JP5155792B2 - Platinum catalyst and method for producing the same - Google Patents

Platinum catalyst and method for producing the same Download PDF

Info

Publication number
JP5155792B2
JP5155792B2 JP2008243091A JP2008243091A JP5155792B2 JP 5155792 B2 JP5155792 B2 JP 5155792B2 JP 2008243091 A JP2008243091 A JP 2008243091A JP 2008243091 A JP2008243091 A JP 2008243091A JP 5155792 B2 JP5155792 B2 JP 5155792B2
Authority
JP
Japan
Prior art keywords
platinum
carbon
camphor
catalyst
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008243091A
Other languages
Japanese (ja)
Other versions
JP2010069465A (en
Inventor
エヌ ナイル バラゴパル
エム アニルクマル ジー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2008243091A priority Critical patent/JP5155792B2/en
Publication of JP2010069465A publication Critical patent/JP2010069465A/en
Application granted granted Critical
Publication of JP5155792B2 publication Critical patent/JP5155792B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池用途などに好適な白金触媒とその製造方法に関する。   The present invention relates to a platinum catalyst suitable for fuel cell applications and the like and a method for producing the same.

燃料電池や排気ガス浄化装置等の触媒材料として白金が広く用いられている。白金を触媒材料として用いる場合には、対象ガスと接触し得る表面積を可及的に大きくして触媒活性を高めることが望まれる。活性が高い触媒を用いることにより、装置性能を高め或いは触媒必要量を減じて製造コストを低減することができる。このため、触媒用途には粒径がナノメートルオーダまで小さくされたナノ微粒子が特に好適である。   Platinum is widely used as a catalyst material for fuel cells and exhaust gas purification devices. When platinum is used as a catalyst material, it is desired to increase the catalytic activity by increasing the surface area that can contact the target gas as much as possible. By using a catalyst having high activity, it is possible to improve the performance of the apparatus or reduce the required amount of catalyst to reduce the production cost. For this reason, nano particles with a particle size reduced to the nanometer order are particularly suitable for catalyst applications.

一般に、白金ナノ微粒子は、塩化白金酸(H2PtCl6)等の白金塩を水溶液中で還元して製造される(例えば、非特許文献1を参照。)。還元剤としては、亜ジチオン酸ナトリウム、水素化硼素ナトリウム、クエン酸ナトリウム、メタノール、エタノール、ホルムアルデヒド等が用いられる。 In general, platinum nanoparticles are produced by reducing a platinum salt such as chloroplatinic acid (H 2 PtCl 6 ) in an aqueous solution (see, for example, Non-Patent Document 1). As the reducing agent, sodium dithionite, sodium borohydride, sodium citrate, methanol, ethanol, formaldehyde and the like are used.

また、上記のような白金ナノ微粒子を製造するに際して、長鎖炭素を含む界面活性剤を用いて粒径を制御することによって、炭素微粒子表面に白金ナノ微粒子を生成させて、活性や耐久性の高いPt/C触媒を得ることが提案されている(例えば、非特許文献2を参照。)。   In addition, when producing platinum nanoparticles such as those described above, by controlling the particle size using a surfactant containing long-chain carbon, platinum nanoparticles are generated on the surface of the carbon particles, and the activity and durability are improved. It has been proposed to obtain a high Pt / C catalyst (see, for example, Non-Patent Document 2).

また、ポリビニルピロリドン(PVP)等の高分子化合物を用いることによって凝集を抑制すると共に粒子径を小さくして、高分散性の白金ナノ微粒子を炭素微粒子上に生成することが提案されている(例えば、非特許文献3を参照。)。   In addition, it has been proposed to suppress the aggregation by using a polymer compound such as polyvinyl pyrrolidone (PVP) and reduce the particle diameter to produce highly dispersible platinum nanoparticles on carbon particles (for example, , See Non-Patent Document 3.)

特開2008−027775号公報JP 2008-027775 A A. Guha et al., "Surface-modified carbons as platinum catalyst support for PEM fuel cells", Carbon, 2007年3月, 45巻, 7号, p.1506-1517A. Guha et al., "Surface-modified carbons as platinum catalyst support for PEM fuel cells", Carbon, March 2007, 45, 7, p.1506-1517 X. Yu, S. Ye, "Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC", Journal of POWER Sources, 2007年7月, 172巻, 1号, p.133-144X. Yu, S. Ye, "Recent advances in activity and durability enhancement of Pt / C catalytic cathode in PEMFC", Journal of POWER Sources, July 2007, Vol.172, No.1, p.133-144 Chen and Xing, "Polymer-Mediated Synthesis of Highly Dispersed Pt Nanoparticles on Carbon Black", Langmuir, 2005年8月31日, 21巻, 20号, p.9334-9338Chen and Xing, "Polymer-Mediated Synthesis of Highly Dispersed Pt Nanoparticles on Carbon Black", Langmuir, August 31, 2005, 21, 20, p.9334-9338

ところで、今後の燃料電池の普及のためには初期費用をどれだけ下げられるかが重要な問題である。そのため、全ての材料や製造工程に低コスト化が求められており、各工程における処理温度を可及的に低くすること、例えば室温程度まで低くすることが望まれている。   By the way, for the spread of fuel cells in the future, how much the initial cost can be reduced is an important issue. Therefore, cost reduction is required for all materials and manufacturing processes, and it is desired to reduce the processing temperature in each process as much as possible, for example, to about room temperature.

しかしながら、前述したような従来の白金ナノ微粒子の製造方法においては、還元処理や還元剤の除去処理等が比較的高温で行われる。例えば、前記非特許文献1に記載された方法では、粒子サイズの小さな白金微粒子を得るためには、白金錯体前駆体の還元処理を75〜85(℃)の温度範囲で亜ジチオン酸ナトリウムのような穏やかな還元剤を使用して行い、更に140(℃)でエチレングリコールを使用して行うことが示されている。また、前記特許文献2,3に記載されているような界面活性剤や高分子化合物を用いて白金ナノ微粒子の粒径を制御する方法では、それら界面活性剤または高分子化合物の除去に例えば400(℃)以上の高温処理が必要である。そのため、これら何れの方法を適用しても、白金触媒の室温合成は困難であった。   However, in the conventional method for producing platinum nanoparticles as described above, the reduction treatment, the reducing agent removal treatment, and the like are performed at a relatively high temperature. For example, in the method described in Non-Patent Document 1, in order to obtain platinum fine particles having a small particle size, the reduction treatment of the platinum complex precursor is performed in a temperature range of 75 to 85 (° C.) like sodium dithionite. It has been shown to be performed using a mild mild reducing agent and further using ethylene glycol at 140 ° C. Further, in the method of controlling the particle size of the platinum nanoparticle using a surfactant or a polymer compound as described in Patent Documents 2 and 3, for example, 400 nm is used for removing the surfactant or the polymer compound. High-temperature treatment at (° C) or higher is required. Therefore, even if any of these methods is applied, it is difficult to synthesize platinum catalysts at room temperature.

本発明は、以上の事情を背景として為されたものであって、その目的は、低温合成が可能な高活性の白金触媒およびその製造方法を提供することにある。   The present invention has been made against the background of the above circumstances, and an object thereof is to provide a highly active platinum catalyst capable of low-temperature synthesis and a method for producing the same.

斯かる目的を達成するため、第1発明の要旨とするところは、白金微粒子が微細な炭素基材に担持された白金触媒を製造する方法であって、(a)白金塩と、樟脳とを有機溶媒を含む溶媒中に分散させる分散工程と、(b)前記分散工程で得られた分散液に前記炭素基材を混合する炭素混合工程と、(c)水素化硼素ナトリウムを前記炭素基材が前記分散液に混合された炭素混合液に加えることで前記白金塩を還元して該炭素混合液中でその炭素基材表面に白金微粒子を生成させる還元工程と、(d)前記白金微粒子が生成された炭素混合液を濾過して、前記炭素基材表面に前記白金微粒子が担持され、且つ該白金微粒子の表面に前記樟脳が付着させられた白金触媒を分離する分離工程とを、含むことにある。
In order to achieve such an object, the gist of the first invention is a method for producing a platinum catalyst in which platinum fine particles are supported on a fine carbon base material, comprising (a) a platinum salt and camphor . A dispersion step of dispersing in a solvent containing an organic solvent, (b) a carbon mixing step of mixing the carbon substrate with the dispersion obtained in the dispersion step, and (c) sodium borohydride in the carbon substrate. Is added to the carbon mixture mixed in the dispersion to reduce the platinum salt to produce platinum fine particles on the surface of the carbon substrate in the carbon mixed solution, and (d) the platinum fine particles Separating the platinum catalyst in which the platinum fine particles are supported on the surface of the platinum fine particles and the camphor is attached to the surfaces of the platinum fine particles by filtering the generated carbon mixed liquid. It is in.

また、前記目的を達成するための第2発明の燃料電池の酸素還元電極用白金触媒の要旨とするところは、請求項1乃至3の何れか1項に記載の製造方法により製造されていることを特徴とすることにある。
Moreover, the place made into the summary of the platinum catalyst for oxygen reduction electrodes of the fuel cell of 2nd invention for achieving the said objective is manufactured by the manufacturing method of any one of Claims 1 thru | or 3. Is characterized by .

前記第1発明によれば、分散工程において、樟脳が白金塩と共に有機溶媒を含む溶媒中に分散させられると共に、炭素混合工程において、分散液に炭素基材が混合されると、還元工程において、前記白金塩が前記水素化硼素ナトリウムの還元作用等によって還元させられ、樟脳が付着した白金微粒子が炭素基材表面に生成され、更に、分離工程において、生成された白金触媒が炭素混合液から分離して取り出される。このとき、樟脳は、有機溶剤と共に、白金微粒子を分散させる分散剤として好適に機能するので、十分に低温例えば室温程度の温度で、凝集等が生ずることなく例えばナノメートルオーダの微細且つ粒径分布の狭い白金微粒子が炭素基材表面に生成される。また、白金触媒は炭素混合液を濾過して分離されるので、この分離工程も室温程度の低温で行い得る。したがって、高活性の白金触媒を従来に比較して低温で得ることができる。
According to the first invention, in the dispersion step, camphor is dispersed in a solvent containing an organic solvent together with a platinum salt, and in the carbon mixing step, when the carbon substrate is mixed in the dispersion, in the reduction step, The platinum salt is reduced by the reducing action of the sodium borohydride, etc., and platinum fine particles with camphor attached thereto are generated on the surface of the carbon substrate, and further, in the separation step, the generated platinum catalyst is separated from the carbon mixture. And then taken out. At this time, camphor , together with an organic solvent, suitably functions as a dispersing agent for dispersing platinum fine particles, so that it is sufficiently low in temperature, for example, about room temperature, and does not cause aggregation or the like, for example, fine and particle size distribution on the order of nanometers. Narrow platinum fine particles are generated on the surface of the carbon substrate. Further, since the platinum catalyst is separated by filtering the carbon mixture , this separation step can also be performed at a low temperature of about room temperature. Therefore, a highly active platinum catalyst can be obtained at a lower temperature than in the past.

なお、上記の製造工程において、溶剤は分離工程において分離されるが、樟脳は、分離工程の後にも白金微粒子表面に付着したままである。しかしながら、白金触媒を使用するに際して常圧下で100(℃)未満の温度で加熱すれば樟脳が昇華して消失し、高活性の白金触媒が得られることから、これが残存していることに何ら不都合はなく、低温で除去し得るのでこの除去を含む工程全体を低温で実施し得る。しかも、樟脳が消失する前の第1発明の白金触媒は、エタノールやメタノール等の溶剤との反応性が低く、溶剤と混合しても発火しないため、市販の触媒に比較して安全性が高い利点もある。このような作用は、白金微粒子表面に樟脳が存在することによるものと考えられる。
In the above production process, the solvent is separated in the separation process, but the camphor remains attached to the surface of the platinum fine particles even after the separation process. However, when using a platinum catalyst, heating at a temperature of less than 100 (° C) under normal pressure sublimates the camphor and disappears, and a highly active platinum catalyst is obtained. Rather, it can be removed at low temperatures, so the entire process including this removal can be performed at low temperatures. In addition, the platinum catalyst of the first invention before the disappearance of camphor is low in reactivity with solvents such as ethanol and methanol and does not ignite even when mixed with a solvent, so it is safer than commercially available catalysts. There are also advantages. Such an action is considered to be due to the presence of camphor on the surface of the platinum fine particles.

また、前記第2発明によれば、白金触媒は、白金微粒子が炭素基材表面に付着させられると共に、その白金微粒子表面に樟脳が付着させられていることから、高活性であり、例えば前記第1発明の製造方法を用いて低温で合成することが可能である。
According to the second aspect of the invention, the platinum catalyst is highly active because platinum fine particles are attached to the surface of the carbon base material and camphor is attached to the surface of the platinum fine particles. 1 It is possible to synthesize at a low temperature using the production method of the invention.

なお、第1、第2発明においては、樟脳を必須とする。低温で容易に除去できる材料としては、揮発性の高い溶剤も考えられるが、このような溶剤を用いた場合には、分散工程中や保管中に揮発して分散性や保存性が得られない。また、樟脳と白金塩とを混合した後に炭素基材を混合することが必須である。このように樟脳と白金塩との混合を炭素基材の混合に先立って実施することにより、白金の分散性が高められる。白金と樟脳とが結合する前に炭素基材を混合すると、炭素基材と樟脳とが結合するため、白金の分散効果が得られ難くなる。なお、前記樟脳は合成樟脳を含む。
In the first and second inventions, camphor is essential. As a material that can be easily removed at a low temperature, a highly volatile solvent can be considered. However, when such a solvent is used, it is volatilized during the dispersion process or during storage, so that dispersibility and storability cannot be obtained. . Moreover, it is essential to mix a carbon base material after mixing camphor and platinum salt. Thus, the dispersibility of platinum is improved by mixing camphor and platinum salt prior to mixing the carbon base material. If the carbon base material is mixed before the platinum and camphor are combined, the carbon base material and the camphor are combined, so that it is difficult to obtain a platinum dispersion effect. Incidentally, the camphor is including synthetic camphor.

また、樟脳は、上述したように白金触媒の使用時に容易に除去できるものであるから、多量に用いられても特に不都合は無い。すなわち、前記白金塩全量を還元させるのに十分な量が用いられていれば足り、過剰に用いられていても差し支えない。但し、樟脳の量は、白金量に対してモル比で30:1以下に留めることが好ましい。
Moreover, since camphor can be easily removed when using a platinum catalyst as described above, there is no particular inconvenience even if it is used in a large amount. That is, it is sufficient that an amount sufficient to reduce the total amount of the platinum salt is used, and an excessive amount may be used. However, the amount of camphor is preferably kept at 30: 1 or less in molar ratio with respect to the amount of platinum.

なお、前記特許文献1には、昇華性有機材料の一種である樟脳を用いて燃料電池用の膜電極接合体を製造することが記載されている。しかしながら、この技術は、触媒層、電解質層、触媒層を順次に積層形成する膜電極接合体の製造工程において、多数の細孔を備える触媒層の表面に電解質溶液を塗布する際に、その触媒層内への電解質の染み込みを抑制することを目的として、容易に消失する物質をその多数の細孔に充填しておくものである。すなわち、昇華性有機材料を触媒に関連する技術に適用したものではあるが、白金触媒を合成するに際して樟脳を用いる本願発明に関連するものではない。
In addition, the said patent document 1 manufactures the membrane electrode assembly for fuel cells using camphor which is 1 type of a sublimable organic material. However, in this technique, in the manufacturing process of a membrane electrode assembly in which a catalyst layer, an electrolyte layer, and a catalyst layer are sequentially formed, the catalyst solution is applied to the surface of the catalyst layer having a large number of pores. For the purpose of suppressing the penetration of the electrolyte into the layer, a substance that easily disappears is filled in the many pores. That is, although the sublimable organic material is applied to the technology related to the catalyst, it is not related to the present invention using camphor when synthesizing the platinum catalyst.

また、前記微細な炭素基材は、例えば炭素微粒子であるが、形状は特に限定されない。例えば、カーボンナノチューブ、カーボンナノホーン、カーボンナノファイバーも本願の炭素基材に含まれる。なお、炭素混合工程と還元工程の順序は特に限定されない。炭素混合工程は、還元工程の前、進行中、終了後の何れにおいて実施されてもよく、これらの複数の段階に継続してもよい。   Moreover, although the said fine carbon base material is carbon microparticles, for example, a shape is not specifically limited. For example, carbon nanotubes, carbon nanohorns, and carbon nanofibers are also included in the carbon substrate of the present application. In addition, the order of a carbon mixing process and a reduction process is not specifically limited. The carbon mixing step may be performed before, during, or after the reduction step, and may be continued in these multiple steps.

ここで、前記第1発明の白金触媒の製造方法において、好適には、前記炭素混合工程は、前記炭素基材を溶剤に分散させて前記分散液に混合するものである。このようにすれば、疎水性を有する炭素基材が溶剤中に分散した状態で、白金塩および樟脳を溶媒に分散させた分散液に混合される。そのため、分散液の分散媒が水である場合にも、分散液中に炭素基材が好適に分散させられる利点がある。
Here, in the method for producing a platinum catalyst according to the first aspect of the present invention, preferably, in the carbon mixing step, the carbon base material is dispersed in a solvent and mixed with the dispersion. If it does in this way, it will mix with the dispersion liquid which disperse | distributed platinum salt and camphor in the solvent in the state which disperse | distributed the carbon base material which has hydrophobicity in the solvent. Therefore, even when the dispersion medium of the dispersion is water, there is an advantage that the carbon base material can be suitably dispersed in the dispersion.

また、好適には、前記第1発明の白金触媒の製造方法は、前記分散工程、前記炭素混合工程、前記還元工程、および前記分離工程を常温で実施するものである。このようにすれば、白金触媒を製造するための全工程が常温で実施されることから、製造コストを一層低減することができる。   Preferably, in the method for producing a platinum catalyst according to the first invention, the dispersion step, the carbon mixing step, the reduction step, and the separation step are performed at room temperature. If it does in this way, since all the processes for manufacturing a platinum catalyst are implemented at normal temperature, manufacturing cost can be reduced further.

また、好適には、前記第1発明の白金触媒の製造方法は、前記白金塩を還元するための水素化硼素ナトリウムが前記還元工程において前記有機溶媒中に添加されるものである。このようにすれば、前記樟脳および有機溶剤に加えて水素化硼素ナトリウムが添加されることから、有機溶媒中の白金塩が一層容易に還元されて白金触媒が得られる。また、水素化硼素ナトリウムは、還元工程の開始段階で添加されても、その進行中に添加されても、或いは終期に添加されてもよい。
Preferably, in the method for producing a platinum catalyst of the first invention, sodium borohydride for reducing the platinum salt is added to the organic solvent in the reduction step. Thus, since sodium borohydride is added in addition to the camphor and the organic solvent, the platinum salt in the organic solvent is more easily reduced to obtain a platinum catalyst . Also, sodium borohydride, be added at the start-stage reduction process, be added during the progress, or may be added at the end.

なお、前記白金塩は特に限定されないが、例えば、塩化白金酸溶液、白金(IV)塩化物、白金(II)ヘキサフルオロアセチルアセトナト錯体、白金(II)アセチルアセトナト錯体、白金(II)臭化物、白金(II)ヨウ化物、白金(IV)硫化物、テトラクロロ白金(II)酸カリウム、テトラクロロ白金(II)酸アンモニウム、ヘキサクロロ白金(IV)酸ナトリウム6水和物等が挙げられるが、これらに限られず、一層複雑な塩も利用できる。白金塩は、例えば、白金インゴットを王水等の適当な酸で溶解して製造することができる。また、本願発明は、白金触媒およびその製造方法に適用されるものであるが、銀、金、ニッケル、銅の微粒子およびそれらの製造方法にも適用され得る。これらの用途としては、フレキシブル基板への金属膜形成、触媒、センサー、電気接点、その他の電子或いは光電子アプリケーション、医学およびバイオ医学アプリケーション等が挙げられる。   Although the platinum salt is not particularly limited, for example, chloroplatinic acid solution, platinum (IV) chloride, platinum (II) hexafluoroacetylacetonato complex, platinum (II) acetylacetonato complex, platinum (II) bromide Platinum (II) iodide, platinum (IV) sulfide, potassium tetrachloroplatinate (II), ammonium tetrachloroplatinate (II), sodium hexachloroplatinate (IV) hexahydrate, and the like. Not limited to these, more complex salts can be used. The platinum salt can be produced, for example, by dissolving a platinum ingot with an appropriate acid such as aqua regia. Moreover, although this invention is applied to a platinum catalyst and its manufacturing method, it can be applied also to the fine particles of silver, gold | metal | money, nickel, copper, and those manufacturing methods. These applications include metal film formation on flexible substrates, catalysts, sensors, electrical contacts, other electronic or optoelectronic applications, medical and biomedical applications, and the like.

また、前記有機溶媒は特に限定されず、ターピネオール、ローズマリーオイル等の植物油ベースの溶剤、ヘキサン等のパラフィン炭化水素、アセトン等のケトン、エチレングリコール、ジエチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジブチルエーテル等のグリコール溶剤が挙げられる。   The organic solvent is not particularly limited, and is based on vegetable oil-based solvents such as terpineol and rosemary oil, paraffin hydrocarbons such as hexane, ketones such as acetone, ethylene glycol, diethylene glycol monobutyl ether, ethylene glycol monobutyl ether, propylene glycol mono Examples include glycol solvents such as butyl ether and propylene glycol dibutyl ether.

また、好適には、前記分散工程は、前記白金塩の水溶液を、前記樟脳と前記有機溶媒との混合物中に加えるものである。すなわち、分散工程では適量の水が混合されることが好ましいが、この水の混合は、予め白金塩の水溶液を調製し、これを有機溶媒に分散させることで同時に成されることが好ましい。このようにすれば、白金塩の凝集を抑制して有機溶媒中に好適に分散させることが容易になる。白金塩の水溶液は、適当な液性、例えば酸性に調製されるが、これは、例えば前述したようにインゴットを酸で溶解するに際して水を混合することで容易に得ることができる。
Preferably, in the dispersion step, the platinum salt aqueous solution is added to a mixture of the camphor and the organic solvent. That is, it is preferable that an appropriate amount of water is mixed in the dispersion step. However, the mixing of water is preferably performed simultaneously by preparing an aqueous solution of a platinum salt in advance and dispersing it in an organic solvent. If it does in this way, it will become easy to suppress aggregation of platinum salt and to disperse suitably in an organic solvent. The aqueous solution of the platinum salt is prepared to have an appropriate liquidity, for example, acidic, and this can be easily obtained by mixing water when dissolving the ingot with an acid as described above, for example.

また、前記水素化硼素ナトリウムは水溶性であるため、分離工程において白金微粒子が生成された炭素混合液を濾過して白金触媒を回収する際に、溶剤や水と共に前記水素化硼素ナトリウムも除去される。そのため、白金触媒に不純物が混入することが抑制される。 Further, since the sodium borohydride is water-soluble, the sodium borohydride is removed together with the solvent and water when the platinum catalyst is recovered by filtering the carbon mixed liquid in which the platinum fine particles are generated in the separation step. The Therefore, it is suppressed that an impurity mixes in a platinum catalyst.

以下、本発明の一実施例を図面を参照して詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例の白金触媒の製造方法を説明するための工程図である。図1において、まず、アセトン等の適当な溶剤を用意し(工程1)、これに図2に構造式を示す樟脳(1,7,7-トリメチルビシクロ[2.2.1]ヘプタン-2-オン;C10H16O)を混合し(工程2)、撹拌工程3においてこれを撹拌する。混合割合は適宜定められるが、例えば、8.42(g)の樟脳に対して250(g)のアセトンを加える。撹拌時間は例えば1分間程度で、撹拌速度は例えば300rpm程度である。上記樟脳は、例えば、純度99.9(%)の合成樟脳であり、常温でも昇華し易い特性を有している。本実施例においては、樟脳が昇華性有機材料として用いられている。 FIG. 1 is a process diagram for explaining a method for producing a platinum catalyst according to an embodiment of the present invention. In FIG. 1, first, an appropriate solvent such as acetone is prepared (step 1), and camphor (1,7,7-trimethylbicyclo [2.2.1] heptan-2-one, whose structural formula is shown in FIG. 2; C 10 H 16 O) is mixed (step 2) and this is stirred in stirring step 3. The mixing ratio is appropriately determined. For example, 250 (g) of acetone is added to 8.42 (g) of camphor. The stirring time is about 1 minute, for example, and the stirring speed is about 300 rpm, for example. The camphor is, for example, a synthetic camphor having a purity of 99.9 (%) and has a characteristic that it easily sublimes even at room temperature. In this embodiment, camphor is used as a sublimable organic material.

次いで、蒸留水を用意する(工程4)一方、白金塩溶解工程5では、例えば耐酸性を有する適当な容器内で、例えば、塩化白金酸(H2PtCl6)等の白金塩に適量の蒸留水を加えて例えば白金が10(wt%)程度の濃度で含まれる白金塩溶液(以下、これを「10% H2PtCl6」と言う。)を調製する。この白金塩溶液を上記の蒸留水に混合し、撹拌工程6において撹拌する。この撹拌時間は、例えば1分程度で良い。この工程では例えば8.09(g)の白金塩溶液に対して732(g)の蒸留水を加える。 Next, distilled water is prepared (step 4). On the other hand, in the platinum salt dissolution step 5, an appropriate amount of distilled water, for example, a platinum salt such as chloroplatinic acid (H 2 PtCl 6 ) is distilled in a suitable container having acid resistance. For example, a platinum salt solution (hereinafter referred to as “10% H 2 PtCl 6 ”) containing water at a concentration of about 10 (wt%) is prepared by adding water. This platinum salt solution is mixed with the distilled water and stirred in the stirring step 6. This stirring time may be about 1 minute, for example. In this step, for example, 732 (g) of distilled water is added to 8.09 (g) of a platinum salt solution.

次いで、攪拌工程7では、上記2つの溶液を混合し、適当な攪拌装置を用いて3時間以上、例えば21.5時間程度攪拌する。これにより、白金塩が溶剤中に分散され、樟脳の還元作用によって白金塩の還元が緩やかに進行する。したがって、この工程は分散工程および還元工程に対応する。   Next, in the stirring step 7, the above two solutions are mixed and stirred using an appropriate stirring device for 3 hours or more, for example, about 21.5 hours. Thereby, platinum salt is disperse | distributed in a solvent and reduction | restoration of platinum salt advances slowly by the reduction effect | action of camphor. Therefore, this process corresponds to a dispersion process and a reduction process.

次いで、アセトン等の適当な溶剤を用意し(工程8)、これに微粉カーボンを加え(工程9)、超音波混合工程10において超音波混合機で混合する。混合時間は例えば5〜10分間程度である。溶剤は例えば12(g)のアセトンと8(g)の水の混合液で、これに0.15(g)の微粉カーボンを加える。撹拌工程11では、これを上記の分散液に混合し、撹拌処理を施す。撹拌時間は例えば30分間〜10時間程度、例えば4時間である。本実施例ではこの撹拌工程11が炭素混合工程に対応する。   Next, an appropriate solvent such as acetone is prepared (step 8), fine carbon is added thereto (step 9), and the mixture is mixed with an ultrasonic mixer in the ultrasonic mixing step 10. The mixing time is, for example, about 5 to 10 minutes. The solvent is, for example, a mixture of 12 (g) acetone and 8 (g) water, and 0.15 (g) fine carbon is added to this. In the stirring step 11, this is mixed with the above dispersion and subjected to a stirring process. The stirring time is, for example, about 30 minutes to 10 hours, for example, 4 hours. In this embodiment, the stirring step 11 corresponds to a carbon mixing step.

次いで、還元剤添加工程12では、上記の混合液に水素化硼素ナトリウム(NaBH4)を添加し、還元・沈殿工程13では、混合液を更に撹拌する。水素化硼素ナトリウムは、例えば滴下により添加され、滴下後の撹拌時間は例えば4時間程度である。これにより、白金塩が還元されてナノメートルオーダーの白金微粒子が微粉カーボン表面に生成され、Pt/C微粒子分散液が得られる。次いで、撹拌を停止して静置すると、生成したPt/C微粒子が沈殿すると共に、そのPt/C微粒子を含む溶剤層と水層とに分離する(工程14)。静置時間は例えば一晩である。上記の水素化硼素ナトリウムは白金塩の還元作用も有しており、これを添加することで還元が完了する。すなわち、水素化硼素ナトリウムは、樟脳をアセトンに溶解した溶液の還元作用を補うものでもある。なお、上記の還元剤添加工程12では、水素化硼素ナトリウムに代えて他の還元剤を添加しても良い。なお、上記各工程は全て常温すなわち25(℃)程度で実施される。本実施例では、前記撹拌工程7に加えて、上記還元・沈殿工程13も還元工程に対応する。 Next, in the reducing agent addition step 12, sodium borohydride (NaBH 4 ) is added to the above mixture, and in the reduction / precipitation step 13, the mixture is further stirred. Sodium borohydride is added, for example, by dropping, and the stirring time after dropping is, for example, about 4 hours. As a result, the platinum salt is reduced to produce nanometer-order platinum fine particles on the fine carbon surface, and a Pt / C fine particle dispersion is obtained. Next, when the stirring is stopped and the mixture is allowed to stand, the produced Pt / C fine particles are precipitated and separated into a solvent layer and an aqueous layer containing the Pt / C fine particles (step 14). The standing time is, for example, overnight. The above sodium borohydride also has a platinum salt reducing action, and the addition is completed to complete the reduction. That is, sodium borohydride supplements the reducing action of a solution of camphor dissolved in acetone. In the reducing agent addition step 12 described above, another reducing agent may be added instead of sodium borohydride. The above steps are all performed at room temperature, that is, about 25 (° C.). In the present embodiment, in addition to the stirring step 7, the reduction / precipitation step 13 also corresponds to the reduction step.

次いで、分離・乾燥工程15においては、上記のように2層に分離している白金分散液から水を除去し、更に、室温で乾燥処理を施す。水の分離は、例えば、良く知られた分液漏斗等を用いて行えばよく、回収した溶剤層を乾燥して溶剤が除去されると、Pt/C触媒粉末(白金担持カーボン触媒)が得られる。この分離・乾燥工程15が分離工程に対応する。なお、上記分離・乾燥工程15は、前記工程14において静置する処理を待つことなく直ちに実施することも可能であるが、静置して2層に分離させると、水を容易に除去できるため、濾過時間を短縮できる利点がある。   Next, in the separation / drying step 15, water is removed from the platinum dispersion separated into two layers as described above, and a drying treatment is further performed at room temperature. Separation of water may be performed using, for example, a well-known separatory funnel, etc.When the collected solvent layer is dried to remove the solvent, Pt / C catalyst powder (platinum-supported carbon catalyst) is obtained. It is done. This separation / drying step 15 corresponds to the separation step. The separation / drying step 15 can be carried out immediately without waiting for the treatment to stand in the step 14, but water can be easily removed by allowing it to stand and separate into two layers. There is an advantage that the filtration time can be shortened.

本実施例によれば、常温で昇華する樟脳が塩化白金酸と共に有機溶媒中に分散させられると、その塩化白金酸の還元が開始するが、これに微粉カーボンが混合されると、樟脳が表面に付着した白金微粒子がその微粉カーボン表面に生成される。そのため、分離・乾燥工程において溶剤および水が分離され且つ乾燥処理が施されると、樟脳が表面に付着した白金微粒子が微粉カーボン表面に存在するPt/C触媒粉末が得られる。上記各工程は全て常温で実施されるため、高活性の白金触媒を従来に比較して低温で得ることができる。しかも、このようにして得られる触媒粉末は、乾燥処理を施して樟脳を除去するまでは、溶剤と混合しても反応性に乏しく発火することがないため、市販の触媒に比較して安全性に優れる利点もある。   According to this example, when camphor sublimated at room temperature is dispersed in an organic solvent together with chloroplatinic acid, the reduction of the chloroplatinic acid starts. Platinum fine particles adhering to the surface are produced on the fine carbon surface. Therefore, when the solvent and water are separated and subjected to a drying process in the separation / drying step, a Pt / C catalyst powder in which platinum fine particles with camphor attached to the surface are present on the finely divided carbon surface is obtained. Since all the above steps are performed at room temperature, a highly active platinum catalyst can be obtained at a lower temperature than in the past. In addition, the catalyst powder obtained in this way is less reactive and does not ignite even when mixed with a solvent until the camphor is removed by drying treatment, so it is safer than commercial catalysts. There is also an advantage in that.

また、本実施例によれば、還元剤として水素化硼素ナトリウムが更に添加されるので、塩化白金酸の還元を常温で比較的短時間で完了させることができる。   In addition, according to this example, sodium borohydride is further added as a reducing agent, so that the reduction of chloroplatinic acid can be completed in a relatively short time at room temperature.

以下、前記図1に従ってPt/C触媒粉末を製造する場合の更に具体的な実施例について説明する。試料1〜4のそれぞれの製造方法は以下の通りである。
試料1:0.97(g)の樟脳を21.5(g)のアセトンに混合し、これに0.6(g)の10% H2PtCl6を72(g)の水に溶解して加えた。この溶液0.6(g)中には、白金が0.06(g)含まれている。混合液を室温で23時間撹拌し、これに微粉カーボンを50(mg)加え、30分撹拌した。これに1M NaBH4を0.5(ml)加え、3時間撹拌した。次いで、生成されたPt/C粒子を濾過により分離した。
Hereinafter, a more specific example in the case of producing the Pt / C catalyst powder according to FIG. 1 will be described. Each manufacturing method of samples 1-4 is as follows.
Sample 1: 0.97 (g) camphor was mixed with 21.5 (g) acetone, and 0.6 (g) 10% H 2 PtCl 6 dissolved in 72 (g) water was added thereto. This solution 0.6 (g) contains 0.06 (g) platinum. The mixture was stirred at room temperature for 23 hours, 50 (mg) of fine carbon was added thereto, and the mixture was stirred for 30 minutes. To this, 0.5M (1M NaBH 4 ) was added and stirred for 3 hours. The produced Pt / C particles were then separated by filtration.

試料2:9.52(g)の樟脳を197.5(g)のアセトンに混合し、300rpmの回転速度で撹拌した。これに6.13(g)の10% H2PtCl6を707(g)の水に溶解して加えた。混合液を室温で16時間撹拌し、これに0.49(g)の微粉カーボンを加え、3時間撹拌した。これに1M NaBH4を5(ml)加え、3時間撹拌した。次いで、生成されたPt/C粒子を濾過により分離した。この試料2は、樟脳の添加量が試料1に比較して多いため、より短い撹拌時間で還元を行うことができる。なお、NaBH4の量が試料1に比較して多いのは、樟脳の添加量を多くしたことに対応したものである。このように、撹拌時間やNaBH4の添加量は樟脳の量に応じて適宜定めればよい。 Sample 2: 9.52 (g) camphor was mixed with 197.5 (g) acetone and stirred at a rotational speed of 300 rpm. To this was added 6.13 (g) of 10% H 2 PtCl 6 dissolved in 707 (g) of water. The mixture was stirred at room temperature for 16 hours, 0.49 (g) of finely divided carbon was added thereto, and the mixture was stirred for 3 hours. To this, 5M (1 ml) of 1M NaBH 4 was added and stirred for 3 hours. The produced Pt / C particles were then separated by filtration. Since the amount of camphor added in Sample 2 is larger than that in Sample 1, reduction can be performed in a shorter stirring time. The amount of NaBH 4 higher than that of sample 1 corresponds to the increased amount of camphor added. Thus, the stirring time and the amount of NaBH 4 added may be determined as appropriate according to the amount of camphor.

試料3:16.5(g)の樟脳を551.84(g)のアセトンに混合し、300rpmの回転速度で撹拌した。これに15.47(g)の10% H2PtCl6を1415(g)の水に溶解して加えた。混合液を室温で16時間撹拌し、これに0.59(g)の微粉カーボンを加え、6.5時間撹拌した。これに1M NaBH4を25(ml)加え、7時間撹拌した。次いで、生成されたPt/C粒子を濾過により分離した。 Sample 3: 16.5 (g) camphor was mixed with 551.84 (g) acetone and stirred at a rotational speed of 300 rpm. To this was added 15.47 (g) of 10% H 2 PtCl 6 dissolved in 1415 (g) of water. The mixture was stirred at room temperature for 16 hours, 0.59 (g) of finely divided carbon was added thereto, and the mixture was stirred for 6.5 hours. To this was added 25 (ml) of 1M NaBH 4 and stirred for 7 hours. The produced Pt / C particles were then separated by filtration.

試料4:8.42(g)の樟脳を252(g)のアセトンに混合し、300rpmの回転速度で撹拌した。これに8.09(g)の10% H2PtCl6を732.5(g)の水に溶解して加えた。混合液を室温で21.5時間撹拌し、これに0.15(g)の微粉カーボンを加え、4時間撹拌した。これに1M NaBH4を13(ml)加え、4時間撹拌した。次いで、生成されたPt/C粒子を濾過により分離した。 Sample 4: 8.42 (g) camphor was mixed with 252 (g) acetone and stirred at a rotational speed of 300 rpm. To this was added 8.09 (g) of 10% H 2 PtCl 6 dissolved in 732.5 (g) of water. The mixture was stirred at room temperature for 21.5 hours, 0.15 (g) of finely divided carbon was added thereto, and the mixture was stirred for 4 hours. To this, 13 (ml) of 1M NaBH 4 was added and stirred for 4 hours. The produced Pt / C particles were then separated by filtration.

上記のようにして作製した各試料を溶剤に分散して、酸素還元電流密度、XRD測定、TGA測定等に供した。なお、溶剤は試料の分散性に応じて適宜のものを用いればよいが、例えば、試料1はアセトンに分散し、試料2はアセトン/エタノール/水混合液に分散した。電流密度は、分散液を用いて回転電極サイクリックボルタメトリーで測定した。また、XRDは、スライドガラスに分散液を滴下して室温で乾燥することで薄膜を作製して測定試料とした。   Each sample produced as described above was dispersed in a solvent and subjected to oxygen reduction current density, XRD measurement, TGA measurement and the like. An appropriate solvent may be used depending on the dispersibility of the sample. For example, sample 1 was dispersed in acetone and sample 2 was dispersed in an acetone / ethanol / water mixture. The current density was measured by rotating electrode cyclic voltammetry using the dispersion. Moreover, XRD produced the thin film by dripping a dispersion liquid on a slide glass and drying at room temperature, and made it the measurement sample.

調合仕様および評価結果を、他の実施例NC-1〜NC-5および市販品1,2の評価結果と併せて表1に示す。なお、市販品1,2は、何れも燃料電池の触媒に一般に用いられているものであるが白金量が互いに異なる。表1において、1〜4は、上述した試料1〜4に対応する。「樟脳」欄には、上述した混合量に代えて、分子量を152として計算した物質量を記した。また、「NaBH4/Pt」欄は、混合したNaBH4とPtのモル比である。また、「カーボン表面積」欄は、用いた微粉カーボンの質量当たりの表面積(SA)であり、NC-4、NC-5のみSAが950(m2/g)のものを用い、他は240(m2/g)のものを用いた。「温度」欄は触媒合成の際の処理温度で、全て25(℃)である。 The formulation specifications and evaluation results are shown in Table 1 together with the evaluation results of other Examples NC-1 to NC-5 and commercial products 1 and 2. The commercial products 1 and 2 are generally used as catalysts for fuel cells, but the amounts of platinum are different from each other. In Table 1, 1-4 correspond to the samples 1-4 described above. In the “Camphor” column, the amount of the substance calculated with a molecular weight of 152 was written instead of the above-mentioned mixing amount. The “NaBH 4 / Pt” column is the molar ratio of the mixed NaBH 4 and Pt. The “carbon surface area” column is the surface area (SA) per mass of the finely divided carbon used, and only NC-4 and NC-5 have SA of 950 (m 2 / g). m 2 / g) was used. “Temperature” column is the treatment temperature at the time of catalyst synthesis, and all are 25 (° C.).

Figure 0005155792
Figure 0005155792

上記表1の中央部の横線より下には、評価対象のPt/C触媒の特性を示した。「白金量」欄は、各試料に含まれる白金量の割合を示したもので、TGA測定から得られた白金含有量である。Pt/C触媒のTGA測定では、カーボンおよび有機成分が全て焼失し、Ptのみが残ることになるので、残存質量の割合は白金含有量に等しいはずである。   Below the horizontal line at the center of Table 1, the characteristics of the Pt / C catalyst to be evaluated are shown. The "Platinum amount" column shows the proportion of the platinum amount contained in each sample, and is the platinum content obtained from the TGA measurement. In the TGA measurement of the Pt / C catalyst, all the carbon and organic components are burned out and only Pt remains, so the proportion of the remaining mass should be equal to the platinum content.

また、「白金サイズ」欄には、TEM(透過型電子顕微鏡)およびXRDの測定結果から求めた白金サイズを示した。TEMは、Pt/C触媒をヘキサン等の溶剤に分散させ、この分散液をカーボンフィルムで覆って分析した。TEM測定は一部の試料に留まるが、XRD測定結果((111)ピークの半値幅)から算出した値とよく一致している。また、「活性表面積」は、触媒として有効に機能し得る白金の表面積で、回転電極サイクリックボルタメトリーで測定したIV曲線から下記(1)式で算出した。下記(1)式において、QはIV曲線の積分面積(すなわち水素吸着電荷量、単位:μC)、「210」は白金の単位活性表面積当たりの電荷量(単位:μC/cm2)、Wは白金重量(単位:g)である。また、「白金利用率」欄の数値は、上記の活性表面積を白金の粒径から算出した単位面積当たりの表面積で除した値で、全白金のうちの有効に機能するものの割合を表している。反応に寄与しうるのは白金表面のうち露出している部分のみであり、カーボンに接している部分や白金が互いに重なり合っている部分など他のものに覆われている部分が多いほどこの数値が小さくなる。「電流密度」欄は、0.36(V)で測定した酸素還元電流密度で、上記IV曲線から求めた。
活性表面積=Q/210W ・・・(1)
Further, in the “platinum size” column, the platinum size obtained from the measurement results of TEM (transmission electron microscope) and XRD is shown. The TEM was analyzed by dispersing the Pt / C catalyst in a solvent such as hexane and covering the dispersion with a carbon film. Although the TEM measurement is limited to some samples, it is in good agreement with the value calculated from the XRD measurement result (half width of (111) peak). The “active surface area” is a platinum surface area that can function effectively as a catalyst, and was calculated by the following equation (1) from an IV curve measured by rotating electrode cyclic voltammetry. In the following equation (1), Q is the integral area of the IV curve (ie, hydrogen adsorption charge, unit: μC), “210” is the charge amount per unit active surface area of platinum (unit: μC / cm 2 ), and W is Platinum weight (unit: g). The numerical value in the “Platinum utilization rate” column is a value obtained by dividing the active surface area by the surface area per unit area calculated from the particle size of platinum, and represents the proportion of all platinum that functions effectively. . Only the exposed part of the platinum surface can contribute to the reaction, and the more the part that is covered with other objects such as the part that is in contact with carbon and the part where platinum is overlapped with each other, the more this value is Get smaller. The “current density” column is an oxygen reduction current density measured at 0.36 (V) and was obtained from the IV curve.
Active surface area = Q / 210W (1)

上記の測定結果に示されるように、試料1〜4、NC-1〜NC-5の何れにおいても、常温のみの処理プロセスで2.5〜4(nm)の微細な白金粉末を還元生成できた。また、Pt/C触媒粒子の白金含有量は、製造条件によって異なり、評価した範囲では16.5〜75(wt%)の結果が得られた。試料1〜4のTGA測定結果を図3〜図5に示す。何れも大きな減量が認められるが、試料1,2では20(wt%)弱、試料3,4では40(wt%)前後の残存質量すなわち白金含有量が得られた。   As shown in the above measurement results, in any of Samples 1 to 4 and NC-1 to NC-5, a fine platinum powder of 2.5 to 4 (nm) could be reduced and produced by a treatment process only at room temperature. Moreover, the platinum content of the Pt / C catalyst particles was different depending on the production conditions, and a result of 16.5 to 75 (wt%) was obtained in the evaluated range. The TGA measurement results of Samples 1 to 4 are shown in FIGS. In either case, a large weight loss was observed, but in Samples 1 and 2, a residual mass of about 20 (wt%), that is, a platinum content of about 40 (wt%) was obtained.

図6は、試料1〜4および市販品1,2のXRD解析結果である。図6に現れている(111)、(200)、(220)、(311)の各ピークは、何れも面心立方構造の結晶の場合に得られるものである。図7に、上記XRD結果のうち(111)ピーク近傍を拡大して示す。これらの解析結果によれば、Pt/C触媒を構成する白金ナノ微粒子は全て結晶化していることが判る。すなわち、ピーク高さの相違やピーク位置の若干のシフトは認められるが、試料1〜4は市販品と同様に結晶性の高いPtを含んでいる。   FIG. 6 shows XRD analysis results of Samples 1 to 4 and commercial products 1 and 2. The peaks (111), (200), (220), and (311) appearing in FIG. 6 are all obtained in the case of a crystal having a face-centered cubic structure. FIG. 7 shows an enlarged view of the vicinity of the (111) peak in the XRD result. According to these analysis results, it can be seen that the platinum nanoparticles constituting the Pt / C catalyst are all crystallized. That is, a difference in peak height and a slight shift in the peak position are recognized, but Samples 1 to 4 contain Pt having high crystallinity as in the case of a commercially available product.

図8は、試料1の電流密度を回転電極サイクリックボルタメトリーで測定した結果すなわちIV曲線を示したものである。開放電圧が0.65(V)程度、短絡電流が0.19(A)程度であり、前記表1に示されるように、実施例1,2によれば、市販品の2〜3倍程度の電流密度が得られる。また、試料NC-3〜NC-5においても、市販品1,2と同等の電流密度は得られており、少なくとも低温合成で高温処理された市販品と同等の特性が得られることが判る。また、白金量の多いNC-5と市販品2とを単位触媒当たりの活性で比較すると、NC-5が0.27、市販品2が0.258と、NC-5の方が優れている結果が得られた。すなわち、白金量が多い場合にも、同程度の白金量のもの相互に比較すれば、実施例のPt/C触媒が市販品よりも優っている。   FIG. 8 shows the result of measuring the current density of Sample 1 by rotating electrode cyclic voltammetry, that is, the IV curve. The open circuit voltage is about 0.65 (V) and the short circuit current is about 0.19 (A). As shown in Table 1, according to Examples 1 and 2, the current density is about 2 to 3 times that of the commercial product. can get. In addition, in Samples NC-3 to NC-5, the current density equivalent to that of the commercial products 1 and 2 is obtained, and it can be seen that the same characteristics as those of the commercial products processed at high temperature by low temperature synthesis can be obtained. In addition, when NC-5 with a large amount of platinum and the commercial product 2 are compared in terms of activity per unit catalyst, NC-5 is 0.27, commercial product 2 is 0.258, and NC-5 is superior. It was. That is, even when the amount of platinum is large, the Pt / C catalysts of the examples are superior to the commercially available products as compared with those having the same amount of platinum.

以上、本発明を図面を参照して詳細に説明したが、本発明は更に別の態様でも実施でき、その主旨を逸脱しない範囲で種々変更を加え得るものである。   As mentioned above, although this invention was demonstrated in detail with reference to drawings, this invention can be implemented also in another aspect, A various change can be added in the range which does not deviate from the main point.

本発明の白金触媒の製造方法の一例を説明する工程図である。It is process drawing explaining an example of the manufacturing method of the platinum catalyst of this invention. 図1の製造工程において用いられる昇華性有機材料の一例の樟脳の構造式を示す図である。It is a figure which shows the structural formula of camphor of an example of the sublimable organic material used in the manufacturing process of FIG. 試料1,2のTGA測定結果である。It is a TGA measurement result of samples 1 and 2. 試料3のTGA測定結果である。It is a TGA measurement result of sample 3. 試料4のTGA測定結果である。It is a TGA measurement result of sample 4. 試料1〜4および市販品1,2のXRDチャートである。It is a XRD chart of samples 1 to 4 and commercial products 1 and 2. 図6のXRDチャートの一部であって白金の(111)ピークに相当する部分を示す図である。It is a figure which is a part of XRD chart of FIG. 6, and shows the part corresponded to the (111) peak of platinum. 回転電極サイクリックボルタメトリーで測定した試料1のIV曲線である。It is IV curve of the sample 1 measured by the rotating electrode cyclic voltammetry.

Claims (4)

白金微粒子が微細な炭素基材に担持された白金触媒を製造する方法であって、
白金塩と、樟脳とを有機溶媒を含む溶媒中に分散させる分散工程と、
前記分散工程で得られた分散液に前記炭素基材を混合する炭素混合工程と、
水素化硼素ナトリウムを前記炭素基材が前記分散液に混合された炭素混合液に加えることで前記白金塩を還元して該炭素混合液中でその炭素基材表面に白金微粒子を生成させる還元工程と、
前記白金微粒子が生成された炭素混合液を濾過して、前記炭素基材表面に前記白金微粒子が担持され、且つ該白金微粒子の表面に前記樟脳が付着させられた白金触媒を分離する分離工程と
を、含むことを特徴とする白金触媒の製造方法。
A method for producing a platinum catalyst in which platinum fine particles are supported on a fine carbon substrate,
A dispersion step of dispersing a platinum salt and camphor in a solvent containing an organic solvent;
A carbon mixing step of mixing the carbon substrate with the dispersion obtained in the dispersion step;
A reduction step of reducing the platinum salt by adding sodium borohydride to a carbon mixed liquid in which the carbon base material is mixed with the dispersion to generate platinum fine particles on the surface of the carbon base material in the carbon mixed liquid. When,
A separation step of filtering the carbon mixed liquid in which the platinum fine particles are generated and separating the platinum catalyst in which the platinum fine particles are supported on the surface of the carbon base material and the camphor is attached to the surface of the platinum fine particles; A process for producing a platinum catalyst, comprising:
前記炭素混合工程は、前記炭素基材を溶剤に分散させて前記分散液に混合するものである請求項1の白金触媒の製造方法。   The method for producing a platinum catalyst according to claim 1, wherein in the carbon mixing step, the carbon base material is dispersed in a solvent and mixed with the dispersion. 前記分散工程、前記炭素混合工程、前記還元工程、および前記分離工程を常温で実施するものである請求項1または請求項2の白金触媒の製造方法。   The method for producing a platinum catalyst according to claim 1 or 2, wherein the dispersion step, the carbon mixing step, the reduction step, and the separation step are performed at room temperature. 請求項1乃至3の何れか1項に記載の製造方法により製造されていることを特徴とする燃料電池の酸素還元電極用白金触媒。 A platinum catalyst for an oxygen reduction electrode of a fuel cell, produced by the production method according to any one of claims 1 to 3 .
JP2008243091A 2008-09-22 2008-09-22 Platinum catalyst and method for producing the same Expired - Fee Related JP5155792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008243091A JP5155792B2 (en) 2008-09-22 2008-09-22 Platinum catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008243091A JP5155792B2 (en) 2008-09-22 2008-09-22 Platinum catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010069465A JP2010069465A (en) 2010-04-02
JP5155792B2 true JP5155792B2 (en) 2013-03-06

Family

ID=42201741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008243091A Expired - Fee Related JP5155792B2 (en) 2008-09-22 2008-09-22 Platinum catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP5155792B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105170142B (en) * 2014-04-14 2017-10-31 安徽星宇化工有限公司 A kind of nano aluminum platinum catalyst and its preparation method and application

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224968A (en) * 2000-02-17 2001-08-21 Mitsubishi Heavy Ind Ltd Method for preparing deposited metallic catalyst and method for manufacturing solid high-polymer type fuel battery
JP2004232012A (en) * 2003-01-29 2004-08-19 Fuji Photo Film Co Ltd Method for producing high-concentration metal microparticle dispersion
JP4145166B2 (en) * 2003-02-28 2008-09-03 田中貴金属工業株式会社 Method for producing one- or multi-component metal colloid and one- or multi-component metal colloid
JP2005034779A (en) * 2003-07-16 2005-02-10 Nissan Motor Co Ltd Electrode catalyst and its production method
JP4759271B2 (en) * 2005-01-12 2011-08-31 バンドー化学株式会社 Composite particle dispersion and method for producing composite particle dispersion
JP2007242523A (en) * 2006-03-10 2007-09-20 Aisin Seiki Co Ltd Humidifier for fuel cell, and fuel cell system
JP5210467B2 (en) * 2007-11-20 2013-06-12 株式会社ノリタケカンパニーリミテド Method for producing metal fine particle dispersion
US20110059215A1 (en) * 2008-03-28 2011-03-10 Shizuoka Prefectural University Corporation Manufacturing method for theaflavins using raw tea leaves

Also Published As

Publication number Publication date
JP2010069465A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
Zhong et al. Deep eutectic solvent-assisted synthesis of highly efficient PtCu alloy nanoclusters on carbon nanotubes for methanol oxidation reaction
US20200274172A1 (en) Method of producing a conductive film
Chen et al. Platinum nanoflowers supported on graphene oxide nanosheets: their green synthesis, growth mechanism, and advanced electrocatalytic properties for methanol oxidation
US20130133483A1 (en) Synthesis of Nanoparticles Using Reducing Gases
JP6392214B2 (en) Method for producing catalyst structure
Pu et al. Anion-modulated platinum for high-performance multifunctional electrocatalysis toward HER, HOR, and ORR
Sahoo et al. Nitrogen and sulfur co-doped porous carbon–is an efficient electrocatalyst as platinum or a hoax for oxygen reduction reaction in acidic environment PEM fuel cell?
Sahu et al. Graphene-induced Pd nanodendrites: A high performance hybrid nanoelectrocatalyst
JP2014018796A (en) Method for manufacturing palladium-platinum core shell catalyst for fuel cell
JP6471979B2 (en) Electrode catalyst and method for producing the same
JP5665743B2 (en) Continuous production method of catalyst
Rana et al. Pd–Pt alloys nanowires as support-less electrocatalyst with high synergistic enhancement in efficiency for methanol oxidation in acidic medium
WO2006092910A1 (en) Liquid containing dispersion stabilized catalytic nanoparticles
JP6051124B2 (en) Base metal-noble metal composite nanoparticles and production method thereof
TWI618290B (en) Method for producing metal nanoparticle, method for producing carrier on which metal nanoparticle is placed, and carrier for mounting metal nanoparticle
JP5155792B2 (en) Platinum catalyst and method for producing the same
RU2646761C2 (en) Method for producing a platinum electric catalyst on carbon
Adesuji et al. From nano to macro: Hierarchical platinum superstructures synthesized using bicontinuous microemulsion for hydrogen evolution reaction
JP5394769B2 (en) Method for producing alloy catalyst electrode for fuel cell
JP6472004B2 (en) Core-shell type metal nanoparticles and method for producing core-shell type metal nanoparticles
KR101569079B1 (en) Preparing method of platinum nanoparticle, and platinum nano catalyst including the same
JP6114014B2 (en) Nickel nanoparticles, production method thereof, and nickel paste
JP5581544B2 (en) Method for producing active metal highly dispersed electrocatalyst
JP5210467B2 (en) Method for producing metal fine particle dispersion
JP2009164142A (en) Manufacturing method of catalyst for fuel cell containing noble metal particles carried on carbon substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees