JP5164634B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP5164634B2
JP5164634B2 JP2008085182A JP2008085182A JP5164634B2 JP 5164634 B2 JP5164634 B2 JP 5164634B2 JP 2008085182 A JP2008085182 A JP 2008085182A JP 2008085182 A JP2008085182 A JP 2008085182A JP 5164634 B2 JP5164634 B2 JP 5164634B2
Authority
JP
Japan
Prior art keywords
hot water
water storage
heat pump
amount
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008085182A
Other languages
Japanese (ja)
Other versions
JP2009236437A (en
Inventor
浩一 坂本
昌巳 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008085182A priority Critical patent/JP5164634B2/en
Publication of JP2009236437A publication Critical patent/JP2009236437A/en
Application granted granted Critical
Publication of JP5164634B2 publication Critical patent/JP5164634B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ヒートポンプ給湯機に関する。   The present invention relates to a heat pump water heater.

従来のヒートポンプ給湯機には、大容量(一例として370L〜560L)の貯湯タンクを使用した貯湯ユニットとヒートポンプユニットを別個に設けた分離形構造で、電力料金の安価な夜間のみヒートポンプ運転を行い、夜中のうちに湯を沸き上げて貯湯タンクに貯蔵しておき、上記貯蔵した湯を日中に使う貯湯式ヒートポンプ給湯機がある。また、主に給湯使用する昼間にヒートポンプ運転を行って加熱した温水を直接給湯することにより、貯湯タンクを大幅に小形化(45L〜100L)し貯湯ユニットとヒートポンプユニットの一体化を図った直接給湯式ヒートポンプ給湯機がある。   A conventional heat pump water heater has a separate structure in which a hot water storage unit using a hot water storage tank having a large capacity (370 L to 560 L as an example) and a heat pump unit are separately provided. There is a hot water storage heat pump water heater that boils hot water in the middle of the night and stores it in a hot water storage tank, and uses the stored hot water during the day. In addition, the hot water is heated directly during the daytime when hot water is used, and the hot water directly heated is used to directly reduce the size of the hot water storage tank (45L-100L). There is a heat pump water heater.

前記貯湯式ヒートポンプ給湯機の例として、特開2003−156254号公報(特許文献1)がある。特許文献1は、370Lの大容量貯湯タンクを有する貯湯式であり、基本的には1日1回夜間にタンク沸き上げを行うものである。   There exists Unexamined-Japanese-Patent No. 2003-156254 (patent document 1) as an example of the said hot water storage type heat pump water heater. Patent Document 1 is a hot water storage type having a 370 L large-capacity hot water storage tank, and basically performs tank boiling once a day at night.

沸き上げ制御としては、1日当りの給湯使用量が250L以上のときは370L全量を沸き上げ、その後、残湯量が150L以下になった時沸き上げを行う。また、250L未満のときは250L沸き上げ、その後、残湯量が75L以下になった時沸き上げを行うが、夜間以外の沸き上げは極力行わないで済むよう夜間のタンク沸き上げ量及び沸き上げ温度を制御している。   As the boiling control, when the amount of hot water used per day is 250 L or more, the entire amount of 370 L is heated, and then the boiling is performed when the amount of remaining hot water becomes 150 L or less. Also, when it is less than 250L, it is heated up to 250L and then heated up when the amount of remaining hot water becomes 75L or less. Is controlling.

次に直接給湯式ヒートポンプ給湯機の例として、特開2003−279133号公報(特許文献2)がある。特許文献2は、予め貯湯運転を行って60〜100Lの小形貯湯タンクに高温水(約60〜90℃)を貯湯しておき、湯水使用時には、ヒートポンプの加熱温度が適温(約40℃)に到達しない運転当初は2サイクルヒートポンプの加熱水に前記貯湯タンクからの高温水を混ぜて適温として給湯し、2サイクルヒートポンプ運転による加熱温度が適温に達すると、貯湯タンクからの給湯を止め2サイクルヒートポンプ運転で加熱した適温水(約40℃)を直接給湯して使用するものである。また、タンク沸き上げ量及び沸き上げ温度は、「節約」や「多め使用」等の使用者のモード設定によって決められていた。なお、一般にヒートポンプ運転の運転効率即ち成績係数(一般にCOPという)は、加熱温度が低いほど圧縮機の回転数が少なくて済み機械的損失も少なくなるため、加熱温度が低いほど成績係数(COP)の向上が図れる。また、貯湯タンクの貯湯量は使用量に応じて少ないほど放熱量が少なくて済み、省電力を図ることができる。   Next, as an example of a direct hot water supply type heat pump water heater, there is JP-A-2003-279133 (Patent Document 2). In Patent Document 2, hot water storage operation is performed in advance to store hot water (about 60 to 90 ° C) in a small hot water storage tank of 60 to 100L, and when using hot water, the heating temperature of the heat pump is set to an appropriate temperature (about 40 ° C). At the beginning of the operation that does not reach, the hot water from the hot water storage tank is mixed with the heating water of the 2-cycle heat pump to supply the water at an appropriate temperature, and when the heating temperature by the 2-cycle heat pump operation reaches the appropriate temperature, the hot water from the hot water storage tank is stopped. It is used by directly supplying hot water (about 40 ° C.) heated at the operation. Also, the amount of tank boiling and the boiling temperature are determined by the user's mode settings such as “saving” and “use more”. In general, the operating efficiency of heat pump operation, that is, the coefficient of performance (generally referred to as COP), is that the lower the heating temperature, the smaller the number of revolutions of the compressor and the less mechanical loss. Therefore, the lower the heating temperature, the coefficient of performance (COP). Can be improved. Further, the smaller the amount of hot water stored in the hot water storage tank, the smaller the amount of heat released, and the more energy can be saved.

特開2003−156254号公報JP 2003-156254 A 特開2003−279133号公報JP 2003-279133 A

前記従来のヒートポンプ給湯機において、貯湯式の場合は、夜間のみ運転するので電気料金が安価で済む利点を有する。しかしながら、370Lから560Lもの大形貯湯タンクを有するため貯湯ユニットと別個にヒートポンプユニットが必要で、設置面積や設置強度等の据付上の制約があり、また、多量に給湯使用する場合には湯切れの発生する恐れがあった。   In the conventional heat pump water heater, in the case of the hot water storage type, since it operates only at night, there is an advantage that the electricity bill can be inexpensive. However, since it has a large hot water storage tank of 370L to 560L, a heat pump unit is required separately from the hot water storage unit, and there are restrictions on installation such as installation area and installation strength. There was a risk of occurrence.

一方、直接給湯式の場合は、貯湯タンクの大幅な小形化により貯湯ユニットとヒートポンプユニットとの一体化が図れ、据付上の制約緩和や、湯切れの恐れがなくなる利点を有する。しかしながら、直接給湯が主体のため、ヒートポンプを2サイクルとしなければならず、コストアップとなり、夜間の安価な電気料金が有効に使用できなかった。   On the other hand, in the case of the direct hot water supply type, the hot water storage unit and the heat pump unit can be integrated by greatly reducing the size of the hot water storage tank, and there is an advantage that the restrictions on installation and the risk of running out of hot water are eliminated. However, since direct hot water supply is the main component, the heat pump has to be set to two cycles, which increases costs and makes it impossible to use cheap electricity charges at night.

以上のように従来のヒートポンプ給湯機は、貯湯式,直接給湯式とも、それぞれの利点を有する反面、据付上の制約,湯切れ、および電気料金等、それぞれ課題を有していた。   As described above, the conventional heat pump water heater has advantages in both the hot water storage type and the direct hot water supply type, but has problems such as installation restrictions, running out of water, and electricity charges.

一方、ヒートポンプ給湯機の省電力化を図る場合、ヒートポンプの高効率化と貯湯タンクの保温性能改善とがあるが、ヒートポンプの高効率化は圧縮機の開発等、長期信頼性の確認が必要であり検討期間に対し十分な効果を得ることが難しい。   On the other hand, to reduce the power consumption of heat pump water heaters, there are improvements in heat pump efficiency and heat insulation performance in hot water storage tanks. However, it is necessary to confirm long-term reliability such as the development of compressors in order to improve heat pump efficiency. It is difficult to obtain a sufficient effect for the examination period.

従って、貯湯タンクの保温性能改善がより重要課題とされてきているが、従来のヒートポンプ給湯機においては、タンク沸き上げ量と沸き上げ温度を別個に決めており、かつ使用モードにより2段階程度の大まかな区分でしか行われていなかったため、家族構成人員や給湯使用量の日々変化等、多様性に対応したきめ細かな省電力制御としては十分とは言えなかった。   Therefore, improvement of the heat retention performance of the hot water storage tank has been regarded as a more important issue. However, in the conventional heat pump water heater, the tank boiling amount and the boiling temperature are determined separately, and there are about two stages depending on the use mode. Since it was performed only roughly, it could not be said that it was sufficient as detailed power saving control corresponding to diversity, such as family members and daily changes in hot water usage.

また、ヒートポンプ給湯機は加熱温度が適温に達するまでに数分間の立ち上がり時間を必要とするため、特に直接給湯式においてはヒートポンプ運転回数を最小限にすることが重要であるが、従来のヒートポンプ給湯機においては、この点についても最適な運転制御とはなっていなかった。   Also, since heat pump water heaters require a rise time of several minutes for the heating temperature to reach an appropriate temperature, it is important to minimize the number of heat pump operations, especially in the case of direct water heating, In this machine, this point was not the optimum operation control.

上記従来の課題を解決する為に、本発明の目的は、貯湯タンクの貯湯温度および貯湯量の最適化を図ることで、湯切れを防止し、省エネの向上したヒートポンプ給湯機を得ることである。   In order to solve the above-mentioned conventional problems, an object of the present invention is to obtain a heat pump water heater that prevents hot water shortage and improves energy saving by optimizing the hot water storage temperature and amount of hot water in a hot water storage tank. .

本発明は、圧縮機と、水と冷媒との熱交換を行う水冷媒熱交換器と、該水冷媒熱交換器からの冷媒を減圧する減圧装置と、空気と冷媒との熱交換を行う空気冷媒熱交換器とを接続したヒートポンプ冷媒回路と、前記水冷媒熱交換器と、該水冷媒熱交換器で熱交換した水を貯める貯湯タンクと、該貯湯タンクの水を循環させる循環ポンプとを有する貯湯回路と、前記貯湯タンク内の貯湯水を給湯端末から給湯するタンク給湯回路と、ヒートポンプ給湯機の運転を制御する運転制御手段とを備えたヒートポンプ給湯機において、前記運転制御手段は、給湯時に、湯の使用モード及び時間帯に応じて前記ヒートポンプ冷媒回路の運転の有無を決定することを特徴とする。
The present invention relates to a compressor, a water-refrigerant heat exchanger that performs heat exchange between water and a refrigerant, a decompression device that depressurizes refrigerant from the water-refrigerant heat exchanger, and air that performs heat exchange between air and the refrigerant. A heat pump refrigerant circuit connected to a refrigerant heat exchanger, the water refrigerant heat exchanger, a hot water storage tank for storing water heat-exchanged in the water refrigerant heat exchanger, and a circulation pump for circulating water in the hot water storage tank A heat pump water heater comprising a hot water storage circuit, a tank hot water circuit for supplying hot water in the hot water storage tank from a hot water supply terminal, and an operation control means for controlling the operation of the heat pump water heater. In some cases, the operation of the heat pump refrigerant circuit is determined according to the hot water usage mode and time zone.

本発明によれば、貯湯タンクの貯湯温度および貯湯量の最適化を図ることで、湯切れを防止し、省エネの向上したヒートポンプ給湯機を得ることができる。   According to the present invention, by optimizing the hot water storage temperature and amount of hot water stored in a hot water storage tank, it is possible to obtain a heat pump water heater that prevents hot water shortage and has improved energy saving.

以下、本発明のヒートポンプ給湯機の実施例を図面を用いて説明する。   Hereinafter, embodiments of the heat pump water heater of the present invention will be described with reference to the drawings.

以下、本発明の一実施例を図1〜図4によって説明する。   An embodiment of the present invention will be described below with reference to FIGS.

図1は本発明を直接給湯式ヒートポンプ給湯機に適用した場合の部品構成の一例を示す。ヒートポンプ給湯機はヒートポンプ冷媒回路30,給湯回路40、及び運転制御手段50を備えて構成されている。   FIG. 1 shows an example of a component structure when the present invention is applied to a direct hot water supply type heat pump water heater. The heat pump water heater includes a heat pump refrigerant circuit 30, a hot water supply circuit 40, and an operation control means 50.

ヒートポンプ冷媒回路30は圧縮機1,水と冷媒との熱交換を行う水冷媒熱交換器2に配置された冷媒側伝熱管2a,水冷媒熱交換器からの冷媒を減圧する減圧装置3,空気と冷媒との熱交換を行う空気冷媒熱交換器4を、それぞれ冷媒配管を介して順次接続して構成されており、その中に冷媒が封入されている。   The heat pump refrigerant circuit 30 includes a compressor 1, a refrigerant-side heat transfer tube 2a disposed in a water-refrigerant heat exchanger 2 that performs heat exchange between water and a refrigerant, a decompressor 3 that decompresses refrigerant from the water-refrigerant heat exchanger, and air The air refrigerant heat exchanger 4 that exchanges heat with the refrigerant is sequentially connected via refrigerant pipes, and the refrigerant is enclosed therein.

圧縮機1は容量制御が可能で、多量の給湯を行う場合には大きな容量で運転される。ここで、圧縮機1はPWM制御,電圧制御(例えばPAM制御)及びこれらの組み合わせ制御により、低速(例えば700回転/分)から高速(例えば7000回転/分)まで回転数制御ができるようになっている。   The compressor 1 is capable of capacity control, and is operated with a large capacity when supplying a large amount of hot water. Here, the compressor 1 can perform rotation speed control from low speed (for example, 700 rotations / minute) to high speed (for example, 7000 rotations / minute) by PWM control, voltage control (for example, PAM control) and combination control thereof. ing.

水冷媒熱交換器2は冷媒側伝熱管2a及び給水側伝熱管2bを備えており、冷媒側伝熱管2aと給水側伝熱管2bとの間で熱交換を行うように構成されている。   The water refrigerant heat exchanger 2 includes a refrigerant side heat transfer tube 2a and a water supply side heat transfer tube 2b, and is configured to exchange heat between the refrigerant side heat transfer tube 2a and the water supply side heat transfer tube 2b.

減圧装置3としては一般に電動膨張弁が使用され、水冷媒熱交換器2を経て送られてくる中温高圧冷媒を減圧し、蒸発し易い低圧冷媒として空気冷媒熱交換器4へ送ると共に冷媒循環量を調節する働きや、前記絞り量を全開にして中温冷媒を空気冷媒熱交換器4に多量に送って霜を溶かす除霜装置の役目も行う。   As the decompression device 3, an electric expansion valve is generally used, and the medium temperature and high pressure refrigerant sent through the water refrigerant heat exchanger 2 is decompressed and sent to the air refrigerant heat exchanger 4 as a low pressure refrigerant that easily evaporates and the refrigerant circulation amount And the function of a defrosting device that melts frost by fully opening the throttle amount and sending a large amount of medium temperature refrigerant to the air refrigerant heat exchanger 4.

空気冷媒熱交換器4は送風ファン(図示せず)の回転により外気を取り入れ空気と冷媒との熱交換を行い、外気から熱を吸収する役目を行う。   The air refrigerant heat exchanger 4 takes in outside air by rotation of a blower fan (not shown), exchanges heat between the air and the refrigerant, and absorbs heat from the outside air.

次に、給湯回路40は貯湯,直接給湯,タンク給湯,風呂湯張り,風呂追焚きを行うための水循環回路を備えて構成されている。   Next, the hot water supply circuit 40 includes a water circulation circuit for performing hot water storage, direct hot water supply, tank hot water supply, bath hot water filling, and bath reheating.

水冷媒熱交換器で熱交換した水を貯める貯湯タンク9は、容量を150L〜250Lとし従来の貯湯タンク(370L〜560L)に比べ大幅に小型化することによりヒートポンプ冷媒回路30との一体化を図る。   The hot water storage tank 9 for storing the water heat-exchanged by the water refrigerant heat exchanger has a capacity of 150L to 250L and is significantly smaller than the conventional hot water storage tanks (370L to 560L), so that it can be integrated with the heat pump refrigerant circuit 30. Plan.

次に、タンク容量の選定根拠について説明する。一般的に3〜4人家族における適温水(約40℃)の使用量は、風呂湯張り180Lを含めて1日当り約400L〜450Lといわれている。もっとも給湯使用熱量の多い冬場において、夜間貯湯量,随時貯湯量及び直接給湯量の合計で40℃400Lを目安として選定する。なお、随時貯湯運転及び直接給湯運転が多い場合、夜間に比べて割高な昼間の電気料金を多く使うことになるため、夜間の電気使用量に対し昼間、即ち随時貯湯運転及び直接給湯運転による電気使用量を20%以下に抑える。水の加熱熱量は電気量にほぼ比例するものとして、タンク容量(L)×90℃×1.2倍に冬期の水(約9℃)を加えて40℃の適温水として使用した場合、40℃×450Lとなるようタンク容量を求めると、タンク容量は153Lとなるが、家族構成人員の少数化を考慮して最小値を150Lとする。   Next, the basis for selecting the tank capacity will be described. Generally, it is said that the usage amount of the appropriate temperature water (about 40 ° C.) in a family of 3 to 4 people is about 400 L to 450 L per day including 180 L of bath water. In winter when the amount of heat used by hot water is the highest, the total amount of hot water stored at night, the amount of hot water stored as needed, and the amount of direct hot water is selected as a guideline at 400 ° C. In addition, when there are many hot water storage operations and direct hot water supply operations at any time, the electricity charge during the daytime is higher than that at night. Limit the amount used to 20% or less. Assuming that the amount of heat of heating of water is almost proportional to the amount of electricity, the tank capacity (L) x 90 ° C x 1.2 times is added to winter water (about 9 ° C) and used as a suitable temperature water of 40 ° C. When the tank capacity is determined to be ℃ × 450L, the tank capacity is 153L, but the minimum value is set to 150L in consideration of the decrease in the number of family members.

また、タンク容量の上限は、軽量化の観点から選定する。従来貯湯式ヒートポンプ給湯機の質量はもっとも軽量化されたものにあっても、貯湯ユニットとヒートポンプユニットの合計が120kg以上あり、機体内が満水となる使用状態にあっては約500kgにも達していた。そこで、貯湯ユニットとヒートポンプユニットの一体化及びタンクの小型化により製品合計を100kg以下とし、タンク容量を250Lとする。これにより、機体内が満水となる使用状態にあっても全体質量は約350kgとなり、従来よりも30%低減できる。   The upper limit of the tank capacity is selected from the viewpoint of weight reduction. Even if the mass of the conventional hot water storage heat pump water heater is the lightest, the total of the hot water storage unit and the heat pump unit is 120 kg or more, and it reaches about 500 kg when the machine is full. It was. Therefore, by integrating the hot water storage unit and the heat pump unit and reducing the size of the tank, the total product is 100 kg or less and the tank capacity is 250 L. As a result, even when the aircraft is in full use, the total mass is about 350 kg, which is 30% lower than before.

即ち、タンク容量を150L〜250Lとすることによって、タンク容量は従来比60%〜30%低減、使用時重量は30%低減となり、一般的実使用上支障なく製品の一体化による小型軽量化を図ることができる。   In other words, by setting the tank capacity to 150L to 250L, the tank capacity is reduced by 60% to 30% compared to the conventional model, and the weight during use is reduced by 30%. Can be planned.

なお、昼間の電気使用量を夜間の電気使用量に対し20%以下としたが、昼間の電気使用量の制御手段としてはこれに限らず、昼間の電気使用量を全日の電気使用量に対し20%以下としても良く、更に比率20%は電気代と給湯量のどちらを優先するかによって約10%〜30%間で選定してもよい。なお、10%以下では昼間運転の効果が少なく、30%以上では昼間運転による電気代のアップが大きくなるため、約10%〜30%間が適切な範囲である。   The daytime electricity usage was set to 20% or less of the nighttime electricity usage. However, the daytime electricity usage is not limited to this, and the daytime electricity usage is less than the total daytime electricity usage. It may be 20% or less, and a ratio of 20% may be selected between about 10% and 30% depending on whether the electricity cost or the amount of hot water is given priority. In addition, since the effect of daytime operation is less at 10% or less, and the electricity cost increases by daytime operation at 30% or more, the range between about 10% and 30% is an appropriate range.

貯湯回路はタンク沸き上げ運転によって貯湯タンク9下部の低温水を循環させ高温水として貯湯タンク上部から貯めるための水回路で、貯湯タンク9,タンク循環ポンプ10,水熱交流量センサ11,給水側伝熱管2b,給湯混合弁12,貯湯タンク9が水配管を介して順次接続され構成されている。   The hot water storage circuit is a water circuit for circulating low temperature water at the bottom of the hot water storage tank 9 and storing it as hot water from the upper part of the hot water storage tank by the tank boiling operation. The hot water storage tank 9, the tank circulation pump 10, the hydrothermal AC sensor 11, and the water supply side A heat transfer pipe 2b, a hot water supply mixing valve 12, and a hot water storage tank 9 are sequentially connected via a water pipe.

次に、直接給湯回路は、給水金具5,減圧弁6,給水水量センサ7,給水逆止弁8,水熱交流量センサ11,給水側伝熱管2b,給湯混合弁12,湯水混合弁14,流量調整弁15,台所出湯金具16が水配管を介して順次接続され構成されている。なお、給水金具5は水道などの給水源に接続され、台所出湯金具16は台所蛇口17などに接続されている。   Next, the direct hot water supply circuit includes a water supply fitting 5, a pressure reducing valve 6, a water supply water amount sensor 7, a water supply check valve 8, a water heat AC amount sensor 11, a water supply side heat transfer pipe 2b, a hot water supply mixing valve 12, a hot water mixing valve 14, A flow rate adjusting valve 15 and a kitchen tapping metal fitting 16 are sequentially connected via a water pipe. The water supply fitting 5 is connected to a water supply source such as a water supply, and the kitchen tap metal fitting 16 is connected to a kitchen faucet 17 or the like.

次に、タンク給湯回路は、給水金具5,減圧弁6,給水水量センサ7,給水逆止弁8,貯湯タンク9,給湯混合弁12,湯水混合弁14,流量調整弁15,台所出湯金具16が水配管を介して順次接続され構成されている。   Next, the tank hot water supply circuit includes a water supply fitting 5, a pressure reducing valve 6, a water supply amount sensor 7, a water supply check valve 8, a hot water storage tank 9, a hot water supply mixing valve 12, a hot water mixing valve 14, a flow rate adjusting valve 15, and a kitchen hot water supply fitting 16. Are sequentially connected via a water pipe.

次に、風呂湯張り回路は、給水金具5,減圧弁6,給水水量センサ7,給水逆止弁8,水熱交流量センサ11,給水側伝熱管2b,給湯混合弁12,湯水混合弁14,流量調整弁15,風呂注湯弁18,フロースイッチ19,風呂循環ポンプ20,水位センサ21,風呂入出湯金具22,風呂循環アダプター23,浴槽24が水配管を介して順次接続され構成されている。なお、風呂湯張り時には、上記風呂湯張り回路による直接給湯と共に、貯湯タンク9内の湯量が最低必要量以下にならない範囲において貯湯タンク9から浴槽24へのタンク給湯も行う。   Next, the bath hot water filling circuit includes a water supply fitting 5, a pressure reducing valve 6, a water supply amount sensor 7, a water supply check valve 8, a hydrothermal AC amount sensor 11, a water supply side heat transfer tube 2b, a hot water supply mixing valve 12, and a hot water mixing valve 14. , A flow rate adjustment valve 15, a bath pouring valve 18, a flow switch 19, a bath circulation pump 20, a water level sensor 21, a bath inlet / outlet fitting 22, a bath circulation adapter 23, and a bathtub 24 are sequentially connected via a water pipe. Yes. During bath hot water filling, hot water supply from the hot water storage tank 9 to the bathtub 24 is performed in a range where the amount of hot water in the hot water storage tank 9 does not fall below the minimum required amount, together with direct hot water supply by the bath hot water filling circuit.

次に、風呂追焚回路は、浴槽24,風呂循環アダプター23,風呂入出湯金具22,水位センサ21,風呂循環ポンプ20,フロースイッチ19,風呂用熱交換器26の風呂水伝熱管26b,風呂出湯金具25,風呂循環アダプター23,浴槽24が水配管を介して順次接続され構成されている。なお、風呂追焚き時には、上記風呂追焚回路による浴槽水の水循環と共に、ヒートポンプ運転及びタンク循環ポンプ10を運転し、かつ温水開閉弁28を開放して水冷媒熱交換器2で加熱された温水を風呂用熱交換器26に設けられた温水伝熱管26aに循環させ、温水伝熱管26aと風呂水伝熱管26bとの間で熱交換し、風呂循環水を加熱するものである。   Next, the bath memory circuit includes a bath 24, a bath circulation adapter 23, a bath inlet / outlet fitting 22, a water level sensor 21, a bath circulation pump 20, a flow switch 19, a bath water heat transfer tube 26b of a bath heat exchanger 26, a bath. A hot metal fitting 25, a bath circulation adapter 23, and a bathtub 24 are sequentially connected through a water pipe. At the time of bathing, hot water heated by the water / refrigerant heat exchanger 2 by operating the heat pump operation and the tank circulation pump 10 and opening the hot water on / off valve 28 together with the water circulation of the bath water by the bath chasing circuit. Is circulated through a hot water heat transfer pipe 26a provided in the bath heat exchanger 26, heat is exchanged between the hot water heat transfer pipe 26a and the bath water heat transfer pipe 26b, and the bath circulating water is heated.

次に、運転制御手段50は、台所リモコン51及び風呂リモコン52の操作設定により、ヒートポンプ冷媒回路30の運転・停止並びに圧縮機1の回転数制御を行うと共に、減圧装置3の冷媒絞り量調整,タンク循環ポンプ10,風呂循環ポンプ20の運転・停止及び給湯混合弁12,湯水混合弁14,流量調整弁15,風呂注湯弁18,温水開閉弁28を制御することにより、貯湯運転,直接給湯運転,タンク給湯運転,風呂湯張り運転,風呂追焚運転を行うものである。   Next, the operation control means 50 performs operation / stop of the heat pump refrigerant circuit 30 and control of the rotation speed of the compressor 1 according to operation settings of the kitchen remote controller 51 and the bath remote controller 52, and also adjusts the refrigerant throttle amount of the decompression device 3. Operation / stop of the tank circulation pump 10 and bath circulation pump 20 and hot water mixing valve 12, hot water mixing valve 14, flow rate adjusting valve 15, bath pouring valve 18 and hot water on / off valve 28 to control hot water storage operation and direct hot water supply Operation, tank hot water supply operation, bath hot water operation, and bath memorial operation are performed.

また、運転制御手段50は、圧縮機1の回転数を制御し、運転開始直後には加熱立上げ時間を早めるため所定の高速回転数で運転し、比較的熱負荷の軽い風呂追焚運転等の時は加熱温度に見合った低速回転数で運転するよう制御する。   Moreover, the operation control means 50 controls the rotation speed of the compressor 1, and immediately after the start of operation, the operation control means 50 operates at a predetermined high speed rotation speed in order to shorten the heating start-up time. In this case, control is performed so that the engine is operated at a low speed corresponding to the heating temperature.

また、運転制御手段50は、夜間貯湯運転手段と随時ヒートポンプ運転手段とを有し、貯湯タンクの沸き上げ量及び沸き上げ温度を組み合せた五段階以上のタンク沸き上げレベルを設定し、前記タンク沸き上げレベルに基づいて一日一回、夜間貯湯運転を行う。   Further, the operation control means 50 has a night hot water storage operation means and an optional heat pump operation means, sets five or more tank boiling levels combining the boiling amount of the hot water storage tank and the boiling temperature, and the tank boiling The hot water storage operation is performed once a day based on the raised level.

更に、ヒートポンプ給湯機には、貯湯タンク9の貯湯温度や貯湯量を検知するためのタンクサーミスタ9a〜9eの他に、各部の温度を検知するサーミスタ(図示せず)や圧縮機1の吐出圧力を検知する圧力センサ(図示せず)、浴槽24内の水位を検出する水位センサ21等が設けられ、各検出信号は運転制御手段50に入力されるように構成されている。運転制御手段50はこれらの信号に基づいて各部品を制御するものである。なお、給湯混合弁12は、給湯運転開始当初においては水冷媒熱交換器2側と湯水混合弁14側間及び貯湯タンク9側と湯水混合弁14側間が共に開となって、水冷媒熱交換器2及び貯湯タンク9の両方から給湯し、ヒートポンプによる水冷媒熱交換器2での加熱温度が給湯温度(約40℃)に達すると、貯湯タンク9側と湯水混合弁14側間を閉じて、水冷媒熱交換器2からのみ給湯する。   Further, the heat pump water heater includes a thermistor (not shown) for detecting the temperature of each part and a discharge pressure of the compressor 1 in addition to the tank thermistors 9a to 9e for detecting the hot water storage temperature and the amount of hot water stored in the hot water storage tank 9. A pressure sensor (not shown) for detecting the water level, a water level sensor 21 for detecting the water level in the bathtub 24, and the like are provided, and each detection signal is input to the operation control means 50. The operation control means 50 controls each component based on these signals. The hot water supply mixing valve 12 is initially open between the water / refrigerant heat exchanger 2 side and the hot / cold water mixing valve 14 side and between the hot water tank 9 side and the hot / cold water mixing valve 14 side at the beginning of the hot water supply operation. When hot water is supplied from both the exchanger 2 and the hot water storage tank 9 and the heating temperature in the water / refrigerant heat exchanger 2 by the heat pump reaches the hot water supply temperature (about 40 ° C.), the hot water storage tank 9 side and the hot water mixing valve 14 side are closed. Thus, hot water is supplied only from the water / refrigerant heat exchanger 2.

また、温水開閉弁28は、水冷媒熱交換器2と風呂用熱交換器26の間に設けられ、風呂追焚き時は開いて風呂追焚運転を行い、それ以外の時は水回路を閉じて水冷媒熱交換器2から風呂用熱交換器26への熱の漏洩を防ぐためのものであり、給水逆止弁8は、一方向にのみ水を流し、逆流を防止するものである。   Moreover, the hot water on-off valve 28 is provided between the water refrigerant heat exchanger 2 and the bath heat exchanger 26, and is opened when bathing is performed to perform bath bathing operation, and at other times, the water circuit is closed. Therefore, the water supply check valve 8 is for preventing water from flowing back only in one direction and preventing backflow.

次に、本実施例のヒートポンプ給湯機の運転動作について、図1のヒートポンプ冷媒回路30及び給湯回路40を参照にしながら図2のフローチャート、図3のタイムテーブル及び図4のタンク沸き上げレベルの実施例に基づいて説明する。   Next, regarding the operation of the heat pump water heater of the present embodiment, referring to the heat pump refrigerant circuit 30 and the hot water supply circuit 40 of FIG. 1, the flowchart of FIG. 2, the time table of FIG. 3, and the tank boiling level of FIG. This will be described based on an example.

図2は、例として中間期(春,秋)に台所蛇口17等を開けて湯水を使用した場合の給湯運転及びその後の運転制御を示すフローチャートの一実施例である。   FIG. 2 is an example of a flowchart showing a hot water supply operation and subsequent operation control when the kitchen faucet 17 and the like are opened and hot water is used in an intermediate period (spring, autumn).

台所蛇口17を開けて湯水使用が始まる(ステップ61)と、運転制御手段50はタンク給湯回路によるタンク給湯を開始し、貯湯タンク9内の高温水(約65℃)に給水(約17℃)を湯水混合弁14で混合して適温水(約40℃)として台所蛇口17等より給湯する(ステップ62)。   When the kitchen faucet 17 is opened and the use of hot water is started (step 61), the operation control means 50 starts tank hot water supply by the tank hot water supply circuit, and supplies hot water (about 65 ° C.) to the hot water storage tank 9 (about 17 ° C.). Are mixed with the hot water mixing valve 14 and hot water is supplied from the kitchen faucet 17 and the like as appropriate temperature water (about 40 ° C.) (step 62).

同時にタンクサーミスタ9a〜9eで温度検知してタンク残湯量を測定し(ステップ63)、図3のタイムテーブルの判定を行い(ステップ64)、タイムテーブルによって予め時間帯毎に決められた随時ヒートポンプ運転手段の運転条件を決める。   At the same time, the tank thermistors 9a to 9e detect the temperature and measure the amount of remaining hot water in the tank (step 63), determine the time table in FIG. 3 (step 64), and perform the heat pump operation as needed for each time zone in advance by the time table. Determine the operating conditions of the means.

ここで、タイムテーブルの一例を図3によって説明する。先ず、要素としては、タンク残湯量,使用モード,時間帯の3項目とする。   Here, an example of the time table will be described with reference to FIG. First, there are three items as the remaining tank amount, usage mode, and time zone.

タンク全容量が200Lの場合とし、残湯量は100L以上,50〜100L,50L以下の3段階に分け、使用モードは風呂湯張りとそれ以外に分け、時間帯は7時〜13時,13時〜21時,21時以降の3段階に分ける。ここで、風呂湯張りとその他で分けるのは、給湯行為の中で洗面,食器洗いなど(約5分以内)に比べ、風呂湯張り(約30分)が極端に多量の湯を使用するためである。   The total capacity of the tank is 200L, the remaining hot water volume is divided into three stages of 100L or more, 50-100L, 50L or less, the use mode is divided into bath hot water and other, and the time zone is from 7am to 13:00, 13:00 It is divided into 3 stages from -21pm and after 21:00. Here, bath hot water is separated from others because hot water bathing (approx. 30 minutes) uses an extremely large amount of hot water compared to washing and dishwashing (within approximately 5 minutes) during hot water supply. is there.

ケース6の場合は、残湯量が100L以上あるので、ヒートポンプは運転せずタンク給湯のみで対応するが、ケース5の場合は、残湯量100L以上であるが、風呂湯張り中であり、13時前であれば夜に再度湯張りする可能性が高いので直接給湯して残湯量を確保しておく。また、ケース2,ケース4においては、風呂湯張り以外の使用中に残湯量が少なくなった場合で、この場合は、時間帯に応じて湯水使用終了後に貯湯運転を行う。風呂湯張り以外の場合に直接給湯とせず貯湯運転とするのは、洗面、食器洗い等の場合は極めて短時間(1分程度)使用の場合が多く、ヒートポンプ運転による直接給湯には適温に達するまでに1分前後の立ち上がり時間が必要であるため、この場合は貯湯運転(100Lとして約20分)の方が直接給湯運転よりも運転効率が良いからである。なお、図3はタイムテーブルの説明のための一例であり、区分方法及び運転条件はこれに限らない。   In case 6, the amount of remaining hot water is 100L or more, so the heat pump does not operate and only the tank hot water is available. However, in case 5, the amount of remaining hot water is 100L or more, but the bath is filled with hot water at 13:00. If it is before, there is a high possibility of refilling at night, so hot water is supplied directly to secure the remaining hot water. In cases 2 and 4, when the amount of remaining hot water is reduced during use other than bath hot water filling, in this case, hot water storage operation is performed after the use of hot water depending on the time zone. In cases other than bathing with hot water, hot water storage operation is not performed directly, but in the case of washing, dishwashing, etc., it is often used for a very short time (about 1 minute). In this case, the hot water storage operation (about 20 minutes as 100 L) is more efficient than the direct hot water supply operation. FIG. 3 is an example for explaining the time table, and the sorting method and the operating conditions are not limited thereto.

図2に戻り、タイムテーブルの判定(ステップ64)に従って、随時貯湯運転(ステップ65),直接給湯運転(ステップ66),ヒートポンプ運転せず(ステップ67)、のいずれかの運転制御を行うが、直接給湯運転(ステップ66)の場合はタンク給湯と平行して行い、随時貯湯運転(ステップ65)の場合は湯水使用が終了し(ステップ68)、タンク給湯が停止(ステップ69)してから行われる。   Returning to FIG. 2, according to the time table determination (step 64), any one of hot water storage operation (step 65), direct hot water supply operation (step 66), and heat pump operation (step 67) is performed. In the case of direct hot water supply operation (step 66), the operation is performed in parallel with the tank hot water supply. In the case of hot water storage operation (step 65), use of hot water is completed (step 68), and the tank hot water supply is stopped (step 69). Is called.

また、前記(ステップ62)から(ステップ67)の制御は随時ヒートポンプ運転手段により電子回路上で行われるので、直接給湯の場合はタンク給湯とほぼ同時にヒートポンプ運転が開始される。   Further, since the control from (Step 62) to (Step 67) is performed on the electronic circuit by the heat pump operation means as needed, in the case of direct hot water supply, the heat pump operation is started almost simultaneously with the tank hot water supply.

次に、タンク給湯運転と平行して直接給湯運転が行われる場合について説明する。運転制御手段50は給水金具5,減圧弁6,給水水量センサ7,給水逆止弁8,貯湯タンク9,給湯混合弁12,湯水混合弁14,流量調整弁15,台所出湯金具16,台所蛇口17のタンク給湯回路によりタンク給湯運転を開始する(ステップ62)。同時に圧縮機1を運転してヒートポンプの冷媒回路30の運転を開始すると共に、給水金具5,減圧弁6,給水水量センサ7,給水逆止弁8,水熱交流量センサ11,給水側伝熱管2b,給湯混合弁12,湯水混合弁14,流量調整弁15,台所出湯金具16,台所蛇口17の直接給湯回路により直接給湯運転を開始する(ステップ66)。   Next, a case where the direct hot water supply operation is performed in parallel with the tank hot water supply operation will be described. The operation control means 50 includes a water supply fitting 5, a pressure reducing valve 6, a water supply amount sensor 7, a water supply check valve 8, a hot water storage tank 9, a hot water supply mixing valve 12, a hot water mixing valve 14, a flow rate adjusting valve 15, a kitchen tapping metal fitting 16, a kitchen faucet. The tank hot water supply operation is started by the tank hot water supply circuit 17 (step 62). Simultaneously, the compressor 1 is operated to start the operation of the refrigerant circuit 30 of the heat pump, and the water supply fitting 5, the pressure reducing valve 6, the water supply water amount sensor 7, the water supply check valve 8, the water heat AC amount sensor 11, and the water supply side heat transfer tube. The direct hot water supply operation is started by the direct hot water supply circuit of 2b, the hot water mixing valve 12, the hot water mixing valve 14, the flow rate adjusting valve 15, the kitchen outlet 16 and the kitchen faucet 17 (step 66).

ここで、ヒートポンプ冷媒回路30は、圧縮機1で圧縮された高温高圧冷媒を水冷媒熱交換器2の冷媒側伝熱管2aへ送り込み、給水側伝熱管2b内を流れる水は加熱されて給湯混合弁12側へ流出するが、運転直後の立ち上がり時は水冷媒熱交換器2へ送り込まれてくる冷媒が十分に高温高圧となりきらず温度が低く、かつ水冷媒熱交換器2全体が冷えているため、水を加熱する加熱能力が十分ではない。時間の経過と共に冷媒は高温高圧となり、それに従って、発生する冷媒からの放熱量が増加し、水への加熱能力が増してゆく。   Here, the heat pump refrigerant circuit 30 sends the high-temperature high-pressure refrigerant compressed by the compressor 1 to the refrigerant-side heat transfer tube 2a of the water-refrigerant heat exchanger 2, and the water flowing in the water-supply-side heat transfer tube 2b is heated to mix hot water. Although it flows out to the valve 12 side, at the time of start-up immediately after operation, the refrigerant sent to the water-refrigerant heat exchanger 2 is not sufficiently high-temperature and high-pressure, so the temperature is low and the whole water-refrigerant heat exchanger 2 is cooled. The heating ability to heat water is not enough. As the time elapses, the refrigerant becomes high temperature and pressure, and accordingly, the amount of heat released from the generated refrigerant increases, and the ability to heat water increases.

ヒートポンプ運転の加熱能力が適温状態に達するまでには約1分前後かかるため、運転制御手段50は、給湯混合弁12後の混合湯温が適温より低い場合はタンク給湯量を増やし、適温より高い場合はタンク給湯量を減らすように給湯混合弁12を作動させて流量比率を調整して適温とする。更に、湯水混合弁14からの給水量を調整することによっても使用端末への給湯温度の調整を行うことができる。   Since it takes about 1 minute for the heating capacity of the heat pump operation to reach an appropriate temperature state, the operation control means 50 increases the amount of hot water supplied to the tank when the mixed hot water temperature after the hot water supply mixing valve 12 is lower than the appropriate temperature, and is higher than the optimal temperature. In this case, the hot water supply mixing valve 12 is operated so as to reduce the amount of hot water supply in the tank, and the flow rate ratio is adjusted to obtain an appropriate temperature. Furthermore, it is possible to adjust the hot water supply temperature to the terminal in use by adjusting the amount of water supplied from the hot water mixing valve 14.

以上のような湯水使用と随時ヒートポンプ運転手段とが繰り返し行われ、1日の給湯使用が終了する(ステップ70)と、タンクの残湯量測定を行い(ステップ71)、夜間強制貯湯運転手段における沸き上げレベルの判定(ステップ72)が行われる。   The use of hot water as described above and the heat pump operation means are repeatedly performed as needed, and when the daily hot water use is completed (step 70), the amount of remaining hot water in the tank is measured (step 71), and boiling in the forced forced hot water storage operation means at night is performed. The raising level is determined (step 72).

次に図4によって、タンク容量200Lの場合の夜間強制貯湯運転時における、タンク沸き上げレベル毎のタンク沸き上げ運転条件設定の一例を説明する。タンク沸き上げレベルの決定条件としては、残湯温度と残湯量との組み合わせによりレベル1からレベル9までに分け、右欄に示すようなタンク沸き上げ運転条件を決める。残湯温度は前日の沸き上げ温度を推定するものであり、この例は沸き上げ温度が65℃,75℃,90℃の3種類の場合で、残湯温度がどの温度に最も近いかによって判別する。   Next, an example of tank boiling operation condition setting for each tank boiling level during the forced night hot water storage operation with a tank capacity of 200 L will be described with reference to FIG. The conditions for determining the tank boiling level are divided into levels 1 to 9 according to the combination of the remaining hot water temperature and the remaining hot water amount, and the tank boiling operating conditions as shown in the right column are determined. The remaining hot water temperature is an estimate of the boiling temperature of the previous day. In this example, there are three types of boiling temperatures of 65 ° C, 75 ° C, and 90 ° C. To do.

残湯量は、150L以上,50〜150L,50L未満に分け、一日の使用量を推定するものである。例えば、レベル1,レベル4,レベル7のように残湯量が150L以上の場合は湯の使用量が50L未満であり、残湯温度に関係なく沸き上げ不要とし、レベル3,レベル6,レベル9のように残湯量が50L未満の場合は湯の使用量が100L以上であり、残湯温度に関係なく200L全量を沸き上げる。   The amount of remaining hot water is divided into 150L or more, 50-150L, and less than 50L, and estimates the daily usage. For example, when the amount of remaining hot water is 150 L or more as in Level 1, Level 4 and Level 7, the amount of hot water used is less than 50 L, and heating is not required regardless of the remaining hot water temperature. When the amount of remaining hot water is less than 50L, the amount of hot water used is 100L or more, and the entire amount of 200L is boiled regardless of the remaining hot water temperature.

また、150L以上または50L未満の状態が連続3日間続いた場合は、外気温度等に関係なく、沸き上げ温度の変更を行う。例えば、レベル4が連続3日続いた場合はレベル2に変更する。同様に、レベル7が連続3日続いた場合はレベル5に変更する。ここで、レベル4からレベル3とせずにレベル2とするのは、レベル4の使用熱量75℃×50L=3750kcalに対し、レベル2の貯湯熱量は65℃×150L=9750kcalと十分余裕が取れることによる。また、レベル3が連続3日続いた場合はレベル5に変更し、レベル6が連続3日続いた場合はレベル8に変更する。   When the state of 150L or more or less than 50L continues for 3 consecutive days, the boiling temperature is changed regardless of the outside air temperature or the like. For example, if level 4 continues for 3 consecutive days, the level is changed to level 2. Similarly, if level 7 continues for 3 consecutive days, the level is changed to level 5. Here, setting level 2 instead of level 4 to level 3 means that the amount of heat stored in level 2 is 65 ° C x 150L = 9750 kcal compared to the amount of heat used in level 4 of 75 ° C x 50L = 3750 kcal. by. If level 3 continues for 3 consecutive days, the level is changed to level 5. If level 6 continues for 3 consecutive days, the level is changed to level 8.

また、タンク沸き上げ開始時刻は、遅らせるほど貯湯後のタンク放熱量を少なくして効率向上を図ることができるが、沸き上げ温度及び沸き上げ量によって決まる、沸き上げ必要時間を考慮する必要がある。なお、図4のタンク沸き上げレベル決定条件は、日毎に湯水の使用量変化が多きいことを考慮した一例であり、レベル決定条件,沸き上げ運転条件共にこの方法に限らない。   In addition, the tank boiling start time can be improved by reducing the amount of heat released from the tank after hot water storage as it is delayed, but it is necessary to consider the required boiling time determined by the boiling temperature and the amount of boiling. . It should be noted that the tank boiling level determination condition in FIG. 4 is an example in consideration of the fact that there are many changes in the amount of hot water used every day, and both the level determination condition and the boiling operation condition are not limited to this method.

図2に戻って、タンク沸き上げレベルが判定され(ステップ72)、タンク沸き上げ運転条件による沸き上げ開始時刻に達すると、ヒートポンプ運転が開始されて夜間貯湯運転が開始される(ステップ73)。次に沸き上げ完了の判定が行われ(ステップ74)、タンク沸き上げ運転条件による沸き上げ温度,沸き上げ量に達すると沸き上げ完了と判定され、タンク沸き上げが終了しヒートポンプ運転を停止する(ステップ75)。   Returning to FIG. 2, the tank boiling level is determined (step 72), and when the boiling start time according to the tank boiling operation condition is reached, the heat pump operation is started and the night hot water storage operation is started (step 73). Next, it is determined whether or not the boiling has been completed (step 74). When the boiling temperature and the boiling amount according to the tank boiling operation conditions are reached, it is determined that the boiling has been completed, the tank boiling is completed, and the heat pump operation is stopped ( Step 75).

このように、本実施例は、貯湯タンクを小形化してヒートポンプ冷媒回路と貯湯タンクを一体化したヒートポンプ給湯機において、特に日中のヒートポンプ運転時間を夜間または1日のヒートポンプ運転時間に対し所定比率に抑える制御手段に関するものである。ヒートポンプ冷媒回路を用いて、貯湯タンクの容量を従来の直接給湯式(60〜100L)よりも大きく、かつ、貯湯式(370L〜560L)よりも小さい約150L〜250Lとして、貯湯ユニットとヒートポンプユニットとの一体化を図ることにより据付上の制約を緩和し、運転制御手段は、夜間貯湯運転手段と共に随時ヒートポンプ運転手段を設けて湯切れを解消し、昼間のヒートポンプ運転時間を夜間のヒートポンプ運転時間に対し10%〜30%間の所定比率以下に抑えることにより電気料金の低減を図るものである。   As described above, in this embodiment, in the heat pump water heater in which the hot water storage tank is miniaturized and the heat pump refrigerant circuit and the hot water storage tank are integrated, the heat pump operation time in the daytime is a predetermined ratio to the heat pump operation time in the nighttime or the day. It is related with the control means to suppress. Using a heat pump refrigerant circuit, the hot water storage tank has a capacity of about 150L to 250L larger than the conventional direct hot water supply type (60 to 100L) and smaller than the hot water storage type (370L to 560L), and a hot water storage unit and a heat pump unit The operation control means is provided with heat pump operation means at any time together with nighttime hot water storage operation means to eliminate hot water outage, and the daytime heat pump operation time is changed to night heat pump operation time. On the other hand, the electricity bill is reduced by keeping the ratio below 10% to 30%.

また、本実施例によれば、貯湯タンクの沸き上げ量及び沸き上げ温度を組み合わせた5段階以上のタンク沸き上げレベルを設定し、前記タンク沸き上げレベルに基づいた夜間貯湯運転手段を行うことにより貯湯温度及び貯湯量の最適化を図ることができる。また、夜間貯湯運転の最適化を図ると共に、貯湯タンク容量や夜間割引の電気料金体系に対応して、昼間のヒートポンプ運転比率を設定することにより、省エネと同時に電気料金の節約を図ることができる。   Further, according to this embodiment, by setting the tank boiling level of five or more stages combining the boiling amount and the boiling temperature of the hot water storage tank, and performing the night hot water storage operation means based on the tank boiling level. The hot water storage temperature and the amount of hot water storage can be optimized. In addition to optimizing nighttime hot water storage operation and setting the daytime heat pump operation ratio corresponding to hot water storage tank capacity and nighttime discount electricity billing system, it is possible to save energy and save electricity bill. .

実施例1で説明した直接給湯式ヒートポンプ給湯機に限らず、貯湯式ヒートポンプ給湯機に対しても適用できる。以下、本発明を貯湯式ヒートポンプ給湯機に適用した場合の実施例について図5によって説明する。   The present invention can be applied not only to the direct hot water supply type heat pump water heater described in the first embodiment but also to a hot water storage type heat pump water heater. Hereinafter, an embodiment when the present invention is applied to a hot water storage type heat pump water heater will be described with reference to FIG.

図5は本発明を貯湯式ヒートポンプ給湯機に適用した場合の部品構成の一例を示す。ヒートポンプ給湯機がヒートポンプ冷媒回路30,給湯回路40及び運転制御手段50から構成されることは直接給湯式と同じであり、相違点は、給湯回路40がタンク貯湯,タンク給湯,風呂湯張り,風呂追焚回路で構成され、直接給湯回路を有しない点である。   FIG. 5 shows an example of a component structure when the present invention is applied to a hot water storage type heat pump water heater. The heat pump water heater is composed of the heat pump refrigerant circuit 30, the hot water supply circuit 40, and the operation control means 50, which is the same as the direct hot water supply system. The difference is that the hot water supply circuit 40 has tank hot water storage, tank hot water, bath hot water, bath. It is composed of a remedy circuit and does not have a direct hot water supply circuit.

ヒートポンプ給湯機の部品構成は大半が類似しているため、各符号は実施例1の図1と同一であり、相違点のみについて説明する。   Since most of the component configurations of the heat pump water heater are similar, each reference numeral is the same as in FIG. 1 of the first embodiment, and only differences will be described.

ヒートポンプ冷媒回路30は、加熱能力の差で圧縮機1の容量や水冷媒熱交換器2の構造などの相違はあるが、回路としては実施例1の図1と同一であり説明を省略する。   The heat pump refrigerant circuit 30 is different from the capacity of the compressor 1 and the structure of the water refrigerant heat exchanger 2 due to the difference in heating capacity, but the circuit is the same as in FIG.

給湯回路40は、実施例1の図1の給湯混合弁12がなく、代わりにタンク貯湯弁13a及びタンク給湯弁13bがある。   The hot water supply circuit 40 does not have the hot water mixing valve 12 of FIG. 1 of the first embodiment, but has a tank hot water storage valve 13a and a tank hot water supply valve 13b instead.

タンク貯湯時は、ヒートポンプ運転と同時にタンク貯湯弁13aを開、タンク給湯弁13bを閉とし、貯湯タンク9,タンク循環ポンプ27,水熱交流量センサ11,水冷媒熱交換器2,タンク貯湯弁13a,貯湯タンク9の水循環回路で貯湯タンク9内の下側の冷水を水冷媒熱交換器2で加熱して貯湯タンク9の上側から貯湯する。   At the time of tank hot water storage, the tank hot water valve 13a is opened simultaneously with the heat pump operation, the tank hot water valve 13b is closed, the hot water storage tank 9, the tank circulation pump 27, the hydrothermal AC sensor 11, the water refrigerant heat exchanger 2, and the tank hot water valve. 13a, in the water circulation circuit of the hot water storage tank 9, the cold water in the lower side of the hot water storage tank 9 is heated by the water refrigerant heat exchanger 2 to store hot water from the upper side of the hot water storage tank 9.

タンク給湯時は、ヒートポンプ運転は行わず、タンク貯湯弁13aを閉、タンク給湯弁13bを開とし、給水金具5,減圧弁6,給水水量センサ7,貯湯タンク9,タンク給湯弁13b,湯水混合弁14,流量調整弁15,台所出湯金具16,台所蛇口17の水循環回路で貯湯タンク9内の上側から給湯する。なお、タンク貯湯弁13aとタンク給湯弁13bとは、同時に開とならないものであれば、実施例1の図1にて説明した給湯混合弁12のように一体化したものであっても良い。   At the time of tank hot water supply, the heat pump operation is not performed, the tank hot water valve 13a is closed, the tank hot water valve 13b is opened, the water supply fitting 5, the pressure reducing valve 6, the water supply amount sensor 7, the hot water storage tank 9, the tank hot water supply valve 13b, hot water mixing Hot water is supplied from the upper side of the hot water storage tank 9 by the water circulation circuit of the valve 14, the flow rate adjusting valve 15, the kitchen outlet 16, and the kitchen faucet 17. The tank hot water storage valve 13a and the tank hot water supply valve 13b may be integrated like the hot water supply mixing valve 12 described in FIG.

風呂湯張りは台所蛇口17使用時と同様にヒートポンプは運転せず、タンク給湯のみで行い、貯湯タンク9に貯湯してある高温水に湯水混合弁14から給水を混合し、適温水として浴槽24に給湯する。風呂追い焚きは、実施例1と同一であり、説明を省略する。   In the same way as when using the kitchen faucet 17, the hot water bathing is not performed by operating the heat pump, but only by hot water supply in the tank, hot water stored in the hot water storage tank 9 is mixed with hot water from the hot water mixing valve 14, and the bathtub 24 is used as appropriate temperature water. Hot water supply. The bath chasing is the same as that in the first embodiment, and a description thereof will be omitted.

また、実施例1と同様に、構造としては貯湯タンク9の容量を150L〜250Lとしてヒートポンプ冷媒回路部と貯湯タンク部を一体化し、小型軽量化を図ると共に、運転制御手段は、昼間のヒートポンプ運転時間を夜間または前日の10%〜30%に抑えて、電気代の節約を図るものである。   As in the first embodiment, the structure of the hot water storage tank 9 is 150L to 250L, and the heat pump refrigerant circuit unit and the hot water storage tank unit are integrated to reduce the size and weight, and the operation control means is a daytime heat pump operation. The time is reduced to 10% to 30% at night or on the previous day to save electricity costs.

次に、本実施例の貯湯式ヒートポンプ給湯機の運転動作について図6のフローチャートによって説明する。   Next, the operation of the hot water storage type heat pump water heater of this embodiment will be described with reference to the flowchart of FIG.

湯水使用及びその後の運転制御において実施例1との相違点は、タイムテーブル判定(ステップ64)後の運転条件が随時貯湯運転(ステップ65)とヒートポンプ運転不要(ステップ66)のみで、直接給湯運転がない点である。即ち、貯湯式ヒートポンプ給湯機の場合は、直接給湯を行わないため、タイムテーブルは、図7のごとく、直接給湯がなく、随時貯湯運転または運転せず、のいずれかとし、かつ、随時貯湯運転の貯湯量を時間帯によって変えることにより、より適切な効率運転を行うことができる。なお、夜間強制貯湯運転については、実施例1で説明した直接給湯式ヒートポンプ給湯機と同様にして、図4のレベル決定条件及びタンク沸き上げ運転条件を適用する。   The difference from the first embodiment in the use of hot water and the subsequent operation control is that the operation conditions after the time table determination (step 64) are only hot water storage operation (step 65) and heat pump operation unnecessary (step 66), and direct hot water supply operation. There is no point. That is, in the case of a hot water storage type heat pump water heater, direct hot water supply is not performed. Therefore, as shown in FIG. 7, the time table has no direct hot water supply, either hot water storage operation or no operation at any time, and any time hot water storage operation. By changing the amount of stored hot water depending on the time zone, more appropriate efficient operation can be performed. For the forced night hot water storage operation, the level determination conditions and the tank boiling operation conditions in FIG. 4 are applied in the same manner as the direct hot water heat pump water heater described in the first embodiment.

以上、説明したように貯湯式ヒートポンプ給湯機においても、直接給湯式ヒートポンプ給湯機の場合と同様に、タンク沸き上げレベルを設定して適切な夜間強制貯湯運転を行い、タイムテーブルによって適切な随時貯湯運転を行うことができ、より有効なヒートポンプ運転,貯湯温度及び貯湯量の最適化により、日中の湯切れ防止効果や貯湯タンクからの放熱量の抑制効果などの省エネ効果を得ることができる。   As described above, in the hot water storage type heat pump water heater, as in the case of the direct hot water supply type heat pump water heater, the tank boiling level is set and an appropriate nighttime forced hot water storage operation is performed. The operation can be performed, and more effective heat pump operation, optimization of the hot water storage temperature and the amount of stored hot water can achieve energy saving effects such as the effect of preventing hot water out of the day and the effect of suppressing the amount of heat released from the hot water storage tank.

また、本実施例によれば、貯湯式ヒートポンプ給湯機において直接給湯式と同様に、設置上の制約緩和,省エネ,湯切れ解消,貯湯温度及び貯湯量の最適化,電気料金の節約などの効果を得ることができる。   In addition, according to the present embodiment, in the hot water storage type heat pump water heater, as in the case of the direct hot water supply type, effects such as relaxation of installation restrictions, energy saving, elimination of hot water, optimization of hot water temperature and amount of hot water, and saving of electricity charges, etc. Can be obtained.

本発明の直接給湯式ヒートポンプ給湯機のヒートポンプ冷媒回路,給湯回路,運転制御手段、及び部品構成の一実施例を示す模式図である。It is a schematic diagram which shows one Example of the heat pump refrigerant circuit of the direct hot water supply type heat pump water heater of this invention, a hot water supply circuit, an operation control means, and component structure. 本発明の直接給湯式ヒートポンプ給湯機の湯水使用時の給湯運転及びその後の運転制御の一実施例を示すフローチャートである。It is a flowchart which shows one Example of the hot water supply operation at the time of hot water use of the direct hot water supply type heat pump water heater of this invention, and subsequent operation control. 本発明の直接給湯式ヒートポンプ給湯機の時間帯による昼間運転制御の選択を行うタイムテーブルの一例を示す。An example of the time table which selects the daytime operation control by the time slot | zone of the direct hot water supply type heat pump water heater of this invention is shown. 本発明の直接給湯式ヒートポンプ給湯機の夜間強制貯湯運転時のタンク沸き上げ条件を決定するタンク沸き上げレベル設定表の一例を示す。An example of the tank boiling level setting table | surface which determines the tank boiling condition at the time of forced nighttime hot water storage driving | operation of the direct hot water supply type heat pump water heater of this invention is shown. 本発明の貯湯式ヒートポンプ給湯機のヒートポンプ冷媒回路,給湯回路,運転制御手段、及び部品構成の一実施例を示す模式図である。It is a schematic diagram which shows one Example of the heat pump refrigerant circuit of the hot water storage type heat pump water heater of this invention, a hot water supply circuit, an operation control means, and component structure. 本発明の貯湯式ヒートポンプ給湯機の湯水使用時の給湯運転及びその後の運転制御の一実施例を示すフローチャートである。It is a flowchart which shows one Example of the hot water supply operation at the time of the hot water use of the hot water storage type heat pump water heater of this invention, and subsequent operation control. 本発明の貯湯式ヒートポンプ給湯機の時間帯による昼間運転制御の選択を行うタイムテーブルの一例を示す。An example of the time table which selects the daytime operation control by the time slot | zone of the hot water storage type heat pump water heater of this invention is shown.

符号の説明Explanation of symbols

1 圧縮機
2 水冷媒熱交換器
3 減圧装置
4 空気冷媒熱交換器
5 給水金具
6 減圧弁
7 給水水量センサ
9 貯湯タンク
10 タンク循環ポンプ
12 給湯混合弁
13a タンク貯湯弁
13b タンク給湯弁
14 湯水混合弁
15 流量調整弁
16 台所出湯金具
17 台所蛇口
20 風呂循環ポンプ
24 浴槽
26 風呂用熱交換器
30 ヒートポンプ冷媒回路
40 給湯回路
50 運転制御手段
51 台所リモコン
52 風呂リモコン
DESCRIPTION OF SYMBOLS 1 Compressor 2 Water refrigerant heat exchanger 3 Pressure reducing device 4 Air refrigerant heat exchanger 5 Water supply metal fitting 6 Pressure reducing valve 7 Water supply water amount sensor 9 Hot water tank 10 Tank circulation pump 12 Hot water mixing valve 13a Tank hot water valve 13b Tank hot water valve 14 Hot water mixing Valve 15 Flow rate adjustment valve 16 Kitchen outlet 17 Kitchen faucet 20 Bath circulation pump 24 Bath 26 Heat exchanger 30 for bath 30 Heat pump refrigerant circuit 40 Hot water supply circuit 50 Operation control means 51 Kitchen remote control 52 Bath remote control

Claims (6)

圧縮機と、水と冷媒との熱交換を行う水冷媒熱交換器と、該水冷媒熱交換器からの冷媒を減圧する減圧装置と、空気と冷媒との熱交換を行う空気冷媒熱交換器とを接続したヒートポンプ冷媒回路と、
前記水冷媒熱交換器と、該水冷媒熱交換器で熱交換した水を貯める貯湯タンクと、該貯湯タンクの水を循環させる循環ポンプとを有する貯湯回路と、
前記貯湯タンク内の貯湯水を給湯端末から給湯するタンク給湯回路と、
ヒートポンプ給湯機の運転を制御する運転制御手段とを備えたヒートポンプ給湯機において、
前記運転制御手段は、給湯時に、湯の使用モード及び時間帯に応じて前記ヒートポンプ冷媒回路の運転の有無を決定することを特徴とするヒートポンプ給湯機。
A compressor, a water-refrigerant heat exchanger that performs heat exchange between water and the refrigerant, a decompression device that depressurizes the refrigerant from the water-refrigerant heat exchanger, and an air-refrigerant heat exchanger that performs heat exchange between air and the refrigerant A heat pump refrigerant circuit connected to
A hot water storage circuit having the water refrigerant heat exchanger, a hot water storage tank for storing water heat-exchanged in the water refrigerant heat exchanger, and a circulation pump for circulating water in the hot water storage tank;
A tank hot water supply circuit for supplying hot water in the hot water storage tank from a hot water supply terminal;
In a heat pump water heater provided with operation control means for controlling the operation of the heat pump water heater,
The operation control means determines whether or not to operate the heat pump refrigerant circuit according to a hot water use mode and a time zone during hot water supply.
請求項1において、  In claim 1,
給水された水を前記水冷媒熱交換器で熱交換して給湯端末から給湯する直接給湯回路を備え、  A direct hot water supply circuit for exchanging heat with the water refrigerant heat exchanger to supply hot water from a hot water supply terminal,
前記運転制御手段は、給湯時の貯湯量に応じてタンク給湯を行うか、直接給湯を行うかを決定することを特徴とするヒートポンプ給湯機。  The operation control means determines whether to perform tank hot water supply or direct hot water supply according to the amount of hot water stored during hot water supply.
請求項1において、  In claim 1,
前記運転制御手段は、給湯時の貯湯量を複数段階に区分し、貯湯量の区分が同一であっても、湯の使用モードに応じてヒートポンプ冷媒回路の運転の有無を決定することを特徴とするヒートポンプ給湯機。  The operation control means divides the amount of hot water stored during hot water supply into a plurality of stages, and determines whether or not the heat pump refrigerant circuit is operated according to the hot water usage mode even if the hot water storage amount is the same. Heat pump water heater.
請求項1において、  In claim 1,
前記運転制御手段は、前記貯湯タンクの貯湯温度を複数段階に区分し、夜間貯湯運転時に、前記貯湯温度の区分に応じて沸き上げ温度を決定することを特徴とするヒートポンプ給湯機。  The operation control means divides the hot water storage temperature of the hot water storage tank into a plurality of stages, and determines the boiling temperature according to the hot water storage temperature classification during night hot water storage operation.
請求項1において、  In claim 1,
前記運転制御手段は、前記貯湯タンクの貯湯量を複数段階に区分し、夜間貯湯運転時に、前記貯湯量の区分に応じて沸き上げ量を決定することを特徴とするヒートポンプ給湯機。  The operation control means divides the amount of hot water stored in the hot water storage tank into a plurality of stages, and determines the amount of boiling in accordance with the classification of the amount of hot water stored during night hot water storage operation.
請求項1において、  In claim 1,
前記運転制御手段は、前記貯湯タンクの貯湯温度及び貯湯量をそれぞれ複数段階に区分し、夜間貯湯運転時に、前記貯湯温度の区分に応じて沸き上げ温度を決定し、同一の前記沸き上げ量及び前記沸き上げ温度が少なくとも3回続いた場合、前記貯湯タンクの貯湯量及び貯湯温度に基づいて前記沸き上げ量及び前記沸き上げ温度を変更することを特徴とするヒートポンプ給湯機。  The operation control means divides the hot water storage temperature and hot water storage amount of the hot water storage tank into a plurality of stages, respectively, determines the boiling temperature according to the hot water storage temperature during night hot water storage operation, the same boiling amount and When the boiling temperature continues at least three times, the amount of boiling and the boiling temperature are changed based on the amount of hot water stored in the hot water storage tank and the hot water storage temperature.
JP2008085182A 2008-03-28 2008-03-28 Heat pump water heater Expired - Fee Related JP5164634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085182A JP5164634B2 (en) 2008-03-28 2008-03-28 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085182A JP5164634B2 (en) 2008-03-28 2008-03-28 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2009236437A JP2009236437A (en) 2009-10-15
JP5164634B2 true JP5164634B2 (en) 2013-03-21

Family

ID=41250603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085182A Expired - Fee Related JP5164634B2 (en) 2008-03-28 2008-03-28 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP5164634B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007527A (en) * 2011-06-24 2013-01-10 Sharp Corp Control device, and water heater
JP6780367B2 (en) * 2016-08-24 2020-11-04 株式会社ノーリツ Hot water storage and hot water supply device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315856A (en) * 1987-06-17 1988-12-23 Mitsubishi Electric Corp Heat pump type hot water feeder
JP2001050587A (en) * 1999-08-06 2001-02-23 Toshiba Electric Appliance Co Ltd Hot water storage type hot water supply equipment
JP3801026B2 (en) * 2001-11-16 2006-07-26 三菱電機株式会社 Heat pump water heater
JP3840574B2 (en) * 2001-12-26 2006-11-01 ダイキン工業株式会社 Water heater
JP3742356B2 (en) * 2002-03-20 2006-02-01 株式会社日立製作所 Heat pump water heater
JP2004347229A (en) * 2003-05-22 2004-12-09 Mitsubishi Electric Corp Heat pump water heater
JP3918786B2 (en) * 2003-07-30 2007-05-23 株式会社デンソー Hot water storage type heat pump water heater
JP2005273958A (en) * 2004-03-23 2005-10-06 Sanyo Electric Co Ltd Hot-water supply and heating apparatus
JP2005345099A (en) * 2005-08-30 2005-12-15 Daikin Ind Ltd Heat pump hot-water supply device
JP2007113897A (en) * 2005-10-24 2007-05-10 Denso Corp Heat pump type water heater
JP4552836B2 (en) * 2005-11-16 2010-09-29 株式会社デンソー Heat pump type water heater
JP2007183054A (en) * 2006-01-10 2007-07-19 Matsushita Electric Ind Co Ltd Storage type hot water supplier
JP2007285659A (en) * 2006-04-19 2007-11-01 Daikin Ind Ltd Hot water supply device

Also Published As

Publication number Publication date
JP2009236437A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP3742356B2 (en) Heat pump water heater
JP4448488B2 (en) Hot water storage water heater
JP5164634B2 (en) Heat pump water heater
JP4368846B2 (en) Hot water storage water heater
JP2005315480A (en) Heat pump type water heater
JP4654845B2 (en) Hot water storage water heater
JP2015227766A (en) Heat pump water heater
JP4740284B2 (en) Heat pump water heater
JP6174482B2 (en) Hot water storage type heat pump water heater
JP5021385B2 (en) Heat pump water heater and operating method thereof
JP3869749B2 (en) Hot water storage water heater
JP4262657B2 (en) Heat pump water heater
JP3909312B2 (en) Heat pump water heater
JP3890322B2 (en) Heat pump water heater
JP3897038B2 (en) Heat pump water heater
JP3870963B2 (en) Heat pump water heater
JP3897039B2 (en) Heat pump water heater
JP4045266B2 (en) Heat pump water heater
JP2009162415A (en) Hot water storage type water heater
JP3858919B2 (en) Heat pump water heater
JP4185948B2 (en) Heat pump water heater
JP7266171B2 (en) Heat pump hot water system
JP3812588B2 (en) Heat pump water heater
JP4898587B2 (en) Heat pump water heater
JP2005106416A (en) Heat pump type hot water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5164634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees