JP5156249B2 - Manufacturing method of integrated magnet body - Google Patents

Manufacturing method of integrated magnet body

Info

Publication number
JP5156249B2
JP5156249B2 JP2007090870A JP2007090870A JP5156249B2 JP 5156249 B2 JP5156249 B2 JP 5156249B2 JP 2007090870 A JP2007090870 A JP 2007090870A JP 2007090870 A JP2007090870 A JP 2007090870A JP 5156249 B2 JP5156249 B2 JP 5156249B2
Authority
JP
Japan
Prior art keywords
manufacturing
magnet
particles
cationic electrodeposition
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007090870A
Other languages
Japanese (ja)
Other versions
JP2008253046A (en
Inventor
幸嗣 上山
吉村  公志
裕之 坂本
和生 森近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Nippon Paint Co Ltd
Nippon Paint Holdings Co Ltd
Original Assignee
Hitachi Metals Ltd
Nippon Paint Co Ltd
Nippon Paint Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Nippon Paint Co Ltd, Nippon Paint Holdings Co Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007090870A priority Critical patent/JP5156249B2/en
Publication of JP2008253046A publication Critical patent/JP2008253046A/en
Application granted granted Critical
Publication of JP5156249B2 publication Critical patent/JP5156249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、電気自動車用モータなどに用いられる、複数の磁石片を積層一体化してなる一体化磁石体の製造方法に関する。   The present invention relates to a method for manufacturing an integrated magnet body, which is used in an electric vehicle motor or the like and is formed by stacking and integrating a plurality of magnet pieces.

昨今、次世代の自動車として、電気自動車(EV:Electric Vehicle)の実用化が進んでいる。EV用モータには、R−Fe−B系永久磁石(R:希土類元素)に代表される希土類系永久磁石などの磁石をケイ素鋼板などで形成されたロータの中に埋め込んだ、いわゆるIPM(Interior Permanent Magnet Motor)や、SRM(Synchronous Reluctance Motor)と呼ばれるブラシレスモータなどがあるが、近年、EVの研究開発の進展に伴い、これらのモータには、小型軽量化、高出力、高効率、高信頼性などが求められている。
磁石に交流磁界がかかると渦電流が発生して渦電流損失が起こる。従って、IPMに用いる磁石は、磁石に発生する渦電流を低減する必要がある。そのため、磁石を複数の磁石片に分割し、それらを互いに電気的に絶縁した状態で積層し、一体化磁石体として用いる方法が提案されている。
例えば、特許文献1には、磁石片と磁石片の間に薄膜でも優れた絶縁性を有する被膜を形成し、絶縁被膜の膜厚と、一体化磁石体の積層方向の全長に対する絶縁被膜の膜厚の総和の割合を、特定の値に設定する方法が記載されている。特許文献2には、予め加工しろを持たせた磁石片を絶縁被膜処理してから積層し、一体化後に仕上げ加工を行って加工しろを研削してから全体を絶縁被膜処理する方法が記載されている。
国際公開第01/95460号パンフレット 特開2003−134750号公報
In recent years, an electric vehicle (EV) has been put into practical use as a next-generation vehicle. The EV motor includes a so-called IPM (Interior) in which a magnet such as a rare earth permanent magnet represented by an R—Fe—B permanent magnet (R: rare earth element) is embedded in a rotor formed of a silicon steel plate or the like. There are brushless motors called Permanent Magnet Motor (SRM) and Synchronous Reluctance Motor (SRM), but in recent years, with the progress of EV research and development, these motors have become smaller, lighter, higher output, higher efficiency and higher reliability. Sex is required.
When an AC magnetic field is applied to the magnet, eddy current is generated and eddy current loss occurs. Therefore, the magnet used for IPM needs to reduce the eddy current generated in the magnet. Therefore, a method has been proposed in which a magnet is divided into a plurality of magnet pieces, and the magnets are laminated in a state of being electrically insulated from each other, and used as an integrated magnet body.
For example, in Patent Document 1, a film having excellent insulating properties even in a thin film is formed between magnet pieces and the film of the insulating film with respect to the film thickness of the insulating film and the total length in the stacking direction of the integrated magnet body A method for setting the ratio of the total thickness to a specific value is described. Patent Document 2 describes a method of laminating magnet pieces, which have been previously provided with a margin for processing, and then laminating them, performing a finishing process after integration, grinding the processing margin, and then processing the whole with an insulating coating. ing.
International Publication No. 01/95460 Pamphlet JP 2003-134750 A

ところで、IPMに用いる磁石は、ケイ素鋼板などで形成されたロータに設けられたスロットに挿入して組み込まれる場合が多いことから、高い寸法精度が必要とされる。さらに、耐食性や接着強度に優れるものでなければならない。従って、一体化磁石体を用いる場合、個々の磁石体の間で絶縁性が付与されているだけでなく、一体化磁石体全体としてこれらの特性を有することが要求される。しかしながら、これらの要求を満たす一体化磁石体を製造するためには、特許文献1に記載の方法では、例えば、絶縁性被膜の厳密な膜厚管理が必要であるという問題がある。特許文献2に記載の方法では、仕上げ加工を必要とするので製造工程が多くて複雑であるという問題がある。
そこで本発明は、高い寸法精度を有し、しかも、耐食性や接着強度に優れる一体化磁石体の簡易な製造方法を提供することを目的とする。
By the way, since the magnet used for IPM is often inserted into a slot provided in a rotor formed of a silicon steel plate or the like, high dimensional accuracy is required. Furthermore, it must be excellent in corrosion resistance and adhesive strength. Therefore, when using an integrated magnet body, it is required that the integrated magnet body as a whole has these characteristics as well as providing insulation between the individual magnet bodies. However, in order to manufacture an integrated magnet body that satisfies these requirements, there is a problem that the method described in Patent Document 1 requires, for example, strict film thickness management of the insulating coating. The method described in Patent Document 2 has a problem that the manufacturing process is many and complicated because finishing is required.
Accordingly, an object of the present invention is to provide a simple method for producing an integrated magnet body having high dimensional accuracy and excellent in corrosion resistance and adhesive strength.

本発明者らは、上記の点に鑑みて鋭意研究を重ねた結果、スルホニウム基とプロパルギル基とを持つエポキシ樹脂からなる熱硬化樹脂組成物を含み、熱硬化過程における複素粘度ηの最小値が10Pa・s以上であるカチオン電着塗料を用いることで、高い寸法精度を有し、しかも、耐食性や接着強度に優れる一体化磁石体を簡易に製造できることを知見した。 As a result of intensive studies in view of the above points, the present inventors include a thermosetting resin composition composed of an epoxy resin having a sulfonium group and a propargyl group, and the minimum value of the complex viscosity η * in the thermosetting process. It has been found that by using a cationic electrodeposition paint having a Pa of 10 Pa · s or more, an integrated magnet body having high dimensional accuracy and excellent in corrosion resistance and adhesive strength can be easily produced.

