグラフを示す。二酸化硫黄の転化率は、反応式(1)に従って生成するヨウ化水素の物質量の2分の1または硫酸の物質量を添加した二酸化硫黄の物質量で割ったものであり、反応した二酸化硫黄の割合を示している。   FIG. 3 shows a graph in which the conversion rate of sulfur dioxide, which has reacted with iodine to produce hydrogen iodide and sulfuric acid when sulfur dioxide is passed through an aqueous iodine solution, is plotted against the gauge pressure. The conversion rate of sulfur dioxide is one half of the amount of hydrogen iodide produced according to reaction formula (1) or the amount of sulfur dioxide added with the amount of sulfuric acid added. Shows the percentage.

大気圧における二酸化硫黄の溶解度は重量百分率濃度で5〜10%程度であり、ゲージ圧力が0MPa(大気圧)では転化率は8%程度であったことは、大気圧における二酸化硫黄の溶解度とほぼ整合している。0.2MPaまでは二酸化硫黄の転化率はほぼ圧力に比例して増加し、0.2MPa以上では添加した二酸化硫黄はすべて反応し、転化率は100%に到達する。圧力を加えることにより、転化率の著しい向上が見られることがわかる。   The solubility of sulfur dioxide at atmospheric pressure is about 5 to 10% by weight percentage concentration, and the conversion rate was about 8% at a gauge pressure of 0 MPa (atmospheric pressure). This is almost equal to the solubility of sulfur dioxide at atmospheric pressure. Consistent. Up to 0.2 MPa, the conversion rate of sulfur dioxide increases almost in proportion to the pressure, and at 0.2 MPa or more, all of the added sulfur dioxide reacts, and the conversion rate reaches 100%. It can be seen that by applying pressure, the conversion is markedly improved.

一方、図4に、ブンゼン反応で生成した下相液中ヨウ化水素濃度の圧力依存性を示す。この図で、横軸は圧力であり、縦軸は下相液のヨウ化水素重量百分率濃度([HI]=(下相液に含まれるヨウ化水素の質量)/(下相液に含まれるヨウ化水素と水の質量の和))である。   On the other hand, FIG. 4 shows the pressure dependence of the hydrogen iodide concentration in the lower phase liquid produced by the Bunsen reaction. In this figure, the horizontal axis is the pressure, and the vertical axis is the weight percentage concentration of hydrogen iodide in the lower phase liquid ([HI] = (mass of hydrogen iodide contained in the lower phase liquid) / (included in the lower phase liquid). The sum of the masses of hydrogen iodide and water)).

図4で、ゲージ圧で0MPaの大気圧条件下では下相液中のヨウ化水素濃度は34%であり、共沸組成の57%を超えることはないが、0.1MPa以上の加圧条件下で生成した下相液中のヨウ化水素濃度は共沸組成57%を超えることがわかった。下相液のヨウ化水素濃度が共沸組成を超えている場合には、後段の蒸留工程において下相液からヨウ化水素を単離することが容易となり、加圧することにより下相液にヨウ化水素の濃縮を向上できることがわかる。   In FIG. 4, the hydrogen iodide concentration in the lower phase liquid is 34% under an atmospheric pressure condition of 0 MPa as a gauge pressure, and does not exceed 57% of the azeotropic composition, but a pressure condition of 0.1 MPa or more. It was found that the hydrogen iodide concentration in the lower phase liquid produced below exceeded 57% of the azeotropic composition. When the hydrogen iodide concentration of the lower phase liquid exceeds the azeotropic composition, it becomes easy to isolate hydrogen iodide from the lower phase liquid in the subsequent distillation step, and the lower phase liquid is subjected to iodine by pressurization. It can be seen that the concentration of hydrogen fluoride can be improved.

