JP5162323B2 - Extrusion foam molding resin composition and foam using the same - Google Patents

Extrusion foam molding resin composition and foam using the same Download PDF

Info

Publication number
JP5162323B2
JP5162323B2 JP2008127834A JP2008127834A JP5162323B2 JP 5162323 B2 JP5162323 B2 JP 5162323B2 JP 2008127834 A JP2008127834 A JP 2008127834A JP 2008127834 A JP2008127834 A JP 2008127834A JP 5162323 B2 JP5162323 B2 JP 5162323B2
Authority
JP
Japan
Prior art keywords
propylene
component
polymer
weight
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008127834A
Other languages
Japanese (ja)
Other versions
JP2009275120A (en
Inventor
一雄 飛鳥
房彰 加藤
英史 内野
正顕 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Priority to JP2008127834A priority Critical patent/JP5162323B2/en
Publication of JP2009275120A publication Critical patent/JP2009275120A/en
Application granted granted Critical
Publication of JP5162323B2 publication Critical patent/JP5162323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、押出発泡成形用樹脂組成物およびそれを用いた発泡体に関し、さらに詳しくは、高倍率であっても、均一微細な発泡セルを有する高独立気泡構造体を得るのに適した押出発泡成形用樹脂組成物、ならびにそれを用いて得られる緩衝性、外観および耐臭気性に優れる発泡体に関する。   The present invention relates to a resin composition for extrusion foam molding and a foam using the same, and more particularly, extrusion suitable for obtaining a highly closed cell structure having uniform and fine foam cells even at a high magnification. The present invention relates to a resin composition for foam molding and a foam excellent in buffering property, appearance and odor resistance obtained by using the resin composition.

ポリスチレン系樹脂に替わる発泡体として、プロピレン系樹脂の提案がなされているが、プロピレン系樹脂は、一般的に結晶性が高いこと、押出時の溶融粘度が調整し難いことから、均一微細発泡セルが得難く、発泡セル径が不均一になり易いため、良好な製品を得ることが難しい材料である。例えば、2、3倍程度の低発泡倍率の発泡体は、溶融張力または伸長粘度の歪硬化性を高くすることで、発泡成形性能を改善させることは可能であるが、高い発泡倍率を有する発泡体においては、従来のプロピレン系樹脂では、均一微細な発泡セルを有する独立気泡構造体を得ることが困難である。発泡体の倍率が高くなるほど、緩衝性、断熱性、吸音性に優れることが一般に知られており、発泡体内部を構成する独立気泡構造が、これらの特性をさらに大きく改善できるため、高倍率であり、優れた独立気泡構造を有する発泡体が要望されている。   Propylene resins have been proposed as foams to replace polystyrene resins. Propylene resins generally have high crystallinity, and the melt viscosity during extrusion is difficult to adjust. It is difficult to obtain a good product because the foamed cell diameter tends to be non-uniform. For example, a foam with a low expansion ratio of about 2 or 3 times can improve the foam molding performance by increasing the strain-hardening property of melt tension or elongational viscosity, but has a high expansion ratio. In the body, with the conventional propylene-based resin, it is difficult to obtain a closed cell structure having uniform and fine foam cells. It is generally known that the higher the magnification of the foam, the better the buffering, heat insulation, and sound absorbing properties, and the closed cell structure that forms the interior of the foam can further improve these characteristics, so at high magnification There is a need for a foam having an excellent closed cell structure.

このような問題点を解決するために、用いるプロピレン系樹脂の溶融張力を高くし、均一微細な発泡セルを得るための手法として、プロピレン系樹脂に対し、電子線放射による自由末端長鎖分岐を持たせるという極めて特殊なプロピレン系樹脂を得る提案もなされている(特許文献1、2参照)。この様なプロピレン系樹脂は、独立気泡率および外観等に優れた低密度の発泡体を得るのに適していると言われている。   In order to solve such problems, as a technique for increasing the melt tension of the propylene resin to be used and obtaining uniform and fine foam cells, free end long chain branching by electron beam radiation is applied to the propylene resin. Proposals have also been made to obtain a very special propylene-based resin (see Patent Documents 1 and 2). Such a propylene-based resin is said to be suitable for obtaining a low-density foam excellent in closed cell ratio and appearance.

しかしながら、該プロピレン系樹脂は、結晶化速度が速いため、成形加工時において微細気泡の保有能力が乏しく、均一微細な発泡セルからなる、優れた独立気泡構造を有する発泡体を得るという点においては、十分なものではなかった。さらに、結晶化速度が速いために良好な発泡体を得ることができる成形適正温度幅が狭かった。また、該プロピレン系樹脂は、特殊な改質工程を経ているため、経済性が悪く、臭気にも問題がある上、樹脂自体に架橋反応が起こっているため、再び溶融混練りすると、ゲルが多量に発生し、そのリサイクル使用は困難であるという欠点を有している。
特開昭62−121704号公報 特開平2−69533号公報
However, since the propylene-based resin has a high crystallization speed, it has a poor ability to hold fine bubbles at the time of molding, and in the point of obtaining a foam having an excellent closed cell structure consisting of uniform fine foam cells. It was not enough. Furthermore, since the crystallization speed is high, the proper molding temperature range at which a good foam can be obtained was narrow. In addition, since the propylene-based resin has undergone a special reforming process, it is not economical and has a problem of odor, and the resin itself undergoes a crosslinking reaction. It is generated in large quantities and has the disadvantage that its recycling is difficult.
Japanese Patent Laid-Open No. 62-121704 JP-A-2-69533

本発明の目的は、従来技術の現状に鑑み、高倍率であっても、均一微細な発泡セルを有する高独立気泡構造体を得るのに適した押出発泡成形用樹脂組成物、ならびにそれを用いて得られる緩衝性、外観および耐臭気性に優れる発泡体を提供することにある。   An object of the present invention is to provide a resin composition for extrusion foam molding suitable for obtaining a highly closed cell structure having uniform and fine foam cells even at a high magnification in view of the current state of the prior art, and the use thereof Another object of the present invention is to provide a foam excellent in buffering property, appearance and odor resistance.

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、特定のプロピレン系重合体(X)に対し、特定量の発泡剤を配合した押出発泡成形用樹脂組成物は、押出発泡成形において、高倍率であっても、均一微細な発泡セルを有する高独立気泡構造体を得るのに好適であること、ならびにそれを用いて得られる発泡体は、緩衝性、外観および耐臭気性に優れることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that an extrusion foam molding resin composition containing a specific amount of a foaming agent with respect to a specific propylene polymer (X) is extruded. In foam molding, it is suitable for obtaining a highly closed cell structure having uniform and fine foam cells even at a high magnification, and the foam obtained by using the foam has cushioning properties, appearance and odor resistance. As a result, the present invention has been completed.

すなわち、本発明の第1の発明によれば、下記の25℃でp−キシレンに不溶となる成分(A)と25℃でp−キシレンに溶解する成分(B)から構成され、且つ(i)GPCで測定する重量平均分子量(Mw)が10万〜100万であり、(ii)熱p−キシレンに不溶な成分が0.3重量%以下であり、(iii)伸長粘度の測定における歪硬化度(λmax)が2.0以上であり、(iv)MFR(230℃、2.16kg荷重)が0.1〜20g/10分であり、(v)メルトテンションテスターの測定の230℃における溶融張力(MT)が5g以上であるプロピレン系重合体(X)と発泡剤とを配合してなる押出発泡成形用樹脂組成物が提供される。
成分(A):次の(A1)〜(A5)に規定する要件を有する25℃でp−キシレンに不溶となる成分(CXIS)。
(A1)重合体(X)全量に対して20〜95重量%である。
(A2)GPCで測定する重量平均分子量(Mw)が10万〜100万である。
(A3)13C−NMRで測定するアイソタクチックトライアッド分率(mm)が93%以上である。
(A4)伸長粘度の測定における歪硬化度(λmax)が2.0以上である。
(A5)プロピレン単位と、エチレン単位またはα−オレフィン単位を含有する。
成分(B):次の(B1)〜(B3)に規定する要件を有する25℃でp−キシレンに溶解する成分(CXS)。
(B1)重合体(X)全量に対して5〜80重量%である。
(B2)GPCで測定する重量平均分子量(Mw)が10万〜100万である。
(B3)プロピレン単位と、エチレン単位および/またはα−オレフィン単位を含有する。
That is, according to the first invention of the present invention, it is composed of the following component (A) that is insoluble in p-xylene at 25 ° C. and component (B) that is soluble in p-xylene at 25 ° C. ) The weight average molecular weight (Mw) measured by GPC is 100,000 to 1,000,000, (ii) the component insoluble in hot p-xylene is 0.3% by weight or less, and (iii) strain in measurement of elongational viscosity. Curing degree (λmax) is 2.0 or more, (iv) MFR (230 ° C., 2.16 kg load) is 0.1 to 20 g / 10 min, and (v) Melt tension tester measurement at 230 ° C. There is provided an extrusion foam molding resin composition comprising a propylene polymer (X) having a melt tension (MT) of 5 g or more and a foaming agent.
Component (A): Component (CXIS) that is insoluble in p-xylene at 25 ° C. having the requirements defined in the following (A1) to (A5).
(A1) It is 20 to 95 weight% with respect to the polymer (X) whole quantity.
(A2) The weight average molecular weight (Mw) measured by GPC is 100,000 to 1,000,000.
(A3) The isotactic triad fraction (mm) measured by 13 C-NMR is 93% or more.
(A4) The strain hardening degree (λmax) in the measurement of elongational viscosity is 2.0 or more.
(A5) A propylene unit and an ethylene unit or an α-olefin unit are contained.
Component (B): Component (CXS) that dissolves in p-xylene at 25 ° C. having the requirements defined in the following (B1) to (B3).
(B1) 5 to 80% by weight based on the total amount of the polymer (X).
(B2) The weight average molecular weight (Mw) measured by GPC is 100,000 to 1,000,000.
(B3) Contains propylene units, ethylene units and / or α-olefin units.

本発明の第2の発明によれば、第1の発明において、プロピレン系重合体(X)の成分(B)は、さらに、(B4)伸長粘度の測定における歪硬化度(λmax)が2.0以上であることの要件を有することを特徴とする押出発泡成形用樹脂組成物が提供される。
また、本発明の第3の発明によれば、第1の発明において、プロピレン系重合体(X)は、結晶性プロピレン重合セグメントを側鎖とし、非結晶性プロピレン共重合セグメントを主鎖とする分岐構造を有する重合体から構成されていることを特徴とする押出発泡成形用樹脂組成物が提供される。
さらに、本発明の第4の発明によれば、第1の発明において、プロピレン系重合体(X)の成分(A)は、結晶性プロピレン重合セグメントを側鎖とし、非結晶性プロピレン共重合セグメントを主鎖とする分岐構造を有する重合体から構成されていることを特徴とする押出発泡成形用樹脂組成物が提供される。
According to the second invention of the present invention, in the first invention, the component (B) of the propylene-based polymer (X) further has (B4) a strain hardening degree (λmax) of 2. There is provided a resin composition for extrusion foam molding characterized by having a requirement of being 0 or more.
According to the third invention of the present invention, in the first invention, the propylene polymer (X) has a crystalline propylene polymer segment as a side chain and an amorphous propylene copolymer segment as a main chain. There is provided a resin composition for extrusion foam molding characterized by being composed of a polymer having a branched structure.
Furthermore, according to the fourth aspect of the present invention, in the first aspect, the component (A) of the propylene polymer (X) has a crystalline propylene polymer segment as a side chain, and an amorphous propylene copolymer segment. A resin composition for extrusion foam molding is provided, which is composed of a polymer having a branched structure having a main chain as a main chain.

また、本発明の第5の発明によれば、第1の発明において、プロピレン系重合体(X)の成分(A)は、エチレン単位を含むものであって、エチレン含量が0.1〜10重量%であることを特徴とする押出発泡成形用樹脂組成物が提供される。
さらに、本発明の第6の発明によれば、第1の発明において、プロピレン系重合体(X)の成分(B)は、エチレン単位を含むものであって、エチレン含量が10〜60重量%であることを特徴とする押出発泡成形用樹脂組成物が提供される。
According to the fifth invention of the present invention, in the first invention, the component (A) of the propylene polymer (X) contains an ethylene unit and has an ethylene content of 0.1 to 10. A resin composition for extrusion foam molding is provided, which is characterized by the weight percent.
Furthermore, according to the sixth invention of the present invention, in the first invention, the component (B) of the propylene-based polymer (X) contains an ethylene unit and has an ethylene content of 10 to 60% by weight. A resin composition for extrusion foam molding is provided.

また、本発明の第7の発明によれば、第1〜6のいずれかの発明に係る押出発泡成形用樹脂組成物を押出成形によって得ることを特徴とする発泡体が提供される。   Moreover, according to 7th invention of this invention, the foam characterized by obtaining the resin composition for extrusion foam molding which concerns on any one of 1st-6th invention by extrusion molding is provided.

また、本発明の第8の発明によれば、第7の発明において、発泡倍率が5〜40倍であって、連続気泡率が20%以下であることを特徴とする発泡体が提供される。
さらに、本発明の第9の発明によれば、第7又は8の発明において、平均気泡径が400μm以下であることを特徴とする発泡体が提供される。
According to an eighth aspect of the present invention, there is provided a foam according to the seventh aspect, wherein the foaming ratio is 5 to 40 times and the open cell ratio is 20% or less. .
Furthermore, according to the ninth aspect of the present invention, there is provided the foam according to the seventh or eighth aspect, wherein the average cell diameter is 400 μm or less.

本発明は、上記した如く、押出発泡成形用樹脂組成物などに係るものであるが、その好ましい態様としては、次のものが包含される。
(1)第1の発明において、発泡剤は、重炭酸ナトリウム、炭酸アンモニウム、亜硝酸アンモニウム、アジド化合物(アゾジカルボンアミド、アゾビスホルムアミド、イソブチロニトリル、ジアゾアミノベンゼンなど)若しくはニトロソ化合物(N,N’−ジニトロソペンタテトラミン、N,N’−ジメチル−ジニトロテレフタルアミドなど)から選ばれる熱分解型化学発泡剤、又は二酸化炭素、窒素、水若しくはアルカンガス(ブタンなど)から選ばれる揮発性発泡剤であることを特徴とする押出発泡成形用樹脂組成物。
(2)上記のいずれかの発明において、発泡剤の配合量は、プロピレン系重合体(X)100重量部に対し、0.01〜15.0重量部であることを特徴とする押出発泡成形用樹脂組成物。
As described above, the present invention relates to a resin composition for extrusion foam molding, and the preferred embodiments include the following.
(1) In the first invention, the foaming agent is sodium bicarbonate, ammonium carbonate, ammonium nitrite, azide compound (azodicarbonamide, azobisformamide, isobutyronitrile, diazoaminobenzene, etc.) or nitroso compound (N, N'-dinitrosopentatetramine, N, N'-dimethyl-dinitroterephthalamide, etc.) or a volatile foam selected from carbon dioxide, nitrogen, water or alkane gas (butane, etc.) A resin composition for extrusion foam molding, which is an agent.
(2) In any one of the above inventions, the amount of the foaming agent is 0.01 to 15.0 parts by weight with respect to 100 parts by weight of the propylene polymer (X). Resin composition.

本発明の押出発泡成形用樹脂組成物は、特定のプロピレン系重合体(X)に対し、発泡剤を配合したものであり、高結晶性であり、結晶化速度が緩やかである上、溶融流動特性がよく、高い溶融張力および高い歪硬化性を有していることから、高発泡倍率であっても、均一微細な発泡セルを有する高独立気泡構造体を得るのに適している。そして、それを用いて押出発泡成形することによって得られる発泡体は、圧縮特性、緩衝性、断熱性、外観、クリーン性、リサイクル性、耐衝撃性および耐臭気性に優れたものであるところより、ガラス瓶、金属缶、プラスチック瓶等の熱収縮性シュリンクラベル、或いは衛生用品、化粧品等の個包装、食品容器等に好適に利用できる。   The resin composition for extrusion foam molding of the present invention is obtained by blending a foaming agent with a specific propylene polymer (X), is highly crystalline, has a slow crystallization rate, and has a melt flow. Since it has good characteristics and high melt tension and high strain hardening, it is suitable for obtaining a highly closed cell structure having uniform and fine foam cells even at a high expansion ratio. And the foam obtained by extrusion foam molding using it is more excellent in compression characteristics, buffer properties, heat insulation, appearance, cleanliness, recyclability, impact resistance and odor resistance. It can be suitably used for heat-shrinkable shrink labels such as glass bottles, metal cans and plastic bottles, individual packaging such as hygiene products and cosmetics, food containers and the like.

本発明の押出発泡成形用樹脂組成物は、下記の25℃でp−キシレンに不溶となる成分(A)と25℃でp−キシレンに溶解する成分(B)から構成され、且つ(i)GPCで測定する重量平均分子量(Mw)が10万〜100万であり、(ii)熱p−キシレンに不溶な成分が0.3重量%以下であり、(iii)伸長粘度の測定における歪硬化度(λmax)が2.0以上であり、(iv)MFR(230℃、2.16kg荷重)が0.1〜20g/10分であり、(v)メルトテンションテスターの測定の230℃における溶融張力(MT)が5g以上であるプロピレン系重合体(X)に対し、発泡剤を配合するものである。
成分(A):次の(A1)〜(A5)に規定する要件を有する25℃でp−キシレンに不溶となる成分(CXIS)。
(A1)重合体(X)全量に対して20〜95重量%である。
(A2)GPCで測定する重量平均分子量(Mw)が10万〜100万である。
(A3)13C−NMRで測定するアイソタクチックトライアッド分率(mm)が93%以上である。
(A4)伸長粘度の測定における歪硬化度(λmax)が2.0以上である。
(A5)プロピレン単位と、エチレン単位またはα−オレフィン単位を含有する。
成分(B):次の(B1)〜(B3)に規定する要件を有する25℃でp−キシレンに溶解する成分(CXS)。
(B1)重合体(X)全量に対して5〜80重量%である。
(B2)GPCで測定する重量平均分子量(Mw)が10万〜100万である。
(B3)プロピレン単位と、エチレン単位および/またはα−オレフィン単位を含有する。
The resin composition for extrusion foam molding of the present invention comprises the following component (A) that is insoluble in p-xylene at 25 ° C. and component (B) that is soluble in p-xylene at 25 ° C., and (i) The weight average molecular weight (Mw) measured by GPC is 100,000 to 1,000,000, (ii) the component insoluble in hot p-xylene is 0.3% by weight or less, and (iii) strain hardening in the measurement of elongational viscosity. Degree (λmax) is 2.0 or more, (iv) MFR (230 ° C., 2.16 kg load) is 0.1 to 20 g / 10 min, and (v) melting at 230 ° C. as measured by a melt tension tester. A foaming agent is blended with the propylene polymer (X) having a tension (MT) of 5 g or more.
Component (A): Component (CXIS) that is insoluble in p-xylene at 25 ° C. having the requirements defined in the following (A1) to (A5).
(A1) It is 20 to 95 weight% with respect to the polymer (X) whole quantity.
(A2) The weight average molecular weight (Mw) measured by GPC is 100,000 to 1,000,000.
(A3) The isotactic triad fraction (mm) measured by 13 C-NMR is 93% or more.
(A4) The strain hardening degree (λmax) in the measurement of elongational viscosity is 2.0 or more.
(A5) A propylene unit and an ethylene unit or an α-olefin unit are contained.
Component (B): Component (CXS) that dissolves in p-xylene at 25 ° C. having the requirements defined in the following (B1) to (B3).
(B1) 5 to 80% by weight based on the total amount of the polymer (X).
(B2) The weight average molecular weight (Mw) measured by GPC is 100,000 to 1,000,000.
(B3) Contains propylene units, ethylene units and / or α-olefin units.

以下、押出発泡成形用樹脂組成物の構成成分およびその製造、ならびにそれを用いて得られる発泡体等について詳細に説明する。
I.押出発泡成形用樹脂組成物の構成成分
1.プロピレン系重合体(X)
本発明の押出発泡成形用樹脂組成物を構成するプロピレン系重合体(X)は、25℃でp−キシレンに不溶となる成分(A)と25℃でp−キシレンに溶解する成分(B)から構成され、且つ、(i)GPCで測定する重量平均分子量(Mw)が10万〜100万であり、(ii)熱p−キシレンに不溶な成分が0.3重量%以下であり、(iii)伸長粘度の測定における歪硬化度(λmax)が2.0以上であり、(iv)MFR(230℃、2.16kg荷重)が0.1〜20g/10分であり、(v)メルトテンションテスターの測定の230℃における溶融張力(MT)が5g以上である。
Hereinafter, the components of the resin composition for extrusion foam molding, the production thereof, and the foam obtained using the same will be described in detail.
I. 1. Components of resin composition for extrusion foam molding Propylene polymer (X)
The propylene-based polymer (X) constituting the resin composition for extrusion foam molding of the present invention comprises a component (A) that is insoluble in p-xylene at 25 ° C. and a component (B) that is soluble in p-xylene at 25 ° C. And (i) a weight average molecular weight (Mw) measured by GPC is 100,000 to 1,000,000, and (ii) a component insoluble in hot p-xylene is 0.3% by weight or less ( iii) the strain hardening degree (λmax) in the measurement of the extensional viscosity is 2.0 or more, (iv) the MFR (230 ° C., 2.16 kg load) is 0.1 to 20 g / 10 min, and (v) the melt The melt tension (MT) at 230 ° C. measured by a tension tester is 5 g or more.

上記プロピレン系重合体(X)は、結晶性プロピレン重合セグメントと非結晶性プロピレン共重合セグメントの一部が化学的に結合している共重合体を含む、結晶性プロピレン重合体成分とプロピレン−エチレンランダム共重合体成分を多段重合法により逐次に製造して得られたプロピレン−エチレン共重合体成分である。   The propylene polymer (X) includes a crystalline propylene polymer component and a propylene-ethylene containing a copolymer in which a crystalline propylene polymer segment and a part of an amorphous propylene copolymer segment are chemically bonded. It is a propylene-ethylene copolymer component obtained by sequentially producing a random copolymer component by a multistage polymerization method.

多段重合は、好ましくは第一段階で結晶性プロピレン重合体成分を重合し、第二段階でプロピレン−エチレンランダム共重合体成分を重合する二段重合である。
この際、第一段階で製造される結晶性プロピレン重合体の一部が末端ビニル基の状態で反応停止するものを多く存在させることで、そのまま二段目の重合を行った場合に、末端ビニルの結晶性プロピレン重合体がマクロモノマーとして、第二段階の重合に関わり、非結晶性プロピレン共重合セグメント(プロピレン−エチレンランダム共重合セグメント)が主鎖であり、結晶性プロピレン重合セグメントが側鎖である分岐構造を有する共重合体が生成する。
本発明者らは、本発明に係るプロピレン系共重合体(X)が良好な均一微細発泡性を発揮する要因は、この分岐構造の存在に帰せられると考察している。一般に、リアルブロック共重合体や、グラフト共重合体等の、一分子中に異なるモノマーの連鎖からなる部分を有する重合体は、ミクロ相分離構造と呼ばれる、通常の相分離構造よりもかなり小さな分子レベルのオーダーでの相分離構造をとることが知られており、そのような微細な相分離構造は、均一微細発泡性を格段に向上させる。実際に、本発明に係るプロピレン系重合体(X)(分岐構造を有する共重合体)の電子顕微鏡写真(図3、4)では、通常の樹脂(分岐構造の存在しないもの(図5))に比べて、極めて微細なゴムドメインの分散構造が見られており、上記の推察を支持している。
なお、プロピレン系重合体(X)は、非結晶性プロピレン共重合セグメント(プロピレン−エチレンランダム共重合セグメント)が主鎖であり、結晶性プロピレン重合セグメントが側鎖である分岐構造を有する共重合体を含んでいる。主鎖を構成する成分としては、プロピレン、エチレンの他、本発明の本質を著しく損なわない範囲内で、他の不飽和化合物、例えば、1−ブテンなどのα−オレフィンを含んでいても良い。側鎖を構成する成分としては、主としてプロピレンであり、本発明の本質を著しく損なわない範囲内で少量の他の不飽和化合物、例えば、エチレン、1−ブテンなどのα−オレフィンを含んでいてもよい。
The multistage polymerization is preferably a two-stage polymerization in which the crystalline propylene polymer component is polymerized in the first stage and the propylene-ethylene random copolymer component is polymerized in the second stage.
At this time, a part of the crystalline propylene polymer produced in the first step is present in a state in which a part of the reaction is terminated in the state of the terminal vinyl group, so that when the second-stage polymerization is performed as it is, the terminal vinyl is As a macromonomer, the crystalline propylene polymer is involved in the second stage polymerization, the non-crystalline propylene copolymer segment (propylene-ethylene random copolymer segment) is the main chain, and the crystalline propylene polymer segment is the side chain. A copolymer having a certain branched structure is formed.
The present inventors consider that the factor that the propylene-based copolymer (X) according to the present invention exhibits a good uniform fine foaming property can be attributed to the presence of this branched structure. In general, a polymer having a part composed of a chain of different monomers in one molecule, such as a real block copolymer or a graft copolymer, is a molecule that is considerably smaller than an ordinary phase separation structure, called a microphase separation structure. It is known to have a phase separation structure on the order of level, and such a fine phase separation structure significantly improves uniform fine foamability. Actually, in the electron micrographs (FIGS. 3 and 4) of the propylene-based polymer (X) (copolymer having a branched structure) according to the present invention, ordinary resins (those having no branched structure (FIG. 5)) In comparison with the above, a very fine dispersion structure of rubber domains is seen, which supports the above inference.
The propylene polymer (X) is a copolymer having a branched structure in which an amorphous propylene copolymer segment (propylene-ethylene random copolymer segment) is a main chain, and a crystalline propylene polymer segment is a side chain. Is included. In addition to propylene and ethylene, the component constituting the main chain may contain other unsaturated compounds, for example, α-olefins such as 1-butene, as long as the essence of the present invention is not significantly impaired. The component constituting the side chain is mainly propylene, and may contain a small amount of other unsaturated compounds, for example, α-olefins such as ethylene and 1-butene, as long as the essence of the present invention is not significantly impaired. Good.

上記のようなプロピレン−エチレンランダム共重合体成分が主鎖であり、結晶性プロピレン重合体成分が側鎖であるグラフト共重合体が存在しているか、否かを判断する手法の一つとして、伸張粘度の測定から得られる歪硬化度(λmax)を用いることが有効である。
上記歪硬化度(λmax)は、溶融時強度を表す指標であり、この値が大きいと、溶融張力が向上する効果がある。
また、この歪硬化度は、伸長粘度の非線形性を表す指標であり、通常、分子の絡み合いが多いほど、この値が大きくなると言われている。分子の絡み合いは、分岐の量、分岐鎖の長さに影響を受ける。したがって、分岐の量、分岐の長さが長いほど、歪硬化度は大きくなる。
本発明に係るプロピレン系重合体(X)においては、一段目の結晶性プロピレン重合体製造の際に、末端ビニル基のプロピレン重合体がマクロモノマーとして重合に関与し、分岐したプロピレン重合体を生成する。したがって、この歪硬化度は、末端ビニルのプロピレン重合体の生成量の指標であって、2.0以上であることが好ましい。
ここで、歪硬化度の測定方法に関しては、一軸伸長粘度を測定できれば、どのような方法でも原理的に同一の値が得られるが、例えば、測定方法及び測定機器の詳細は、公知文献:Polymer 42(2001)8663に記載の方法があるが、好ましい測定方法及び測定機器として、以下を挙げることができる。
As one of the techniques for determining whether or not there is a graft copolymer in which the propylene-ethylene random copolymer component as described above is a main chain and the crystalline propylene polymer component is a side chain, It is effective to use the strain hardening degree (λmax) obtained from the measurement of the extensional viscosity.
The strain hardening degree (λmax) is an index representing the strength at the time of melting, and when this value is large, there is an effect of improving the melt tension.
The degree of strain hardening is an index representing the nonlinearity of elongational viscosity, and it is usually said that this value increases as the molecular entanglement increases. Molecular entanglement is affected by the amount of branching and the length of the branched chain. Therefore, the greater the amount of branching and the length of branching, the greater the degree of strain hardening.
In the propylene polymer (X) according to the present invention, a terminal propylene polymer of a vinyl group is involved in the polymerization as a macromonomer during the production of the first crystalline propylene polymer, and a branched propylene polymer is formed. To do. Therefore, this degree of strain hardening is an index of the amount of terminal vinyl propylene polymer produced, and is preferably 2.0 or more.
Here, as to the method for measuring the strain hardening degree, the same value can be obtained in principle by any method as long as the uniaxial elongation viscosity can be measured. 42 (2001) 8663, and preferable measuring methods and measuring instruments include the following.

測定方法1:
装置:Rheometorics社製 Ares
冶具:ティーエーインスツルメント社製 Extentional Viscosity Fixture
測定温度:180℃
歪み速度:0.1/sec
試験片の作成:プレス成形して18mm×10mm、厚さ0.7mm、のシートを作成する。
Measuring method 1:
Apparatus: Ales manufactured by Rheometrics
Jig: EXTENSIONAL VISUALITY FIXTURE, manufactured by TA Instruments
Measurement temperature: 180 ° C
Strain rate: 0.1 / sec
Preparation of test piece: A sheet of 18 mm × 10 mm and a thickness of 0.7 mm is formed by press molding.

測定方法2:
装置:東洋精機社製、Melten Rheometer
測定温度:180℃
歪み速度:0.1/sec
試験片の作成:東洋精機社製キャピログラフを用い、180℃で内径3mmのオリフィスを用いて、速度10〜50mm/minで押し出しストランドを作成する。
Measurement method 2:
Apparatus: Toyo Seiki Co., Ltd., Melten Rheometer
Measurement temperature: 180 ° C
Strain rate: 0.1 / sec
Preparation of test piece: Extruded strands are prepared at a speed of 10 to 50 mm / min using an orifice with an inner diameter of 3 mm at 180 ° C. using a Capillograph manufactured by Toyo Seiki Co., Ltd.

算出方法:
歪み速度:0.1/secの場合の伸長粘度を、横軸に時間t(秒)、縦軸に伸長粘度ηE(Pa・秒)を両対数グラフでプロットする。その両対数グラフ上で歪み硬化を起こす直前の粘度を直線で近似し、歪量が4.0となるまでの伸長粘度ηEの最大値(ηmax)を求め、また、その時間までの近似直線上の粘度をηlinとする。
図2は、伸長粘度のプロット図の一例である。ηmax/ηlinを、λmaxと定義し、歪硬化度の指標とする。
測定方法1および測定方法2から算出される伸長粘度や歪硬化度は、原理的には物質固有の伸張粘度および歪硬化度を測定するもので、同一の値を示すものである。したがって測定方法1または測定方法2のどちらの方法で計ってもよい。
Calculation method:
The elongational viscosity at a strain rate of 0.1 / sec is plotted as a log-log graph of time t (second) on the horizontal axis and elongational viscosity ηE (Pa · second) on the vertical axis. On the logarithmic graph, the viscosity immediately before strain hardening is approximated by a straight line, the maximum value (ηmax) of the extensional viscosity ηE until the amount of strain becomes 4.0 is obtained, and on the approximate straight line up to that time Let ηlin be the viscosity.
FIG. 2 is an example of a plot of elongational viscosity. ηmax / ηlin is defined as λmax and is used as an index of strain hardening degree.
The elongational viscosity and strain hardening degree calculated from the measuring method 1 and the measuring method 2 are, in principle, for measuring the inherent extensional viscosity and strain hardening degree of the substance and exhibit the same value. Therefore, either measurement method 1 or measurement method 2 may be used.

但し、測定方法2は、分子量が比較的低いもの(すなわち、MFR>2の場合)を測定する場合、測定サンプルが垂れ下がってしまい、測定精度が落ちてしまうという測定上の制約があり、また、測定方法1は、分子量の比較的高いもの(MFR<1)を測定する場合、測定サンプルが不均一に収縮変形してしまい、測定時に歪むらができてしまうことにより、歪硬化が線形部と平均化されてしまい、歪硬化度を小さく見積もってしまうという測定精度の問題がある。
したがって、分子量の低いものは測定方法1で、分子量の高いものは測定方法2を用いることが、便宜上好ましい。
一般的に、高い歪硬化度を示すには、分岐の長さとして、ポリプロピレンの絡みあい分子量(Me)7000以上が好まく、また、分岐が長いほど歪硬化度は大きくなるといわれている。
However, the measurement method 2 has a measurement restriction that a measurement sample hangs down when the molecular weight is relatively low (that is, when MFR> 2), and the measurement accuracy is lowered. In measurement method 1, when measuring a relatively high molecular weight (MFR <1), the measurement sample is deformed in a non-uniform manner, and distortion occurs at the time of measurement. There is a problem of measurement accuracy that is averaged and the strain hardening degree is estimated to be small.
Therefore, it is preferable for convenience to use the measuring method 1 for those having a low molecular weight and the measuring method 2 for those having a high molecular weight.
In general, in order to show a high degree of strain hardening, it is said that the entanglement molecular weight (Me) of 7000 or more of polypropylene is preferred as the branch length, and that the degree of strain hardening increases as the branch length increases.

本発明に係るプロピレン系重合体(X)を結晶性成分と非晶性成分に分別し、25℃でパラキシレンに溶解する成分(B)量がプロピレン系重合体(X)全量に対して、5〜80重量%であり、パラキシレンに不溶の成分(A)量が20〜95重量%であるものが用いられる。
ここで、結晶性成分と非晶性成分の具体的な分別方法は、下記のとおりである。
The propylene-based polymer (X) according to the present invention is separated into a crystalline component and an amorphous component, and the amount of the component (B) dissolved in paraxylene at 25 ° C. is based on the total amount of the propylene-based polymer (X). The amount of the component (A) that is 5 to 80% by weight and insoluble in paraxylene is 20 to 95% by weight.
Here, a specific method for separating the crystalline component and the amorphous component is as follows.

分別方法:
2gの試料を300mlのp−キシレン(0.5mg/mlのBHT:2,6−ジ−t−ブチル−4−メチルフェノールを含む)に、130℃で溶解させ溶液とした後、25℃で48時間放置する。その後、析出ポリマーと濾液とに濾別する。濾液からp−キシレンを蒸発させ、さらに100℃で12時間減圧乾燥し、25℃でキシレンに溶解する成分(CXS)を回収する。また、析出ポリマーは、同様にして残存するp−キシレンを十分に除去し、25℃でキシレンに不溶な成分(CXIS)とする。
Sorting method:
A sample of 2 g was dissolved in 300 ml of p-xylene (0.5 mg / ml BHT: 2,6-di-tert-butyl-4-methylphenol included) at 130 ° C. to obtain a solution, and then at 25 ° C. Leave for 48 hours. Thereafter, it is separated into a precipitated polymer and a filtrate. The p-xylene is evaporated from the filtrate and further dried under reduced pressure at 100 ° C. for 12 hours, and the component (CXS) dissolved in xylene at 25 ° C. is recovered. In addition, the precipitated polymer similarly removes the remaining p-xylene sufficiently, and becomes a component insoluble in xylene (CXIS) at 25 ° C.

これまで述べてきたように、プロピレン系重合体(X)は、結晶性成分(A)と非晶性成分(B)とからなり、それぞれの成分の一部は、プロピレン−エチレンランダム共重合セグメントが主鎖であり、結晶性プロピレン重合セグメントが側鎖である分岐構造を有する共重合体を含むことから、分析的には、下記の特性(i)〜(v)、(A1)〜(A5)、(B1)〜(B3)を持つものとして特徴付けられる。
(i):プロピレン系重合体(X)のGPCで測定する重量平均分子量(Mw)が10万〜100万である。
(ii):プロピレン系重合体(X)の熱パラキシレンに不溶の成分量がプロピレン系重合体(X)全量に対して0.3重量%以下である。
(iii):プロピレン系重合体(X)の伸長粘度の測定における歪硬化度(λmax)が2.0以上である。
(iv):プロピレン系重合体(X)のMFRが0.1〜20g/10分である。
(v)メルトテンションテスターの測定の230℃における溶融張力(MT)が5g以上である。
(A1):成分(A)量がプロピレン系重合体(X)全量に対して20〜95重量%である。
(A2):成分(A)のGPCで測定する重量平均分子量(Mw)が10万〜100万である。
(A3):成分(A)の13C−NMRで測定するアイソタクチックトライアッド分率(mm)が93%以上である。
(A4):成分(A)の伸長粘度の測定における歪硬化度(λmax)が2.0以上である。
(A5):成分(A)がプロピレン単位と、エチレン単位またはα−オレフィン単位を含有する。
(B1):成分(B)量が重合体(X)全量に対して5〜80重量%である。
(B2):成分(B)のGPCで測定する重量平均分子量(Mw)が10万〜100万である。
(B3)成分(B)がプロピレン単位と、エチレン単位および/またはα−オレフィン単位を含有する。
As described above, the propylene polymer (X) is composed of a crystalline component (A) and an amorphous component (B), and a part of each component is a propylene-ethylene random copolymer segment. Is a main chain, and includes a copolymer having a branched structure in which the crystalline propylene polymer segment is a side chain, and analytically, the following characteristics (i) to (v), (A1) to (A5) ), (B1) to (B3).
(I): The weight average molecular weight (Mw) measured by GPC of the propylene polymer (X) is 100,000 to 1,000,000.
(Ii): The amount of components insoluble in hot paraxylene of the propylene polymer (X) is 0.3% by weight or less based on the total amount of the propylene polymer (X).
(Iii): The strain hardening degree (λmax) in the measurement of the extensional viscosity of the propylene polymer (X) is 2.0 or more.
(Iv): The MFR of the propylene polymer (X) is 0.1 to 20 g / 10 min.
(V) The melt tension (MT) at 230 ° C. measured by a melt tension tester is 5 g or more.
(A1): The amount of the component (A) is 20 to 95% by weight with respect to the total amount of the propylene polymer (X).
(A2): The weight average molecular weight (Mw) measured by GPC of a component (A) is 100,000-1 million.
(A3): Isotactic triad fraction (mm) measured by 13 C-NMR of component (A) is 93% or more.
(A4): The strain hardening degree (λmax) in the measurement of the extensional viscosity of the component (A) is 2.0 or more.
(A5): Component (A) contains a propylene unit and an ethylene unit or an α-olefin unit.
(B1): The amount of component (B) is 5 to 80% by weight based on the total amount of polymer (X).
(B2): The weight average molecular weight (Mw) measured by GPC of a component (B) is 100,000-1 million.
(B3) The component (B) contains a propylene unit, an ethylene unit and / or an α-olefin unit.

以下、項目毎に、順次説明する。
(i):プロピレン系重合体(X)のGPCで測定する重量平均分子量(Mw)が10万〜100万である。
プロピレン系重合体(X)としては、重量平均分子量が10万〜100万の範囲のものが用いられる。
重量平均分子量(Mw)とは、後述するGPC測定装置及び条件で測定されるものであり、プロピレン系重合体(X)のMwが10万〜100万の範囲であることが必要である。このMwが10万より小さいと、溶融加工性に劣るとともに、機械的強度が不十分であり、一方、Mwが100万を超えると、溶融粘度が高く、溶融加工性が低下する。溶融加工性と機械的強度のバランスから上記の範囲であり、好ましくはMwが15万〜90万、さらに好ましくは20万〜80万の範囲である。
プロピレン系重合体(X)のGPCで測定する重量平均分子量(Mw)は、プロピレン系重合体(X)の重合条件である温度やモノマー圧力を調節したり、水素等の連鎖移動剤をプロピレン重合時に添加する水素添加量の制御により、容易に調整を行なうことができる。
重量平均分子量(Mw)の値、数平均分子量(Mn)の値およびQ値(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)によって得られるものであるが、その測定法、測定機器の詳細は、以下の通りである。
Hereinafter, each item will be described sequentially.
(I): The weight average molecular weight (Mw) measured by GPC of the propylene polymer (X) is 100,000 to 1,000,000.
As the propylene polymer (X), those having a weight average molecular weight in the range of 100,000 to 1,000,000 are used.
The weight average molecular weight (Mw) is measured by a GPC measuring apparatus and conditions described later, and it is necessary that the Mw of the propylene polymer (X) is in the range of 100,000 to 1,000,000. When this Mw is smaller than 100,000, the melt processability is inferior and the mechanical strength is insufficient. On the other hand, when the Mw exceeds 1 million, the melt viscosity is high and the melt processability is lowered. From the balance of melt processability and mechanical strength, it is in the above range, preferably Mw is 150,000 to 900,000, more preferably 200,000 to 800,000.
The weight average molecular weight (Mw) measured by GPC of the propylene polymer (X) can be adjusted by controlling the temperature and monomer pressure, which are the polymerization conditions of the propylene polymer (X), or by propylene polymerizing a chain transfer agent such as hydrogen. Adjustments can be made easily by controlling the amount of hydrogen added at times.
The weight average molecular weight (Mw) value, the number average molecular weight (Mn) value, and the Q value (Mw / Mn) are obtained by gel permeation chromatography (GPC). Details are as follows.

装置:Waters社製GPC(ALC/GPC、150C)
検出器:FOXBORO社製MIRAN、1A、IR検出器(測定波長:3.42μm)
カラム:昭和電工社製AD806M/S(3本)
移動相溶媒:o−ジクロロベンゼン(ODCB)
測定温度:140℃
流速:1.0ml/分
注入量:0.2ml
Equipment: GPC manufactured by Waters (ALC / GPC, 150C)
Detector: MIRAN, 1A, IR detector manufactured by FOXBORO (measurement wavelength: 3.42 μm)
Column: AD806M / S (3 pieces) manufactured by Showa Denko KK
Mobile phase solvent: o-dichlorobenzene (ODCB)
Measurement temperature: 140 ° C
Flow rate: 1.0 ml / min Injection volume: 0.2 ml

試料の調製は、試料をODCB(0.5mg/mLのBHTを含む)を用いて、1mg/mLの溶液を調製し、140℃で約1時間を要して、溶解させて行う。なお、得られたクロマトグラムのベースラインと区間は、図1のように行う。また、GPC測定で得られた保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。使用する標準ポリスチレンは、何れも東ソー社製の以下の銘柄である。
銘柄:F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000
各々が0.5mg/mLとなるように、ODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して、較正曲線を作成する。較正曲線は、最小二乗法で近似して得られる三次式を用いる。分子量への換算に使用する粘度式:[η]=K×Mαは、以下の数値を用いる。
PS:K=1.38×10−4、α=0.7
PP:K=1.03×10−4、α=0.78
The sample is prepared by preparing a 1 mg / mL solution using ODCB (containing 0.5 mg / mL BHT) and dissolving it at 140 ° C. for about 1 hour. The baseline and section of the obtained chromatogram are performed as shown in FIG. Further, the conversion from the retention capacity obtained by GPC measurement to the molecular weight is performed using a standard curve prepared in advance by standard polystyrene. The standard polystyrenes used are all the following brands manufactured by Tosoh Corporation.
Brand: F380, F288, F128, F80, F40, F20, F10, F4, F1, A5000, A2500, A1000
Inject 0.2 mL of a solution dissolved in ODCB (containing 0.5 mg / mL BHT) so that each is 0.5 mg / mL to create a calibration curve. The calibration curve uses a cubic equation obtained by approximation by the least square method. Viscosity formula used for conversion to molecular weight: [η] = K × M α uses the following numerical values.
PS: K = 1.38 × 10 −4 , α = 0.7
PP: K = 1.03 × 10 −4 , α = 0.78

(ii):プロピレン系重合体(X)の熱パラキシレンに不溶の成分量が重合体(X)全量に対して0.3重量%以下である。
本発明では、熱p−キシレンに不溶な成分が0.3重量%以下であることが必要である。熱p−キシレンに不溶な成分が0.3重量%を超えるようであると、得られる成形体に穴あきやブツなどの悪影響を及ぼす恐れがある。
熱p−キシレンに不溶な成分の測定方法は、以下の通りである。
攪拌装置付きガラス製セパラブルフラスコに、ステンレス鋼製400メッシュ(線径0.03μm、目開き0.034mm、空間率27.8%)で作製された籠に、重合体500mgを入れ、攪拌翼に固定した。酸化防止剤(BHT:2,6−ジ−t−ブチル−4−メチルフェノール)1gを含む700ミリリットルのp−キシレンを投入し、温度140℃で2時間攪拌しながら重合体を溶解させた。
p−キシレン不溶部が入った籠を回収し、十分に乾燥させ秤量することにより、パラキシレン不溶部を求めた。p−キシレン不溶部として定義するゲル分率(重量%)は、以下の式により算出した。
ゲル分率=[(メッシュ内残量g)/(仕込みサンプル量g)]×100
(Ii): The amount of components insoluble in hot paraxylene of the propylene-based polymer (X) is 0.3% by weight or less based on the total amount of the polymer (X).
In the present invention, the component insoluble in hot p-xylene needs to be 0.3% by weight or less. If the component insoluble in hot p-xylene exceeds 0.3% by weight, the resulting molded article may be adversely affected such as perforations and bumps.
A method for measuring a component insoluble in hot p-xylene is as follows.
A glass separable flask equipped with a stirrer is charged with 500 mg of a polymer in a bowl made of stainless steel 400 mesh (wire diameter 0.03 μm, aperture 0.034 mm, space ratio 27.8%). Fixed to. 700 ml of p-xylene containing 1 g of an antioxidant (BHT: 2,6-di-t-butyl-4-methylphenol) was added, and the polymer was dissolved while stirring at a temperature of 140 ° C. for 2 hours.
The soot containing the p-xylene insoluble part was collected, sufficiently dried and weighed to obtain the paraxylene insoluble part. The gel fraction (% by weight) defined as the p-xylene insoluble part was calculated by the following formula.
Gel fraction = [(residual amount in mesh g) / (prepared sample amount g)] × 100

また、以上のようにゲルが少ない、もしくはゲルないというためには、非常に分子量の高い成分がないということが重要である。したがって、GPCで分子量分布を測定した場合、分子量分布が高分子量側に広がっていないことが重要である。
したがって、GPCで測定したQ値(重量平均分子量(Mw)と数平均分子量(Mn)の比)としては、7以下が好ましく、さらに好ましくは6以下、さらに好ましくは5以下である。
また、高分子量側に極端に広がっていないためには、GPCで曲線における積分値が90%になる分子量M(90)が2,000,000以下であることが必要である。
ここでM(90)とは、前述したGPC測定装置及び条件で測定されるGPCで曲線における積分値が90%になる分子量であり、本発明では、M(90)が2,000,000以下であることが特徴である。このM(90)が2,000,000を超えると、高分子量成分が多くなりすぎ、ゲルが発生したり、溶融加工性を低下させしまう。その為、M(90)は、2,000,000以下であり、また好ましくは1,500,000以下であり、さらに好ましくは1,000,000である。
熱パラキシレンに不溶の成分量は、プロピレン系重合体(X)の重合条件である温度やモノマー圧力を調節したり、水素等の連鎖移動剤をプロピレン重合時に添加する水素添加量の制御により、容易に調整を行なうことができる。
Further, in order to have a small amount of gel or no gel as described above, it is important that there are no components having a very high molecular weight. Therefore, when the molecular weight distribution is measured by GPC, it is important that the molecular weight distribution does not spread to the high molecular weight side.
Therefore, the Q value (the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn)) measured by GPC is preferably 7 or less, more preferably 6 or less, and still more preferably 5 or less.
Moreover, in order not to extend extremely to the high molecular weight side, it is necessary that the molecular weight M (90) at which the integrated value in the curve is 90% by GPC is 2,000,000 or less.
Here, M (90) is a molecular weight at which the integral value in the curve is 90% by GPC measured by the GPC measuring apparatus and conditions described above, and in the present invention, M (90) is 2,000,000 or less. It is a feature. When M (90) exceeds 2,000,000, the high molecular weight component is excessively increased, and a gel is generated or melt processability is deteriorated. Therefore, M (90) is 2,000,000 or less, preferably 1,500,000 or less, and more preferably 1,000,000.
The amount of components insoluble in hot paraxylene is controlled by adjusting the temperature and monomer pressure, which are the polymerization conditions of the propylene-based polymer (X), or by controlling the amount of hydrogen added to add a chain transfer agent such as hydrogen during propylene polymerization. Adjustments can be made easily.

(iii):プロピレン系重合体(X)の伸長粘度の測定における歪硬化度(λmax)が2.0以上である。
歪硬化度の物理的意義については、前述したとおりであり、この値が大きいと、発泡成形を行ったときに、独立気泡率を高くできる。したがって、この歪硬化度は、2.0以上が必要であり、好ましくは3.0以上、より好ましくは4.0以上である。
分岐の長さは、ポリプロピレンの絡みあい分子量7000以上が好ましい。この分子量は、厳密にはGPCで測定される重量平均(Mw)とは異なるものである。そこで、好ましくはGPCで測定される重量平均分子量(Mw)の値で15000以上、さらに好ましくは30000以上である。
プロピレン系重合体(X)の伸長粘度の測定における歪硬化度(λmax)は、プロピレン系重合体(X)の重合の際に使用される、後述のメタロセン錯体の選択やその組み合わせ、およびその量比、ならびに予備重合条件を制御することにより、調整を行なうことができる。例えば、2種類のメタロセン錯体の一方は、マクロマーを生成し易いものとし、もう一方は、マクロマーを重合体に取り込み易く且つ高分子量の重合体を生成可能なものを選択する。更に、予備重合を行うことにより、重合体粒子間で長鎖分岐が均一に分布させる等の方法によって調節することができる。
(Iii): The strain hardening degree (λmax) in the measurement of the extensional viscosity of the propylene polymer (X) is 2.0 or more.
The physical significance of the strain hardening degree is as described above. If this value is large, the closed cell ratio can be increased when foam molding is performed. Therefore, this strain hardening degree needs to be 2.0 or more, preferably 3.0 or more, more preferably 4.0 or more.
The length of branching is preferably an entanglement molecular weight of 7000 or more of polypropylene. Strictly speaking, this molecular weight is different from the weight average (Mw) measured by GPC. Therefore, the weight average molecular weight (Mw) value measured by GPC is preferably 15000 or more, and more preferably 30000 or more.
The strain hardening degree (λmax) in the measurement of the extensional viscosity of the propylene-based polymer (X) is the selection of the metallocene complex described later, the combination thereof, and the amount thereof used in the polymerization of the propylene-based polymer (X). Adjustments can be made by controlling the ratio and prepolymerization conditions. For example, one of the two types of metallocene complexes is selected so as to easily generate a macromer, and the other is selected so that the macromer can be easily incorporated into the polymer and can generate a high molecular weight polymer. Furthermore, by performing prepolymerization, it can be adjusted by a method such as uniformly distributing long chain branches among polymer particles.

(iv):プロピレン系重合体(X)のMFRが0.1〜20g/10分である。
プロピレン系重合体(X)のメルトフローレート(MFR)が0.1g/10分未満では、流動性が低下する。一方、MFRが20g/10分を超えると、溶融加工性が低下する。また、この範囲の中でも、好ましくは0.1〜15g/10分、更に好ましくは1〜10g/10分、特に好ましくは1〜5g/10分である。
ここで、MFRは、JIS K7210に準拠し、加熱温度230℃、荷重21.2N(2.16kg)で測定する値である。
プロピレン系重合体(X)のメルトフローレート(MFR)は、プロピレン系重合体(X)の重合条件である温度やモノマー圧力を調節したり、水素等の連鎖移動剤をプロピレン重合時に添加する水素添加量の制御により、容易に調整を行なうことができる。
(Iv): The MFR of the propylene polymer (X) is 0.1 to 20 g / 10 min.
When the melt flow rate (MFR) of the propylene polymer (X) is less than 0.1 g / 10 minutes, the fluidity is lowered. On the other hand, when the MFR exceeds 20 g / 10 min, the melt processability decreases. Moreover, within this range, it is preferably 0.1 to 15 g / 10 minutes, more preferably 1 to 10 g / 10 minutes, and particularly preferably 1 to 5 g / 10 minutes.
Here, MFR is a value measured according to JIS K7210 at a heating temperature of 230 ° C. and a load of 21.2 N (2.16 kg).
The melt flow rate (MFR) of the propylene polymer (X) is a hydrogen that adjusts the temperature and the monomer pressure, which are the polymerization conditions of the propylene polymer (X), or adds a chain transfer agent such as hydrogen during propylene polymerization. Adjustment can be easily performed by controlling the amount of addition.

(v):プロピレン系重合体(X)の230℃における溶融張力(MT)が5g以上である。
プロピレン系重合体(X)のメルトテンションテスターの測定の230℃における溶融張力(MT)が5g未満であると、均一微細の発泡体が得られにくく、一方、溶融張力(MT)が100gを超えるようであると、得られる発泡体の延伸性が悪化する恐れがある。
プロピレン系重合体(X)のメルトテンションテスターの測定における230℃の溶融張力(MT)は、6〜100gが好ましく、10〜90gがさらに好ましく、15〜80gが特に好ましい。
プロピレン系重合体(X)の溶融張力(MT)は、高分子量成分の増減や、分岐数の増減によって、調整することができる。すなわち、プロピレン系重合体(X)の重合の際に使用される、後述のメタロセン錯体の選択やその組み合わせ、およびその量比、ならびに予備重合条件を制御することにより、調整を行なうことができる。例えば、2種類のメタロセン錯体の一方は、マクロマーを生成し易いものとし、もう一方は、マクロマーを重合体に取り込み易く且つ高分子量の重合体を生成可能なものを選択する。更に、予備重合を行うことにより、重合体粒子間で長鎖分岐が均一に分布させる等の方法によって調節することができる。
(V): The melt tension (MT) at 230 ° C. of the propylene-based polymer (X) is 5 g or more.
When the melt tension (MT) at 230 ° C. measured by the melt tension tester of the propylene-based polymer (X) is less than 5 g, it is difficult to obtain a uniform fine foam, whereas the melt tension (MT) exceeds 100 g. If so, the stretchability of the resulting foam may be deteriorated.
The melt tension (MT) at 230 ° C. in the measurement of the melt tension tester of the propylene-based polymer (X) is preferably 6 to 100 g, more preferably 10 to 90 g, and particularly preferably 15 to 80 g.
The melt tension (MT) of the propylene polymer (X) can be adjusted by increasing or decreasing the high molecular weight component and increasing or decreasing the number of branches. That is, the adjustment can be performed by controlling the selection of the metallocene complex described later, the combination thereof, the amount ratio thereof, and the prepolymerization conditions used in the polymerization of the propylene-based polymer (X). For example, one of the two types of metallocene complexes is selected so as to easily generate a macromer, and the other is selected so that the macromer can be easily incorporated into the polymer and can generate a high molecular weight polymer. Furthermore, by performing prepolymerization, it can be adjusted by a method such as uniformly distributing long chain branches among polymer particles.

(A1):成分(A)量がプロピレン系重合体(X)全量に対して20〜95重量%である。
本規定は、成分(A)のプロピレン系重合体(X)全量に対する範囲であり、剛性と耐衝撃性のバランスから、この範囲のものが用いられる。
(A1): The amount of the component (A) is 20 to 95% by weight with respect to the total amount of the propylene polymer (X).
This rule is a range with respect to the total amount of the propylene-based polymer (X) of the component (A), and those in this range are used from the balance of rigidity and impact resistance.

(A2):成分(A)のGPCで測定する重量平均分子量(Mw)が10万〜100万である。
ここで重量平均分子量(Mw)とは、前述したGPC測定装置及び条件で測定されるものであり、プロピレン系重合体(X)中の結晶性成分(A)は、重量平均分子量が10万〜100万の範囲のものが用いられる。
このMwが10万より小さいと、溶融加工性に劣るとともに、機械的強度が不十分であり、一方、Mwが100万を超えると、溶融粘度が高く、溶融加工性が低下する。溶融加工性と機械的強度のバランスから上記の範囲であり、好ましくはMwが15万〜90万、さらに好ましくは20万〜80万の範囲である。
重量平均分子量(Mw)は、プロピレン系重合体(X)の重合条件である温度やモノマー圧力を調節したり、水素等の連鎖移動剤をプロピレン重合時に添加する水素添加量の制御により、容易に調整を行なうことができる。
(A2): The weight average molecular weight (Mw) measured by GPC of a component (A) is 100,000-1 million.
Here, the weight average molecular weight (Mw) is measured by the GPC measuring apparatus and conditions described above, and the crystalline component (A) in the propylene polymer (X) has a weight average molecular weight of 100,000 to Those in the range of 1 million are used.
When this Mw is smaller than 100,000, the melt processability is inferior and the mechanical strength is insufficient. On the other hand, when the Mw exceeds 1 million, the melt viscosity is high and the melt processability is lowered. From the balance of melt processability and mechanical strength, it is in the above range, preferably Mw is 150,000 to 900,000, more preferably 200,000 to 800,000.
The weight average molecular weight (Mw) can be easily adjusted by adjusting the temperature and monomer pressure, which are the polymerization conditions of the propylene polymer (X), or by controlling the amount of hydrogen added to the chain transfer agent such as hydrogen during propylene polymerization. Adjustments can be made.

(A3):成分(A)の13C−NMRで測定するアイソタクチックトライアッド分率(mm)が93%以上である。
本発明に係るプロピレン系重合体(X)の結晶性成分(A)は、13C−NMRによって得られるプロピレン単位3連鎖のmm分率が93%以上の立体規則性を有するものである。
mm分率は、ポリマー鎖中、頭−尾結合からなる任意のプロピレン単位3連鎖中、各プロピレン単位中のメチル分岐の方向が同一であるプロピレン単位3連鎖の割合である。このmm分率は、ポリプロピレン分子鎖中のメチル基の立体構造がアイソタクティックに制御されていることを示す値であり、高いほど、高度に制御されていることを意味する。結晶性成分(A)のmm分率が、この値より小さいと、得られる発泡体の弾性率、剛性、耐熱性および強度が低下するなど機械的物性が低下してしまう。従って、mm分率は、好ましくは95%以上であり、さらに好ましくは96%以上である。
プロピレン系重合体(X)の13C−NMRで測定するアイソタクチックトライアッド分率(mm)は、後述するメタロセン錯体の選択や重合温度および重合圧力により、調整を行なうことができる。
(A3): Isotactic triad fraction (mm) measured by 13 C-NMR of component (A) is 93% or more.
The crystalline component (A) of the propylene polymer (X) according to the present invention has a stereoregularity in which the mm fraction of propylene unit three-chains obtained by 13 C-NMR is 93% or more.
The mm fraction is the ratio of three propylene unit chains in which the direction of methyl branching in each propylene unit is the same among arbitrary three propylene unit chains composed of head-to-tail bonds in the polymer chain. This mm fraction is a value indicating that the three-dimensional structure of the methyl group in the polypropylene molecular chain is controlled isotactically, and the higher the value, the higher the degree of control. When the mm fraction of the crystalline component (A) is smaller than this value, the mechanical properties such as the elastic modulus, rigidity, heat resistance and strength of the resulting foam are lowered. Accordingly, the mm fraction is preferably 95% or more, and more preferably 96% or more.
The isotactic triad fraction (mm) measured by 13 C-NMR of the propylene polymer (X) can be adjusted by the selection of the metallocene complex described later, the polymerization temperature and the polymerization pressure.

13C−NMRによるプロピレン単位3連鎖のmm分率の測定法の詳細は、以下の通りである。
試料375mgをNMRサンプル管(10φ)中で重水素化1,1,2,2−テトラクロロエタン2.5mlに完全に溶解させた後、125℃でプロトン完全デカップリング法で測定した。ケミカルシフトは、重水素化1,1,2,2−テトラクロロエタンの3本のピークの中央のピークを74.2ppmに設定した。他の炭素ピークのケミカルシフトはこれを基準とする。
フリップ角:90度
パルス間隔:10秒
共鳴周波数:100MHz以上
積算回数:10,000回以上
観測域:−20ppmから179ppm
The detail of the measuring method of mm fraction of the propylene unit 3 chain | strand by 13 C-NMR is as follows.
A sample of 375 mg was completely dissolved in 2.5 ml of deuterated 1,1,2,2-tetrachloroethane in an NMR sample tube (10φ), and then measured at 125 ° C. by a proton complete decoupling method. The chemical shift was set to 74.2 ppm in the middle of the three peaks of deuterated 1,1,2,2-tetrachloroethane. The chemical shift of other carbon peaks is based on this.
Flip angle: 90 degrees Pulse interval: 10 seconds Resonance frequency: 100 MHz or more Integration frequency: 10,000 times or more Observation range: -20 ppm to 179 ppm

mm分率の測定は、前記の条件により測定された13C−NMRスペクトルを用いて行う。
スペクトルの帰属は、Macromolecules,(1975年)8卷,687頁やPolymer,30巻,1350頁(1989年)を参考に、具体的には特願2006−311249号に詳細に記載される方法に従って行う。
The mm fraction is measured using a 13 C-NMR spectrum measured under the above conditions.
Spectra assignment is made according to the method described in detail in Japanese Patent Application No. 2006-311249, with reference to Macromolecules, (1975) 8 pp. 687, Polymer, 30 pages, 1350 (1989). Do.

(A4):成分(A)の伸長粘度の測定における歪硬化度(λmax)が2.0以上である。好ましくは3.0以上、より好ましくは4.0以上である。
分岐の長さは、ポリプロピレンの絡みあい分子量7000以上が好ましい。また、重量平均(Mw)としては15000以上、さらに好ましくは30000以上である。
プロピレン系重合体(X)の伸長粘度の測定における歪硬化度(λmax)は、プロピレン系重合体(X)の重合の際に使用される、後述のメタロセン錯体の選択やその組み合わせ、およびその量比、ならびに予備重合条件を制御することにより、調整を行なうことができる。例えば、2種類のメタロセン錯体の一方は、マクロマーを生成し易いものとし、もう一方は、マクロマーを重合体に取り込み易く且つ高分子量の重合体を生成可能なものを選択する。更に、予備重合を行うことにより、重合体粒子間で長鎖分岐が均一に分布させる等の方法によって調節することができる。
(A4): The strain hardening degree (λmax) in the measurement of the extensional viscosity of the component (A) is 2.0 or more. Preferably it is 3.0 or more, More preferably, it is 4.0 or more.
The length of branching is preferably an entanglement molecular weight of 7000 or more of polypropylene. Moreover, as a weight average (Mw), it is 15000 or more, More preferably, it is 30000 or more.
The strain hardening degree (λmax) in the measurement of the extensional viscosity of the propylene-based polymer (X) is the selection of the metallocene complex described later, the combination thereof, and the amount thereof used in the polymerization of the propylene-based polymer (X). Adjustments can be made by controlling the ratio and prepolymerization conditions. For example, one of the two types of metallocene complexes is selected so as to easily generate a macromer, and the other is selected so that the macromer can be easily incorporated into the polymer and can generate a high molecular weight polymer. Furthermore, by performing prepolymerization, it can be adjusted by a method such as uniformly distributing long chain branches among polymer particles.

また、本発明に係るプロピレン系重合体(X)は、上記の(A1)〜(A4)の他に(A5)を満たす。
(A5):成分(A)がプロピレン単位と、エチレン単位またはα−オレフィン単位を含有する。
結晶性成分(A)を構成する単位としては、プロピレンがアイソタクチックに配列して結晶性を持つことが必要である。また、結晶性が発現する範囲において、エチレンまたはα−オレフィンをコモノマーの単位として含有してもよい。α、ω−ジエン単位が存在すると、架橋によるゲル化が懸念されることから、α、ω−ジエン単位を含まないことが必要である。
コモノマーの種類としては、エチレンもしくは直鎖状のα−オレフィンが好ましく、さらに好ましくは、エチレンである。
コモノマー含量に関しては、結晶性が発現する範囲で任意の量を含有することができる。
The propylene polymer (X) according to the present invention satisfies (A5) in addition to the above (A1) to (A4).
(A5): Component (A) contains a propylene unit and an ethylene unit or an α-olefin unit.
As a unit constituting the crystalline component (A), it is necessary that propylene is arranged in an isotactic manner and has crystallinity. Further, ethylene or α-olefin may be contained as a comonomer unit within the range where crystallinity is exhibited. If α, ω-diene units are present, gelation due to cross-linking is a concern, so it is necessary that no α, ω-diene units be included.
As a kind of comonomer, ethylene or a linear alpha olefin is preferable, More preferably, it is ethylene.
Regarding comonomer content, it can contain arbitrary quantity in the range which crystallinity expresses.

結晶性の指標であるDSCで測定する融点(Tm)が120℃以上、好ましくは150℃以上、さらに好ましくは153℃以上である。融点(Tm)が150〜164℃では、耐熱性、剛性に優れ、工業用部品や部材に使用でき、また、融点(Tm)が120〜150℃では、柔軟性に優れ、容器に使用できる。
成分(A)のエチレン含有量は、好ましくは0.1〜10重量%であり、より好ましくは0.2〜7重量%、さらに好ましくは0.3〜5重量%である。
エチレン単位の測定は、13C−NMRを用い、Macromolecules 1982 1150に記載の方法に従って測定する。
The melting point (Tm) measured by DSC, which is an index of crystallinity, is 120 ° C. or higher, preferably 150 ° C. or higher, more preferably 153 ° C. or higher. When the melting point (Tm) is 150 to 164 ° C., it is excellent in heat resistance and rigidity and can be used for industrial parts and members, and when the melting point (Tm) is 120 to 150 ° C., it is excellent in flexibility and can be used for containers.
The ethylene content of component (A) is preferably 0.1 to 10% by weight, more preferably 0.2 to 7% by weight, and still more preferably 0.3 to 5% by weight.
The ethylene unit is measured according to the method described in Macromolecules 1982 1150 using 13 C-NMR.

(B1):成分(B)量が重合体(X)全量に対して5〜80重量%である。
本規定は、成分(B)のプロピレン系重合体(X)全量に対する範囲であり、剛性と耐衝撃性のバランスから、この範囲のものが用いられる。
(B1): The amount of component (B) is 5 to 80% by weight based on the total amount of polymer (X).
This rule is a range with respect to the total amount of the propylene polymer (X) of the component (B), and those in this range are used from the balance of rigidity and impact resistance.

(B2):成分(B)のGPCで測定する重量平均分子量(Mw)が10万〜100万である。
ここで重量平均分子量(Mw)とは、前述したGPC測定装置及び条件で測定されるものであり、プロピレン系重合体(X)中の非晶性成分(B)は、重量平均分子量が10万〜100万の範囲のものが用いられる。
このMwが10万より小さいと、溶融加工性に劣るとともに、機械的強度が不十分であり、一方、Mwが100万を超えると、溶融粘度が高く、溶融加工性が低下する。溶融加工性と機械的強度のバランスから上記の範囲であり、好ましくはMwが15万〜90万、さらに好ましくは20万〜80万の範囲である。
重量平均分子量(Mw)は、プロピレン系重合体(X)の重合条件である温度やモノマー圧力を調節したり、水素等の連鎖移動剤をプロピレン重合時に添加する水素添加量の制御により、容易に調整を行なうことができる。
(B2): The weight average molecular weight (Mw) measured by GPC of a component (B) is 100,000-1 million.
Here, the weight average molecular weight (Mw) is measured by the GPC measuring apparatus and conditions described above, and the amorphous component (B) in the propylene polymer (X) has a weight average molecular weight of 100,000. Those in the range of ~ 1 million are used.
When this Mw is smaller than 100,000, the melt processability is inferior and the mechanical strength is insufficient. On the other hand, when the Mw exceeds 1 million, the melt viscosity is high and the melt processability is lowered. From the balance of melt processability and mechanical strength, it is in the above range, preferably Mw is 150,000 to 900,000, more preferably 200,000 to 800,000.
The weight average molecular weight (Mw) can be easily adjusted by adjusting the temperature and monomer pressure, which are the polymerization conditions of the propylene polymer (X), or by controlling the amount of hydrogen added to the chain transfer agent such as hydrogen during propylene polymerization. Adjustments can be made.

(B3):成分(B)がプロピレン単位と、エチレン単位および/またはα−オレフィン単位を含有する。
非結晶性成分(B)を構成する単位としては、プロピレンと、エチレンまたはα−オレフィンが共重合している必要がある。また、α、ω−ジエン単位が存在すると架橋によるゲル化が懸念されることから、α、ω−ジエン単位を含まないことが好ましい。
また、コモノマーの種類として、エチレンもしくは直鎖状のα−オレフィンが好ましく、さらに好ましくはエチレンであり、エチレン含量は、通常10〜60重量%である。低温での耐衝撃性向上の観点からは、40〜60重量%のものが好ましく、また、光沢、透明性の観点からは、10重量%以上、40重量%未満のものが好ましく用いられる。
(B3): Component (B) contains a propylene unit, an ethylene unit and / or an α-olefin unit.
As a unit constituting the amorphous component (B), it is necessary that propylene and ethylene or α-olefin are copolymerized. Moreover, since there exists a concern about the gelatinization by bridge | crosslinking when an (alpha), (omega) -diene unit exists, it is preferable not to contain an (alpha), (omega) -diene unit.
The kind of comonomer is preferably ethylene or a linear α-olefin, more preferably ethylene, and the ethylene content is usually 10 to 60% by weight. From the viewpoint of improving impact resistance at low temperatures, 40 to 60% by weight is preferable, and from the viewpoint of gloss and transparency, 10% by weight or more and less than 40% by weight is preferably used.

(B4):成分(B)の伸長粘度の測定における歪硬化度(λmax)が2.0以上である。
前述した通り、歪硬化度(λmax)の値が大きいと、発泡成形を行ったときに独立気泡率を高くすることができる。従って、発泡成形に用いる場合には、2.0以上が好ましく、2.0〜20が更に好ましい。
プロピレン系重合体(X)の伸長粘度の測定における歪硬化度(λmax)は、プロピレン系重合体(X)の重合の際に使用される、後述のメタロセン錯体の選択やその組み合わせ、およびその量比、ならびに予備重合条件を制御することにより、調整を行なうことができる。例えば、2種類のメタロセン錯体の一方は、マクロマーを生成し易いものとし、もう一方は、マクロマーを重合体に取り込み易く且つ高分子量の重合体を生成可能なものを選択する。更に、予備重合を行うことにより、重合体粒子間で長鎖分岐が均一に分布させるなどの方法によって調節することができる。
(B4): The strain hardening degree (λmax) in the measurement of the extensional viscosity of the component (B) is 2.0 or more.
As described above, if the degree of strain hardening (λmax) is large, the closed cell ratio can be increased when foam molding is performed. Therefore, when using it for foam molding, 2.0 or more are preferable and 2.0-20 are still more preferable.
The strain hardening degree (λmax) in the measurement of the extensional viscosity of the propylene-based polymer (X) is the selection of the metallocene complex described later, the combination thereof, and the amount thereof used in the polymerization of the propylene-based polymer (X). Adjustments can be made by controlling the ratio and prepolymerization conditions. For example, one of the two types of metallocene complexes is selected so as to easily generate a macromer, and the other is selected so that the macromer can be easily incorporated into the polymer and can generate a high molecular weight polymer. Furthermore, by performing prepolymerization, it can be adjusted by a method such as uniformly distributing long chain branches among polymer particles.

本発明に係るプロピレン系重合体(X)を製造する方法については、ビニル末端を有するマクロマーを製造可能であり、更に、このマクロマーとプロピレン、エチレンとの共重合が可能な触媒系を用いることが特徴である。なかでも、下記の触媒成分(a)、(b)及び(c)を接触させてなる重合用触媒を用いて、
(i)プロピレン単独、又は、プロピレンとエチレン若しくはα−オレフィンを重合し、エチレンまたはα−オレフィンを全モノマー成分に対して0〜10重量%重合させる第一工程、及び
(ii)プロピレンと、エチレンまたはα−オレフィンを重合し、エチレンを全モノマー成分に対して10〜70重量%重合させる第二工程、
を有する工程により、本発明に係るプロピレン系重合体(X)を生産性よく製造することができる。
Regarding the method for producing the propylene polymer (X) according to the present invention, a macromer having a vinyl terminal can be produced, and a catalyst system capable of copolymerizing the macromer with propylene and ethylene may be used. It is a feature. Among them, by using a polymerization catalyst obtained by contacting the following catalyst components (a), (b) and (c),
(I) first step of polymerizing propylene alone, or propylene and ethylene or α-olefin, and polymerizing ethylene or α-olefin with respect to all monomer components in an amount of 0 to 10% by weight; and (ii) propylene and ethylene Or a second step in which α-olefin is polymerized and ethylene is polymerized in an amount of 10 to 70% by weight based on the total monomer components;
The propylene-based polymer (X) according to the present invention can be produced with high productivity by the process having the above.

(1)成分(a):
プロピレン系重合体(X)の製造に用いられる触媒成分(a)は、下記一般式(1)で表されるハフニウムを中心金属とするメタロセン化合物である。
(1) Component (a):
The catalyst component (a) used for the production of the propylene polymer (X) is a metallocene compound having hafnium as a central metal represented by the following general formula (1).

Figure 0005162323
Figure 0005162323

一般式(1)中、各々Rは、独立して、水素、炭素数1〜6のアルキル基、炭素数1〜6のハロゲン含有アルキル基、炭素数1〜6の珪素含有アルキル基、炭素数6〜16のアリール基、炭素数6〜16のハロゲン含有アリール基、炭素数4〜16の窒素または酸素、硫黄を含有する複素環基を表し、2つのRの少なくとも一つは、炭素数4〜16の窒素または酸素、硫黄を含有する複素環基を示す。尚、2つのRは、互いに同一であっても異なっていてもよい。また、各々Rは、独立して、炭素数1〜6のアルキル基、炭素数1〜6のハロゲン含有アルキル基、炭素数1〜6の珪素含有アルキル基、炭素数6〜16のアリール基、炭素数6〜16のハロゲン含有アリール基、炭素数6〜16の珪素含有アリール基、炭素数6〜16の窒素または酸素、硫黄を含有する複素環基を表す。尚、2つのRは、互いに同一であっても異なっていてもよい。
さらに、X及びYは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素含有炭化水素基、炭素数1〜20のハロゲン化炭化水素基、炭素数1〜20の酸素含有炭化水素基、アミノ基または炭素数1〜20の窒素含有炭化水素基を表し、Qは、炭素数1〜20の二価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基、オリゴシリレン基、またはゲルミレン基を表す。
In general formula (1), each R 1 is independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a halogen-containing alkyl group having 1 to 6 carbon atoms, a silicon-containing alkyl group having 1 to 6 carbon atoms, or carbon. An aryl group having 6 to 16 carbon atoms, a halogen-containing aryl group having 6 to 16 carbon atoms, a nitrogen or oxygen having 4 to 16 carbon atoms, and a heterocyclic group containing sulfur, and at least one of two R 1 is carbon A heterocyclic group containing nitrogen, oxygen, or sulfur of several 4 to 16 is shown. Two R 1 s may be the same or different from each other. Each R 2 is independently an alkyl group having 1 to 6 carbon atoms, a halogen-containing alkyl group having 1 to 6 carbon atoms, a silicon-containing alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 16 carbon atoms. , A halogen-containing aryl group having 6 to 16 carbon atoms, a silicon-containing aryl group having 6 to 16 carbon atoms, a nitrogen or oxygen having 6 to 16 carbon atoms, and a heterocyclic group containing sulfur. Two R 2 may be the same as or different from each other.
X and Y are each independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon having 1 to 20 carbon atoms. Represents a group, an oxygen-containing hydrocarbon group having 1 to 20 carbon atoms, an amino group, or a nitrogen-containing hydrocarbon group having 1 to 20 carbon atoms, Q is a divalent hydrocarbon group having 1 to 20 carbon atoms, 1 carbon atom Represents a silylene group, an oligosilylene group, or a germylene group which may have ˜20 hydrocarbon groups.

上記Rの炭素数4〜16の窒素または酸素、硫黄を含有する複素環基は、好ましくは2−フリル基、置換された2−フリル基、置換された2−チエニル基、置換された2−フルフリル基であり、さらに好ましくは、置換された2−フリル基である。
また、置換された2−フリル基、置換された2−チエニル基、置換された2−フルフリル基の置換基としては、メチル基、エチル基、プロピル基等の炭素数1〜6のアルキル基、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、エトキシ基等の炭素数1〜6のアルコキシ基、トリアルキルシリル基、が挙げられる。これらのうち、メチル基、トリメチルシリル基が好ましく、メチル基が特に好ましい。
さらに、Rとして、特に好ましくは、2−(5−メチル)−フリル基である。また、2つのRは、互いに同一である場合が好ましい。
The heterocyclic group containing nitrogen, oxygen or sulfur having 4 to 16 carbon atoms of R 1 is preferably a 2-furyl group, a substituted 2-furyl group, a substituted 2-thienyl group, or a substituted 2 group. -Furfuryl group, more preferably a substituted 2-furyl group.
Moreover, as a substituted 2-furyl group, a substituted 2-thienyl group, and a substituted 2-furfuryl group, an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group, Examples thereof include halogen atoms such as fluorine atom and chlorine atom, alkoxy groups having 1 to 6 carbon atoms such as methoxy group and ethoxy group, and trialkylsilyl groups. Of these, a methyl group and a trimethylsilyl group are preferable, and a methyl group is particularly preferable.
R 1 is particularly preferably a 2- (5-methyl) -furyl group. Moreover, it is preferable that two R 1 are mutually the same.

上記Rとしては、炭素数6〜16のアリール基、炭素数6〜16のハロゲン含有アリール基、炭素数6〜16の珪素含有アリール基が好ましく、そのようなアリール基は炭素数6〜16になる範囲で、アリール環状骨格上に、1つ以上の、炭素数1〜6の炭化水素基、炭素数1〜6の珪素含有炭化水素基、炭素数1〜6のハロゲン含有炭化水素基を置換基として有していてもよい。
としては、好ましくは少なくとも1つが、フェニル基、4−tブチルフェニル基、2,3―ジメチルフェニル基、3,5―ジtブチルフェニル基、4−フェニル−フェニル基、クロロフェニル基、ナフチル基、又はフェナンスリル基であり、更に好ましくはフェニル基、4−tブチルフェニル基、4−クロロフェニル基である。また、2つのRが互いに同一である場合が好ましい。
R 2 is preferably an aryl group having 6 to 16 carbon atoms, a halogen-containing aryl group having 6 to 16 carbon atoms, or a silicon-containing aryl group having 6 to 16 carbon atoms. Such an aryl group has 6 to 16 carbon atoms. 1 or more hydrocarbon groups having 1 to 6 carbon atoms, silicon-containing hydrocarbon groups having 1 to 6 carbon atoms, and halogen-containing hydrocarbon groups having 1 to 6 carbon atoms on the aryl cyclic skeleton. You may have as a substituent.
R 2 is preferably at least one of phenyl group, 4-tbutylphenyl group, 2,3-dimethylphenyl group, 3,5-ditbutylphenyl group, 4-phenyl-phenyl group, chlorophenyl group, naphthyl. Group, or a phenanthryl group, more preferably a phenyl group, a 4-tbutylphenyl group, or a 4-chlorophenyl group. Moreover, the case where two R < 2 > is mutually the same is preferable.

一般式(1)中、XおよびYは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン化炭化水素基、炭素数1〜20のケイ素含有炭化水素基、炭素数1〜20の酸素含有炭化水素基、アミノ基または炭素数1〜20の窒素含有炭化水素基を示す。上記のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
上記の炭素数1〜20の炭化水素基の具体例としては、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、s−ブチル、等のアルキル基、ビニル、プロペニル、シクロヘキセニル等のアルケニル基、ベンジル等のアリールアルキル基、trans−スチリル等のアリールアルケニル基、フェニル、トリル、1−ナフチル、2−ナフチル等のアリール基が挙げられる。
上記の炭素数1〜20の酸素含有炭化水素基の具体例としては、メトキシ、エトキシ、プロポキシ、ブトキシ等のアルコキシ基、フェノキシ、ナフトキシ等のアリロキシ基、フェニルメトキシ等のアリールアルコキシ基、フリル基などの酸素含有複素環基などが挙げられる。
上記の炭素数1〜20の窒素含有炭化水素基の具体例としては、メチルアミノ、ジメチルアミノ、エチルアミノ、ジエチルアミノ等のアルキルアミノ基、フェニルアミノ、ジフェニルアミノ等のアリールアミノ基、(メチル)(フェニル)アミノ等の(アルキル)(アリール)アミノ基、ピラゾリル、インドリル等の窒素含有複素環基などが挙げられる。
In general formula (1), X and Y are each independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, or a carbon number of 1 to 20 A silicon-containing hydrocarbon group, an oxygen-containing hydrocarbon group having 1 to 20 carbon atoms, an amino group, or a nitrogen-containing hydrocarbon group having 1 to 20 carbon atoms. As said halogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
Specific examples of the hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, and s-butyl, vinyl, propenyl, Examples include alkenyl groups such as cyclohexenyl, arylalkyl groups such as benzyl, arylalkenyl groups such as trans-styryl, and aryl groups such as phenyl, tolyl, 1-naphthyl, and 2-naphthyl.
Specific examples of the oxygen-containing hydrocarbon group having 1 to 20 carbon atoms include alkoxy groups such as methoxy, ethoxy, propoxy, and butoxy, allyloxy groups such as phenoxy and naphthoxy, arylalkoxy groups such as phenylmethoxy, and furyl groups. And oxygen-containing heterocyclic groups.
Specific examples of the nitrogen-containing hydrocarbon group having 1 to 20 carbon atoms include alkylamino groups such as methylamino, dimethylamino, ethylamino and diethylamino, arylamino groups such as phenylamino and diphenylamino, (methyl) ( (Alkyl) (aryl) amino groups such as phenyl) amino, and nitrogen-containing heterocyclic groups such as pyrazolyl and indolyl.

上記の炭素数1〜20のハロゲン化炭化水素基において、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。そして、上記のハロゲン化炭化水素基は、ハロゲン原子が例えばフッ素原子の場合、フッ素原子が上記の炭化水素基の任意の位置に置換した化合物である。具体的には、フルオロメチル、ジフルオロメチル、トリフルオロメチル、クロロメチル、ジクロロメチル、トリクロロメチル基などが挙げられる。
上記の炭素数1〜20のケイ素含有炭化水素基の具体例としては、トリメチルシリルメチル、トリエチルシリルメチル等のトリアルキルシリルメチル基、ジメチルフェニルシリルメチル、ジエチルフェニルシリルメチル、ジメチルトリルシリルメチル等のジ(アルキル)(アリール)シリルメチル基などが挙げられる。
In the halogenated hydrocarbon group having 1 to 20 carbon atoms, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. The halogenated hydrocarbon group is a compound in which, when the halogen atom is, for example, a fluorine atom, the fluorine atom is substituted at an arbitrary position of the hydrocarbon group. Specific examples include fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, and trichloromethyl groups.
Specific examples of the silicon-containing hydrocarbon group having 1 to 20 carbon atoms include trialkylsilylmethyl groups such as trimethylsilylmethyl and triethylsilylmethyl, dialkyl such as dimethylphenylsilylmethyl, diethylphenylsilylmethyl, and dimethyltolylsilylmethyl. (Alkyl) (aryl) silylmethyl group and the like can be mentioned.

一般式(1)中、Qは、二つの五員環を結合する、炭素数1〜20の2価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基、オリゴシリレン基、ゲルミレン基の何れかを示す。上述のシリレン基、オリゴシリレン基またはゲルミレン基上に2個の炭化水素基が存在する場合は、それらが互いに結合して環構造を形成していてもよい。
上記のQの具体例としては、メチレン、メチルメチレン、ジメチルメチレン、1,2−エチレン、等のアルキレン基;ジフェニルメチレン等のアリールアルキレン基;シリレン基;メチルシリレン、ジメチルシリレン、ジエチルシリレン、ジ(n−プロピル)シリレン、ジ(i−プロピル)シリレン、ジ(シクロヘキシル)シリレン等のアルキルシリレン基、メチル(フェニル)シリレン等の(アルキル)(アリール)シリレン基;ジフェニルシリレン等のアリールシリレン基;テトラメチルジシリレン等のアルキルオリゴシリレン基;ゲルミレン基;上記の2価の炭素数1〜20の炭化水素基を有するシリレン基のケイ素をゲルマニウムに置換したアルキルゲルミレン基;(アルキル)(アリール)ゲルミレン基;アリールゲルミレン基などを挙げることが出来る。これらの中では、炭素数1〜20の炭化水素基を有するシリレン基、または、炭素数1〜20の炭化水素基を有するゲルミレン基が好ましく、アルキルシリレン基、アルキルゲルミレン基が特に好ましい。
In general formula (1), Q is a divalent hydrocarbon group having 1 to 20 carbon atoms and a silylene group optionally having a hydrocarbon group having 1 to 20 carbon atoms, which binds two five-membered rings. , Either an oligosilylene group or a germylene group. When two hydrocarbon groups are present on the above-mentioned silylene group, oligosilylene group or germylene group, they may be bonded to each other to form a ring structure.
Specific examples of Q include alkylene groups such as methylene, methylmethylene, dimethylmethylene, 1,2-ethylene; arylalkylene groups such as diphenylmethylene; silylene groups; methylsilylene, dimethylsilylene, diethylsilylene, di ( n-propyl) silylene, di (i-propyl) silylene, alkylsilylene groups such as di (cyclohexyl) silylene, (alkyl) (aryl) silylene groups such as methyl (phenyl) silylene; arylsilylene groups such as diphenylsilylene; tetra An alkyl oligosilylene group such as methyldisilylene; a germylene group; an alkylgermylene group in which the silicon of the above-mentioned divalent hydrocarbon group having 1 to 20 carbon atoms is replaced with germanium; (alkyl) (aryl) germylene Group; arylgermylene group It can be mentioned. In these, the silylene group which has a C1-C20 hydrocarbon group, or the germylene group which has a C1-C20 hydrocarbon group is preferable, and an alkylsilylene group and an alkylgermylene group are especially preferable.

上記一般式(1)で表される化合物のうち、好ましい化合物として、以下に具体的に例示する。
ジメチルシリレンビス(2−(2−フリル)−4−フェニル−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−チエニル)−4−フェニル−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライド、ジフェニルシリレンビス(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライド、ジメチルゲルミレンビス(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライド、ジメチルゲルミレンビス(2−(2−(5−メチル)−チエニル)−4−フェニル−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−t−ブチル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−トリメチルシリル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−フェニル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(4,5−ジメチル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−ベンゾフリル)−4−フェニル−インデニル)ハフニウムジクロライド、ジフェニルシリレンビス(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−メチル−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−イソプロピル−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−フルフリル)−4−フェニル−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−(4−クロロフェニル)−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−(4−フルオロフェニル)−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−(4−トリフルオロメチルフェニル)−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−(4−t−ブチルフェニル)−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−フリル)−4−(1−ナフチル)−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−フリル)−4−(2−ナフチル)−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−フリル)−4−(2−フェナンスリル)−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−フリル)−4−(9−フェナンスリル)−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−(1−ナフチル)−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−(2−ナフチル)−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−(2−フェナンスリル)−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−(9−フェナンスリル)−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−t−ブチル)−フリル)−4−(1−ナフチル)−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−t−ブチル)−フリル)−4−(2−ナフチル)−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−t−ブチル)−フリル)−4−(2−フェナンスリル)−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−t−ブチル)−フリル)−4−(9−フェナンスリル)−インデニル)ハフニウムジクロライド、ジメチルシリレン(2−メチル−4−フェニル−インデニル)(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライド、ジメチルシリレン(2−メチル−4−フェニル−インデニル)(2−(2−(5−メチル)−チエニル)−4−フェニル−インデニル)ハフニウムジクロライド、などを挙げることができる。
Of the compounds represented by the general formula (1), preferred compounds are specifically exemplified below.
Dimethylsilylenebis (2- (2-furyl) -4-phenyl-indenyl) hafnium dichloride, dimethylsilylenebis (2- (2-thienyl) -4-phenyl-indenyl) hafnium dichloride, dimethylsilylenebis (2- (2 -(5-methyl) -furyl) -4-phenyl-indenyl) hafnium dichloride, diphenylsilylenebis (2- (2- (5-methyl) -furyl) -4-phenyl-indenyl) hafnium dichloride, dimethylgermylenebis (2- (2- (5-Methyl) -furyl) -4-phenyl-indenyl) hafnium dichloride, dimethylgermylenebis (2- (2- (5-methyl) -thienyl) -4-phenyl-indenyl) hafnium Dichloride, dimethylsilylenebis (2- (2- (5-t Butyl) -furyl) -4-phenyl-indenyl) hafnium dichloride, dimethylsilylenebis (2- (2- (5-trimethylsilyl) -furyl) -4-phenyl-indenyl) hafnium dichloride, dimethylsilylenebis (2- (2 -(5-phenyl) -furyl) -4-phenyl-indenyl) hafnium dichloride, dimethylsilylenebis (2- (2- (4,5-dimethyl) -furyl) -4-phenyl-indenyl) hafnium dichloride, dimethylsilylene Bis (2- (2-benzofuryl) -4-phenyl-indenyl) hafnium dichloride, diphenylsilylenebis (2- (2- (5-methyl) -furyl) -4-phenyl-indenyl) hafnium dichloride, dimethylsilylenebis ( 2- (2- (5-Methyl -Furyl) -4-methyl-indenyl) hafnium dichloride, dimethylsilylenebis (2- (2- (5-methyl) -furyl) -4-isopropyl-indenyl) hafnium dichloride, dimethylsilylenebis (2- (2-furfuryl) ) -4-phenyl-indenyl) hafnium dichloride, dimethylsilylenebis (2- (2- (5-methyl) -furyl) -4- (4-chlorophenyl) -indenyl) hafnium dichloride, dimethylsilylenebis (2- (2 -(5-Methyl) -furyl) -4- (4-fluorophenyl) -indenyl) hafnium dichloride, dimethylsilylenebis (2- (2- (5-methyl) -furyl) -4- (4-trifluoromethyl) Phenyl) -indenyl) hafnium dichloride, dimethylsilylenebi (2- (2- (5-methyl) -furyl) -4- (4-t-butylphenyl) -indenyl) hafnium dichloride, dimethylsilylenebis (2- (2-furyl) -4- (1-naphthyl) ) -Indenyl) hafnium dichloride, dimethylsilylenebis (2- (2-furyl) -4- (2-naphthyl) -indenyl) hafnium dichloride, dimethylsilylenebis (2- (2-furyl) -4- (2-phenanthryl) ) -Indenyl) hafnium dichloride, dimethylsilylenebis (2- (2-furyl) -4- (9-phenanthryl) -indenyl) hafnium dichloride, dimethylsilylenebis (2- (2- (5-methyl) -furyl)- 4- (1-naphthyl) -indenyl) hafnium dichloride, dimethylsilylenebis (2- (2 (5-Methyl) -furyl) -4- (2-naphthyl) -indenyl) hafnium dichloride, dimethylsilylenebis (2- (2- (5-methyl) -furyl) -4- (2-phenanthryl) -indenyl) Hafnium dichloride, dimethylsilylenebis (2- (2- (5-methyl) -furyl) -4- (9-phenanthryl) -indenyl) hafnium dichloride, dimethylsilylenebis (2- (2- (5-t-butyl) -Furyl) -4- (1-naphthyl) -indenyl) hafnium dichloride, dimethylsilylenebis (2- (2- (5-t-butyl) -furyl) -4- (2-naphthyl) -indenyl) hafnium dichloride, Dimethylsilylenebis (2- (2- (5-t-butyl) -furyl) -4- (2-phenanthryl) -indene ) Hafnium dichloride, dimethylsilylene bis (2- (2- (5-t-butyl) -furyl) -4- (9-phenanthryl) -indenyl) hafnium dichloride, dimethylsilylene (2-methyl-4-phenyl-indenyl) ) (2- (2- (5-methyl) -furyl) -4-phenyl-indenyl) hafnium dichloride, dimethylsilylene (2-methyl-4-phenyl-indenyl) (2- (2- (5-methyl)- And thienyl) -4-phenyl-indenyl) hafnium dichloride.

これらのうち、更に好ましいのは、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライド、ジメチルゲルミレンビス(2−(2−(5−メチル)−チエニル)−4−フェニル−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−(4−クロロフェニル)−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−ナフチル−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−(4−t−ブチルフェニル)−インデニル)ハフニウムジクロライド、ジメチルシリレン(2−メチル−4−フェニル−インデニル)(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライド、である。   Of these, more preferred are dimethylsilylene bis (2- (2- (5-methyl) -furyl) -4-phenyl-indenyl) hafnium dichloride, dimethylgermylene bis (2- (2- (5-methyl). ) -Thienyl) -4-phenyl-indenyl) hafnium dichloride, dimethylsilylenebis (2- (2- (5-methyl) -furyl) -4- (4-chlorophenyl) -indenyl) hafnium dichloride, dimethylsilylenebis (2 -(2- (5-methyl) -furyl) -4-naphthyl-indenyl) hafnium dichloride, dimethylsilylenebis (2- (2- (5-methyl) -furyl) -4- (4-t-butylphenyl) -Indenyl) hafnium dichloride, dimethylsilylene (2-methyl-4-phenyl-indenyl) ( - (2- (5-methyl) - furyl) -4-phenyl - indenyl) hafnium dichloride.

また、特に好ましいのは、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−ナフチル−インデニル)ハフニウムジクロライド、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−(4−t−ブチルフェニル)−インデニル)ハフニウムジクロライドである。   Also particularly preferred are dimethylsilylene bis (2- (2- (5-methyl) -furyl) -4-phenyl-indenyl) hafnium dichloride, dimethylsilylene bis (2- (2- (5-methyl) -furyl). ) -4-naphthyl-indenyl) hafnium dichloride, dimethylsilylenebis (2- (2- (5-methyl) -furyl) -4- (4-t-butylphenyl) -indenyl) hafnium dichloride.

(2)成分(b):
次に、触媒成分(b)は、イオン交換性層状珪酸塩である。
本発明において、イオン交換性層状珪酸塩(以下、単に珪酸塩と略記することもある)とは、イオン結合などによって構成される面が互いに結合力で平行に積み重なった結晶構造を有し、且つ、含有されるイオンが交換可能である珪酸塩化合物をいう。大部分の珪酸塩は、天然には主に粘土鉱物の主成分として産出され、水中に分散/膨潤させ、沈降速度等の違いにより精製することが一般的であるが、完全に除去することが困難であることがあり、イオン交換性層状珪酸塩以外の夾雑物(石英、クリストバライト等)を含んでいることが多いが、それらを含んでもよい。それら夾雑物の種類、量、粒子径、結晶性、分散状態によっては純粋な珪酸塩以上に好ましいことがあり、そのような複合体も、成分(b)に含まれる。
尚、本発明の原料とは、後述する本発明の化学処理を行う前段階の珪酸塩をさす。また、本発明で使用する珪酸塩は、天然産のものに限らず、人工合成物であってもよい。
また、本発明においては、化学処理を加える前段階でイオン交換性を有していれば、該処理によって物理的、化学的な性質が変化し、イオン交換性や層構造がなくなった珪酸塩も、イオン交換性層状珪酸塩であるとして取り扱う。
(2) Component (b):
Next, the catalyst component (b) is an ion-exchange layered silicate.
In the present invention, an ion-exchange layered silicate (hereinafter sometimes abbreviated as silicate) has a crystal structure in which surfaces formed by ionic bonds and the like are stacked in parallel with each other by a binding force, and , Refers to a silicate compound in which the contained ions are exchangeable. Most silicates are naturally produced mainly as the main component of clay minerals, and are generally dispersed / swelled in water and purified by differences in sedimentation rate, etc., but they can be completely removed. Although it may be difficult and contains impurities (quartz, cristobalite, etc.) other than ion-exchangeable layered silicate, they may be included. Depending on the type, amount, particle size, crystallinity, and dispersion state of these impurities, it may be preferable to pure silicate, and such a complex is also included in component (b).
In addition, the raw material of this invention refers to the silicate of the previous stage which performs the chemical treatment of this invention mentioned later. Further, the silicate used in the present invention is not limited to a natural product, and may be an artificial synthetic product.
In addition, in the present invention, if there is ion exchange properties before chemical treatment, the physical and chemical properties are changed by the treatment, and silicates having no ion exchange properties or layer structures are also included. Treated as an ion-exchanged layered silicate.

イオン交換性層状珪酸塩の具体例としては、例えば、白水春雄著「粘土鉱物学」朝倉書店(1988年)等に記載される1:1型構造や2:1型構造をもつ層状珪酸塩が挙げられる。
1:1型構造とは、前記「粘土鉱物学」等に記載されているような1層の四面体シートと1層の八面体シートが組み合わさっている1:1層構造の積み重なりを基本とする構造を示し、2:1型構造とは、2層の四面体シートが1層の八面体シートを挟み込んでいる2:1層構造の積み重なりを基本とする構造を示す。
Specific examples of the ion-exchange layered silicate include, for example, layered silicates having a 1: 1 type structure or a 2: 1 type structure described in Haruo Shiramizu “Clay Mineralogy” Asakura Shoten (1988) and the like. Can be mentioned.
The 1: 1 type structure is based on the stacking of the 1: 1 layer structure in which one layer of tetrahedron sheet and one layer of octahedron sheet are combined as described in the above “clay mineralogy” and the like. The 2: 1 type structure is a structure based on a stack of 2: 1 layer structures in which two layers of tetrahedral sheets sandwich one layer of octahedral sheets.

1:1層が主要な構成層であるイオン交換性層状珪酸塩の具体例としては、ディッカイト、ナクライト、カオリナイト、メタハロイサイト、ハロイサイト等のカオリン族珪酸塩、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族珪酸塩等が挙げられる。
また、2:1層が主要な構成層であるイオン交換性層状珪酸塩の具体例としては、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト等のスメクタイト族珪酸塩、バーミキュライト等のバーミキュライト族珪酸塩、雲母、イライト、セリサイト、海緑石等の雲母族珪酸塩、アタパルジャイト、セピオライト、パリゴルスカイト、ベントナイト、パイロフィライト、タルク、緑泥石群等が挙げられる。これらは混合層を形成していてもよい。
これらの中では、主成分が2:1型構造を有するイオン交換性層状珪酸塩であるものが好ましい。より好ましくは、主成分がスメクタイト族珪酸塩であり、さらに好ましくは、主成分がモンモリロナイトである。
Specific examples of ion-exchangeable layered silicates in which the 1: 1 layer is the main constituent layer include kaolin silicates such as dickite, nacrite, kaolinite, metahalloysite, halloysite, chrysotile, risardite, antigolite, etc. Examples include serpentine silicates.
Specific examples of ion-exchangeable layered silicates in which the 2: 1 layer is the main constituent layer include smectite group silicates such as montmorillonite, beidellite, nontronite, saponite, hectorite, stevensite, vermiculite, etc. Examples thereof include vermiculite silicates, mica, illite, sericite, and mica group silicates such as sea chlorite, attapulgite, sepiolite, palygorskite, bentonite, pyrophyllite, talc, and chlorite. These may form a mixed layer.
Among these, the main component is preferably an ion-exchange layered silicate having a 2: 1 type structure. More preferably, the main component is a smectite group silicate, and still more preferably, the main component is montmorillonite.

層間カチオン(イオン交換性層状珪酸塩の層間に含有される陽イオン)の種類としては、特に限定されないが、主成分として、リチウム、ナトリウム等の周期律表第1族のアルカリ金属、カルシウム、マグネシウム等の周期律表第2族のアルカリ土類金属、あるいは鉄、コバルト、銅、ニッケル、亜鉛、ルテニウム、ロジウム、パラジウム、銀、イリジウム、白金、金等の遷移金属などが、工業原料として比較的容易に入手可能である点で好ましい。   The type of interlayer cations (cations contained between the layers of the ion-exchange layered silicate) is not particularly limited, but as a main component, alkali metals of the first group of the periodic table such as lithium and sodium, calcium and magnesium Alkali earth metals of Group 2 of the periodic table, etc., or transition metals such as iron, cobalt, copper, nickel, zinc, ruthenium, rhodium, palladium, silver, iridium, platinum, gold, etc. are relatively It is preferable in that it can be easily obtained.

前記イオン交換性層状珪酸塩は、乾燥状態で用いてもよく、液体にスラリー化した状態で用いてもよい。また、イオン交換性層状珪酸塩の形状については、特に制限はなく、天然に産出する形状、人工的に合成した時点の形状でもよいし、また、粉砕、造粒、分級などの操作によって形状を加工したイオン交換性層状珪酸塩を用いてもよい。このうち造粒されたイオン交換性層状珪酸塩を用いると、該イオン交換性層状珪酸塩を触媒成分として用いた場合に、良好なポリマー粒子性状を与えるため特に好ましい。   The ion-exchange layered silicate may be used in a dry state or in a slurry state in a liquid. In addition, the shape of the ion-exchange layered silicate is not particularly limited, and may be a naturally produced shape, a shape when artificially synthesized, or a shape by operations such as pulverization, granulation, and classification. You may use the processed ion exchange layered silicate. Of these, the granulated ion-exchange layered silicate is particularly preferable because it gives good polymer particle properties when the ion-exchange layered silicate is used as a catalyst component.

造粒、粉砕、分級などのイオン交換性層状珪酸塩の形状の加工は、化学処理の前に行ってもよい(すなわち、あらかじめ形状を加工したイオン交換性層状珪酸塩に下記の化学処理を行ってもよい)し、化学処理を行った後に形状を加工してもよい。
ここで用いられる造粒法としては、例えば、撹拌造粒法、噴霧造粒法、転動造粒法、ブリケッティング、コンパクティング、押出造粒法、流動層造粒法、乳化造粒法、液中造粒法、圧縮成型造粒法等が挙げられるが、特に限定されない。好ましくは、撹拌造粒法、噴霧造粒法、転動造粒法、流動造粒法が挙げられ、特に好ましくは撹拌造粒法、噴霧造粒法が挙げられる。
なお、噴霧造粒を行う場合、原料スラリーの分散媒として、水あるいはメタノール、エタノール、クロロホルム、塩化メチレン、ペンタン、ヘキサン、ヘプタン、トルエン、キシレン等の有機溶媒を用いる。好ましくは水を分散媒として用いる。球状粒子が得られる噴霧造粒の原料スラリー液中における成分(b)の濃度は、0.1〜30重量%、好ましくは0.5〜20重量%、特に好ましくは1〜10重量%である。球状粒子が得られる噴霧造粒の熱風の入口温度は、分散媒により異なるが、水を例にとると80〜260℃、好ましくは100〜220℃で行う。
Processing of the shape of the ion-exchange layered silicate such as granulation, pulverization, and classification may be performed before the chemical treatment (that is, the following chemical treatment is performed on the ion-exchange layered silicate that has been processed in advance). The shape may be processed after chemical treatment.
Examples of the granulation method used here include stirring granulation method, spray granulation method, rolling granulation method, briquetting, compacting, extrusion granulation method, fluidized bed granulation method, emulsion granulation method. , Submerged granulation method, compression molding granulation method, and the like, but are not particularly limited. Preferably, agitation granulation method, spray granulation method, rolling granulation method, and fluidized granulation method are exemplified, and particularly preferably, agitation granulation method and spray granulation method are exemplified.
When spray granulation is performed, water or an organic solvent such as methanol, ethanol, chloroform, methylene chloride, pentane, hexane, heptane, toluene, and xylene is used as a dispersion medium for the raw slurry. Preferably, water is used as a dispersion medium. The concentration of the component (b) in the raw slurry liquid for spray granulation from which spherical particles are obtained is 0.1 to 30% by weight, preferably 0.5 to 20% by weight, particularly preferably 1 to 10% by weight. . The inlet temperature of the hot air for spray granulation from which spherical particles are obtained varies depending on the dispersion medium, but is 80 to 260 ° C, preferably 100 to 220 ° C when water is taken as an example.

造粒において、粒子強度の高い担体を得るため、及び、プロピレン重合活性を向上させるためには、珪酸塩を必要に応じ微細化する。珪酸塩は、如何なる方法において微細化してもよい。微細化する方法としては、乾式粉砕、湿式粉砕いずれの方法でも可能である。好ましくは、水を分散媒として使用し珪酸塩の膨潤性を利用した湿式粉砕であり、例えばポリトロン等を使用した強制撹拌による方法やダイノーミル、パールミル等による方法がある。造粒する前の平均粒径は、0.01〜3μm、好ましくは0.05〜1μmである。   In granulation, in order to obtain a carrier having high particle strength and to improve propylene polymerization activity, the silicate is refined as necessary. The silicate may be refined by any method. As a method for miniaturization, either dry pulverization or wet pulverization is possible. Preferably, wet pulverization using water as a dispersion medium and utilizing the swellability of silicate, for example, a method using forced stirring using polytron or the like, a method using dyno mill, pearl mill, or the like. The average particle size before granulation is 0.01 to 3 μm, preferably 0.05 to 1 μm.

また、造粒の際に有機物、無機溶媒、無機塩、各種バインダーを用いてもよい。用いられるバインダーとしては、例えば、塩化マグネシウム、硫酸アルミニウム、塩化アルミニウム、硫酸マグネシウム、アルコール類、グリコール等が挙げられる。   Moreover, you may use organic substance, an inorganic solvent, inorganic salt, and various binders in the case of granulation. Examples of the binder used include magnesium chloride, aluminum sulfate, aluminum chloride, magnesium sulfate, alcohols, glycols and the like.

上記のようにして得られた球状粒子は、重合工程での破砕や微粉発生を抑制するためには、0.2MPa以上の圧縮破壊強度を有することが好ましい。また、造粒されたイオン交換性層状珪酸塩の粒径は、0.1〜1000μm、好ましくは1〜500μmの範囲である。粉砕法についても特に制限はなく、乾式粉砕、湿式粉砕のいずれでもよい。   The spherical particles obtained as described above preferably have a compression fracture strength of 0.2 MPa or more in order to suppress crushing and fine powder generation in the polymerization step. The particle size of the granulated ion-exchange layered silicate is in the range of 0.1 to 1000 μm, preferably 1 to 500 μm. There is no particular limitation on the pulverization method, and either dry pulverization or wet pulverization may be used.

触媒成分(b)のイオン交換性層状珪酸塩は、特に処理を行うことなくそのまま用いることができるが、化学処理を行なうことが望ましく、イオン交換性層状珪酸塩の化学処理とは、酸類、塩類、アルカリ類、有機物等とイオン交換性層状珪酸塩とを接触させることをいう。   The ion-exchange layered silicate of the catalyst component (b) can be used as it is without any particular treatment, but it is desirable to perform the chemical treatment. The chemical treatment of the ion-exchange layered silicate refers to acids and salts. It means that an alkali, an organic substance or the like is brought into contact with an ion-exchange layered silicate.

化学処理による共通の影響として、層間陽イオンの交換を行うことが挙げられるが、それ以外に各種化学処理は、次のような種々の効果がある。例えば、酸類による酸処理によれば、珪酸塩表面の不純物が取り除かれる他、結晶構造中のAl、Fe、Mg等の陽イオンを溶出させることによって、表面積を増大させることができる。これは、珪酸塩の酸強度を増大させ、また、単位重量当たりの酸点量を増大させることに寄与する。   A common effect of chemical treatment is to exchange interlayer cations. In addition, various chemical treatments have the following various effects. For example, according to the acid treatment with acids, impurities on the silicate surface can be removed and the surface area can be increased by eluting cations such as Al, Fe, and Mg in the crystal structure. This contributes to increasing the acid strength of the silicate and increasing the amount of acid sites per unit weight.

アルカリ類によるアルカリ処理では、粘土鉱物の結晶構造が破壊され、粘土鉱物の構造の変化をもたらす。   In alkali treatment with alkalis, the crystal structure of the clay mineral is destroyed, resulting in a change in the structure of the clay mineral.

上記化学処理を実施した後に、過剰の処理剤及び処理により溶出したイオンの除去をすることが可能であり、好ましい。この際、一般的には、水や有機溶媒などの液体を使用する。脱水後は、乾燥を行うが、一般的には、乾燥温度は、100〜800℃、好ましくは150〜600℃で実施可能である。800℃を超えると、珪酸塩の構造破壊を生じるおそれがあるので好ましくない。   After carrying out the chemical treatment, it is possible to remove excess treatment agent and ions eluted by the treatment, which is preferable. At this time, generally, a liquid such as water or an organic solvent is used. After the dehydration, drying is performed. In general, the drying temperature can be 100 to 800 ° C, preferably 150 to 600 ° C. Exceeding 800 ° C. is not preferable because it may cause structural destruction of the silicate.

これらのイオン交換性層状珪酸塩は、構造破壊されなくとも乾燥温度により特性が変化するために、用途に応じて乾燥温度を変えることが好ましい。乾燥時間は、通常1分〜24時間、好ましくは5分〜4時間であり、雰囲気は、乾燥空気、乾燥窒素、乾燥アルゴン、又は減圧下であることが好ましい。乾燥方法に関しては、特に限定されず各種方法で実施可能である。   Since these ion-exchange layered silicates have different characteristics depending on the drying temperature even if they are not structurally destroyed, it is preferable to change the drying temperature depending on the application. The drying time is usually 1 minute to 24 hours, preferably 5 minutes to 4 hours, and the atmosphere is preferably dry air, dry nitrogen, dry argon, or under reduced pressure. It does not specifically limit regarding a drying method, It can implement by various methods.

化学処理されたイオン交換性層状珪酸塩を、本発明に係る触媒成分(b)としては、Al/Siの原子比として、0.01〜0.25、好ましくは0.03〜0.24のもの、さらには0.05〜0.23の範囲のものがよい。Al/Si原子比は、粘土部分の酸処理強度の指標となるものとみられる。また、上記の範囲にAl/Si原子比を制御する方法としては、化学処理前のイオン交換性層状珪酸塩として、モンモリロナイトを使用し、化学処理をおこなう方法が挙げられる。
イオン交換性層状珪酸塩中のアルミニウム及びケイ素は、JIS法による化学分析による方法で検量線を作成し、蛍光X線で定量するという方法で測定される。
As the catalyst component (b) according to the present invention, the chemically-exchanged ion-exchange layered silicate has an Al / Si atomic ratio of 0.01 to 0.25, preferably 0.03 to 0.24. And more preferably in the range of 0.05 to 0.23. The Al / Si atomic ratio is considered to be an index of the acid treatment strength of the clay portion. Moreover, as a method of controlling the Al / Si atomic ratio within the above range, a method of performing chemical treatment using montmorillonite as the ion-exchange layered silicate before chemical treatment can be mentioned.
Aluminum and silicon in the ion-exchange layered silicate are measured by a method of preparing a calibration curve by a chemical analysis method by JIS method and quantifying with a fluorescent X-ray.

(3)成分(c):
触媒成分(c)は、有機アルミニウム化合物であり、好ましくは、一般式:(AlR3−nで表される有機アルミニウム化合物が使用される。式中、Rは炭素数1〜20のアルキル基を表し、Xはハロゲン、水素、アルコキシ基又はアミノ基を表し、nは1〜3の、mは1〜2の整数を各々表す。有機アルミニウム化合物は、単独であるいは複数種を組み合わせて使用することができる。
(3) Component (c):
The catalyst component (c) is an organoaluminum compound, and preferably an organoaluminum compound represented by the general formula: (AlR n X 3-n ) m is used. In formula, R represents a C1-C20 alkyl group, X represents a halogen, hydrogen, an alkoxy group, or an amino group, n represents 1-3, m represents the integer of 1-2, respectively. The organoaluminum compounds can be used alone or in combination.

有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリノルマルプロピルアルミニウム、トリノルマルブチルアルミニウム、トリイソブチルアルミニウム、トリノルマルヘキシルアルミニウム、トリノルマルオクチルアルミニウム、トリノルマルデシルアルミニウム、ジエチルアルミニウムクロライド、ジエチルアルミニウムセスキクロライド、ジエチルアルミニウムヒドリド、ジエチルアルミニウムエトキシド、ジエチルアルミニウムジメチルアミド、ジイソブチルアルミニウムヒドリド、ジイソブチルアルミニウムクロライド等が挙げられる。これらのうち、好ましくは、m=1、n=3のトリアルキルアルミニウム及びアルキルアルミニウムヒドリドである。さらに好ましくは、Rが炭素数1〜8であるトリアルキルアルミニウムである。   Specific examples of the organoaluminum compound include trimethylaluminum, triethylaluminum, trinormalpropylaluminum, trinormalbutylaluminum, triisobutylaluminum, trinormalhexylaluminum, trinormaloctylaluminum, trinormaldecylaluminum, diethylaluminum chloride, diethylaluminum. Examples thereof include sesquichloride, diethylaluminum hydride, diethylaluminum ethoxide, diethylaluminum dimethylamide, diisobutylaluminum hydride, and diisobutylaluminum chloride. Of these, trialkylaluminum and alkylaluminum hydride with m = 1 and n = 3 are preferable. More preferably, R is a trialkylaluminum having 1 to 8 carbon atoms.

(4)触媒の調整:
本発明に係るオレフィン重合用触媒は、上記成分(a)、成分(b)及び成分(c)を含む。これらは、重合槽内で、あるいは重合槽外で接触させオレフィンの存在下で予備重合を行ってもよい。
オレフィンとは、炭素間二重結合を少なくとも1個含む炭化水素をいい、エチレン、プロピレン、1−ブテン、1−ヘキセン、3−メチルブテン−1、スチレン、ジビニルベンゼン等が例示されるが、特に種類に制限はなく、これらと他のオレフィンとの混合物を用いてもよい。好ましくは炭素数3以上のオレフィンがよい。
(4) Catalyst adjustment:
The catalyst for olefin polymerization according to the present invention includes the component (a), the component (b) and the component (c). These may be contacted in the polymerization tank or outside the polymerization tank and preliminarily polymerized in the presence of olefin.
The olefin refers to a hydrocarbon having at least one carbon-carbon double bond, and examples thereof include ethylene, propylene, 1-butene, 1-hexene, 3-methylbutene-1, styrene, divinylbenzene, and the like. There is no restriction | limiting, You may use the mixture of these and another olefin. An olefin having 3 or more carbon atoms is preferable.

前記成分(a)、成分(b)及び成分(c)の使用量は、任意であるが、成分(b)中の遷移金属と成分(c)中のアルミニウムとの比が、成分(a)1gあたり、0.1〜1000(μmol):0〜100000(μmol)となるように接触させることが好ましい。また前記成分(a)に加えて、本発明に係るプロピレン系重合体(X)を更に効率よく製造する目的で、他の種の錯体を使用することも可能である。
この場合、前記触媒成分(a)で製造する末端ビニルのマクロマーを共重合でき、触媒成分(a)に比べて、高分子量の重合体が製造できるメタロセン化合物を組み合わせることが好ましい。
特に好ましいメタロセン化合物としては、下記一般式(2)で示される触媒成分(a−2)が挙げられる。
The amount of component (a), component (b) and component (c) used is arbitrary, but the ratio of the transition metal in component (b) to the aluminum in component (c) is the component (a). It is preferable to make it contact so that it may become 0.1-1000 (micromol): 0-100,000 (micromol) per 1g. In addition to the component (a), other types of complexes may be used for the purpose of more efficiently producing the propylene polymer (X) according to the present invention.
In this case, it is preferable to combine a metallocene compound capable of copolymerizing the terminal vinyl macromer produced by the catalyst component (a) and producing a high molecular weight polymer compared to the catalyst component (a).
As a particularly preferred metallocene compound, a catalyst component (a-2) represented by the following general formula (2) can be mentioned.

Figure 0005162323
Figure 0005162323

上記一般式(2)で表される化合物は、メタロセン化合物であって、一般式(2)中、Q21は、二つの共役五員環配位子を架橋する結合性基であり、炭素数1〜20の2価の炭化水素基、炭素数1〜20の炭化水素基を有するシリレン基または炭素数1〜20の炭化水素基を有するゲルミレン基であり、好ましくは置換シリレン基あるいは置換ゲルミレン基である。ケイ素、ゲルマニウムに結合する置換基は、炭素数1〜12の炭化水素基が好ましく、二つの置換基が連結していてもよい。具体的な例としては、メチレン、ジメチルメチレン、エチレン−1,2−ジイル、ジメチルシリレン、ジエチルシリレン、ジフェニルシリレン、メチルフェニルシリレン、9−シラフルオレン−9,9−ジイル、ジメチルシリレン、ジエチルシリレン、ジフェニルシリレン、メチルフェニルシリレン、9−シラフルオレン−9,9−ジイル、ジメチルゲルミレン、ジエチルゲルミレン、ジフェニルゲルミレン、メチルフェニルゲルミレン等が挙げられる。
また、Meは、ジルコニウムまたはハフニウムであり、好ましくはハフニウムである。
さらに、X21およびY21は、補助配位子であり、成分[b]の助触媒と反応してオレフィン重合能を有する活性なメタロセンを生成させる。したがって、この目的が達成される限り、X21とY21は、配位子の種類が制限されるものではなく、それぞれ独立して、水素、ハロゲン基、炭素数1〜20の炭化水素基、炭素数1〜20のアルコキシ基、炭素数1〜20のアルキルアミド基、トリフルオロメタンスルホン酸基、炭素数1〜20のリン含有炭化水素基または炭素数1〜20のケイ素含有炭化水素基を示す。
The compound represented by the general formula (2) is a metallocene compound, and in the general formula (2), Q 21 is a binding group that bridges two conjugated five-membered ring ligands, and has a carbon number. A divalent hydrocarbon group having 1 to 20 carbon atoms, a silylene group having a hydrocarbon group having 1 to 20 carbon atoms, or a germylene group having a hydrocarbon group having 1 to 20 carbon atoms, preferably a substituted silylene group or a substituted germylene group It is. The substituent bonded to silicon and germanium is preferably a hydrocarbon group having 1 to 12 carbon atoms, and two substituents may be linked. Specific examples include methylene, dimethylmethylene, ethylene-1,2-diyl, dimethylsilylene, diethylsilylene, diphenylsilylene, methylphenylsilylene, 9-silafluorene-9,9-diyl, dimethylsilylene, diethylsilylene, Examples thereof include diphenylsilylene, methylphenylsilylene, 9-silafluorene-9,9-diyl, dimethylgermylene, diethylgermylene, diphenylgermylene, methylphenylgermylene and the like.
Me is zirconium or hafnium, preferably hafnium.
Furthermore, X 21 and Y 21 are auxiliary ligands, and react with the cocatalyst of component [b] to generate an active metallocene having olefin polymerization ability. Therefore, as long as this purpose is achieved, X 21 and Y 21 are not limited to the type of ligand, and each independently represents hydrogen, a halogen group, a hydrocarbon group having 1 to 20 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, an alkylamide group having 1 to 20 carbon atoms, a trifluoromethanesulfonic acid group, a phosphorus-containing hydrocarbon group having 1 to 20 carbon atoms or a silicon-containing hydrocarbon group having 1 to 20 carbon atoms is shown. .

一般式(2)中、R21およびR22は、それぞれ独立して、炭素数1〜6の炭化水素基であり、好ましくはアルキル基であり、さらに好ましくは炭素数1〜4のアルキル基である。具体的な例としては、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、sec−ブチル、n−ペンチル、i−ペンチル、n−ヘキシル等が挙げられ、好ましくはメチル、エチル、n−プロピルである。
また、R23およびR24は、それぞれ独立して、炭素数6〜30の、好ましくは炭素数6〜24の、ハロゲン、ケイ素、あるいは、これらから選択される複数のヘテロ元素を含有してもよいアリール基である。好ましい例としては、フェニル、3−クロロフェニル、4−クロロフェニル、3−フルオロフェニル、4−フルオロフェニル、4−メチルフェニル、4−i−プロピルフェニル、4−t−ブチルフェニル、4−トリメチルシリルフェニル、4−(2−フルオロビフェニリル)、4−(2−クロロビフェニリル)、1−ナフチル、2−ナフチル、3,5−ジメチル−4−t−ブチルフェニル、3,5−ジメチル−4−トリメチルシリルフェニル等が挙げられる。
In general formula (2), R 21 and R 22 are each independently a hydrocarbon group having 1 to 6 carbon atoms, preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms. is there. Specific examples include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, n-pentyl, i-pentyl, n-hexyl, and preferably methyl. , Ethyl, n-propyl.
R 23 and R 24 each independently contains a halogen having 6 to 30 carbon atoms, preferably 6 to 24 carbon atoms, or a plurality of hetero elements selected from these. A good aryl group. Preferable examples include phenyl, 3-chlorophenyl, 4-chlorophenyl, 3-fluorophenyl, 4-fluorophenyl, 4-methylphenyl, 4-i-propylphenyl, 4-t-butylphenyl, 4-trimethylsilylphenyl, 4 -(2-fluorobiphenylyl), 4- (2-chlorobiphenylyl), 1-naphthyl, 2-naphthyl, 3,5-dimethyl-4-tert-butylphenyl, 3,5-dimethyl-4-trimethylsilylphenyl Etc.

上記メタロセン化合物の非限定的な例として、下記のものを挙げることができる。
例えば、ジクロロ{1,1’−ジメチルシリレンビス(2−メチル−4−フェニル−4−ヒドロアズレニル)}ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−クロロ−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−メチル−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−クロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(1−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−クロロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(9−フェナントリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロ−2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−n−プロピル−4−(3−クロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−クロロ−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−メチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−メチル−4−(4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウムなどが挙げられる。
Non-limiting examples of the metallocene compound include the following.
For example, dichloro {1,1′-dimethylsilylenebis (2-methyl-4-phenyl-4-hydroazulenyl)} hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-t-butylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylene Bis {2-methyl-4- (4-trimethylsilylphenyl) -4-hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (3-chloro-4-t-butylphenyl) ) -4-Hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- ( -Methyl-4-t-butylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (3-chloro-4-trimethylsilylphenyl) -4-hydroazurenyl} ] Hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (3-methyl-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2 -Methyl-4- (1-naphthyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (2-naphthyl) -4-hydroazurenyl}] hafnium, dichloro [ 1,1′-dimethylsilylenebis {2-methyl-4- (2-fluoro-4-biphenylyl) -4 -Hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (2-chloro-4-biphenylyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-Methyl-4- (9-phenanthryl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chloro-2-naphthyl) -4-hydroazulenyl }] Hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (4-chlorophenyl) -4-hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-n-propyl -4- (3-Chloro-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, dic B [1,1′-dimethylsilylenebis {2-ethyl-4- (3-chloro-4-tert-butylphenyl) -4-hydroazulenyl}] hafnium, dichloro [1,1′-dimethylgermylenebis {2 -Methyl-4- (2-fluoro-4-biphenylyl) -4-hydroazulenyl}] hafnium, dichloro [1,1′-dimethylgermylenebis {2-methyl-4- (4-t-butylphenyl) -4 -Hydroazurenyl}] hafnium, dichloro [1,1 ′-(9-silafluorene-9,9-diyl) bis {2-ethyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium, and the like.

また、触媒成分(a)に加えて、他の種の触媒成分(a−2)を使用する場合、触媒成分(a)と触媒成分(a−2)の合計量に対する触媒成分(a−2)の量の割合は、プロピレン系重合体(X)の特性を満たす範囲において任意であるが、好ましくは、0.01〜0.6である。この割合を変化させることにより、溶融物性と触媒活性のバランスを調整することが可能であり、より高い溶融物性と高い触媒活性が必要な用途のプロピレン系重合体製造のために、特に好ましくは、0.03〜0.40、さらに好ましくは、0.07〜0.2の範囲である。   In addition to the catalyst component (a), when other types of catalyst component (a-2) are used, the catalyst component (a-2) relative to the total amount of the catalyst component (a) and the catalyst component (a-2) is used. The ratio of the amount of) is arbitrary as long as it satisfies the characteristics of the propylene polymer (X), but is preferably 0.01 to 0.6. By changing this ratio, it is possible to adjust the balance between melt physical properties and catalyst activity, and particularly preferably for the production of propylene-based polymers for applications that require higher melt properties and high catalyst activity, It is 0.03-0.40, More preferably, it is the range of 0.07-0.2.

前記触媒成分(a)、成分(b)及び成分(c)を接触させる順番は、任意であり、これらのうち2つの成分を接触させた後に残りの1成分を接触させてもよいし、3つの成分を同時に接触させてもよい。これらの接触において、接触を充分に行うため、溶媒を用いてもよい。溶媒としては、脂肪族飽和炭化水素、芳香族炭化水素、脂肪族不飽和炭化水素やこれらのハロゲン化物、また予備重合モノマーなどが例示される。脂肪族飽和炭化水素、芳香族炭化水素の例として、具体的にはヘキサン、ヘプタン、トルエン等が挙げられる。また予備重合モノマーとしては、プロピレンを溶媒として用いることができる。   The order in which the catalyst component (a), the component (b) and the component (c) are brought into contact with each other is arbitrary, and after contacting two of these components, the remaining one component may be brought into contact. Two components may be contacted simultaneously. In these contacts, a solvent may be used for sufficient contact. Examples of the solvent include aliphatic saturated hydrocarbons, aromatic hydrocarbons, aliphatic unsaturated hydrocarbons, halides thereof, and prepolymerized monomers. Specific examples of the aliphatic saturated hydrocarbon and the aromatic hydrocarbon include hexane, heptane, toluene and the like. Further, as a prepolymerized monomer, propylene can be used as a solvent.

[予備重合]:
本発明に係る触媒は、前記のように、これにオレフィンを接触させて少量重合されることからなる予備重合処理に付されることが好ましい。使用するオレフィンは、特に限定はないが、前記のように、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、ビニルシクロアルカン、スチレン等を例示することができる。オレフィンのフィード方法は、オレフィンを反応槽に定速的にあるいは定圧状態になるように維持するフィード方法やその組み合わせ、段階的な変化をさせる等、任意の方法が可能である。
予備重合温度、時間は、特に限定されないが、各々−20℃〜100℃、5分〜24時間の範囲であることが好ましい。また、予備重合量は、成分(b)に対する予備重合ポリマーの重量比が好ましくは0.01〜100、さらに好ましくは0.1〜50である。また、予備重合時に成分(c)を添加、又は追加することもできる。
上記各成分の接触の際もしくは接触の後に、ポリエチレン、ポリプロピレン等の重合体、シリカ、チタニア等の無機酸化物の固体を共存させる等の方法も可能である。
予備重合後に触媒を乾燥してもよい。乾燥方法には、特に制限は無いが、減圧乾燥や加熱乾燥、乾燥ガスを流通させることによる乾燥などが例示され、これらの方法を単独で用いても良いし2つ以上の方法を組み合わせて用いてもよい。乾燥工程において触媒を攪拌、振動、流動させてもよいし静置させてもよい。
[Prepolymerization]:
As described above, the catalyst according to the present invention is preferably subjected to a prepolymerization process comprising a small amount of polymerization by bringing an olefin into contact therewith. The olefin used is not particularly limited, but as described above, ethylene, propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, 3-methyl-1-butene, vinylcyclohexane. Examples include alkanes and styrene. The olefin feed method may be any method such as a feed method for maintaining the olefin at a constant speed or in a constant pressure state, a combination thereof, or a stepwise change.
The prepolymerization temperature and time are not particularly limited, but are preferably in the range of −20 ° C. to 100 ° C. and 5 minutes to 24 hours, respectively. Further, the prepolymerization amount is preferably 0.01 to 100, more preferably 0.1 to 50, by weight ratio of the prepolymerized polymer to the component (b). Further, the component (c) can be added or added during the prepolymerization.
A method of coexisting a polymer such as polyethylene or polypropylene and a solid of an inorganic oxide such as silica or titania at the time of contacting or after the contact of the above components is also possible.
The catalyst may be dried after the prepolymerization. The drying method is not particularly limited, and examples thereof include reduced-pressure drying, heat drying, and drying by circulating a drying gas. These methods may be used alone or in combination of two or more methods. May be. In the drying step, the catalyst may be stirred, vibrated, fluidized, or allowed to stand.

[重合方法の詳細な説明]:
重合形態は、前記成分(a)、成分(b)及び成分(c)からなるオレフィン重合用触媒とモノマーが効率よく接触するならば、あらゆる様式を採用しうる。具体的には、不活性溶媒を用いるスラリー法、不活性溶媒を実質的に用いずプロピレンを溶媒として用いるバルク重合法あるいは実質的に液体溶媒を用いず各モノマーをガス状に保つ気相重合法などが採用できる。
また、重合方式は、連続重合、回分式重合、又は予備重合を行う方法も適用される。
また、重合段数は、本発明の物質を製造できるのであればとくに制限はないが、バルク重合2段、バルク重合後気相重合、気相重合2段といった様式も可能であり、さらにはそれ以上の重合段数で製造することが可能である。
しかしながら、本発明に開示する分子量、分子量分布の化合物を得るためには、第一工程をバルク重合で行い、第二工程を気相重合で行うか、もしくは、第一工程、第二工程共に気相重合で行うことが好ましい。
[Detailed description of polymerization method]:
As the polymerization mode, any mode can be adopted as long as the olefin polymerization catalyst comprising the component (a), the component (b) and the component (c) and the monomer come into efficient contact. Specifically, a slurry method using an inert solvent, a bulk polymerization method using propylene as a solvent without substantially using an inert solvent, or a gas phase polymerization method for maintaining each monomer in a gaseous state without using a liquid solvent. Etc. can be adopted.
As the polymerization method, a method of performing continuous polymerization, batch polymerization, or prepolymerization is also applied.
Further, the number of polymerization stages is not particularly limited as long as the substance of the present invention can be produced. However, it is possible to employ a mode such as two stages of bulk polymerization, gas phase polymerization after bulk polymerization, and two stages of gas phase polymerization, and more. It is possible to produce with the number of polymerization stages.
However, in order to obtain the compound having the molecular weight and molecular weight distribution disclosed in the present invention, the first step is carried out by bulk polymerization and the second step is carried out by gas phase polymerization, or both the first step and the second step are carried out. It is preferable to carry out by phase polymerization.

[第一工程]:
スラリー重合の場合は、重合溶媒として、ヘキサン、ヘプタン、ペンタン、シクロヘキサン、ベンゼン、トルエン等の飽和脂肪族又は芳香族炭化水素の単独又は混合物が用いられる。重合温度は、0〜150℃であり、また分子量調節剤として、補助的に水素を用いることができる。重合圧力は、0〜3MPaG、好ましくは0〜2MPaGが適当である。
バルク重合法の場合は、重合温度は、0〜80℃であり、好ましくは60〜80℃であり、さらに好ましくは65〜75℃である。重合圧力は、0〜5MPaG、好ましくは0〜4MPaGが適当である。
気相重合の場合は、重合温度は、0〜200℃であり、好ましくは60〜120℃であり、さらに好ましくは70〜100℃である。重合圧力は、0〜4MPaG、好ましくは0〜3MPaGが適当である。
また分子量調整剤としての水素は、水素による連鎖移動を抑制して末端ビニル含量を増大させるために、使用しないことが好ましい。
[First step]:
In the case of slurry polymerization, a saturated aliphatic or aromatic hydrocarbon such as hexane, heptane, pentane, cyclohexane, benzene, toluene, or the like is used alone or as a polymerization solvent. The polymerization temperature is 0 to 150 ° C., and hydrogen can be used supplementarily as a molecular weight regulator. The polymerization pressure is suitably from 0 to 3 MPaG, preferably from 0 to 2 MPaG.
In the case of the bulk polymerization method, the polymerization temperature is 0 to 80 ° C, preferably 60 to 80 ° C, more preferably 65 to 75 ° C. The polymerization pressure is 0 to 5 MPaG, preferably 0 to 4 MPaG.
In the case of gas phase polymerization, the polymerization temperature is 0 to 200 ° C, preferably 60 to 120 ° C, and more preferably 70 to 100 ° C. The polymerization pressure is suitably from 0 to 4 MPaG, preferably from 0 to 3 MPaG.
Moreover, it is preferable not to use hydrogen as a molecular weight modifier in order to suppress chain transfer by hydrogen and increase the terminal vinyl content.

[第二工程]:
気相重合の場合は、重合温度は、0〜200℃であり、好ましくは20〜90℃であり、さらに好ましくは30〜80℃である。また分子量調節剤として、補助的に水素を用いることができる。重合圧力は、0〜4MPaG、好ましくは0〜3MPaGが適当である。
[Second step]:
In the case of gas phase polymerization, the polymerization temperature is 0 to 200 ° C, preferably 20 to 90 ° C, more preferably 30 to 80 ° C. In addition, hydrogen can be used as a molecular weight regulator. The polymerization pressure is suitably from 0 to 4 MPaG, preferably from 0 to 3 MPaG.

ここで、生成するプロピレン−エチレン(またはαオレフィン)共重合体は、ビニル末端含有率が低いものの一部は共重合して、主鎖と側鎖が共に(非結晶性)プロピレン−エチレンランダム共重合セグメントを有する分岐構造を有する重合体が生成すると考えられる。この場合、非結晶性のプロピレン―エチレンランダム共重合体中のエチレン含量が低い方が、ビニル末端含有率が高くなる。すなわち非結晶性のプロピレン―エチレンランダム共重合体中のエチレン含量を低くすることで、本発明に係るプロピレン系重合体(X)のCXS成分のλmaxを大きくすることが可能である。
その為、CXS成分のλmaxを2以上に制御するためには、エチレン含量が10重量%〜40重量%未満とすることが好ましく、エチレンをコモノマーとして用いて目的の組成の重合体を製造するためには、気相のエチレンガス組成を10mol%以上に制御することが必要であり、好ましくは15mol%以上、さらに好ましくは20mol%以上である。また、上限値に関しては、65mol%以下であり、好ましくは60mol%以下、さらに好ましくは50mol%以下である。
逆に、エチレン含量を40重量%〜60重量%にすると、CXS成分のλmaxは2未満となり、エチレンをコモノマーとして用いる場合には、気相のエチレンガス組成を50mol%以上に制御することが必要であり、好ましくは60mol%以上、さらに好ましくは65mol%以上である。また、上限値に関しては、90mol%以下であり、好ましくは87mol%以下、さらに好ましくは85mol%以下である。
Here, the produced propylene-ethylene (or α-olefin) copolymer is partially copolymerized with a low vinyl terminal content, and both the main chain and the side chain are (non-crystalline) propylene-ethylene random copolymer. It is considered that a polymer having a branched structure having a polymer segment is formed. In this case, the lower the ethylene content in the amorphous propylene-ethylene random copolymer, the higher the vinyl terminal content. That is, by reducing the ethylene content in the amorphous propylene-ethylene random copolymer, it is possible to increase λmax of the CXS component of the propylene-based polymer (X) according to the present invention.
Therefore, in order to control the λmax of the CXS component to 2 or more, it is preferable that the ethylene content is 10 wt% to less than 40 wt%, in order to produce a polymer having a desired composition using ethylene as a comonomer. Therefore, it is necessary to control the ethylene gas composition in the gas phase to 10 mol% or more, preferably 15 mol% or more, and more preferably 20 mol% or more. The upper limit is 65 mol% or less, preferably 60 mol% or less, and more preferably 50 mol% or less.
Conversely, when the ethylene content is 40 wt% to 60 wt%, λmax of the CXS component becomes less than 2, and when ethylene is used as a comonomer, it is necessary to control the ethylene gas composition in the gas phase to 50 mol% or more. Preferably, it is 60 mol% or more, more preferably 65 mol% or more. Moreover, regarding an upper limit, it is 90 mol% or less, Preferably it is 87 mol% or less, More preferably, it is 85 mol% or less.

かくして得られた本発明に係るプロピレン系重合体(X)は、(i)GPCで測定する重量平均分子量(Mw)が10万〜100万であり、(ii)熱p−キシレンに不溶な成分が0.3%以下であり、(iii)伸長粘度の測定における歪硬化度(λmax)が2.0以上であり、(iv)MFR(230℃、2.16kg荷重)が0.1〜20g/10分であり、(v)230℃における溶融張力(MT)が5g以上であることを特徴とし、結晶性セグメントが側鎖として非結晶性セグメントにグラフトした共重合体を含む。特に、このようなグラフト共重合体は、CXIS成分(A)に存在する。結晶性セグメントが側鎖になり、非結晶性セグメントが主鎖となることは、1段目で結晶性成分のマクロマーを製造し、2段目で非結晶性成分に共重合されるという重合機構から考えて、当然のことである。   The propylene-based polymer (X) according to the present invention thus obtained has (i) a weight average molecular weight (Mw) measured by GPC of 100,000 to 1,000,000, and (ii) a component insoluble in hot p-xylene. Is 0.3% or less, (iii) the strain hardening degree (λmax) in the measurement of elongational viscosity is 2.0 or more, and (iv) MFR (230 ° C., 2.16 kg load) is 0.1 to 20 g. / 10 minutes, and (v) a melt tension (MT) at 230 ° C. of 5 g or more, including a copolymer in which a crystalline segment is grafted to an amorphous segment as a side chain. In particular, such graft copolymers are present in the CXIS component (A). Polymerization mechanism in which the crystalline segment becomes a side chain and the non-crystalline segment becomes the main chain, in which the macromer of the crystalline component is produced in the first stage and copolymerized with the amorphous component in the second stage. From the point of view, it is natural.

2.発泡剤
本発明で用いる発泡剤は、熱分解型化学発泡剤または揮発性発泡剤であり、公知のものであれば如何なるものでも良い。
熱分解型化学発泡剤の具体例としては、重炭酸ナトリウム、炭酸アンモニウム、亜硝酸アンモニウム、アゾジカルボンアミド、アゾビスホルムアミド、イソブチロニトリル、ジアゾアミノベンゼンなどのアジド化合物、N,N’−ジニトロソペンタテトラミン、N,N’−ジメチル−ジニトロテレフタルアミドなどのニトロソ化合物が例示される。なお、該発泡剤は、単独で用いても良く、2種以上併用しても良い。
揮発性発泡剤の具体例としては、二酸化炭素、窒素、水、ブタン等のアルカンガスが例示される。なお、該発泡剤は、単独で用いても良く、上記した熱分解型化学発泡剤と併用しても良い。
均一微細な発泡セルを有し、高発泡倍率な発泡体を得るには、揮発性発泡剤を用いるのが好ましい。
2. Foaming agent The foaming agent used in the present invention is a thermal decomposition type chemical foaming agent or a volatile foaming agent, and any known one may be used.
Specific examples of the thermal decomposition type chemical blowing agent include sodium bicarbonate, ammonium carbonate, ammonium nitrite, azodicarbonamide, azobisformamide, isobutyronitrile, diazoaminobenzene and other azide compounds, N, N′-dinitroso Nitroso compounds such as pentatetramine and N, N′-dimethyl-dinitroterephthalamide are exemplified. In addition, this foaming agent may be used independently and may be used together 2 or more types.
Specific examples of the volatile foaming agent include alkane gas such as carbon dioxide, nitrogen, water and butane. In addition, this foaming agent may be used independently and may be used together with the above-mentioned thermal decomposition type chemical foaming agent.
In order to obtain a foam having uniform and fine foam cells and a high foaming ratio, it is preferable to use a volatile foaming agent.

本発明における発泡剤の配合量は、前記プロピレン系重合体(X)100重量部に対し、0.01〜15.0重量部の範囲が好ましく、0.05〜12.0重量部の範囲がより好ましく、0.1〜10.0重量部が更に好ましい。発泡剤の配合量が15.0重量部より著しく多いと、過発泡となり発泡セルの均一微細化が困難となり、一方、発泡剤の配合量が0.01重量部より著しく少ないと、十分な発泡が行なわれないため、好ましくない。   The blending amount of the blowing agent in the present invention is preferably in the range of 0.01 to 15.0 parts by weight, and in the range of 0.05 to 12.0 parts by weight with respect to 100 parts by weight of the propylene polymer (X). More preferred is 0.1 to 10.0 parts by weight. When the blending amount of the foaming agent is remarkably larger than 15.0 parts by weight, overfoaming occurs and it becomes difficult to make the foamed cells uniformly fine. Is not preferable because it is not performed.

3.その他の配合剤
本発明の押出発泡成形用樹脂組成物には、前記プロピレン系重合体(X)および発泡剤の他に、通常ポリオレフィンに使用する公知の重合体、酸化防止剤、中和剤、光安定剤、紫外線吸収剤、無機充填剤、ブロッキング防止剤、滑剤、帯電防止剤、金属不活性剤などの各種添加剤を、本発明の目的を損なわない範囲で配合することができる。
3. Other compounding agents In addition to the propylene polymer (X) and the foaming agent, the resin composition for extrusion foam molding of the present invention includes known polymers, antioxidants, neutralizing agents, and the like, which are usually used for polyolefins. Various additives such as a light stabilizer, an ultraviolet absorber, an inorganic filler, an antiblocking agent, a lubricant, an antistatic agent, and a metal deactivator can be blended within a range that does not impair the object of the present invention.

重合体としては、プロピレン単独あるいは他のα−オレフィンとの共重合体、低密度ポリエチレン、高密度ポリエチレン等の重合体、各種熱可塑性エラストマー等を挙げることができる。   Examples of the polymer include propylene alone or a copolymer with other α-olefin, polymers such as low density polyethylene and high density polyethylene, and various thermoplastic elastomers.

酸化防止剤としては、フェノール系酸化防止剤、フォスファイト系酸化防止剤およびチオ系酸化防止剤などが例示でき、中和剤としては、ステアリン酸カルシウムやステアリン酸亜鉛などの高級脂肪酸塩類が例示でき、光安定剤および紫外線吸収剤としては、ヒンダードアミン類、ニッケル錯化合物、ベンゾトリアゾール類、ベンゾフェノン類などが例示できる。
また、無機充填剤およびブロッキング防止剤としては、炭酸カルシウム、シリカ、ハイドロタルサイト、ゼオライト、ケイ酸アルミニウム、ケイ酸マグネシウムなどが例示でき、滑剤としては、ステアリン酸アマイドなどの高級脂肪酸アマイド類が例示できる。
更に、帯電防止剤としては、グリセリン脂肪酸モノエステルなどの脂肪酸部分エステル類が例示でき、金属不活性剤としては、トリアジン類、フォスフォン類、エポキシ類、トリアゾール類、ヒドラジド類、オキサミド類などが例示できる。
Examples of antioxidants include phenolic antioxidants, phosphite antioxidants, and thio antioxidants, and examples of neutralizing agents include higher fatty acid salts such as calcium stearate and zinc stearate, Examples of the light stabilizer and the ultraviolet absorber include hindered amines, nickel complex compounds, benzotriazoles, and benzophenones.
Examples of inorganic fillers and antiblocking agents include calcium carbonate, silica, hydrotalcite, zeolite, aluminum silicate, magnesium silicate, and examples of lubricants include higher fatty acid amides such as stearic acid amide. it can.
Furthermore, examples of the antistatic agent include fatty acid partial esters such as glycerin fatty acid monoester, and examples of the metal deactivator include triazines, phosphones, epoxies, triazoles, hydrazides, and oxamides. it can.

II.押出発泡成形用樹脂組成物の調製方法
本発明の押出発泡成形用樹脂組成物の調製方法としては、パウダー状もしくはペレット状の前記プロピレン系重合体(X)、発泡剤および必要に応じて用いるその他の配合剤をドライブレンド、ヘンシェルミキサー等で混合する方法を挙げることができる。
また、状況に応じて、発泡剤のみ、発泡体の製造時に、別フィードしても良い。
II. Method for Preparing Extruded Foam Molding Resin Composition As a method for preparing the extrusion foam molding resin composition of the present invention, the propylene polymer (X) in the form of powder or pellets, a foaming agent, and others used as necessary The method of mixing these compounding agents with a dry blend, a Henschel mixer, etc. can be mentioned.
Further, depending on the situation, only the foaming agent may be separately fed during the production of the foam.

III.発泡体
本発明の発泡体は、公知の方法が利用できるが、例えば、目的形状のサイジングおよびダイスを備えた通常の押出装置で、本発明の該押出発泡成形用樹脂組成物を押出機に投入し、通常は130〜170℃に設定されたシリンダー温度で押出、発泡させ、サイジング装置により目的形状を形成し、引取り装置にて、該発泡体を引き取る方法で目的物を容易に得ることができる。
III. Foam The known foam can be used for the foam of the present invention. For example, the resin composition for extrusion foam molding of the present invention is introduced into an extruder using a normal extrusion apparatus equipped with a sizing and die of a desired shape. Usually, extrusion and foaming are performed at a cylinder temperature set at 130 to 170 ° C., a target shape is formed by a sizing device, and the target product can be easily obtained by a method of pulling the foam with a take-up device. it can.

本発明の発泡体は、平均気泡径が400μm以下であることが好ましく、300μm以下がより好ましく、200μm以下が更に好ましい。発泡セル径が400μmを大きく超えると、穴明き等の外観不良が発生し、更には優れた独立気泡構造体にならないため、好ましくない。   The foam of the present invention preferably has an average cell diameter of 400 μm or less, more preferably 300 μm or less, and even more preferably 200 μm or less. When the foamed cell diameter greatly exceeds 400 μm, poor appearance such as perforation occurs, and further, an excellent closed cell structure is not preferable.

本発明の発泡体の発泡倍率は、5倍以上が好ましく、7倍以上がより好ましく、9倍以上がさらに好ましい。発泡倍率が5倍未満であると、発泡倍率が不足し、得られる発泡体の緩衝性、断熱性、吸音性、耐圧縮性が発現し難くなる。また、発泡倍率が40倍を大きく超えると、発泡セル径の均一微細化が困難となり、得られる発泡体の外観不良が発生する。   The foaming ratio of the foam of the present invention is preferably 5 times or more, more preferably 7 times or more, and further preferably 9 times or more. When the expansion ratio is less than 5 times, the expansion ratio is insufficient, and it is difficult to exhibit the buffering property, heat insulating property, sound absorbing property, and compression resistance of the obtained foam. On the other hand, if the expansion ratio greatly exceeds 40 times, it is difficult to make the foam cell diameter uniform and fine, and the resulting foam has poor appearance.

また、本発明の発泡体の連続気泡率は、20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましい。連続気泡率が20%を超えると、たとえ高倍率の発泡体であっても、緩衝性、断熱性、吸音性、耐圧縮性が発現し難くなる。   The open cell ratio of the foam of the present invention is preferably 20% or less, more preferably 15% or less, and still more preferably 10% or less. When the open cell ratio exceeds 20%, even if it is a high-magnification foam, it is difficult to exhibit buffering properties, heat insulation properties, sound absorption properties, and compression resistance.

以下、本発明を実施例によって具体的に説明するが、本発明は、これらの実施例によって限定されるものではない。なお、実施例および比較例において、押出発泡成形用樹脂組成物、発泡体またはその構成成分についての諸物性は、下記の評価方法に従って測定、評価し、使用した樹脂として下記のものを用いた。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In Examples and Comparative Examples, various physical properties of the extrusion foam molding resin composition, the foam or its constituent components were measured and evaluated according to the following evaluation methods, and the following resins were used.

1.評価方法
(1)メルトフローレート(MFR)[単位:g/10min]:
プロピレン系樹脂は、JIS K7210:1999「プラスチック―熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」のA法、条件M(230℃、2.16kg荷重)に準拠して測定した。
(2)重量平均分子量(Mw):
ゲルパーミエーションクロマトグラフィー(GPC)により、上記本明細書記載の方法で、測定した。
(3)mm分率:
日本電子社製、GSX−400、FT−NMRを用い、上記本明細書記載の方法で測定した。単位は%である。
(4)伸長粘度:
レオメータを用いて、上記本明細書記載の方法で測定した。
1. Evaluation method (1) Melt flow rate (MFR) [unit: g / 10 min]:
The propylene-based resin conforms to JIS K7210: 1999 “Method for testing plastics-thermoplastic melt mass flow rate (MFR) and melt volume flow rate (MVR)”, condition M (230 ° C., 2.16 kg load). Measured in conformity.
(2) Weight average molecular weight (Mw):
It was measured by the method described in the present specification by gel permeation chromatography (GPC).
(3) mm fraction:
The measurement was carried out by the method described in the present specification using GSX-400 and FT-NMR manufactured by JEOL. The unit is%.
(4) Elongation viscosity:
Using a rheometer, measurement was performed by the method described in the present specification.

(5)溶融張力(MT):
口径2mmφ、長さ40mmのオリフィスを装着し、口径10mmφ、長さ350mmのシリンダーを有する東洋精機製キャピログラフを用い、230℃に加熱されたシリンダーに重合体を10g充填する。充填後5分間予熱し、重合体を十分溶融させた後、シリンダー上部にあるピストンを20mm/minの速度で降下させ、シリンダー内の溶融樹脂を押し出した。押し出された樹脂は、上記オリフィス内を通過し、外部に出される。押し出されたストランド状の樹脂を4m/minの速度で巻き取り、この際の荷重を溶融張力とした。
(5) Melt tension (MT):
A cylinder heated at 230 ° C. is filled with 10 g of polymer using a Toyo Seiki Capillograph equipped with a cylinder with a diameter of 2 mmφ and a length of 40 mm, and a cylinder with a diameter of 10 mmφ and a length of 350 mm. After preheating for 5 minutes after filling, the polymer was sufficiently melted, and then the piston at the top of the cylinder was lowered at a speed of 20 mm / min to extrude the molten resin in the cylinder. The extruded resin passes through the orifice and is discharged to the outside. The extruded strand-shaped resin was wound up at a speed of 4 m / min, and the load at this time was defined as melt tension.

(6)エチレン含量の定量:
共重合体中の平均エチレン含量を、赤外分光光度計を用いて行った。測定条件を以下に示す。
装置:島津FTIR−8300
分解能:4.0cm−1
測定範囲:4,000〜400cm−1
サンプルの調整:ポリマーパウダー又はペレットを加熱加圧プレスにて、厚さ500μmのフィルムに調整(温度190℃、予熱2分後に100MPaに加圧)
データ処理:
(i)760,700cm−1をベースポイントとして、その範囲での吸光度ピーク面積を算出する(エチレン含量に対応)。
(ii)ピーク面積/サンプル厚みを算出する。
(iii)予めNMRでエチレン含量を定量してあるサンプルによって検量線を作成しておき、[エチレン含量∝ピーク面積/サンプル厚み]の式によりエチレン含量を定量する。
(6) Determination of ethylene content:
The average ethylene content in the copolymer was performed using an infrared spectrophotometer. The measurement conditions are shown below.
Equipment: Shimadzu FTIR-8300
Resolution: 4.0 cm −1
Measurement range: 4,000 to 400 cm −1
Sample adjustment: Polymer powder or pellets are adjusted to a film with a thickness of 500 μm with a heating and pressing press (temperature 190 ° C., pressurized to 100 MPa after 2 minutes of preheating)
Data processing:
(I) Using 760,700 cm −1 as a base point, calculate the absorbance peak area in that range (corresponding to ethylene content).
(Ii) Calculate the peak area / sample thickness.
(Iii) A calibration curve is prepared with a sample whose ethylene content has been quantified in advance by NMR, and the ethylene content is quantified by the formula [ethylene content∝peak area / sample thickness].

(7)融点(Tm):
セイコーインスツルメンツ社製DSC6200を使用し、シート状にしたサンプル片を5mgアルミパンに詰め、室温から一旦200℃まで昇温速度100℃/分で昇温し、5分間保持した後に、10℃/分で20℃まで降温して、結晶化させた時の結晶最大ピーク温度(℃)として結晶化温度(Tc)を求め、その後、10℃/分で200℃まで昇温させた時の融解最大ピーク温度(℃)として、融点(Tm)を求めた。
(7) Melting point (Tm):
Using a Seiko Instruments DSC6200, the sheet-shaped sample piece was packed in a 5 mg aluminum pan, heated from room temperature to 200 ° C. at a heating rate of 100 ° C./minute, held for 5 minutes, and then 10 ° C./minute. The crystallization temperature (Tc) is obtained as the maximum crystal peak temperature (° C.) when the temperature is lowered to 20 ° C., and then the maximum melting peak when the temperature is increased to 200 ° C. at 10 ° C./min. The melting point (Tm) was determined as the temperature (° C.).

(8)平均気泡径:
実施各例および比較各例によって得られたストランド状発泡体を垂直に切断し、その断面を走査型電子顕微鏡(キーエンス社製)を用いて撮影した。次に、撮影された該発泡体の断面にある発泡セル径を、ナノシステム社の二値化処理ソフト(NS法)により測定し、それらの平均気泡径を算出した。
(9)発泡倍率、連続気泡率:
実施各例および比較各例によって得られたストランド状発泡体を4cm間隔で垂直に切断した後、それらを、半径1.9cmの底面を持つ高さ4.5cmの円筒状容器に隙間無く充填し、該発泡体の質量、容積、密度の測定およびガス圧縮による空隙率の測定により、発泡倍率、連続気泡率を算出した。
(8) Average bubble diameter:
The strand-like foams obtained in each of Examples and Comparative Examples were cut vertically, and the cross section was photographed using a scanning electron microscope (manufactured by Keyence Corporation). Next, the foamed cell diameter in the cross section of the photographed foam was measured by a binarization processing software (NS method) manufactured by Nanosystem, and the average bubble diameter was calculated.
(9) Foaming ratio, open cell ratio:
After the strand-like foams obtained in each of the examples and comparative examples were cut vertically at intervals of 4 cm, they were filled into a cylindrical container having a height of 1.9 cm and a height of 4.5 cm without gaps. The foaming ratio and the open cell ratio were calculated by measuring the mass, volume and density of the foam and measuring the porosity by gas compression.

(10)緩衝性:
実施各例および比較各例によって得られたストランド状発泡体を10cm間隔で垂直に切断した後、それら20本を横に並べた後、その上に重さ1kgの錘を10分間乗せた後、速やかに取り去り、その時の該発泡体の復元状態を目視観察し、その良否を下記基準にて判断した。
○:元の形状に直ちに復元する。
△:元の形状にゆっくりと復元する。
×:元の形状に復元しない。
(10) Buffer property:
After the strand-like foams obtained in each of the Examples and Comparative Examples were cut vertically at intervals of 10 cm, 20 of them were placed side by side, and then a weight of 1 kg was placed thereon for 10 minutes, The foam was immediately removed, and the restored state of the foam at that time was visually observed, and the quality was judged according to the following criteria.
○: The original shape is immediately restored.
Δ: Restores slowly to the original shape.
X: The original shape is not restored.

2.使用材料
(イ)プロピレン系重合体(X)
下記の製造例1〜6で製造した重合体(PP−1)〜重合体(PP−6)、および市販のポリプロピレン樹脂(PF814)を用いた。
2. Materials used (a) Propylene polymer (X)
The polymers (PP-1) to (PP-6) produced in the following Production Examples 1 to 6 and a commercially available polypropylene resin (PF814) were used.

[製造例1]
(1)〔rac−ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライドの合成〕:
(1−a)ジメチルビス(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)シランの合成:
特開2004−124044号公報の実施例1に記載の方法にしたがって、合成を行った。
[Production Example 1]
(1) [Synthesis of rac-dimethylsilylenebis (2- (2- (5-methyl) -furyl) -4-phenyl-indenyl) hafnium dichloride]:
Synthesis of (1-a) dimethylbis (2- (2- (5-methyl) -furyl) -4-phenyl-indenyl) silane:
Synthesis was performed according to the method described in Example 1 of JP-A-2004-124044.

(1−b)rac−ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライドの合成:
100mlのガラス製反応容器に、ジメチルビス(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)シラン5.3g(8.8ミリモル)、ジエチルエーテル150mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。ここに1.50モル/リットルのn−ブチルリチウム−ヘキサン溶液12ml(18ミリモル)を滴下した。滴下後、室温に戻し16時間攪拌した。反応液の溶媒を20ml程度まで減圧濃縮し、トルエン200mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。そこに、四塩化ハフニウム2.8g(8.7ミリモル)を加えた。その後、徐々に室温に戻しながら3日間攪拌した。
溶媒を減圧留去し、ジクロロメタン/ヘキサンで再結晶を行い、ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライドのラセミ体(純度99%以上)を黄橙色結晶として2.9g(収率39%)得た。
得られたラセミ体についてのプロトン核磁気共鳴法(H−NMR)による同定値を以下に記す。
H−NMR(CDCl)同定結果]
ラセミ体:δ1.12(s,6H),δ2.42(s,6H),δ6.06(d,2H),δ6.24(d,2H),δ6.78(dd,2H),δ6.97(d,2H),δ6.96(s,2H),δ7.25〜δ7.64(m,12H)。
Synthesis of (1-b) rac-dimethylsilylenebis (2- (2- (5-methyl) -furyl) -4-phenyl-indenyl) hafnium dichloride:
In a 100 ml glass reaction vessel, 5.3 g (8.8 mmol) of dimethylbis (2- (2- (5-methyl) -furyl) -4-phenyl-indenyl) silane and 150 ml of diethyl ether were added, and dry ice was added. -It cooled to -70 degreeC with the methanol bath. To this, 12 ml (18 mmol) of a 1.50 mol / liter n-butyllithium-hexane solution was added dropwise. After dropping, the temperature was returned to room temperature and stirred for 16 hours. The solvent of the reaction solution was concentrated under reduced pressure to about 20 ml, 200 ml of toluene was added, and the solution was cooled to −70 ° C. in a dry ice-methanol bath. Thereto was added 2.8 g (8.7 mmol) of hafnium tetrachloride. Thereafter, the mixture was stirred for 3 days while gradually returning to room temperature.
The solvent was distilled off under reduced pressure, recrystallized from dichloromethane / hexane, and racemic dimethylsilylenebis (2- (2- (5-methyl) -furyl) -4-phenyl-indenyl) hafnium dichloride (purity 99% or more). ) Was obtained as yellow-orange crystals (2.9 g, yield 39%).
The resulting proton nuclear magnetic resonance method for racemate identified value according to (1 H-NMR) are shown below.
[1 H-NMR (CDCl 3 ) Identification Results
Racemate: δ 1.12 (s, 6H), δ 2.42 (s, 6H), δ 6.06 (d, 2H), δ 6.24 (d, 2H), δ 6.78 (dd, 2H), δ 6. 97 (d, 2H), δ 6.96 (s, 2H), δ 7.25 to δ 7.64 (m, 12H).

(2)〔触媒の合成〕:
(2−1)イオン交換性層状珪酸塩の化学処理
セパラブルフラスコ中で蒸留水3456gに96%硫酸(1044g)を加えその後、層状珪酸塩としてモンモリロナイト(水沢化学社製ベンクレイSL:平均粒径19μm)600gを加えた。このスラリーを0.5℃/分で1時間かけて90℃まで昇温し、90℃で120分反応させた。この反応スラリーを1時間で室温まで冷却し、蒸留水2400g加えた後にろ過したところケーキ状固体1230gを得た。
次に、セパラブルフラスコ中に、硫酸リチウム648g、蒸留水1800gを加え硫酸リチウム水溶液としたところへ、上記ケーキ上固体を全量投入し、更に蒸留水522gを加えた。このスラリーを0.5℃/分で1時間かけて90℃まで昇温し、90℃で120分反応させた。この反応スラリーを1時間で室温まで冷却し、蒸留水1980g加えた後にろ過し、更に蒸留水でpH3まで洗浄し、ろ過を行ったところ、ケーキ状固体1150gを得た。
得られた固体を窒素気流下130℃で2日間予備乾燥後、53μm以上の粗大粒子を除去し、更に215℃、窒素気流下、滞留時間10分の条件でロータリーキルン乾燥することにより、化学処理スメクタイト340gを得た。
この化学処理スメクタイトの組成は、Al:7.81重量%、Si:36.63重量%、Mg:1.27重量%、Fe:1.82重量%、Li:0.20重量%であり、Al/Si=0.222[mol/mol]であった。
(2) [Catalyst synthesis]:
(2-1) Chemical treatment of ion-exchangeable layered silicate 96% sulfuric acid (1044 g) was added to 3456 g of distilled water in a separable flask, and then montmorillonite (Menzawa Chemical Co., Ltd. Benclay SL: average particle size 19 μm) as a layered silicate. ) 600 g was added. The slurry was heated to 90 ° C. over 1 hour at 0.5 ° C./minute, and reacted at 90 ° C. for 120 minutes. The reaction slurry was cooled to room temperature in 1 hour, added with 2400 g of distilled water and then filtered to obtain 1230 g of a cake-like solid.
Next, 648 g of lithium sulfate and 1800 g of distilled water were added to the separable flask to make a lithium sulfate aqueous solution. The slurry was heated to 90 ° C. over 1 hour at 0.5 ° C./minute, and reacted at 90 ° C. for 120 minutes. The reaction slurry was cooled to room temperature in 1 hour, filtered after adding 1980 g of distilled water, further washed with distilled water to pH 3, and filtered to obtain 1150 g of cake-like solid.
The obtained solid was preliminarily dried at 130 ° C. for 2 days under a nitrogen stream, and then coarse particles of 53 μm or more were removed, and further, rotary kiln drying was performed under a condition of 215 ° C. under a nitrogen stream for a residence time of 10 minutes. 340 g was obtained.
The composition of this chemically treated smectite is Al: 7.81 wt%, Si: 36.63 wt%, Mg: 1.27 wt%, Fe: 1.82 wt%, Li: 0.20 wt%, Al / Si = 0.222 [mol / mol].

(2−2)触媒調製及び予備重合
3つ口フラスコ(容積1L)中に、上で得られた化学処理スメクタイト20gを入れ、ヘプタン(114mL)を加えてスラリーとし、これにトリエチルアルミニウム(50mmol:濃度71mg/mLのヘプタン溶液を81mL)を加えて1時間攪拌後、ヘプタンで1/100まで洗浄し、全容量を200mLとなるようにヘプタンを加えた。
また、別のフラスコ(容積200mL)中で、ヘプタン(85mL)にrac−ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライド(0.3mmol)を加えてスラリーとした後、トリイソブチルアルミニウム(0.6mmol:濃度140mg/mLのヘプタン溶液を0.85mL)を加えて45分室温で攪拌し反応させた。この溶液を、化学処理スメクタイトが入った1Lフラスコに加えて、室温で45分攪拌した。その後ヘプタンを214mL追加し、このスラリーを1Lオートクレーブに導入した。
オートクレーブの内部温度を40℃にしたのちプロピレンを20g/時の速度でフィードし2時間40℃を保ちつつ予備重合を行った。その後、プロピレンフィードを止めて、50℃で0.5時間残重合を行った。得られた触媒スラリーの上澄みをデカンテーションで除去した後、再びヘプタンを加えてデカンテーションすることにより予備重合触媒の洗浄をおこなった。上記デカンテーションにより残った部分に、トリイソブチルアルミニウム(12mmol:濃度140mg/mLのヘプタン溶液を17mL)を加えて10分攪拌した。この固体を2時間減圧乾燥することにより、乾燥予備重合触媒48.0gを得た。予備重合倍率(予備重合ポリマー量を固体触媒量で除した値)は1.40であった。
(2-2) Catalyst Preparation and Prepolymerization In a three-necked flask (volume: 1 L), 20 g of the chemically treated smectite obtained above was added, and heptane (114 mL) was added to form a slurry, to which triethylaluminum (50 mmol: 81 mL) of a heptane solution having a concentration of 71 mg / mL was added and stirred for 1 hour, then washed to 1/100 with heptane, and heptane was added so that the total volume became 200 mL.
In another flask (volume 200 mL), heptane (85 mL) was added to rac-dimethylsilylenebis (2- (2- (5-methyl) -furyl) -4-phenyl-indenyl) hafnium dichloride (0.3 mmol). Then, triisobutylaluminum (0.6 mmol: 0.85 mL of a heptane solution with a concentration of 140 mg / mL) was added and stirred for 45 minutes at room temperature to cause a reaction. This solution was added to a 1 L flask containing chemically treated smectite and stirred at room temperature for 45 minutes. Thereafter, 214 mL of heptane was added, and this slurry was introduced into a 1 L autoclave.
After the internal temperature of the autoclave was set to 40 ° C., propylene was fed at a rate of 20 g / hour and prepolymerization was performed while maintaining the temperature at 40 ° C. for 2 hours. Thereafter, propylene feed was stopped, and residual polymerization was performed at 50 ° C. for 0.5 hour. After removing the supernatant of the resulting catalyst slurry by decantation, the prepolymerized catalyst was washed by adding decantation again with heptane. Triisobutylaluminum (12 mmol: 17 mL of a heptane solution having a concentration of 140 mg / mL) was added to the portion remaining after the decantation, and the mixture was stirred for 10 minutes. This solid was dried under reduced pressure for 2 hours to obtain 48.0 g of a dry prepolymerized catalyst. The prepolymerization ratio (value obtained by dividing the amount of prepolymerized polymer by the amount of solid catalyst) was 1.40.

(3)〔重合〕
第一工程の重合:
内容積200リットルの攪拌式オートクレーブ内をプロピレンで十分に置換した後、十分に脱水した液化プロピレン45kgを導入した。これにトリイソブチルアルミニウム・n−ヘプタン溶液500ml(0.12mol)を加え、内温を30℃に維持した。次いで、上記予備重合触媒8g(予備重合ポリマーを減じた重量で)をアルゴンで圧入して重合を開始させ、32分かけて70℃に昇温し、重合温度を70℃に維持した。1時間経過後に、未反応のプロピレンをパージし、オートクレーブ内を窒素置換することにより、第一工程の重合を停止した。
(3) [Polymerization]
First step polymerization:
After sufficiently replacing the inside of the stirring autoclave having an internal volume of 200 liters with propylene, 45 kg of sufficiently dehydrated liquefied propylene was introduced. To this, 500 ml (0.12 mol) of a triisobutylaluminum / n-heptane solution was added, and the internal temperature was maintained at 30 ° C. Next, 8 g of the prepolymerized catalyst (with the weight reduced from the prepolymerized polymer) was injected with argon to start polymerization, and the temperature was raised to 70 ° C. over 32 minutes, and the polymerization temperature was maintained at 70 ° C. After 1 hour, unreacted propylene was purged and the inside of the autoclave was purged with nitrogen to stop the polymerization in the first step.

第二工程の重合:
上記の窒素置換したオートクレーブを50℃大気圧で保持し、プロピレンを分圧で1.0MPa、次いでエチレンを分圧で1.0MPaを導入し、その後、プロピレンとエチレンのガス組成を維持するためにプロピレンとエチレンを各々81mol%、19mol%の割合で供給し、50℃、全圧2.0MPaの条件を維持した。この第二工程の重合の平均ガス組成は、C2:54.1%であった。2時間後、エタノール100mlを導入し反応を停止させた。未反応のエチレン/プロピレンの混合ガスをパージし、11.3kgの重合体(PP−1)が得られた。
Second step polymerization:
To maintain the above nitrogen-substituted autoclave at 50 ° C. and atmospheric pressure, introduce 1.0 MPa in partial pressure of propylene and then 1.0 MPa in partial pressure of ethylene, and then maintain the gas composition of propylene and ethylene Propylene and ethylene were supplied at a ratio of 81 mol% and 19 mol%, respectively, and the conditions of 50 ° C. and a total pressure of 2.0 MPa were maintained. The average gas composition of the polymerization in the second step was C2: 54.1%. Two hours later, 100 ml of ethanol was introduced to stop the reaction. Unreacted ethylene / propylene mixed gas was purged to obtain 11.3 kg of polymer (PP-1).

[製造例2]
(1)〔重合〕:
第一工程の重合:
予備重合触媒9.5g(予備重合ポリマーを減じた重量で)を使用する以外は、製造例1の第一工程の重合と同様に実施した。
[Production Example 2]
(1) [Polymerization]:
First step polymerization:
The same polymerization as in the first step of Production Example 1 was carried out except that 9.5 g of the prepolymerized catalyst (with a weight obtained by subtracting the prepolymerized polymer) was used.

第二工程の重合:
上記の窒素置換したオートクレーブを50℃大気圧で保持し、プロピレンを分圧で0.5MPa、次いでエチレンを分圧で1.5MPaを導入し、その後、プロピレンとエチレンのガス組成を維持するためにプロピレンとエチレンを各々58mol%、42mol%の割合で供給し、50℃、全圧2.0MPaの条件を維持した。この第二工程の重合の平均ガス組成は、C2:72.9%であった。2時間後、エタノール100mlを導入し反応を停止させた。未反応のエチレン/プロピレンの混合ガスをパージし、9.7kgの重合体(PP−2)が得られた。
Second step polymerization:
To maintain the nitrogen-substituted autoclave at 50 ° C. and atmospheric pressure, introduce 0.5 MPa in partial pressure of propylene and then 1.5 MPa in partial pressure of ethylene, and then maintain the gas composition of propylene and ethylene Propylene and ethylene were supplied at a ratio of 58 mol% and 42 mol%, respectively, and the conditions of 50 ° C. and a total pressure of 2.0 MPa were maintained. The average gas composition of the polymerization in the second step was C2: 72.9%. Two hours later, 100 ml of ethanol was introduced to stop the reaction. The unreacted ethylene / propylene mixed gas was purged to obtain 9.7 kg of a polymer (PP-2).

[製造例3]
(1)〔rac−ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)ジルコニウムジクロライドの合成〕:
特開2004−2259号公報に記載の方法に従って、合成した。
[Production Example 3]
(1) [Synthesis of rac-dimethylsilylenebis (2- (2- (5-methyl) -furyl) -4-phenyl-indenyl) zirconium dichloride]:
Synthesis was performed according to the method described in JP-A-2004-2259.

(2)〔触媒の合成〕:
3つ口フラスコ(容積1L)中に、シリカ担持MAO(WITCO社製 製品名MAO−S)20gを入れヘプタン(200mL)を加えてスラリーとした。
また、別のフラスコ(容積200mL)中で、ヘプタン(85mL)にrac−ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)ジルコニウムジクロライド(0.3mmol)を加えてスラリーとした後、トリイソブチルアルミニウム(0.6mmol:濃度140mg/mLのヘプタン溶液を0.85mL)を加えて30分室温で攪拌し反応させた。この溶液を、シリカ担持MAOが入った3Lフラスコに加えて、室温で30分攪拌した。その後ヘプタンを215mL追加し、このスラリーを1Lオートクレーブに導入した。
オートクレーブの内部温度を40℃にしたのち、プロピレンを20g/時の速度でフィードし2時間40℃を保ちつつ予備重合を行った。その後、プロピレンフィードを止めて、0.5時間残重合を行った。得られた触媒スラリーの上澄みをデカンテーションで除去した後、トリイソブチルアルミニウム(12mmol:濃度140mg/mLのヘプタン溶液を17mL)を加えて10分攪拌した。この固体を2時間減圧乾燥することにより乾燥予備重合触媒55.9gを得た。予備重合倍率(予備重合ポリマー量を固体触媒量で除した値)は1.80であった。
(2) [Catalyst synthesis]:
In a three-necked flask (volume: 1 L), 20 g of silica-supported MAO (product name: MAO-S manufactured by WITCO) was added, and heptane (200 mL) was added to prepare a slurry.
In another flask (volume 200 mL), heptane (85 mL) was added to rac-dimethylsilylenebis (2- (2- (5-methyl) -furyl) -4-phenyl-indenyl) zirconium dichloride (0.3 mmol). Then, triisobutylaluminum (0.6 mmol: 0.85 mL of a heptane solution having a concentration of 140 mg / mL) was added and stirred for 30 minutes at room temperature to react. This solution was added to a 3 L flask containing silica-supported MAO and stirred at room temperature for 30 minutes. Thereafter, 215 mL of heptane was added, and this slurry was introduced into a 1 L autoclave.
After setting the internal temperature of the autoclave to 40 ° C., propylene was fed at a rate of 20 g / hour, and prepolymerization was performed while maintaining the temperature at 40 ° C. for 2 hours. Thereafter, propylene feed was stopped and residual polymerization was carried out for 0.5 hour. After removing the supernatant of the resulting catalyst slurry by decantation, triisobutylaluminum (12 mmol: 17 mL of a heptane solution having a concentration of 140 mg / mL) was added and stirred for 10 minutes. This solid was dried under reduced pressure for 2 hours to obtain 55.9 g of a dry prepolymerized catalyst. The prepolymerization ratio (value obtained by dividing the amount of prepolymerized polymer by the amount of solid catalyst) was 1.80.

(3)〔重合〕:
第一工程の重合:
内容積200リットルの攪拌式オートクレーブ内をプロピレンで十分に置換した後、十分に脱水した液化プロピレン45kgを導入した。これに水素10リットル(標準状態の体積として)、トリイソブチルアルミニウム・n−ヘプタン溶液500ml(0.12mol)を加え、内温を30℃に維持した。次いで、上記予備重合触媒8g(予備重合ポリマーを減じた重量で)をアルゴンで圧入して重合を開始させ、30分かけて70℃に昇温し、重合温度を70℃に維持した。1時間経過後に、未反応のプロピレンをパージし、オートクレーブ内を窒素置換することにより、第一工程の重合を停止した。
(3) [Polymerization]:
First step polymerization:
After sufficiently replacing the inside of the stirring autoclave having an internal volume of 200 liters with propylene, 45 kg of sufficiently dehydrated liquefied propylene was introduced. To this was added 10 liters of hydrogen (as a standard volume) and 500 ml (0.12 mol) of a triisobutylaluminum / n-heptane solution, and the internal temperature was maintained at 30 ° C. Next, 8 g of the prepolymerized catalyst (with a weight obtained by subtracting the prepolymerized polymer) was injected with argon to start the polymerization, the temperature was raised to 70 ° C. over 30 minutes, and the polymerization temperature was maintained at 70 ° C. After 1 hour, unreacted propylene was purged and the inside of the autoclave was purged with nitrogen to stop the polymerization in the first step.

第二工程の重合:
上記の窒素置換したオートクレーブを50℃大気圧で保持し、プロピレンを分圧で0.3MPa、次いでエチレンを分圧で1.2MPaを導入し、その後、プロピレンとエチレンのガス組成を維持するためにプロピレンとエチレンを各々36mol%、64mol%の割合で供給し、50℃、全圧1.5MPaの条件を維持した。この第二工程の重合の平均ガス組成は、C2:80.3%であった。3.5時間後、エタノール100mlを導入し反応を停止させた。未反応のエチレン/プロピレンの混合ガスをパージし、11.6kgの重合体(PP−3)が得られた。
Second step polymerization:
To maintain the above nitrogen-substituted autoclave at 50 ° C. and atmospheric pressure, introduce propylene into a partial pressure of 0.3 MPa, then introduce ethylene into a partial pressure of 1.2 MPa, and then maintain the gas composition of propylene and ethylene Propylene and ethylene were supplied at a ratio of 36 mol% and 64 mol%, respectively, and the conditions of 50 ° C. and a total pressure of 1.5 MPa were maintained. The average gas composition of the polymerization in the second step was C2: 80.3%. After 3.5 hours, 100 ml of ethanol was introduced to stop the reaction. The unreacted ethylene / propylene mixed gas was purged to obtain 11.6 kg of a polymer (PP-3).

[製造例4]
(1)〔重合〕
第一工程の重合:
内容積200リットルの攪拌式オートクレーブ内をプロピレンで十分に置換した後、十分に脱水した液化プロピレン45kgを導入した。これにトリイソブチルアルミニウム・n−ヘプタン溶液500ml(0.12mol)を加え、内温を30℃に維持した。次いで、製造例1で合成した予備重合触媒10g(予備重合ポリマーを減じた重量で)をアルゴンで圧入して重合を開始させ、30分かけて75℃に昇温し、重合温度を75℃に維持した。1時間経過後に、未反応のプロピレンをパージし、オートクレーブ内を窒素置換することにより、第一工程の重合を停止した。
[Production Example 4]
(1) [Polymerization]
First step polymerization:
After sufficiently replacing the inside of the stirring autoclave having an internal volume of 200 liters with propylene, 45 kg of sufficiently dehydrated liquefied propylene was introduced. To this, 500 ml (0.12 mol) of a triisobutylaluminum / n-heptane solution was added, and the internal temperature was maintained at 30 ° C. Next, 10 g of the prepolymerized catalyst synthesized in Production Example 1 (with a weight obtained by subtracting the prepolymerized polymer) was injected with argon to start the polymerization, the temperature was raised to 75 ° C. over 30 minutes, and the polymerization temperature was raised to 75 ° C. Maintained. After 1 hour, unreacted propylene was purged and the inside of the autoclave was purged with nitrogen to stop the polymerization in the first step.

第二工程の重合:
上記の窒素置換したオートクレーブを70℃大気圧で保持し、プロピレンを分圧で0.5MPa、次いでエチレンを分圧で1.5MPaを導入し、その後、プロピレンとエチレンのガス組成を維持するためにプロピレンとエチレンを各々34mol%、66mol%の割合で供給し、70℃、全圧2.0MPaの条件を維持した。この第二工程の重合の平均ガス組成は、C2:80.1%であった。50分後、エタノール100mlを導入し反応を停止させた。未反応のエチレン/プロピレンの混合ガスをパージし、9.0kgの重合体(PP−4)が得られた。
Second step polymerization:
To maintain the above nitrogen-substituted autoclave at 70 ° C. and atmospheric pressure, introduce propylene in a partial pressure of 0.5 MPa, then ethylene in a partial pressure of 1.5 MPa, and then maintain the gas composition of propylene and ethylene Propylene and ethylene were supplied at a ratio of 34 mol% and 66 mol%, respectively, and the conditions of 70 ° C. and a total pressure of 2.0 MPa were maintained. The average gas composition of the polymerization in the second step was C2: 80.1%. After 50 minutes, 100 ml of ethanol was introduced to stop the reaction. Unreacted ethylene / propylene mixed gas was purged to obtain 9.0 kg of a polymer (PP-4).

[製造例5]
(1)〔rac−(1,1’−ジメチルシリレンビス(2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル))ハフニウムジクロライドの合成〕:
rac−(1,1’−ジメチルシリレンビス(2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル))ハフニウムジクロライドの合成は、特開平11―240909号公報の実施例1と同様に実施した。
[Production Example 5]
(1) [Synthesis of rac- (1,1′-dimethylsilylenebis (2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl)) hafnium dichloride]:
The synthesis of rac- (1,1′-dimethylsilylenebis (2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl)) hafnium dichloride was carried out in the same manner as in Example 1 of JP-A-11-240909. did.

(2)〔触媒の合成〕:
3つ口フラスコ(容積1L)中に、製造例1で得られた化学処理スメクタイト10gを入れ、ヘプタン(66mL)を加えてスラリーとし、これにトリイソブチルアルミニウム(24mmol:濃度140mg/mLのヘプタン溶液を34mL)を加えて1時間攪拌後、ヘプタンで1/1000まで洗浄し、全容量を100mLとなるように、ヘプタンを加えた。
また、別のフラスコ(容積200mL)中で、製造例1で得られたrac−ジメチルシリレンビス(2−(2−(5−メチル)−フリル)−4−フェニル−インデニル)ハフニウムジクロライド(0.135mmol)をトルエン(38mL)に溶解した(錯体溶液1)。
また、別のフラスコ(容積200mL)中で、上記で合成したrac−(1,1’−ジメチルシリレンビス(2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル))ハフニウムジクロライド(0.015mmol)をトルエン(5mL)に溶解した(錯体溶液2)。
化学処理スメクタイトが入った3Lフラスコに、トリイソブチルアルミニウム(0.6mmol:濃度140mg/mLのヘプタン溶液を0.85mL)を加え、さらに先ほどの錯体溶液1を加え、引き続き錯体溶液2を加えて、室温で60分攪拌した。その後ヘプタンを356mL追加し、このスラリーを1Lオートクレーブに導入した。
オートクレーブの内部温度を40℃にした後、プロピレンを10g/時の速度でフィードし2時間40℃を保ちつつ予備重合を行った。その後、プロピレンフィードを止めて、50℃で0.5時間残重合を行った。得られた触媒スラリーの上澄みをデカンテーションで除去した後、トリイソブチルアルミニウム(12mmol:濃度140mg/mLのヘプタン溶液を8.5mL)を加えて10分攪拌した。この固体を2時間減圧乾燥することにより、乾燥予備重合触媒27.5gを得た。予備重合倍率(予備重合ポリマー量を固体触媒量で除した値)は1.75であった。
(2) [Catalyst synthesis]:
Into a three-necked flask (volume: 1 L), 10 g of the chemically treated smectite obtained in Production Example 1 is added, and heptane (66 mL) is added to form a slurry. 34 mL) was added, and the mixture was stirred for 1 hour, washed with heptane to 1/1000, and heptane was added so that the total volume became 100 mL.
In another flask (volume: 200 mL), rac-dimethylsilylenebis (2- (2- (5-methyl) -furyl) -4-phenyl-indenyl) hafnium dichloride (0. 135 mmol) was dissolved in toluene (38 mL) (complex solution 1).
In another flask (volume 200 mL), rac- (1,1′-dimethylsilylenebis (2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl)) hafnium dichloride (0. 015 mmol) was dissolved in toluene (5 mL) (complex solution 2).
To a 3 L flask containing chemically treated smectite, triisobutylaluminum (0.6 mmol: 0.85 mL of a heptane solution having a concentration of 140 mg / mL) was added, and the complex solution 1 was added, followed by addition of the complex solution 2. Stir at room temperature for 60 minutes. Thereafter, 356 mL of heptane was added, and this slurry was introduced into a 1 L autoclave.
After setting the internal temperature of the autoclave to 40 ° C., propylene was fed at a rate of 10 g / hour, and prepolymerization was performed while maintaining 40 ° C. for 2 hours. Thereafter, propylene feed was stopped, and residual polymerization was performed at 50 ° C. for 0.5 hour. After removing the supernatant of the obtained catalyst slurry by decantation, triisobutylaluminum (12 mmol: 8.5 mL of a heptane solution having a concentration of 140 mg / mL) was added and stirred for 10 minutes. This solid was dried under reduced pressure for 2 hours to obtain 27.5 g of a dry prepolymerized catalyst. The prepolymerization ratio (value obtained by dividing the amount of prepolymerized polymer by the amount of solid catalyst) was 1.75.

(3)〔重合〕
第一工程の重合:
内容積200リットルの攪拌式オートクレーブ内をプロピレンで十分に置換した後、十分に脱水した液化プロピレン45kgを導入した。これにトリイソブチルアルミニウム・n−ヘプタン溶液500ml(0.12mol)を加え、内温を30℃に維持した。次いで、上記予備重合触媒6g(予備重合ポリマーを減じた重量で)をアルゴンで圧入して重合を開始させ、35分かけて75℃に昇温し、重合温度を75℃に維持した。1時間経過後に、未反応のプロピレンをパージし、オートクレーブ内を窒素置換することにより、第一工程の重合を停止した。
(3) [Polymerization]
First step polymerization:
After sufficiently replacing the inside of the stirring autoclave having an internal volume of 200 liters with propylene, 45 kg of sufficiently dehydrated liquefied propylene was introduced. To this, 500 ml (0.12 mol) of a triisobutylaluminum / n-heptane solution was added, and the internal temperature was maintained at 30 ° C. Next, 6 g of the prepolymerized catalyst (with a weight obtained by subtracting the prepolymerized polymer) was injected with argon to start the polymerization, the temperature was raised to 75 ° C. over 35 minutes, and the polymerization temperature was maintained at 75 ° C. After 1 hour, unreacted propylene was purged and the inside of the autoclave was purged with nitrogen to stop the polymerization in the first step.

第二工程の重合:
上記の窒素置換したオートクレーブを50℃大気圧で保持し、プロピレンを分圧で0.7MPa、次いでエチレンを分圧で1.3MPaを導入し、その後、プロピレンとエチレンのガス組成を維持するためにプロピレンとエチレンを各々67mol%、33mol%の割合で供給し、50℃、全圧2.0MPaの条件を維持した。この第二工程の重合の平均ガス組成は、C2:65.1%であった。1時間後、エタノール100mlを導入し反応を停止させた。未反応のエチレン/プロピレンの混合ガスをパージし、9.8kgの重合体(PP−5)が得られた。
Second step polymerization:
To maintain the above nitrogen-substituted autoclave at 50 ° C. and atmospheric pressure, introduce propylene with a partial pressure of 0.7 MPa, then ethylene with a partial pressure of 1.3 MPa, and then maintain the gas composition of propylene and ethylene Propylene and ethylene were supplied at a ratio of 67 mol% and 33 mol%, respectively, and the conditions of 50 ° C. and a total pressure of 2.0 MPa were maintained. The average gas composition of the polymerization in the second step was C2: 65.1%. After 1 hour, 100 ml of ethanol was introduced to stop the reaction. The unreacted ethylene / propylene mixed gas was purged to obtain 9.8 kg of a polymer (PP-5).

[製造例6]
(1)〔重合〕:
第一工程の重合:
製造例5の第一工程の重合と同様に実施した。
[Production Example 6]
(1) [Polymerization]:
First step polymerization:
The same polymerization as in the first step of Production Example 5 was performed.

第二工程の重合:
上記の窒素置換したオートクレーブを55℃大気圧で保持し、プロピレンを分圧で0.58MPa、次いでエチレンを分圧で1.42MPaを導入し、その後、プロピレンとエチレンのガス組成を維持するためにプロピレンとエチレンを各々57mol%、43mol%の割合で供給し、55℃、全圧2.0MPaの条件を維持した。この第二工程の重合の平均ガス組成は、C2:70.8%であった。2時間後、エタノール100mlを導入し反応を停止させた。未反応のエチレン/プロピレンの混合ガスをパージし、10.3kgの重合体(PP−6)が得られた。
Second step polymerization:
To maintain the above nitrogen-substituted autoclave at 55 ° C. and atmospheric pressure, introduce propylene in a partial pressure of 0.58 MPa, then ethylene in a partial pressure of 1.42 MPa, and then maintain the gas composition of propylene and ethylene Propylene and ethylene were supplied at a ratio of 57 mol% and 43 mol%, respectively, and the conditions of 55 ° C. and a total pressure of 2.0 MPa were maintained. The average gas composition of the polymerization in the second step was C2: 70.8%. Two hours later, 100 ml of ethanol was introduced to stop the reaction. Unreacted ethylene / propylene mixed gas was purged to obtain 10.3 kg of polymer (PP-6).

(市販品)
PF814(電子線照射品):
バゼル社製の高溶融張力ポリプロピレン(MFR=2.5g/10min、融点159.4℃)を用いた。
(Commercial item)
PF814 (electron beam irradiated product):
A high melt tension polypropylene (MFR = 2.5 g / 10 min, melting point 159.4 ° C.) manufactured by Basel was used.

(ロ)発泡剤:
発泡剤として、重曹系発泡剤である日本ベーリンガーインゲルハイム社製、商品名:CF40Eを用いた。
(B) Foaming agent:
As a foaming agent, a product name: CF40E manufactured by Nippon Boehringer Ingelheim, which is a baking soda-based foaming agent, was used.

[実施例1]
製造例1で得られた、重合体(PP−1)100重量部に対し、フェノ−ル系酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネ−ト]メタン(商品名:IRGANOX1010、チバスペシャリティーケミカルズ社製)0.05重量部、フォスファイト系酸化防止剤であるトリス(2,4−ジ−t−ブチルフェニル)フォスファイト(商品名:IRGAFOS 168、チバスペシャリティーケミカルズ株式会社製)0.05重量部、並びに中和剤であるステアリン酸カルシウム(商品名:カルシウムステアレ−ト、日本油脂株式会社製)0.05重量部配合し、高速攪拌式混合機(ヘンシェルミキサ−、商品名)にて室温下で3分間混合した後、押出機にて溶融混練してペレットを得た。
[Example 1]
Tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4), which is a phenolic antioxidant, with respect to 100 parts by weight of the polymer (PP-1) obtained in Production Example 1. '-Hydroxyphenyl) propionate] methane (trade name: IRGANOX 1010, manufactured by Ciba Specialty Chemicals) 0.05 part by weight, tris (2,4-di-t-butylphenyl) which is a phosphite antioxidant Phosphite (trade name: IRGAFOS 168, manufactured by Ciba Specialty Chemicals Co., Ltd.) 0.05 parts by weight, and calcium stearate as a neutralizer (trade name: calcium stearate, manufactured by Nippon Oil & Fats Co., Ltd.) 0.05 After blending parts by weight and mixing with a high-speed stirring mixer (Henschel mixer, trade name) for 3 minutes at room temperature, the mixture is melt-kneaded with an extruder and then mixed with pellets. Got.

スクリュウ口径30mmの押出機を用いて、発泡体を得るために、前記ペレット100重量部と無機系(重曹系)発泡剤(日本ベーリンガーインゲルハイム社製、商品名:CF40E)10重量部を投入し、樹脂温度200℃にて加熱溶融可塑化して、ストランドダイより押出したストランド状発泡体を空冷、固化させながら、連続的に引き取り、ストランド状発泡体を得た。得られた発泡体の評価結果を表1に示す。
本発明の構成を満足する発泡体は、高倍率、低連続気泡率であり、緩衝性に優れ、平均気泡径の緻密なものであった。
In order to obtain a foam using an extruder with a screw diameter of 30 mm, 100 parts by weight of the pellets and 10 parts by weight of an inorganic (bicarbonate) foaming agent (trade name: CF40E, manufactured by Nippon Boehringer Ingelheim Co., Ltd.) were added. The strand-like foam was heated and melt-plasticized at a resin temperature of 200 ° C., and continuously taken out while cooling and solidifying the strand-like foam extruded from the strand die to obtain a strand-like foam. The evaluation results of the obtained foam are shown in Table 1.
The foam satisfying the constitution of the present invention had a high magnification, a low open cell ratio, an excellent buffering property, and a dense average cell diameter.

[実施例2]
重合体(PP−1)の代わりに、重合体(PP−2)を用いた以外は、実施例1と同様に実施し、評価結果を表1に示す。
本発明の構成を満足する発泡体は、高倍率、低連続気泡率であり、緩衝性に優れ、平均気泡径の緻密なものであった。
[Example 2]
It implemented like Example 1 except having used polymer (PP-2) instead of polymer (PP-1), and an evaluation result is shown in Table 1.
The foam satisfying the constitution of the present invention had a high magnification, a low open cell ratio, an excellent buffering property, and a dense average cell diameter.

[実施例3]
重合体(PP−1)の代わりに、重合体(PP−5)を用いた以外は、実施例1と同様に実施し、評価結果を表1に示す。
本発明の構成を満足する発泡体は、高倍率、低連続気泡率であり、緩衝性に優れ、平均気泡径の緻密なものであった。
[Example 3]
It implemented similarly to Example 1 except having used polymer (PP-5) instead of polymer (PP-1), and an evaluation result is shown in Table 1.
The foam satisfying the constitution of the present invention had a high magnification, a low open cell ratio, an excellent buffering property, and a dense average cell diameter.

[実施例4]
重合体(PP−1)の代わりに、重合体(PP−6)を用いた以外は、実施例1と同様に実施し、評価結果を表1に示す。
本発明の構成を満足する発泡体は、高倍率、低連続気泡率であり、緩衝性に優れ、平均気泡径の緻密なものであった。
[Example 4]
It implemented like Example 1 except having used polymer (PP-6) instead of polymer (PP-1), and an evaluation result is shown in Table 1.
The foam satisfying the constitution of the present invention had a high magnification, a low open cell ratio, an excellent buffering property, and a dense average cell diameter.

[比較例1]
重合体(PP−1)の代わりに、本発明において特定するプロピレン系重合体(X)とは異なるプロピレン系樹脂(PF814)を用いた以外は、実施例1と同様に実施し、ストランド状発泡体を得た。
本発明の構成を満たさない発泡体は、高倍率であるものの、連続気泡率が高く、気泡径も不均一であるため、緩衝性に劣るものであった。発泡体の評価結果を表1に示す。
[Comparative Example 1]
In the same manner as in Example 1 except that a propylene resin (PF814) different from the propylene polymer (X) specified in the present invention was used instead of the polymer (PP-1), strand-like foaming was performed. Got the body.
Although the foam which does not satisfy | fill the structure of this invention is high magnification, since the open cell ratio is high and the bubble diameter is also non-uniform | heterogenous, it is inferior to buffering property. The evaluation results of the foam are shown in Table 1.

[比較例2]
重合体(PP−1)の代わりに、本発明において特定するプロピレン系重合体(X)とは異なる重合体(PP−3)を用いた以外は、実施例1と同様に実施し、ストランド状発泡体を得た。
本発明の構成を満たさない発泡体は、低倍率であり、連続気泡率も高く、平均気泡径も大きなものであるため緩衝性に劣るものであった。発泡体の評価家結果を表1に示す。
[Comparative Example 2]
In the same manner as in Example 1 except that a polymer (PP-3) different from the propylene polymer (X) specified in the present invention was used instead of the polymer (PP-1), a strand shape was obtained. A foam was obtained.
A foam that does not satisfy the constitution of the present invention has a low magnification, a high open cell ratio, and a large average cell diameter, and therefore has poor buffering properties. Table 1 shows the evaluator results of the foam.

[比較例3]
重合体(PP−1)の代わりに、本発明において特定するプロピレン系重合体(X)とは異なる重合体(PP−4)を用いた以外は、実施例1と同様に実施し、ストランド状発泡体を得た。
本発明の構成を満たさない発泡体は、低倍率であり、連続気泡率も高く、平均気泡径も大きなものであるため緩衝性に劣るものであった。発泡体の評価家結果を表1に示す。
[Comparative Example 3]
In the same manner as in Example 1 except that a polymer (PP-4) different from the propylene-based polymer (X) specified in the present invention was used instead of the polymer (PP-1), a strand shape was obtained. A foam was obtained.
A foam that does not satisfy the constitution of the present invention has a low magnification, a high open cell ratio, and a large average cell diameter, and therefore has poor buffering properties. Table 1 shows the evaluator results of the foam.

Figure 0005162323
Figure 0005162323

本発明の押出発泡成形用樹脂組成物は、高結晶性であり、結晶化速度が緩やかである上、溶融流動特性がよく、高い溶融張力および高い歪硬化性を有していることから、高発泡倍率であっても、均一微細な発泡セルを有する高独立気泡構造体を得るのに適している。そして、それを用いて押出発泡成形することによって得られる発泡体は、圧縮特性、緩衝性、断熱性、外観、クリーン性、リサイクル性、耐衝撃性および耐臭気性に優れたものであるところより、食品容器、或いは自動車内装材、梱包製品等に好適に利用でき、産業上の利用可能性が高い。   The resin composition for extrusion foam molding of the present invention is highly crystalline, has a slow crystallization rate, good melt flow characteristics, high melt tension, and high strain curability. Even with the expansion ratio, it is suitable for obtaining a highly closed cell structure having uniform and fine foam cells. And the foam obtained by extrusion foam molding using it is more excellent in compression characteristics, buffer properties, heat insulation, appearance, cleanliness, recyclability, impact resistance and odor resistance. It can be suitably used for food containers, automobile interior materials, packed products, etc., and has high industrial applicability.

GPCにおけるクロマトグラムのベースラインと区間の説明の図であるIt is a figure of the description of the baseline of a chromatogram in GPC, and a section. 一軸伸長粘度計で測定された伸長粘度の一例を示すプロット図である。It is a plot figure which shows an example of the extensional viscosity measured with the uniaxial extensional viscometer. 本発明に係るプロピレン系重合体(X)のTEM観察結果の一例を示す図である。It is a figure which shows an example of the TEM observation result of the propylene polymer (X) which concerns on this invention. 本発明に係るプロピレン系重合体(X)のTEM観察結果の一例を示す図である。It is a figure which shows an example of the TEM observation result of the propylene polymer (X) which concerns on this invention. 通常のプロピレン系重合体のTEM観察結果の一例を示す図である。It is a figure which shows an example of the TEM observation result of a normal propylene polymer.

Claims (9)

下記の25℃でp−キシレンに不溶となる成分(A)と25℃でp−キシレンに溶解する成分(B)から構成され、且つ(i)GPCで測定する重量平均分子量(Mw)が10万〜100万であり、(ii)熱p−キシレンに不溶な成分が0.3重量%以下であり、(iii)伸長粘度の測定における歪硬化度(λmax)が2.0以上であり、(iv)MFR(230℃、2.16kg荷重)が0.1〜20g/10分であり、(v)メルトテンションテスターの測定の230℃における溶融張力(MT)が5g以上であるプロピレン系重合体(X)と発泡剤とを配合してなる押出発泡成形用樹脂組成物。
成分(A):次の(A1)〜(A5)に規定する要件を有する25℃でp−キシレンに不溶となる成分(CXIS)。
(A1)重合体(X)全量に対して20〜95重量%である。
(A2)GPCで測定する重量平均分子量(Mw)が10万〜100万である。
(A3)13C−NMRで測定するアイソタクチックトライアッド分率(mm)が93%以上である。
(A4)伸長粘度の測定における歪硬化度(λmax)が2.0以上である。
(A5)プロピレン単位と、エチレン単位またはα−オレフィン単位を含有する。
成分(B):次の(B1)〜(B3)に規定する要件を有する25℃でp−キシレンに溶解する成分(CXS)。
(B1)重合体(X)全量に対して5〜80重量%である。
(B2)GPCで測定する重量平均分子量(Mw)が10万〜100万である。
(B3)プロピレン単位と、エチレン単位および/またはα−オレフィン単位を含有する。
It is composed of the following component (A) that is insoluble in p-xylene at 25 ° C. and component (B) that is soluble in p-xylene at 25 ° C., and (i) a weight average molecular weight (Mw) measured by GPC is 10 (Ii) a component insoluble in hot p-xylene is 0.3% by weight or less, (iii) a strain hardening degree (λmax) in the measurement of elongational viscosity is 2.0 or more, (Iv) Propylene-based weight in which MFR (230 ° C., 2.16 kg load) is 0.1 to 20 g / 10 min, and (v) melt tension (MT) at 230 ° C. measured by a melt tension tester is 5 g or more. A resin composition for extrusion foam molding, comprising a combination (X) and a foaming agent.
Component (A): Component (CXIS) that is insoluble in p-xylene at 25 ° C. having the requirements defined in the following (A1) to (A5).
(A1) It is 20 to 95 weight% with respect to the polymer (X) whole quantity.
(A2) The weight average molecular weight (Mw) measured by GPC is 100,000 to 1,000,000.
(A3) The isotactic triad fraction (mm) measured by 13 C-NMR is 93% or more.
(A4) The strain hardening degree (λmax) in the measurement of elongational viscosity is 2.0 or more.
(A5) A propylene unit and an ethylene unit or an α-olefin unit are contained.
Component (B): Component (CXS) that dissolves in p-xylene at 25 ° C. having the requirements defined in the following (B1) to (B3).
(B1) 5 to 80% by weight based on the total amount of the polymer (X).
(B2) The weight average molecular weight (Mw) measured by GPC is 100,000 to 1,000,000.
(B3) Contains propylene units, ethylene units and / or α-olefin units.
プロピレン系重合体(X)の成分(B)は、さらに、(B4)伸長粘度の測定における歪硬化度(λmax)が2.0以上であることの要件を有することを特徴とする請求項1に記載の押出発泡成形用樹脂組成物。   The component (B) of the propylene-based polymer (X) further has a requirement that (B4) the strain hardening degree (λmax) in the measurement of elongational viscosity is 2.0 or more. The resin composition for extrusion foam molding as described in 2. プロピレン系重合体(X)は、結晶性プロピレン重合セグメントを側鎖とし、非結晶性プロピレン共重合セグメントを主鎖とする分岐構造を有する重合体から構成されていることを特徴とする請求項1に記載の押出発泡成形用樹脂組成物。   The propylene polymer (X) is composed of a polymer having a branched structure having a crystalline propylene polymer segment as a side chain and an amorphous propylene copolymer segment as a main chain. The resin composition for extrusion foam molding as described in 2. プロピレン系重合体(X)の成分(A)は、結晶性プロピレン重合セグメントを側鎖とし、非結晶性プロピレン共重合セグメントを主鎖とする分岐構造を有する重合体から構成されていることを特徴とする請求項1に記載の押出発泡成形用樹脂組成物。   Component (A) of the propylene polymer (X) is composed of a polymer having a branched structure in which a crystalline propylene polymer segment is a side chain and an amorphous propylene copolymer segment is a main chain. The resin composition for extrusion foam molding according to claim 1. プロピレン系重合体(X)の成分(A)は、エチレン単位を含むものであって、エチレン含量が0.1〜10重量%であることを特徴とする請求項1に記載の押出発泡成形用樹脂組成物。   The component (A) of the propylene-based polymer (X) contains an ethylene unit and has an ethylene content of 0.1 to 10% by weight, for extrusion foam molding according to claim 1. Resin composition. プロピレン系重合体(X)の成分(B)は、エチレン単位を含むものであって、エチレン含量が10〜60重量%であることを特徴とする請求項1に記載の押出発泡成形用樹脂組成物。   The resin composition for extrusion foam molding according to claim 1, wherein the component (B) of the propylene-based polymer (X) contains an ethylene unit and has an ethylene content of 10 to 60% by weight. object. 請求項1〜6のいずれか1項に記載の押出発泡成形用樹脂組成物を押出成形によって得ることを特徴とする発泡体。   A foam comprising the resin composition for extrusion foam molding according to any one of claims 1 to 6 obtained by extrusion molding. 発泡倍率が5〜40倍であって、連続気泡率が20%以下であることを特徴とする請求項7に記載の発泡体。   The foam according to claim 7, wherein the foaming ratio is 5 to 40 times, and the open cell ratio is 20% or less. 平均気泡径が400μm以下であることを特徴とする請求項7又は8に記載の発泡体。   The foam according to claim 7 or 8, wherein an average cell diameter is 400 µm or less.
JP2008127834A 2008-05-15 2008-05-15 Extrusion foam molding resin composition and foam using the same Active JP5162323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008127834A JP5162323B2 (en) 2008-05-15 2008-05-15 Extrusion foam molding resin composition and foam using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008127834A JP5162323B2 (en) 2008-05-15 2008-05-15 Extrusion foam molding resin composition and foam using the same

Publications (2)

Publication Number Publication Date
JP2009275120A JP2009275120A (en) 2009-11-26
JP5162323B2 true JP5162323B2 (en) 2013-03-13

Family

ID=41440838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008127834A Active JP5162323B2 (en) 2008-05-15 2008-05-15 Extrusion foam molding resin composition and foam using the same

Country Status (1)

Country Link
JP (1) JP5162323B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7200484B2 (en) * 2018-03-14 2023-01-10 Mcppイノベーション合同会社 insulation
EP3814411A1 (en) * 2018-06-14 2021-05-05 LyondellBasell Advanced Polymers Inc. Foamable polyolefin compositions and methods thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292944A (en) * 1998-04-08 1999-10-26 Idemitsu Petrochem Co Ltd Branched polyolefin
JP2006045268A (en) * 2004-07-30 2006-02-16 Japan Polypropylene Corp Polypropylene resin foam for covering
JP5028010B2 (en) * 2005-12-08 2012-09-19 日本ポリプロ株式会社 Propylene homopolymer and process for producing the same
JP4875954B2 (en) * 2006-09-28 2012-02-15 日本ポリプロ株式会社 Propylene-based copolymer, method for producing the same, and molded product
JP4637157B2 (en) * 2006-11-17 2011-02-23 日本ポリプロ株式会社 Propylene polymer and process for producing the same
JP4637158B2 (en) * 2007-11-09 2011-02-23 日本ポリプロ株式会社 Propylene polymer and process for producing the same
JP2009263558A (en) * 2008-04-28 2009-11-12 Japan Polypropylene Corp Polypropylene-based blow-molded article
JP4990216B2 (en) * 2008-05-15 2012-08-01 日本ポリプロ株式会社 Propylene resin composition
JP5011202B2 (en) * 2008-05-15 2012-08-29 日本ポリプロ株式会社 Propylene resin composition
JP4990219B2 (en) * 2008-05-15 2012-08-01 日本ポリプロ株式会社 Propylene resin composition and molded article thereof

Also Published As

Publication number Publication date
JP2009275120A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
US8080624B2 (en) Propylene-based polymer, production method therefor, composition using the same, and application thereof
JP4637157B2 (en) Propylene polymer and process for producing the same
JP4553966B2 (en) Propylene polymer
JP5624851B2 (en) Polypropylene resin composition for foam sheet molding and foam sheet
JP2009270019A (en) Polypropylene-based thermoforming sheet and deep drawing molded product thereof
JP2013010890A (en) Polypropylene resin composition and foamed sheet
JP5297838B2 (en) Polypropylene expanded foam film
JP4990219B2 (en) Propylene resin composition and molded article thereof
JP4637158B2 (en) Propylene polymer and process for producing the same
JP5342922B2 (en) Extrusion foam molding resin composition and foam using the same
JP5162329B2 (en) Polypropylene foam sheet, multilayer foam sheet, and thermoformed article using the same
JP5297834B2 (en) Polypropylene foam film
JP5011202B2 (en) Propylene resin composition
JP2009263558A (en) Polypropylene-based blow-molded article
JP2009249458A (en) Polypropylene foamed oriented film
JP5162322B2 (en) Polypropylene hollow foam molding
JP5162323B2 (en) Extrusion foam molding resin composition and foam using the same
JP2009275087A (en) Propylene-based composite resin composition, and extrusion molded product using the same
JP4990216B2 (en) Propylene resin composition
JP5315113B2 (en) Polypropylene hollow foam molding
JP2009263407A (en) Propylene-based resin composition, and food container made of the resin composition
JP5171727B2 (en) Polypropylene-based injection-foamed molded article and method for producing the same
JP5210601B2 (en) Propylene resin composition
JP2009263594A (en) Propylene-based resin composition, and medical member made of the resin composition
JP2009275074A (en) Flame-retardant polypropylene resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5162323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250