上記の知見に基づいてなされた本発明は、請求項1記載の通り、複数の磁石片を積層一体化してなる一体化磁石体の製造方法であって、
工程(1):スルホニウム基とプロパルギル基とを持つエポキシ樹脂からなる熱硬化樹脂組成物を含み、熱硬化過程における複素粘度ηの最小値が10Pa・s以上であり上限値が500Pa・sであるカチオン電着塗料を個々の磁石片の表面に電着塗装する工程、
工程(2):工程(1)で電着塗装した個々の磁石片を仮乾燥する工程、
工程(3):工程(2)で仮乾燥した個々の磁石片を積層する工程、
工程(4):工程(3)で積層した複数の磁石片からなる積層体を加熱することで熱硬化樹脂の熱硬化を完結させて磁石片同士を接着して一体化する工程、
を少なくとも含むことを特徴とする。
また、請求項2記載の製造方法は、請求項1記載の製造方法において、工程(2)における仮乾燥を40〜120℃で行うことを特徴とする。
また、請求項3記載の製造方法は、請求項1又は2記載の製造方法において、工程(4)における加熱を130〜250℃で行うことを特徴とする。
また、請求項4記載の製造方法は、請求項1乃至3のいずれかに記載の製造方法において、カチオン電着塗料がさらに架橋樹脂粒子を含むことを特徴とする。
また、請求項5記載の製造方法は、請求項4記載の製造方法において、架橋樹脂粒子の含有量が塗料中の樹脂固形分に対して1〜30重量%であることを特徴とする。
また、請求項6記載の製造方法は、請求項1乃至5のいずれかに記載の製造方法において、カチオン電着塗料がさらに絶縁球状粒子を含むことを特徴とする。
また、請求項7記載の製造方法は、請求項6記載の製造方法において、絶縁粒子がアルミナ粒子、シリカ粒子、ガラスビーズから選ばれる少なくとも1種であることを特徴とする。
また、請求項8記載の製造方法は、請求項6又は7記載の製造方法において、絶縁粒子がD10%径が5μm以上でD90%径が100μm以下の球状であることを特徴とする。
また、請求項9記載の製造方法は、請求項6乃至8のいずれかに記載の製造方法において、カチオン電着塗料中の絶縁粒子の含有量が1〜30体積%であることを特徴とする。
また、本発明の一体化磁石体は、請求項10記載の通り、請求項1記載の製造方法によって製造されてなることを特徴とする。
また、本発明のモータは、請求項11記載の通り、請求項10記載の一体化磁石体が組み込まれてなることを特徴とする。
The present invention made on the basis of the above knowledge is a manufacturing method of an integrated magnet body formed by laminating and integrating a plurality of magnet pieces as described in claim 1,
Step (1): A thermosetting resin composition comprising an epoxy resin having a sulfonium group and a propargyl group is included, and the minimum value of the complex viscosity η * in the thermosetting process is 10 Pa · s or more and the upper limit is 500 Pa · s . A process of electrodeposition coating a certain cationic electrodeposition paint on the surface of each magnet piece,
Step (2): a step of temporarily drying the individual magnet pieces electrodeposited in step (1),
Step (3): A step of laminating the individual magnet pieces temporarily dried in Step (2),
Step (4): A step of heating the laminated body composed of a plurality of magnet pieces laminated in Step (3) to complete the thermosetting of the thermosetting resin, and bonding and integrating the magnet pieces,
It is characterized by including at least.
The manufacturing method according to claim 2 is characterized in that, in the manufacturing method according to claim 1, temporary drying in the step (2) is performed at 40 to 120 ° C.
The manufacturing method according to claim 3 is the manufacturing method according to claim 1 or 2, wherein the heating in the step (4) is performed at 130 to 250 ° C.
The production method according to claim 4 is characterized in that, in the production method according to any one of claims 1 to 3, the cationic electrodeposition paint further contains crosslinked resin particles.
The manufacturing method according to claim 5 is characterized in that, in the manufacturing method according to claim 4, the content of the crosslinked resin particles is 1 to 30% by weight with respect to the resin solid content in the paint.
The manufacturing method according to claim 6 is characterized in that, in the manufacturing method according to any one of claims 1 to 5, the cationic electrodeposition paint further comprises insulating spherical particles.
The manufacturing method according to claim 7 is characterized in that, in the manufacturing method according to claim 6, the insulating particles are at least one selected from alumina particles, silica particles, and glass beads.
The manufacturing method according to claim 8 is the manufacturing method according to claim 6 or 7, characterized in that the insulating particles are spherical with a D10% diameter of 5 μm or more and a D90% diameter of 100 μm or less.
The manufacturing method according to claim 9 is the manufacturing method according to any one of claims 6 to 8, wherein the content of the insulating particles in the cationic electrodeposition coating is 1 to 30% by volume. .
Moreover, the integrated magnet body of this invention is manufactured by the manufacturing method of Claim 1 as described in Claim 10.
The motor of the present invention is characterized in that the integrated magnet body according to claim 10 is incorporated as described in claim 11.

本発明によれば、高い寸法精度を有し、しかも、耐食性や接着強度に優れる一体化磁石体の簡易な製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can provide the simple manufacturing method of the integrated magnet body which has high dimensional accuracy and is excellent in corrosion resistance and adhesive strength.

本発明の複数の磁石片を積層一体化してなる一体化磁石体の製造方法は、
工程(1):スルホニウム基とプロパルギル基とを持つエポキシ樹脂からなる熱硬化樹脂組成物を含み、熱硬化過程における複素粘度ηの最小値が10Pa・s以上であるカチオン電着塗料を個々の磁石片の表面に電着塗装する工程、
工程(2):工程(1)で電着塗装した個々の磁石片を仮乾燥する工程、
工程(3):工程(2)で仮乾燥した個々の磁石片を積層する工程、
工程(4):工程(3)で積層した複数の磁石片からなる積層体を加熱することで熱硬化樹脂の熱硬化を完結させて磁石片同士を接着して一体化する工程、
を少なくとも含むことを特徴とするものである。
以下、本発明の複数の磁石片を積層一体化してなる一体化磁石体の製造方法を、工程順に説明する。
The manufacturing method of the integrated magnet body formed by laminating and integrating the plurality of magnet pieces of the present invention,
Step (1): A cationic electrodeposition coating composition comprising a thermosetting resin composition comprising an epoxy resin having a sulfonium group and a propargyl group, wherein the minimum value of the complex viscosity η * in the thermosetting process is 10 Pa · s or more. The process of electrodeposition coating on the surface of the magnet piece,
Step (2): a step of temporarily drying the individual magnet pieces electrodeposited in step (1),
Step (3): A step of laminating the individual magnet pieces temporarily dried in Step (2),
Step (4): A step of heating the laminated body composed of a plurality of magnet pieces laminated in Step (3) to complete the thermosetting of the thermosetting resin, and bonding and integrating the magnet pieces,
It is characterized by including at least.
Hereinafter, the manufacturing method of the integrated magnet body formed by laminating and integrating a plurality of magnet pieces of the present invention will be described in the order of steps.

工程(1):カチオン電着塗料を個々の磁石片の表面に電着塗装する工程
工程(1)において用いるカチオン電着塗料に含まれる、スルホニウム基とプロパルギル基とを持つエポキシ樹脂からなる熱硬化樹脂組成物としては、例えば、特開2002−275431号公報に記載の、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂を骨格とする樹脂からなるものであって、数平均分子量として700〜5000を有するものであり、樹脂組成物の固形分100g当り、スルホニウム基を5〜250mmol及びプロパルギル基を10〜395mmol含有し、スルホニウム基及びプロパルギル基の合計含有量が400mmol以下であるものが挙げられる。
Step (1): Electrodeposition of cationic electrodeposition paint on the surface of each magnet piece Thermosetting of epoxy resin having sulfonium group and propargyl group contained in the cationic electrodeposition paint used in step (1) Examples of the resin composition include a resin having a skeleton of a phenol novolac type epoxy resin or a cresol novolac type epoxy resin described in JP-A No. 2002-275431, and has a number average molecular weight of 700 to 5000. And having a sulfonium group of 5 to 250 mmol and a propargyl group of 10 to 395 mmol per 100 g of the solid content of the resin composition, and a total content of the sulfonium group and the propargyl group of 400 mmol or less.

カチオン電着塗料の熱硬化過程における複素粘度ηの最小値は10Pa・s以上である。このような複素粘度ηを有する塗料を用いることで、工程(4)における加熱によって熱硬化樹脂が硬化する際の樹脂の流動性を極力抑えることができる。従って、硬化前後での磁石片の位置ズレが防止されるので、高い寸法精度を有する一体化磁石体を得ることができる。複素粘度ηの最小値は25Pa・s以上であることが望ましく、40Pa・s以上であることがより望ましい。一方、複素粘度ηの上限値は、樹脂が硬化する過程において流動して個々の試験片の間で接着強度を発揮する程度に相溶する限り特段規定する必要はないが、通常、500Pa・sである。なお、複素粘度ηの測定は、例えば、特開2004−27214号公報に記載の方法に従って測定することができる。カチオン電着塗料の熱硬化過程における複素粘度ηは、必要に応じて、例えば、カチオン電着塗料に架橋樹脂粒子を添加することで高めることができる。カチオン電着塗料に架橋樹脂粒子を添加することにより、カチオン電着塗料のポリマー成分と架橋樹脂粒子との間に強い相互間力が生じる結果、塗料の擬組成流動性(チクソトロピー性)の発現に寄与することで、熱硬化樹脂の硬化過程の温度領域で一定の粘度の確保が可能となり、複素粘度ηが高められる。架橋樹脂粒子としては、当業者によく知られている、乳化能を有する樹脂と重合開始剤との存在下に、水性媒体中で重合性単量体を乳化重合しながら架橋させる、いわゆるエマルション法により得られるものや、有機溶媒と有機溶媒に可溶な分散安定樹脂との混合液中で、重合性単量体を共重合しながら架橋させる、いわゆるNAD法により得られるものなどが挙げられる(例えば特開2004−339251号公報を参照のこと)。架橋樹脂粒子の体積平均粒子径は、0.05〜1μmが望ましい。体積平均粒子径が0.05μm未満であると、添加することの効果が充分に発揮されず、結果として寸法精度の安定化に充分に寄与しないことで寸法精度のバラツキを招きやすくなるおそれがある一方、1μmを越えると、電着塗装特性に悪影響を与え、析出膜厚異常などを招きやすくなるおそれがある。なお、カチオン電着塗料への架橋樹脂粒子の添加量は、塗料中の樹脂固形分に対して、例えば、1〜30重量%の範囲から適宜設定すればよい。 The minimum value of the complex viscosity η * in the thermosetting process of the cationic electrodeposition coating is 10 Pa · s or more. By using a paint having such a complex viscosity η * , the fluidity of the resin when the thermosetting resin is cured by heating in the step (4) can be suppressed as much as possible. Accordingly, since the positional deviation of the magnet pieces before and after curing is prevented, an integrated magnet body having high dimensional accuracy can be obtained. The minimum value of the complex viscosity η * is preferably 25 Pa · s or more, and more preferably 40 Pa · s or more. On the other hand, the upper limit of the complex viscosity η * does not need to be specified in particular as long as it flows in the process of curing the resin and is compatible to the extent that it exhibits adhesive strength between the individual test pieces. s. The complex viscosity η * can be measured, for example, according to the method described in JP-A-2004-27214. The complex viscosity η * in the thermosetting process of the cationic electrodeposition coating can be increased, for example, by adding cross-linked resin particles to the cationic electrodeposition coating as necessary. By adding cross-linked resin particles to the cationic electrodeposition paint, a strong mutual force is generated between the polymer component of the cationic electrodeposition paint and the cross-linked resin particles, resulting in the development of pseudo composition fluidity (thixotropic properties) of the paint. By making a contribution, it becomes possible to ensure a certain viscosity in the temperature range of the curing process of the thermosetting resin, and the complex viscosity η * is increased. As the cross-linked resin particles, a so-called emulsion method, which is well known to those skilled in the art, is to cross-link a polymerizable monomer in an aqueous medium while performing emulsion polymerization in the presence of an emulsifying resin and a polymerization initiator. And those obtained by the so-called NAD method in which a polymerizable monomer is crosslinked while copolymerizing in a mixed solution of an organic solvent and a dispersion-stable resin soluble in the organic solvent. For example, refer to Japanese Patent Application Laid-Open No. 2004-339251). The volume average particle diameter of the crosslinked resin particles is preferably 0.05 to 1 μm. If the volume average particle size is less than 0.05 μm, the effect of adding is not sufficiently exhibited, and as a result, there is a risk that variation in dimensional accuracy is likely to occur due to insufficient contribution to stabilization of dimensional accuracy. On the other hand, when the thickness exceeds 1 μm, the electrodeposition coating properties are adversely affected, and the deposition film thickness may be abnormal. In addition, what is necessary is just to set the addition amount of the crosslinked resin particle to a cationic electrodeposition coating material suitably from the range of 1-30 weight% with respect to the resin solid content in a coating material, for example.

さらに、カチオン電着塗料に絶縁粒子を添加することで、樹脂被膜の絶縁性を高めることができることに加え、絶縁粒子が磁石片と磁石片の間においてスペーサとして機能し、形成される塗膜の寸法精度の安定化が図られることで、より優れた寸法精度を有する一体化磁石体を得ることができる。また、カチオン電着塗料の熱硬化過程における複素粘度ηを高めることができる。絶縁粒子としては、アルミナ粒子、シリカ粒子、ガラスビーズなどの耐熱性があって塗料中の他の成分と反応しないものが挙げられる。絶縁粒子は、球状で、D10%径が5μm以上でD90%径が100μm以下であることが望ましく、D10%径が15μm以上でD90%径が60μm以下であることがより望ましい。D10%径が5μm未満であると、スペーサとして十分に機能しないおそれがある一方、D90%径が100μmを超えると、形成する樹脂被膜の膜厚を10〜50μmとする場合、工程(2)における仮乾燥後に、塗膜の膜厚よりも大きな粒子が塗膜中に多数存在することになり、工程(4)において磁石片同士を接着する際、接着性に悪影響を及ぼすおそれがある。カチオン電着塗料への絶縁粒子の添加量は、1〜30体積%であることが望ましい。添加量が1体積%未満であると、添加することの効果が得られないおそれがある一方、30体積%を超えると、塗料の流動性が著しく低下し、取り扱い性が悪くなるおそれがある。 Furthermore, by adding insulating particles to the cationic electrodeposition coating, the insulating properties of the resin coating can be increased, and the insulating particles function as a spacer between the magnet pieces and the coating film formed By stabilizing the dimensional accuracy, an integrated magnet body with better dimensional accuracy can be obtained. Further, the complex viscosity η * in the thermosetting process of the cationic electrodeposition paint can be increased. Examples of the insulating particles include those having heat resistance such as alumina particles, silica particles, and glass beads that do not react with other components in the paint. The insulating particles are spherical and preferably have a D10% diameter of 5 μm or more and a D90% diameter of 100 μm or less, more preferably a D10% diameter of 15 μm or more and a D90% diameter of 60 μm or less. If the D10% diameter is less than 5 μm, it may not function sufficiently as a spacer. On the other hand, if the D90% diameter exceeds 100 μm, the resin film to be formed has a thickness of 10 to 50 μm. After temporary drying, a large number of particles larger than the thickness of the coating film will be present in the coating film, which may adversely affect the adhesiveness when the magnet pieces are bonded together in the step (4). The addition amount of the insulating particles to the cationic electrodeposition coating is desirably 1 to 30% by volume. If the addition amount is less than 1% by volume, the effect of addition may not be obtained. On the other hand, if it exceeds 30% by volume, the fluidity of the paint may be significantly lowered and the handleability may be deteriorated.

カチオン電着塗料の個々の磁石片の表面への電着塗装は、カチオン電着塗料を浴液とし(固形分濃度は5〜30重量%が望ましい)、被塗装物である磁石片を陰極として陽極との間に、例えば、50〜450Vの電圧を印加して行えばよい。カチオン電着塗料からなる浴液の温度は、10〜45℃が望ましい。   Electrodeposition coating of the surface of each magnet piece of the cationic electrodeposition paint is performed using the cationic electrodeposition paint as a bath liquid (preferably 5 to 30% by weight of solid content) and the magnet piece as the object to be coated as a cathode. For example, a voltage of 50 to 450 V may be applied between the anode and the anode. The temperature of the bath liquid composed of the cationic electrodeposition paint is preferably 10 to 45 ° C.

なお、カチオン電着塗料を用いて電着塗装を行う前に、磁石片の表面にリン酸亜鉛処理などの化成処理を施したり、金属被膜などの下層被膜を形成したりするなどして、磁石片に予め耐食性を付与してもよい。   Before performing electrodeposition coating using a cationic electrodeposition paint, the surface of the magnet piece is subjected to chemical conversion treatment such as zinc phosphate treatment, or a lower layer coating such as a metal coating is formed. You may give corrosion resistance to a piece previously.

工程(2):工程(1)で電着塗装した個々の磁石片を仮乾燥する工程
工程(2)における仮乾燥とは、磁石片の表面に形成された塗膜の水分を除去することで、粘り気や粘性がない(tackフリー)状態にまで乾燥することを意味する。仮乾燥は、40〜120℃で行うことが望ましい。仮乾燥温度が40℃未満であると、塗膜中の水分の除去に長時間を要することで生産性が悪化するおそれがある一方、120℃を超えると、塗膜の硬化が進んでしまい、工程(4)において、硬化が完結していない熱硬化樹脂が有する接着性を利用した磁石片の積層一体化が困難になるおそれがある。なお、仮乾燥は、通常、3〜120分間行うことで、塗膜中の水分を充分に除去することができる。
Step (2): Step of temporarily drying individual magnet pieces electrodeposited in step (1) Temporary drying in step (2) means removing moisture from the coating film formed on the surface of the magnet piece. It means drying to a state without stickiness or viscosity (tack free). The temporary drying is desirably performed at 40 to 120 ° C. If the temporary drying temperature is less than 40 ° C., the productivity may be deteriorated because it takes a long time to remove moisture in the coating film, whereas if it exceeds 120 ° C., curing of the coating film proceeds. In the step (4), there is a possibility that it is difficult to stack and integrate the magnet pieces using the adhesiveness of the thermosetting resin that has not been completely cured. In addition, the water | moisture content in a coating film can fully be removed by performing temporary drying normally for 3 to 120 minutes.

工程(3):工程(2)で仮乾燥した個々の磁石片を積層する工程
所定の個数の磁石片を用いて規格通りに行えばよい。
Step (3): Step of laminating the individual magnet pieces temporarily dried in step (2) What is necessary is just to carry out according to the standard using a predetermined number of magnet pieces.

工程(4):熱硬化樹脂の熱硬化を完結させて磁石片同士を接着して一体化する工程
工程(4)における熱硬化樹脂の熱硬化を完結させるための加熱は、130〜250℃で行うことが望ましい。加熱温度が130℃未満であると、熱硬化樹脂の熱硬化を完結させるのに長時間を要することで生産性が悪化するおそれがある一方、250℃を超えると、熱硬化樹脂が劣化するなどしてその特性が損なわれるおそれがある。なお、加熱時間は、通常、5〜240分間でよい。また、加熱を行う際、磁石片の接着面同士に圧力が加わるように積層体を加圧することで、より優れた寸法精度を有する一体化磁石体を得ることができる。加圧の効果を充分に発揮させるためには、圧力は0.05MPa以上が望ましい。圧力の上限値は、実用上問題のない範囲であれば特段規定する必要はないが、通常、2.0MPaである。
Step (4): Step of completing the thermosetting of the thermosetting resin and bonding and integrating the magnet pieces. The heating for completing the thermosetting of the thermosetting resin in the step (4) is performed at 130 to 250 ° C. It is desirable to do. When the heating temperature is less than 130 ° C., it may take a long time to complete the thermosetting of the thermosetting resin, and the productivity may deteriorate. On the other hand, when the heating temperature exceeds 250 ° C., the thermosetting resin deteriorates. As a result, the characteristics may be impaired. The heating time is usually 5 to 240 minutes. Moreover, when heating, the integrated magnet body which has the more outstanding dimensional accuracy can be obtained by pressing a laminated body so that a pressure may be applied to the adhesion surfaces of a magnet piece. In order to sufficiently exert the effect of pressurization, the pressure is desirably 0.05 MPa or more. The upper limit of the pressure is not particularly specified as long as it is in a practically no problem range, but is usually 2.0 MPa.

以上の工程によって得られる本発明の一体化磁石体は、高い寸法精度を有し、しかも、耐食性や接着強度に優れ、例えば、図1に示すような方法でIPMに組み込んで用いることができる。即ち、IPM1は、コア2とその内側に配置されるロータ3とで構成され、該ロータ3の6箇所に設けられたスロット4にロータ用磁石として本発明の一体化磁石体5が挿入されてなる。このようにして得られるIPMは、高いモータ効率を有する。   The integrated magnet body of the present invention obtained by the above steps has high dimensional accuracy, and is excellent in corrosion resistance and adhesive strength. For example, it can be incorporated into an IPM by the method shown in FIG. That is, the IPM 1 is composed of a core 2 and a rotor 3 disposed inside thereof, and the integrated magnet body 5 of the present invention is inserted as a rotor magnet into slots 4 provided at six locations of the rotor 3. Become. The IPM obtained in this way has a high motor efficiency.

以下、本発明を実施例と比較例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。なお、以下の実施例と比較例は、米国特許第4770723号公報や米国特許第4792368号公報に記載されているようにして、公知の鋳造インゴットを粉砕し、微粉砕後に成形、焼結、熱処理、表面加工を行うことにより得た、17Nd−1Pr−75Fe−7B組成(at%)で縦18mm×横15mm×厚み4mmのNd−Fe−B系焼結型永久磁石を磁石片として用いて行った。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is limited to the following description and is not interpreted. In the following examples and comparative examples, as described in U.S. Pat. No. 4,770,723 and U.S. Pat. No. 4,792,368, a known cast ingot is pulverized, and after pulverization, molding, sintering, and heat treatment are performed. Using a Nd-Fe-B sintered permanent magnet having a composition of 17Nd-1Pr-75Fe-7B (at%), 18 mm long x 15 mm wide x 4 mm thick obtained as a magnet piece It was.

実施例1:
工程(1)
(ア)スルホニウム基とプロパルギル基とを持つエポキシ樹脂からなる熱硬化樹脂組成物の調製
エポキシ当量200.4のエポトートYDCN−701(東都化成社製のクレゾールノボラック型エポキシ樹脂)100.0重量部にプロパルギルアルコール23.6重量部、ジメチルベンジルアミン0.3重量部を攪拌機、温度計、窒素導入管及び還流冷却管を備えたセパラブルフラスコに加え、105℃に昇温し、3時間反応させてエポキシ当量が1580のプロパルギル基を含有する樹脂組成物を得た。このものに銅アセチルアセトナート2.5重量部を加え90℃で1.5時間反応させた。プロトン(1H)NMRで付加プロパルギル基末端水素の一部が消失していることを確認した(14mmol/100g樹脂固形分相当量のアセチリド化されたプロパルギル基を含有)。このものに、1−(2−ヒドロキシエチルチオ)−2,3−プロパンジオール10.6重量部、氷酢酸4.7重量部、脱イオン水7.0重量部を入れ75℃で保温しつつ6時間反応させ、残存酸価が5以下であることを確認した後、脱イオン水43.8重量部を加え、目的の樹脂組成物溶液を得た。このものの固形分濃度は70.0重量%、スルホニウム価は28.0mmol/100gワニスであった。数平均分子量(ポリスチレン換算GPC)は2443であった。
Example 1:
Process (1)
(A) Preparation of thermosetting resin composition comprising epoxy resin having sulfonium group and propargyl group Epototo YDCN-701 having an epoxy equivalent of 200.4 (cresol novolak type epoxy resin manufactured by Tohto Kasei Co., Ltd.) 23.6 parts by weight of propargyl alcohol and 0.3 part by weight of dimethylbenzylamine are added to a separable flask equipped with a stirrer, thermometer, nitrogen inlet tube and reflux condenser, heated to 105 ° C. and reacted for 3 hours. A resin composition containing a propargyl group having an epoxy equivalent of 1580 was obtained. To this, 2.5 parts by weight of copper acetylacetonate was added and reacted at 90 ° C. for 1.5 hours. It was confirmed by proton (1H) NMR that some of the hydrogen atoms at the end of the added propargyl group had disappeared (containing 14 mmol / 100 g of resin solid content corresponding to acetylated propargyl group). Into this, 10.6 parts by weight of 1- (2-hydroxyethylthio) -2,3-propanediol, 4.7 parts by weight of glacial acetic acid and 7.0 parts by weight of deionized water were added and kept at 75 ° C. After reacting for 6 hours and confirming that the residual acid value was 5 or less, 43.8 parts by weight of deionized water was added to obtain the desired resin composition solution. The solid content of this product was 70.0% by weight, and the sulfonium value was 28.0 mmol / 100 g varnish. The number average molecular weight (polystyrene equivalent GPC) was 2443.

(イ)架橋樹脂粒子の調製
反応容器にブチルセルソルブ120部を入れ120℃に加熱攪拌した。ここにt−ブチルパーオキシ−2−エチルヘキサノエート2部及びブチルセルソルブ10部を混合した溶液と、グリシジルメタクリレート15部、2−エチルヘキシルメタクリレート50部、2−ヒドロキシエチルメタクリレート40部及びn−ブチルメタクリレート15部からなる溶解性パラメータが10.1であるモノマー混合物とを3時間で滴下した。30分間エージングした後、t−ブチルパーオキシ−2−エチルヘキサノエート0.5部及びブチルセルソルブ5部を混合した溶液を30分で滴下し、2時間エージングした後、冷却した。このアンモニウム基を有するアクリル樹脂は、GPC測定により数平均分子量は12000、重量平均分子量は28000であった。ここにN,N−ジメチルアミノエタノール7部及び50%乳酸水溶液15部を加えて80℃で加熱攪拌することにより4級化を行った。酸価が1以下になり、粘度上昇が止まった時点で加熱を停止し、不揮発分30%のアンモニウム基を有するアクリル樹脂溶液を得た。このアンモニウム基を有するアクリル樹脂の1分子あたりのアンモニウム基の個数は6.0個であった。
反応容器に、以上のようにして得たアンモニウム基を有するアクリル樹脂溶液を20部と脱イオン水270部とを加え、75℃で加熱攪拌した。ここに2,2’−アゾビス(2−(2−イミダゾリン−2−イル)プロパン)1.5部の酢酸100%中和水溶液を5分かけて滴下した。5分間エージングした後、メチルメタクリレート30部を5分かけて滴下した。更に5分間エージングした後、アンモニウム基を有するアクリル樹脂溶液を70部と脱イオン水250部とを混合した溶液に、メチルメタクリレート170部、スチレン40部、n−ブチルメタクリレート30部、グリシジルメタクリレート5部及びネオペンチルグリコールジメタクリレート30部からなるα,β−エチレン性不飽和モノマー混合物を加え攪拌して得られたプレエマルションを40分かけて滴下した。60分間エージングした後、冷却し、架橋樹脂粒子の水分散液を得た。得られた架橋樹脂粒子の水分散液の不揮発分は35%、pHは5.0、体積平均粒子径は100nmであった。
(A) Preparation of crosslinked resin particles 120 parts of butyl cellosolve was placed in a reaction vessel and stirred at 120 ° C. A solution prepared by mixing 2 parts of t-butylperoxy-2-ethylhexanoate and 10 parts of butyl cellosolve, 15 parts of glycidyl methacrylate, 50 parts of 2-ethylhexyl methacrylate, 40 parts of 2-hydroxyethyl methacrylate and n- A monomer mixture consisting of 15 parts of butyl methacrylate and having a solubility parameter of 10.1 was added dropwise over 3 hours. After aging for 30 minutes, a solution in which 0.5 part of t-butylperoxy-2-ethylhexanoate and 5 parts of butyl cellosolve were added dropwise over 30 minutes, and after aging for 2 hours, the mixture was cooled. The acrylic resin having an ammonium group had a number average molecular weight of 12,000 and a weight average molecular weight of 28,000 as measured by GPC. Quaternization was performed by adding 7 parts of N, N-dimethylaminoethanol and 15 parts of 50% aqueous lactic acid solution and stirring with heating at 80 ° C. When the acid value became 1 or less and the increase in viscosity stopped, heating was stopped to obtain an acrylic resin solution having an ammonium group with a nonvolatile content of 30%. The number of ammonium groups per molecule of the acrylic resin having ammonium groups was 6.0.
To the reaction vessel, 20 parts of the acrylic resin solution having an ammonium group obtained as described above and 270 parts of deionized water were added, and the mixture was heated and stirred at 75 ° C. To this, 1.5 parts of 2,2′-azobis (2- (2-imidazolin-2-yl) propane) 1.5% acetic acid neutralized aqueous solution was added dropwise over 5 minutes. After aging for 5 minutes, 30 parts of methyl methacrylate was added dropwise over 5 minutes. After further aging for 5 minutes, 170 parts of methyl methacrylate, 40 parts of styrene, 30 parts of n-butyl methacrylate, 5 parts of glycidyl methacrylate were added to a solution obtained by mixing 70 parts of an acrylic resin solution having an ammonium group and 250 parts of deionized water. A pre-emulsion obtained by adding and stirring an α, β-ethylenically unsaturated monomer mixture consisting of 30 parts of neopentyl glycol dimethacrylate was added dropwise over 40 minutes. After aging for 60 minutes, the mixture was cooled to obtain an aqueous dispersion of crosslinked resin particles. The aqueous dispersion of the obtained crosslinked resin particles had a nonvolatile content of 35%, a pH of 5.0, and a volume average particle size of 100 nm.

(ウ)カチオン電着塗料の調製
(ア)で得た熱硬化樹脂組成物142.9部に脱イオン水157.1部を加え、更に、塗料中の樹脂固形分に対する架橋樹脂粒子の割合が4.0質量%になるように(イ)で得た架橋樹脂粒子の水分散液を加え、高速回転ミキサーで1時間撹拌後、固形分濃度が15重量%となるように水溶液を調製することで得た。
(C) Preparation of cationic electrodeposition paint 157.1 parts of deionized water was added to 142.9 parts of the thermosetting resin composition obtained in (a), and the ratio of the crosslinked resin particles to the resin solid content in the paint was Add an aqueous dispersion of the crosslinked resin particles obtained in (a) so as to be 4.0% by mass, and after stirring for 1 hour with a high-speed rotary mixer, prepare an aqueous solution so that the solid content concentration is 15% by weight. Got in.

(エ)電着塗装
(ウ)で得たカチオン電着塗料をステンレス容器に移して電着浴(浴温:30℃)とし、ここに前処理として日本ペイント社製のサーフダインSD−5000を用いたリン酸亜鉛処理を表面に施した磁石片が陰極となるようにして、100Vの電圧を印加し、塗料を攪拌しながら、工程(2)における仮乾燥後の塗膜の膜厚が約30μmとなるように行った。
(D) Electrodeposition coating The cationic electrodeposition paint obtained in (c) is transferred to a stainless steel container to form an electrodeposition bath (bath temperature: 30 ° C.). As a pretreatment, Surfdyne SD-5000 manufactured by Nippon Paint Co., Ltd. is used here. The thickness of the coating film after the temporary drying in step (2) is about 100 mm while applying the voltage of 100 V and stirring the paint so that the magnet piece subjected to the zinc phosphate treatment on the surface becomes the cathode. It was performed to be 30 μm.

工程(2):
電着塗装後、電着浴から引き上げた磁石片を液面上に上げた状態のまま、30秒間自然乾燥させてから水洗し、100℃で25分間仮乾燥を行い、tackフリーの塗膜を有する磁石片を得た。
Step (2):
After electrodeposition coating, with the magnet piece pulled up from the electrodeposition bath raised on the liquid surface, it is air-dried for 30 seconds, washed with water, temporarily dried at 100 ° C. for 25 minutes, and a tack-free coating film is formed. A magnet piece was obtained.

工程(3):
工程(2)で仮乾燥した3個の磁石片を、15mm×4mmの面が互いに当接するように積層した。
Step (3):
The three magnet pieces temporarily dried in the step (2) were laminated so that the surfaces of 15 mm × 4 mm were in contact with each other.

工程(4):
工程(3)で得た3個の磁石片からなる積層体に対し、テフロン(登録商標)テープを貼り付けた治具を用いて0.2MPaで加圧しながら190℃で90分間加熱を行い、熱硬化樹脂の熱硬化を完結させて磁石片同士を接着して一体化磁石体を得た(樹脂被膜の膜厚は約30μm)。
Step (4):
The laminate consisting of the three magnet pieces obtained in the step (3) is heated at 190 ° C. for 90 minutes while being pressurized at 0.2 MPa using a jig attached with a Teflon (registered trademark) tape, The thermosetting of the thermosetting resin was completed, and the magnet pieces were bonded together to obtain an integrated magnet body (the thickness of the resin coating was about 30 μm).

実施例2:
実施例1の工程(1)の(ウ)で得たカチオン電着塗料に、絶縁粒子としてマイクロン社製の球状アルミナ微粒子(AX−118;D10%径=10μm、D50%径=17μm、D90%径=24μm)を3体積%相当量添加し、球状アルミナ微粒子分散カチオン電着塗料を得た。この球状アルミナ微粒子分散カチオン電着塗料を用いて実施例1と同様にして一体化磁石体を得た。
Example 2:
To the cationic electrodeposition paint obtained in step (1) of Example 1 (c), spherical alumina fine particles (AX-118; D10% diameter = 10 μm, D50% diameter = 17 μm, D90%) manufactured by Micron as insulating particles. (Diameter = 24 μm) was added in an amount corresponding to 3% by volume to obtain a spherical alumina fine particle dispersed cationic electrodeposition coating. Using this spherical alumina fine particle dispersed cationic electrodeposition coating, an integrated magnet body was obtained in the same manner as in Example 1.

実施例3:
実施例1の工程(1)の(ア)で得た熱硬化樹脂組成物142.9部に脱イオン水157.1部を加え、更に、塗料中の樹脂固形分に対する架橋樹脂粒子の割合が20質量%になるように実施例1の工程(1)の(イ)で得た架橋樹脂粒子の水分散液を加え、高速回転ミキサーで1時間撹拌後、固形分濃度が15重量%となるように水溶液を調製することでカチオン電着塗料を得、この塗料に、絶縁粒子としてユニオン社製の球状ガラスビーズ(UB−01L;D10%径=17μm、D50%径=27μm、D90%径=35μm)を10体積%相当量添加し、球状ガラスビーズ分散カチオン電着塗料を得た。この球状ガラスビーズ分散カチオン電着塗料を用いて実施例1と同様にして一体化磁石体を得た。
Example 3:
157.1 parts of deionized water is added to 142.9 parts of the thermosetting resin composition obtained in (a) of step (1) of Example 1, and the ratio of the crosslinked resin particles to the resin solid content in the paint is The aqueous dispersion of the crosslinked resin particles obtained in step (1) (a) of Example 1 was added so as to be 20% by mass, and after stirring for 1 hour with a high-speed rotary mixer, the solid content concentration became 15% by weight. Thus, a cationic electrodeposition coating was obtained by preparing an aqueous solution as described above, and spherical glass beads (UB-01L; D10% diameter = 17 μm, D50% diameter = 27 μm, D90% diameter = made by Union Co., Ltd.) were used as insulating particles. 35 μm) was added in an amount corresponding to 10% by volume to obtain a spherical glass bead-dispersed cationic electrodeposition paint. Using this spherical glass bead-dispersed cationic electrodeposition paint, an integrated magnet body was obtained in the same manner as in Example 1.

実施例4:
実施例3で得たカチオン電着塗料に、絶縁粒子として電気化学工業社製の球状シリカ微粒子(FB−40S;D10%径=18μm、D50%径=40μm、D90%径=73μm)を15体積%相当量添加し、球状シリカ微粒子分散カチオン電着塗料を得た。この球状シリカ微粒子分散カチオン電着塗料を用いて実施例1と同様にして一体化磁石体を得た。
Example 4:
15 volumes of spherical silica fine particles (FB-40S; D10% diameter = 18 μm, D50% diameter = 40 μm, D90% diameter = 73 μm) manufactured by Denki Kagaku Kogyo Co., Ltd. as insulating particles were added to the cationic electrodeposition paint obtained in Example 3. % Equivalent amount was added to obtain a spherical silica fine particle dispersed cationic electrodeposition coating. Using this spherical silica fine particle dispersed cationic electrodeposition coating, an integrated magnet body was obtained in the same manner as in Example 1.

比較例1:
日本ペイント社製のアミノ変性エポキシ樹脂をベースとするブロックイソシアネート硬化型カチオン電着塗料(パワートップU−600M)に、絶縁粒子として実施例3で用いたユニオン社製の球状ガラスビーズを5体積%相当量添加し、球状ガラスビーズ分散カチオン電着塗料を得た。この球状ガラスビーズ分散カチオン電着塗料を用いて実施例1と同様にして一体化磁石体を得た。
Comparative Example 1:
5% by volume of spherical glass beads made by Union Co., Ltd. used in Example 3 as insulating particles were added to a blocked isocyanate curable cationic electrodeposition paint (Power Top U-600M) based on amino-modified epoxy resin made by Nippon Paint. A considerable amount was added to obtain a spherical glass bead-dispersed cationic electrodeposition coating. Using this spherical glass bead-dispersed cationic electrodeposition paint, an integrated magnet body was obtained in the same manner as in Example 1.

(性能評価)
実施例1〜4及び比較例1で得た一体化磁石体の寸法精度、耐食性、接着強度の性能評価を以下の方法に従って行った。評価結果を、それぞれの製造に用いたカチオン電着塗料の熱硬化過程における複素粘度ηの最小値(測定方法は以下の通り)とともに表1に示す。
(ア)寸法精度
工程(4)における熱硬化樹脂の硬化前後での磁石片の位置ズレが0.5mm未満であれば○、0.5mm以上であれば×とした。
(イ)耐食性
35℃の5%NaCl水溶液を48時間噴霧する塩水噴霧試験を行って錆が発生しなければ○、発生すれば×とした。
(ウ)接着強度
30℃と150℃における2mm/分の圧縮剪断試験にて5MPa以上の接着強度を有していれば○、有していなければ×とした。
(エ)複素粘度
特開2004−27214号公報に記載の方法に従って測定した。具体的には、粘弾性測定装置(ユービーエム社製:Rheosol−G3000)を用い、昇温速度を3℃/分、測定終了温度を工程(4)における熱硬化樹脂の加熱温度である190℃とし、直径18mmのパラレルプレートを用い、粘度測定時のプレート間距離を0.41mmとし、周波数を1Hzとして測定した。
(Performance evaluation)
Performance evaluation of dimensional accuracy, corrosion resistance, and adhesive strength of the integrated magnet bodies obtained in Examples 1 to 4 and Comparative Example 1 was performed according to the following methods. The evaluation results are shown in Table 1 together with the minimum value of the complex viscosity η * in the thermosetting process of the cationic electrodeposition paint used for each production (measurement method is as follows).
(A) Dimensional accuracy When the positional deviation of the magnet pieces before and after the curing of the thermosetting resin in the step (4) is less than 0.5 mm, it was evaluated as ◯, and when it was 0.5 mm or more, it was rated as x.
(A) Corrosion resistance A salt spray test in which a 5% NaCl aqueous solution at 35 ° C. was sprayed for 48 hours was conducted.
(C) Adhesive strength It was evaluated as ◯ if it had an adhesive strength of 5 MPa or more in a compression shear test at 30 ° C. and 150 ° C. at 2 mm / min, and × if it did not.
(D) Complex viscosity Measured according to the method described in JP-A-2004-27214. Specifically, using a viscoelasticity measuring device (UBM Co., Ltd .: Rhesol-G3000), the heating rate is 3 ° C./min, and the measurement end temperature is 190 ° C. which is the heating temperature of the thermosetting resin in step (4). And using a parallel plate with a diameter of 18 mm, the distance between the plates at the time of viscosity measurement was 0.41 mm, and the frequency was 1 Hz.

Figure 0005156249
Figure 0005156249

表1から明らかなように、実施例1〜4の一体化磁石体は、高い寸法精度を有し、しかも、耐食性や接着強度に優れることがわかった(それぞれの絶縁性については別途確認した)。実施例1〜4の一体化磁石体が高い寸法精度を有するのは、用いたカチオン電着塗料の熱硬化過程における複素粘度ηの最小値が10Pa・s以上であることで、塗料にチクソトロピー性が発現し、加熱によって熱硬化樹脂が硬化する際の樹脂の流動性が抑制されることで寸法精度の安定性が確保されたこと、スルホニウム基とプロパルギル基とを持つエポキシ樹脂と架橋樹脂粒子との間の強い相互間力がチクソトロピー性の発現に寄与していることなどに起因すると考えられた。 As is clear from Table 1, it was found that the integrated magnet bodies of Examples 1 to 4 had high dimensional accuracy and were excellent in corrosion resistance and adhesive strength (each insulation was confirmed separately). . The integrated magnet bodies of Examples 1 to 4 have high dimensional accuracy because the minimum value of the complex viscosity η * in the thermal curing process of the used cationic electrodeposition coating is 10 Pa · s or more. The stability of dimensional accuracy is ensured by suppressing the fluidity of the resin when the thermosetting resin is cured by heating, and epoxy resin and crosslinked resin particles having sulfonium groups and propargyl groups It was thought that the strong mutual force between the two contributed to the expression of thixotropy.

実施例5:
図1に示すような方法で実施例3の一体化磁石体を用いてIPMを製造した。このIPMは、高いモータ効率を有していた。
Example 5:
An IPM was manufactured using the integrated magnet body of Example 3 by the method shown in FIG. This IPM had high motor efficiency.

本発明は、高い寸法精度を有し、しかも、耐食性や接着強度に優れる一体化磁石体の簡易な製造方法を提供することができる点において産業上の利用可能性を有する。   The present invention has industrial applicability in that it can provide a simple manufacturing method of an integrated magnet body having high dimensional accuracy and excellent corrosion resistance and adhesive strength.

IPMの構成例を示す説明図である。It is explanatory drawing which shows the structural example of IPM.

符号の説明Explanation of symbols

1 IPM
2 コア
3 ロータ
4 スロット
5 一体化磁石体(ロータ用磁石)
1 IPM
2 Core 3 Rotor 4 Slot 5 Integrated magnet body (Magnet for rotor)

Claims (11)

複数の磁石片を積層一体化してなる一体化磁石体の製造方法であって、
工程(1):スルホニウム基とプロパルギル基とを持つエポキシ樹脂からなる熱硬化樹脂組成物を含み、熱硬化過程における複素粘度ηの最小値が10Pa・s以上であり上限値が500Pa・sであるカチオン電着塗料を個々の磁石片の表面に電着塗装する工程、
工程(2):工程(1)で電着塗装した個々の磁石片を仮乾燥する工程、
工程(3):工程(2)で仮乾燥した個々の磁石片を積層する工程、
工程(4):工程(3)で積層した複数の磁石片からなる積層体を加熱することで熱硬化樹脂の熱硬化を完結させて磁石片同士を接着して一体化する工程、
を少なくとも含むことを特徴とする製造方法。
A method for producing an integrated magnet body formed by laminating and integrating a plurality of magnet pieces,
Step (1): A thermosetting resin composition comprising an epoxy resin having a sulfonium group and a propargyl group is included, and the minimum value of the complex viscosity η * in the thermosetting process is 10 Pa · s or more and the upper limit is 500 Pa · s . A process of electrodeposition coating a certain cationic electrodeposition paint on the surface of each magnet piece,
Step (2): a step of temporarily drying the individual magnet pieces electrodeposited in step (1),
Step (3): A step of laminating the individual magnet pieces temporarily dried in Step (2),
Step (4): A step of heating the laminated body composed of a plurality of magnet pieces laminated in Step (3) to complete the thermosetting of the thermosetting resin, and bonding and integrating the magnet pieces,
The manufacturing method characterized by including at least.
工程(2)における仮乾燥を40〜120℃で行うことを特徴とする請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein temporary drying in the step (2) is performed at 40 to 120 ° C. 工程(4)における加熱を130〜250℃で行うことを特徴とする請求項1又は2記載の製造方法。   The method according to claim 1 or 2, wherein the heating in the step (4) is performed at 130 to 250 ° C. カチオン電着塗料がさらに架橋樹脂粒子を含むことを特徴とする請求項1乃至3のいずれかに記載の製造方法。   4. The production method according to claim 1, wherein the cationic electrodeposition paint further contains crosslinked resin particles. 架橋樹脂粒子の含有量が塗料中の樹脂固形分に対して1〜30重量%であることを特徴とする請求項4記載の製造方法。   5. The production method according to claim 4, wherein the content of the crosslinked resin particles is 1 to 30% by weight based on the resin solid content in the paint. カチオン電着塗料がさらに絶縁粒子を含むことを特徴とする請求項1乃至5のいずれかに記載の製造方法。   6. The production method according to claim 1, wherein the cationic electrodeposition coating further contains insulating particles. 絶縁粒子がアルミナ粒子、シリカ粒子、ガラスビーズから選ばれる少なくとも1種であることを特徴とする請求項6記載の製造方法。   The manufacturing method according to claim 6, wherein the insulating particles are at least one selected from alumina particles, silica particles, and glass beads. 絶縁粒子がD10%径が5μm以上でD90%径が100μm以下の球状であることを特徴とする請求項6又は7記載の製造方法。   The manufacturing method according to claim 6 or 7, wherein the insulating particles are spherical with a D10% diameter of 5 µm or more and a D90% diameter of 100 µm or less. カチオン電着塗料中の絶縁粒子の含有量が1〜30体積%であることを特徴とする請求項6乃至8のいずれかに記載の製造方法。   The method according to any one of claims 6 to 8, wherein the content of insulating particles in the cationic electrodeposition coating is 1 to 30% by volume. 請求項1記載の製造方法によって製造されてなることを特徴とする一体化磁石体。   An integrated magnet body manufactured by the manufacturing method according to claim 1. 請求項10記載の一体化磁石体が組み込まれてなることを特徴とするモータ。   A motor comprising the integrated magnet body according to claim 10 incorporated therein.
JP2007090870A 2007-03-30 2007-03-30 Manufacturing method of integrated magnet body Active JP5156249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090870A JP5156249B2 (en) 2007-03-30 2007-03-30 Manufacturing method of integrated magnet body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090870A JP5156249B2 (en) 2007-03-30 2007-03-30 Manufacturing method of integrated magnet body

Publications (2)

Publication Number Publication Date
JP2008253046A JP2008253046A (en) 2008-10-16
JP5156249B2 true JP5156249B2 (en) 2013-03-06

Family

ID=39977346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090870A Active JP5156249B2 (en) 2007-03-30 2007-03-30 Manufacturing method of integrated magnet body

Country Status (1)

Country Link
JP (1) JP5156249B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5360224B2 (en) * 2009-11-20 2013-12-04 トヨタ自動車株式会社 Method for manufacturing electric motor rotor
FR3069723B1 (en) * 2017-07-25 2020-10-02 Valeo Equip Electr Moteur ROTATING ELECTRIC MACHINE ROTOR EQUIPPED WITH A LAYER OF RESIN IN PERMANENT MAGNET CAVITES
JP7232387B2 (en) * 2018-09-07 2023-03-03 株式会社プロテリアル Adhesion method and laminated magnet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191574A (en) * 1989-01-19 1990-07-27 Seiko Epson Corp Color coating method by electrodeposition
JP2526428B2 (en) * 1991-01-29 1996-08-21 上村工業株式会社 Cationic chargeable polymer particles, method for producing the same, and electrodeposition coating containing the particles
US6800967B2 (en) * 2000-06-09 2004-10-05 Neomax Co., Ltd. Integrated magnet body and motor incorporating it
JP2002212488A (en) * 2001-01-23 2002-07-31 Nippon Paint Co Ltd Electrodeposition coating composition containing crosslinked resin particle
JP2002275431A (en) * 2001-03-16 2002-09-25 Nippon Paint Co Ltd Cation electrodeposition paint composition, method for cation electrodeposition and material to be coated having coated film
JP2003268315A (en) * 2002-03-19 2003-09-25 Nippon Paint Co Ltd Leadless cationic electrodeposition paint composition
JP2005133055A (en) * 2003-02-03 2005-05-26 Sekisui Chem Co Ltd Resin composition, material for substrate and substrate film
JP4697581B2 (en) * 2004-12-24 2011-06-08 Tdk株式会社 Permanent magnet body and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008253046A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP6134497B2 (en) Manufacturing method of laminated core
JP3904798B2 (en) Anisotropic conductive paste
JP6171310B2 (en) Epoxy resin composition, semi-cured body and cured body thereof, and resin sheet, prepreg, laminate, metal substrate, printed wiring board, and power semiconductor device using the same
WO2012046814A1 (en) Multilayer resin sheet and process for production thereof, resin sheet laminate and process for production thereof, cured multilayer resin sheet, metal-foil-cladded multilayer resin sheet, and semiconductor device
KR102081876B1 (en) Resin composition, resin sheet, resin sheet with metal foil, hardened resin sheet, structure, and semiconductor device for power or light source
TWI572635B (en) Curable resin composition and method for manufacture thereof, high thermal conductivity resin composition, and high thermal conductivity laminate substrate
TW201819357A (en) Electrical insulation system based on epoxy resins for generators and motors
JP2017160440A (en) Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, wiring board, method for producing semi-cured epoxy resin composition, and method for producing cured epoxy resin composition
KR20140007894A (en) Resin composition, resin sheet, cured resin sheet, resin sheet laminate, cured resin sheet laminate and method for manufacturing same, semiconductor device, and led device
JP2016108561A (en) Soft magnetic resin composition and soft magnetic film
JP2015082554A (en) Soft magnetic resin composition, and soft magnetic film
CN104144998A (en) Insulating adhesive composition for metal-based copper clad laminate (mccl), coated metal plate using same, and method for manufacturing same
TWI739774B (en) Manufacturing method of electronic parts, resin composition for temporary fixation, resin film for temporary fixation, and resin film for temporary fixation
EP3315573B1 (en) Heat dissipation material adhering composition, heat dissipation material having adhesive, inlay substrate, and method for manufacturing same
JP2022503911A (en) Manufacturing method of electrical steel sheet products
JP5156249B2 (en) Manufacturing method of integrated magnet body
JP6142118B2 (en) Porous membrane, electrolyte membrane, secondary battery and fuel cell
JP2016006163A (en) Soft-magnetic film
JP5742219B2 (en) (Meth) acrylate polymer, resin composition and molded article
JP2011026383A (en) Heat curing type thermally conductive adhesive composition
JP5888584B2 (en) Resin composition, resin sheet, prepreg sheet, cured resin sheet, structure, and semiconductor device for power or light source
US20180230643A1 (en) Insulation coated carbon fiber, method of producing insulation coated carbon fiber, carbon fiber-containing composition, and thermally conductive sheet
JP2012201726A (en) Paste composition, and magnetic substance composition made using the same
CN115506177B (en) Insulating sheet, method for manufacturing same, and rotating electrical machine
JP6290553B2 (en) Composite magnetic material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5156249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350