加圧することにより二酸化硫黄は水へ溶解し、水和した状態となり、溶存しているヨウ素と瞬時に酸化還元反応を起こしてヨウ化水素と硫酸を生成する。大気圧条件では、水和した二酸化硫黄とヨウ素との酸化還元反応の割合が8%の近傍であったが、加圧して二酸化硫黄をヨウ素水溶液へ添加することにより100%反応させることができる。   By applying pressure, sulfur dioxide dissolves in water and becomes hydrated, and instantaneously undergoes a redox reaction with dissolved iodine to produce hydrogen iodide and sulfuric acid. Under atmospheric pressure conditions, the rate of oxidation-reduction reaction between hydrated sulfur dioxide and iodine was in the vicinity of 8%, but 100% can be reacted by applying pressure and adding sulfur dioxide to the aqueous iodine solution.

[第2の実施形態]
図5は本発明の第2の実施形態に係るヨウ化水素製造装置の概略構成図である。
[Second Embodiment]
FIG. 5 is a schematic configuration diagram of a hydrogen iodide production apparatus according to the second embodiment of the present invention.

二酸化硫黄溶解部は二酸化硫黄を水に溶解するためのものであって、二酸化硫黄供給器(たとえば二酸化硫黄ボンベ)9から供給された加圧された二酸化硫黄を溶解槽2に受け入れるようになっている。二酸化硫黄供給器9にはヒーター20が取り付けられている。水供給槽4には水が貯蔵され、この水供給槽4内を加圧するために窒素ガスボンベなどのキャリアガス供給装置11が接続されている。キャリアガス供給装置11から供給されるキャリアガス(たとえば窒素ガス)の圧力によって水供給槽4内の水が加圧され、配管を通じて加圧水が溶解槽2に供給される。   The sulfur dioxide dissolving part is for dissolving sulfur dioxide in water, and receives pressurized sulfur dioxide supplied from a sulfur dioxide feeder (for example, sulfur dioxide cylinder) 9 into the dissolving tank 2. Yes. A heater 20 is attached to the sulfur dioxide supplier 9. Water is stored in the water supply tank 4, and a carrier gas supply device 11 such as a nitrogen gas cylinder is connected to pressurize the inside of the water supply tank 4. The water in the water supply tank 4 is pressurized by the pressure of the carrier gas (for example, nitrogen gas) supplied from the carrier gas supply device 11, and the pressurized water is supplied to the dissolution tank 2 through a pipe.

二酸化硫黄供給器9から溶解槽2に向かう配管には圧力計8aとマスフローメーター12が接続され、溶解槽2に供給される二酸化硫黄の圧力および質量流量を測定できる。溶解槽2の上部には、背圧弁21および圧力計8bが接続され、溶解槽2内の圧力を調整できるようになっている。   A pressure gauge 8 a and a mass flow meter 12 are connected to the piping from the sulfur dioxide supplier 9 to the dissolution tank 2, and the pressure and mass flow rate of sulfur dioxide supplied to the dissolution tank 2 can be measured. A back pressure valve 21 and a pressure gauge 8b are connected to the upper part of the dissolution tank 2 so that the pressure in the dissolution tank 2 can be adjusted.

溶解槽2の底部は反応槽1に接続されている。反応槽1の上部には圧力計8cおよび背圧弁10aが接続され、下部はリボイラー3に接続されている。リボイラー3の上部には蒸留塔7が配置されている。蒸留塔7の上部はコンデンサー6、ヨウ化水素回収管5、背圧弁10bを順に経由してスクラバー13に接続されている。   The bottom of the dissolution tank 2 is connected to the reaction tank 1. A pressure gauge 8 c and a back pressure valve 10 a are connected to the upper part of the reaction tank 1, and the lower part is connected to the reboiler 3. A distillation column 7 is disposed above the reboiler 3. The upper part of the distillation column 7 is connected to the scrubber 13 through the condenser 6, the hydrogen iodide recovery pipe 5, and the back pressure valve 10b in this order.

二酸化硫黄溶解部では、溶解槽2に予め水を水供給槽4から入れておき、二酸化硫黄をヒーター20で30〜50℃に加温しながら溶解槽2へ注入する。このとき二酸化硫黄は背圧弁21や加圧ポンプ(図示せず)などを用いて溶解槽2内の圧力が圧力計8bでゲージ圧0.1MPa以上になるように調整制御して供給する。   In the sulfur dioxide dissolving part, water is put in the dissolving tank 2 in advance from the water supply tank 4, and sulfur dioxide is injected into the dissolving tank 2 while being heated to 30 to 50 ° C. by the heater 20. At this time, sulfur dioxide is supplied by adjusting and controlling the pressure in the dissolution tank 2 using the back pressure valve 21 or a pressurizing pump (not shown) so that the pressure in the dissolution tank 2 becomes 0.1 MPa or more by the pressure gauge 8b.

溶解槽2内において二酸化硫黄を完全に溶解水和させて亜硫酸水溶液を生成させた後に、反応槽1へ水和した二酸化硫黄を供給する。反応槽1には予めヨウ素、水、中間相形成液(分離液)を入れておく。反応槽1の中でヨウ素と二酸化硫黄の水和水(亜硫酸水溶液)をブンゼン反応させ、ヨウ化水素と硫酸を生成させる。反応後にヨウ化水素を含んだ下相液のみを、リボイラー3経由で蒸留塔7へ圧送し、加圧蒸留を行なう。留出したヨウ化水素を冷媒で冷却し、液化ガスとしてヨウ化水素回収管5に捕集する。   After the sulfur dioxide is completely dissolved and hydrated in the dissolution tank 2 to form an aqueous sulfite solution, the hydrated sulfur dioxide is supplied to the reaction tank 1. In the reaction tank 1, iodine, water, and an intermediate phase forming liquid (separated liquid) are put in advance. In the reaction tank 1, iodine and sulfur dioxide hydrated water (sulfurous acid aqueous solution) are subjected to a Bunsen reaction to generate hydrogen iodide and sulfuric acid. After the reaction, only the lower phase liquid containing hydrogen iodide is pumped to the distillation column 7 via the reboiler 3 and subjected to pressure distillation. The distilled hydrogen iodide is cooled with a refrigerant and collected in a hydrogen iodide recovery pipe 5 as a liquefied gas.

この実施形態によれば、ヨウ素と二酸化硫黄と水を反応させてヨウ化水素と硫酸を生成する前に、まず加圧条件下で二酸化硫黄を水へ溶解させ、水和させる。加圧条件下において溶解槽2中で水に二酸化硫黄を注入することにより、二酸化硫黄を完全に水に溶解でき、亜硫酸水溶液が生成する。水和した二酸化硫黄は還元性を有するため、ヨウ素へ添加することにより、ヨウ素と酸化還元反応を起こしてヨウ化水素と硫酸を生成する。加圧状態を維持したまま反応槽1へ圧送することにより、高濃度を維持した亜硫酸水溶液をヨウ素と酸化還元反応させることができる。そのため大気圧条件下に比較して使用する二酸化硫黄の単位物質量あたり生成するヨウ化水素は、加圧条件下の方が大きくなる。   According to this embodiment, before reacting iodine, sulfur dioxide and water to produce hydrogen iodide and sulfuric acid, sulfur dioxide is first dissolved in water under pressure and hydrated. By injecting sulfur dioxide into water in the dissolution tank 2 under pressurized conditions, sulfur dioxide can be completely dissolved in water, and an aqueous sulfite solution is generated. Since hydrated sulfur dioxide has reducibility, when it is added to iodine, it causes an oxidation-reduction reaction with iodine to produce hydrogen iodide and sulfuric acid. By pumping to the reaction vessel 1 while maintaining the pressurized state, the sulfurous acid aqueous solution maintaining a high concentration can be oxidized and reduced with iodine. Therefore, the hydrogen iodide produced per unit amount of sulfur dioxide to be used in comparison with atmospheric pressure conditions is larger under pressurized conditions.

ブンゼン反応で生成するヨウ化水素の物質量に対してヨウ素の物質量が過剰に存在する段階では、ブンゼン反応と同時に相分離が起こる。ヨウ素とヨウ化水素は親和性が大きいため、ヨウ化物イオンとヨウ素との錯形成反応(式(4)〜(7))が進み、ポリヨウ化水素が生成し、下相へ濃縮される。   In the stage where the amount of iodine is excessive with respect to the amount of hydrogen iodide produced by the Bunsen reaction, phase separation occurs simultaneously with the Bunsen reaction. Since iodine and hydrogen iodide have a high affinity, a complex-forming reaction between iodide ions and iodine (formulas (4) to (7)) proceeds to produce polyiodide, which is concentrated to the lower phase.

比重の小さい硫酸水溶液は上相へと相分離される。このときに上相と下相の中間の比重を持つ液相(分離液)を入れることにより、下相中にわずかに残留している硫酸水溶液が比重差による相分離を受けると同時に、中間相は上相とも下相とも混合しないため、中間相から下相へ硫酸水溶液が化学平衡まで拡散していくことがなく、下相へ硫酸水溶液が持ち込まれることがない。したがって、ブンゼン反応で生成したヨウ化水素と硫酸は中間相を入れることにより完全に相分離する。   The sulfuric acid aqueous solution having a small specific gravity is phase-separated into the upper phase. At this time, by adding a liquid phase (separated liquid) having an intermediate specific gravity between the upper phase and the lower phase, the sulfuric acid aqueous solution slightly remaining in the lower phase undergoes phase separation due to the difference in specific gravity, while Since neither the upper phase nor the lower phase is mixed, the aqueous sulfuric acid solution does not diffuse from the intermediate phase to the lower phase until chemical equilibrium, and the aqueous sulfuric acid solution is not brought into the lower phase. Therefore, hydrogen iodide and sulfuric acid produced by the Bunsen reaction are completely phase-separated by adding an intermediate phase.

ここで、分離液は、第1の実施形態と同じく、たとえばイオン性液体である。分離液を用いない通常の2相分離では、ヨウ素とヨウ化水素の錯形成反応により生成したポリヨウ化水素の下相液への濃縮が行なわれるが、上相の硫酸水溶液が常に下相に接触しているため、上相と下相との界面から相互に溶解平衡に到達するまで上相の硫酸水溶液が下相へ移行してしまう。また界面で副反応による硫黄の生成も観察される。   Here, the separation liquid is, for example, an ionic liquid, as in the first embodiment. In normal two-phase separation without using a separate solution, polyiodide produced by the complexing reaction between iodine and hydrogen iodide is concentrated to the lower phase solution, but the upper phase sulfuric acid aqueous solution is always in contact with the lower phase. For this reason, the sulfuric acid aqueous solution in the upper phase shifts to the lower phase from the interface between the upper phase and the lower phase until the mutual equilibrium is reached. In addition, generation of sulfur due to side reactions is also observed at the interface.

イオン性液体は水をはじめとするほとんどの溶媒と溶解せず、化学的に安定であるため、反応して分解することもない。ブンゼン反応で生成するヨウ化水素と硫酸の相分離において、中間相として存在することにより3相以上の相分離を実施できることになり、ヨウ化水素と硫酸を完全に分離することができる。下相でブンゼン反応が起こった場合にヨウ化水素はヨウ素との親和性からそのまま下相に留まるが、硫酸は比重が小さいため中間相を経て上相へ移行する。中間相が上相および下相とも相互に溶解しないイオン性液体であるため、上相へ移行した硫酸は最下相のポリヨウ化水素の水溶液へ混合することはない。   The ionic liquid does not dissolve in most solvents including water and is chemically stable, and therefore does not react and decompose. In the phase separation of hydrogen iodide and sulfuric acid produced by the Bunsen reaction, the presence of an intermediate phase allows three or more phases to be separated, and hydrogen iodide and sulfuric acid can be completely separated. When the Bunsen reaction occurs in the lower phase, hydrogen iodide stays in the lower phase as it is because of its affinity with iodine, but sulfuric acid moves to the upper phase via the intermediate phase because of its low specific gravity. Since the intermediate phase is an ionic liquid in which neither the upper phase nor the lower phase is mutually soluble, the sulfuric acid transferred to the upper phase is not mixed into the aqueous solution of polyiodide in the lowermost phase.

本実施形態によれば、装置として反応槽1の前段に二酸化硫黄の溶解槽2を設置することにより、二酸化硫黄を加圧して溶媒の水へ完全に溶かし込むことができ、二酸化硫黄と水の反応による硫黄の生成を回避できる。また、注入した二酸化硫黄すべてをヨウ素と反応させることができる。これにより、水和しない二酸化硫黄を反応槽1へ持ち込むことがなく、二酸化硫黄とブンゼン反応で生成したヨウ化水素が副反応を起こして硫黄や硫化水素などの硫黄化合物を生成してしまう危険性を回避できる(式(12))。   According to this embodiment, by installing the sulfur dioxide dissolution tank 2 in the previous stage of the reaction tank 1 as an apparatus, the sulfur dioxide can be pressurized and completely dissolved in the solvent water. Generation of sulfur by the reaction can be avoided. Also, all the injected sulfur dioxide can be reacted with iodine. As a result, there is a risk that non-hydrated sulfur dioxide will not be brought into the reaction vessel 1, and sulfur dioxide and hydrogen iodide produced by the Bunsen reaction may cause side reactions to produce sulfur compounds such as sulfur and hydrogen sulfide. Can be avoided (formula (12)).

また、ブンゼン反応で生成したヨウ化水素と硫酸の相分離において、イオン性液体の中間相を入れることにより、完全に硫酸は上相へ、ヨウ化水素は下相へ分離できる。下相へ硫酸が溶け込むことがないため、下相においてヨウ化水素と硫酸が副反応することを回避できる。また同様に硫酸水溶液の上相とポリヨウ化水素の下相が中間相を介在して接触していないために界面でヨウ化水素と硫酸が副反応を起こすことはない(式(12))。中間相を入れることにより下相はヨウ素とヨウ化水素と水だけから構成される。加圧条件下ではヨウ化水素と水との割合が共沸組成である57%を超えているため、その下相液からヨウ化水素を蒸留により容易に単離できる。このとき蒸留される下相液には硫酸をはじめとする硫黄化合物が存在していないため、下相液蒸留時にヨウ化水素と硫酸との副反応が起こることなく、ヨウ化水素を単離できる。   In addition, in the phase separation of hydrogen iodide and sulfuric acid produced by the Bunsen reaction, by adding an intermediate phase of ionic liquid, sulfuric acid can be completely separated into the upper phase and hydrogen iodide can be separated into the lower phase. Since sulfuric acid does not dissolve into the lower phase, it is possible to avoid side reactions between hydrogen iodide and sulfuric acid in the lower phase. Similarly, since the upper phase of the sulfuric acid aqueous solution and the lower phase of polyhydrogen iodide are not in contact with each other through the intermediate phase, hydrogen iodide and sulfuric acid do not cause a side reaction at the interface (formula (12)). By adding an intermediate phase, the lower phase is composed only of iodine, hydrogen iodide and water. Since the ratio of hydrogen iodide and water exceeds 57% which is an azeotropic composition under pressurized conditions, hydrogen iodide can be easily isolated from the lower phase liquid by distillation. Since the lower phase liquid distilled at this time does not contain sulfur compounds such as sulfuric acid, hydrogen iodide can be isolated without causing a side reaction between hydrogen iodide and sulfuric acid during the lower phase liquid distillation. .

本発明の第1の実施形態に係るヨウ化水素製造方法を示すフロー図である。It is a flowchart which shows the hydrogen iodide manufacturing method which concerns on the 1st Embodiment of this invention. 本発明の実施形態で分離液として適用可能なイオン性液体の例化学構造を示す図であって、(a)は1−エチル−3−メチルイミダゾリウム ビス(トリフルオロメチルスルフォニル)イミド、(b)は1−プロピル−3−メチルイモダゾリウム−ヨウ化物、(c)は1−エチル−2,3,5−トリメチルピラゾリウム ビス(トリフルオロメタンスルフォニル)イミド、(d)はN,N,N’,N’−テトラメチル−N’’−エチルグアニジニウム トリス(ペンタフルオエチル)トリフルオロフォスフェートを示す図。It is a figure which shows the example chemical structure of the ionic liquid applicable as a separation liquid in embodiment of this invention, Comprising: (a) is 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, (b ) Is 1-propyl-3-methylimidazolium-iodide, (c) is 1-ethyl-2,3,5-trimethylpyrazolium bis (trifluoromethanesulfonyl) imide, (d) is N, N, The figure which shows N ', N'-tetramethyl-N' '-ethylguanidinium tris (pentafluoroethyl) trifluorophosphate. 本発明の実施形態の効果を示すグラフであって、二酸化硫黄をヨウ素水溶液へ通気させたときにヨウ素と反応してヨウ化水素および硫酸を生成した二酸化硫黄の転化率をゲージ圧力に対してプロットしたグラフ。It is a graph which shows the effect of embodiment of this invention, Comprising: The conversion rate of the sulfur dioxide which reacted with iodine and produced | generated hydrogen iodide and the sulfuric acid when aeration was carried out to iodine aqueous solution was plotted with respect to a gauge pressure. Chart. 本発明の実施形態の効果を示すグラフであって、ブンゼン反応で生成した下相液中ヨウ化水素濃度の圧力依存性を示すグラフ。横軸は圧力であり、縦軸は下相液のヨウ化水素重量百分率濃度([HI]=(下相液に含まれるヨウ化水素の質量)/(下相液に含まれるヨウ化水素と水の質量の和))である。It is a graph which shows the effect of embodiment of this invention, Comprising: The graph which shows the pressure dependence of the hydrogen iodide density | concentration in the lower phase liquid produced | generated by the Bunsen reaction. The horizontal axis is the pressure, and the vertical axis is the concentration percentage of hydrogen iodide in the lower phase liquid ([HI] = (mass of hydrogen iodide contained in the lower phase liquid) / (hydrogen iodide contained in the lower phase liquid and The sum of the mass of water)). 本発明の第2の実施形態に係るヨウ化水素製造装置の概略構成図である。It is a schematic block diagram of the hydrogen iodide manufacturing apparatus which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…反応槽
2…溶解槽
3…リボイラー
4…水供給槽
5…ヨウ化水素回収管
6…コンデンサー
7…蒸留塔
8,8a,8b,8c…圧力計
9…二酸化硫黄供給器
10a,10b…背圧弁
11…窒素ガスボンベ(キャリアガス供給装置)
12…マスフローメーター
13…スクラバー
20…ヒーター
21…背圧弁
DESCRIPTION OF SYMBOLS 1 ... Reaction tank 2 ... Dissolution tank 3 ... Reboiler 4 ... Water supply tank 5 ... Hydrogen iodide recovery pipe 6 ... Condenser 7 ... Distillation towers 8, 8a, 8b, 8c ... Pressure gauge 9 ... Sulfur dioxide supplier 10a, 10b ... Back pressure valve 11 ... Nitrogen gas cylinder (carrier gas supply device)
12 ... Mass flow meter 13 ... Scrubber 20 ... Heater 21 ... Back pressure valve

Claims (8)

ゲージ圧で0.1MPa以上の加圧条件下で二酸化硫黄とヨウ素と水とを反応させてヨウ化水素と硫酸を生成する反応工程と、
ヨウ化水素と硫酸の中間の比重を有してかつヨウ化水素および硫酸に対して化学的に安定な分離液を添加する工程と、
ヨウ化水素が下相液になり、硫酸が上相液になり、前記分離液が前記下相液と前記上相液の間に形成される中間相液になるように3相分離する分離工程と、
前記相液から硫黄化合物を除去する除去工程と、
を有することを特徴とするヨウ化水素製造方法。
A reaction step of producing hydrogen iodide and sulfuric acid by reacting sulfur dioxide, iodine and water under a pressure condition of 0.1 MPa or more at a gauge pressure ;
Adding a separation liquid having a specific gravity intermediate between hydrogen iodide and sulfuric acid and chemically stable to hydrogen iodide and sulfuric acid;
Separation step of separating three phases so that hydrogen iodide becomes a lower phase liquid, sulfuric acid becomes an upper phase liquid, and the separated liquid becomes an intermediate phase liquid formed between the lower phase liquid and the upper phase liquid When,
A removal step of removing sulfur compounds from the upper phase liquid;
A method for producing hydrogen iodide, comprising:
前記反応工程は、ヨウ素を含む水溶液を生成する工程と、このヨウ素を含む水溶液に二酸化硫黄を注入する工程とを含むこと、を特徴とする請求項1に記載のヨウ化水素製造方法。 The method for producing hydrogen iodide according to claim 1, wherein the reaction step includes a step of generating an aqueous solution containing iodine and a step of injecting sulfur dioxide into the aqueous solution containing iodine. 前記反応工程は、二酸化硫黄を水に溶解して二酸化硫黄水溶液あるいは亜硫酸水溶液を生成する溶解工程と、前記二酸化硫黄水溶液あるいは亜硫酸水溶液を、ヨウ素を含む水溶液と混合する混合工程と、を含むことを特徴とする請求項1または請求項2に記載のヨウ化水素製造方法。 The reaction step includes a dissolution step of dissolving sulfur dioxide in water to produce a sulfur dioxide aqueous solution or a sulfurous acid aqueous solution, and a mixing step of mixing the sulfur dioxide aqueous solution or the sulfurous acid aqueous solution with an aqueous solution containing iodine. The method for producing hydrogen iodide according to claim 1 or 2, characterized in that: 前記分離液はイオン性液体であることを特徴とする請求項1ないし請求項3のいずれか一項に記載のヨウ化水素製造方法。 The method for producing hydrogen iodide according to any one of claims 1 to 3, wherein the separation liquid is an ionic liquid . 前記除去工程は、前記下相液を蒸留することによりヨウ化水素を単離する工程を含むことを特徴とする請求項1ないし請求項4のいずれか一項に記載のヨウ化水素製造方法。 The method for producing hydrogen iodide according to any one of claims 1 to 4, wherein the removing step includes a step of isolating hydrogen iodide by distilling the lower phase liquid . 二酸化硫黄とヨウ素と水とを反応させてヨウ化水素を生成するためのヨウ化水素製造装置において、In a hydrogen iodide production apparatus for producing hydrogen iodide by reacting sulfur dioxide, iodine and water,
ヨウ化水素と硫酸の中間の比重を有してかつヨウ化水素および硫酸に対して化学的に安定な分離液を収容して、ゲージ圧で0.1MPa以上の加圧条件下で二酸化硫黄とヨウ素と水とを反応させてヨウ化水素と硫酸を生成するための反応槽と、  A separation liquid having a specific gravity intermediate between hydrogen iodide and sulfuric acid and chemically stable against hydrogen iodide and sulfuric acid is contained, and sulfur dioxide and A reaction vessel for reacting iodine with water to produce hydrogen iodide and sulfuric acid;
前記反応槽で生成されて3相分離して得られた下相液を蒸留する蒸留塔と、  A distillation column for distilling a lower phase liquid produced in the reaction vessel and obtained by three-phase separation;
を有することを特徴とするヨウ化水素製造装置。  An apparatus for producing hydrogen iodide, comprising:
ゲージ圧で0.1MPa以上の加圧条件下で二酸化硫黄を水に溶解させて二酸化硫黄水溶液あるいは亜硫酸水溶液を生成する溶解槽をさらに有し、
前記溶解槽で生成された二酸化硫黄水溶液あるいは亜硫酸水溶液を加圧条件下で前記反応槽へ移送するように構成されていること、
を特徴とする請求項6に記載のヨウ化水素製造装置。
It further has a dissolution tank for dissolving sulfur dioxide in water under a pressure condition of 0.1 MPa or more at a gauge pressure to generate a sulfur dioxide aqueous solution or a sulfurous acid aqueous solution,
It is configured to transfer the sulfur dioxide aqueous solution or the sulfurous acid aqueous solution generated in the dissolution tank to the reaction tank under a pressurized condition,
An apparatus for producing hydrogen iodide according to claim 6 .
前記分離液はイオン性液体であることを特徴とする請求項6または請求項7に記載のヨウ化水素製造装置。 The hydrogen iodide production apparatus according to claim 6 or 7, wherein the separation liquid is an ionic liquid .
JP2006199303A 2006-07-21 2006-07-21 Hydrogen iodide production method and hydrogen iodide production apparatus Expired - Fee Related JP5165865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199303A JP5165865B2 (en) 2006-07-21 2006-07-21 Hydrogen iodide production method and hydrogen iodide production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199303A JP5165865B2 (en) 2006-07-21 2006-07-21 Hydrogen iodide production method and hydrogen iodide production apparatus

Publications (2)

Publication Number Publication Date
JP2008024551A JP2008024551A (en) 2008-02-07
JP5165865B2 true JP5165865B2 (en) 2013-03-21

Family

ID=39115573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199303A Expired - Fee Related JP5165865B2 (en) 2006-07-21 2006-07-21 Hydrogen iodide production method and hydrogen iodide production apparatus

Country Status (1)

Country Link
JP (1) JP5165865B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100981293B1 (en) 2008-08-20 2010-09-10 한국과학기술원 Iodine-sulfur Cycle for Nuclear Hydrogen Production with Improved Thermo-chemical Efficiency

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1550244A (en) * 1975-08-04 1979-08-08 Gen Atomic Co Process for the thermochemical production of hydrogen
US4089939A (en) * 1977-02-25 1978-05-16 General Atomic Company Process for the production of hydrogen from water

Also Published As

Publication number Publication date
JP2008024551A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
Horii et al. Continuous separation of CO2 from a H2+ CO2 gas mixture using clathrate hydrate
KR100831093B1 (en) Method for the separation and recycle of pure sulfur dioxide from gaseous mixture in the is cycle with ionic liquids
TW200848365A (en) Process for producing phosphorus pentafluoride and hexafluorophosphate
JP4713969B2 (en) Hydrogen iodide production method and hydrogen iodide production apparatus
RU2598094C1 (en) Oxygen isotope enrichment method
Nguyen et al. Sustainable extraction and separation of precious metals from hydrochloric media using novel ionic liquid-in-water microemulsion
EP1896632B1 (en) Process for the production of hydrogen peroxide and chlorate
Lili et al. Adsorption of Ce (IV) in nitric acid medium by imidazolium anion exchange resin
Buvik et al. Addition of potassium iodide reduces oxidative degradation of monoethanolamine (MEA)
Ren et al. Effective separation of toluene from n-heptane with imidazolium-based deep eutectic solvents
EP2720780B1 (en) Process for separating co2 from a gaseous stream
JP4945109B2 (en) Hydrogen iodide production method, hydrogen production method, and production apparatus therefor
JP5165865B2 (en) Hydrogen iodide production method and hydrogen iodide production apparatus
Borgard et al. Recycling hydrofluoric acid in the nuclear industry: The OverAzeotreopic Flash process (OVAF)
CN113710649A (en) Purification of bis (fluorosulfonyl) imide
Zarca et al. Recovery of carbon monoxide from flue gases by reactive absorption in ionic liquid imidazolium chlorocuprate (I): Mass transfer coefficients
Mota-Lima et al. high-pressure carbon dioxide separation using ionic liquids: a CO2-electrocatalysis perspective
JP5038680B2 (en) Hydrogen iodide production method, hydrogen production method, and apparatus for the production method
EP2882703A1 (en) Method for producing difluoromethane
WO2017022063A1 (en) Method for cleaving azine or hydrazone bond
EP2663543A1 (en) Co2 hydrogenation method for producing formic acid
JP4594751B2 (en) Apparatus and method for producing hydrogen generating substance
Begel et al. Thermodynamic and kinetic studies on the interaction of Ru III (edta) with NO in an ionic liquid
JP2009114025A (en) Method for producing hydrogen iodide, and apparatus therefor
CN102731441B (en) Method for cleaning hexafluoropropylene oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees