JP5155071B2 - Laminated structure and filter medium comprising the same - Google Patents

Laminated structure and filter medium comprising the same Download PDF

Info

Publication number
JP5155071B2
JP5155071B2 JP2008224928A JP2008224928A JP5155071B2 JP 5155071 B2 JP5155071 B2 JP 5155071B2 JP 2008224928 A JP2008224928 A JP 2008224928A JP 2008224928 A JP2008224928 A JP 2008224928A JP 5155071 B2 JP5155071 B2 JP 5155071B2
Authority
JP
Japan
Prior art keywords
laminated structure
thermocompression bonding
fiber
layer
thermocompression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008224928A
Other languages
Japanese (ja)
Other versions
JP2010058328A (en
Inventor
智史 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2008224928A priority Critical patent/JP5155071B2/en
Publication of JP2010058328A publication Critical patent/JP2010058328A/en
Application granted granted Critical
Publication of JP5155071B2 publication Critical patent/JP5155071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、部分的に熱圧着部が形成された、超極細繊維層を含む2層以上の積層構造体およびそれからなるフィルターろ材に関する。   The present invention relates to a laminated structure of two or more layers including a superfine fiber layer in which a thermocompression bonding portion is partially formed, and a filter medium comprising the same.

有害物質による環境汚染の防止や人体への接触を低減するため、種々の工場ではフィルターを使用し有害物質の捕集がなされている。また、フィルターの長寿命化を目的として、フィルターろ材はろ過面積を大きくするために、プリーツ状に折り曲げられ、枠体と一体化したフィルターユニットとして使用される。また、環境保全の観点から排ガス中に含まれる有害物質の規制値が厳しくなっており、該有害物質の高捕集効率、低圧力損失、微細粒子の捕集といった特性を有するろ材が求められている。   In order to prevent environmental pollution caused by harmful substances and reduce contact with the human body, various factories use filters to collect harmful substances. Further, for the purpose of extending the life of the filter, the filter medium is used as a filter unit that is bent into a pleat shape and integrated with a frame in order to increase the filtration area. In addition, from the viewpoint of environmental protection, the regulation value of harmful substances contained in exhaust gas has become strict, and there is a demand for filter media having characteristics such as high collection efficiency, low pressure loss, and collection of fine particles. Yes.

高捕集効率および微細粒子の捕集のためには、フィルターろ材を構成する繊維径を小さくし、孔径を小さくする必要があるため、超極細繊維から成るフィルターろ材が使用されることが多くなっている。一方で、プリーツ加工後の形態保持性のためにはフィルターろ材の剛性も必要とされるが、超極細繊維はプリーツ加工ならびに加工後の形態保持に必要な剛性を有しないことが多いため、超極細繊維層の補強層と一体化された複数層のフィルターろ材が使用される。   For high collection efficiency and the collection of fine particles, it is necessary to reduce the diameter of the fibers that make up the filter medium and to reduce the pore diameter. Therefore, filter medium made of ultrafine fibers is often used. ing. On the other hand, the rigidity of the filter media is also required for shape retention after pleating, but ultra-fine fibers often do not have the rigidity required for pleating and shape retention. A multi-layer filter medium integrated with the reinforcing layer of the ultrafine fiber layer is used.

また、エレクトロスピニング法により製造した超極細繊維は、他の基材上に積層されて使用されるため、基材からの毛羽立ちや剥離も問題となっており、超極細繊維層の加工性は低い。このような問題を解決するために、超極細繊維層を樹脂にて緻密な間隔にて固定し、超極細繊維層の破損を抑制する方法が提案されている(特許文献1)。しかしながら、この方法でもプリーツ加工等による強い摩擦により、超極細繊維層で毛羽が発生したり、該層と基材との剥離が起きたりする問題がある。   In addition, since the ultrafine fibers produced by the electrospinning method are used by being laminated on another substrate, fluffing and peeling from the substrate are also problematic, and the processability of the ultrafine fiber layer is low. . In order to solve such a problem, a method has been proposed in which the ultrafine fiber layer is fixed with a resin at a fine interval to prevent breakage of the ultrafine fiber layer (Patent Document 1). However, even in this method, there is a problem that fluff is generated in the ultrafine fiber layer or peeling between the layer and the substrate occurs due to strong friction caused by pleating.

一方、フィルターろ材としては、超極細繊維層と補強層とを一体化させたものを用いることができるが、該補強層は、フィルターの長寿命化の役割も果たしているため、補強層は、厚く、嵩高性が高く、フィルターとして種々の加工が可能な剛性を有するものが使用される。しかし、補強層を厚くし、嵩高性が高くして、剛性を持たせた場合、フィルターろ材のプリーツ加工が困難となるという問題がある。
特開2007−224466号公報
On the other hand, as the filter medium, one in which a super extra fine fiber layer and a reinforcing layer are integrated can be used. Since the reinforcing layer also plays a role of extending the life of the filter, the reinforcing layer is thick. In addition, a filter having high bulkiness and rigidity capable of various processing is used as a filter. However, when the reinforcing layer is made thick, bulky, and rigid, there is a problem that it becomes difficult to pleat the filter medium.
JP 2007-224466 A

本発明の目的は、捕集効率が良好あり圧力損失が少なく、プリーツ加工性に優れ、プリーツ部で毛羽が発生せず、層間の剥離が起きにくい積層構造体およびそれからなるフィルターろ材を提供することにある。   An object of the present invention is to provide a laminated structure having good collection efficiency, low pressure loss, excellent pleatability, no fluffing at the pleat portion, and less delamination between layers, and a filter medium composed thereof. It is in.

本発明者らが検討したところ、上記課題は次の構成により達成できることを見出した。すなわち、本発明によれば、2層以上からなる積層構造体であって、少なくとも、直径10nm〜500nmの超極細繊維層と、一部あるいは全部が熱可塑性繊維からなる不織布または熱可塑性樹脂が付着した不織布からなる不織布層とからなり、かつ、該積層構造体の少なくと一方の面において、線状、波状、または、ジグザグ状の熱圧着部が形成されており、該熱圧着部が複数並列に並んで配されていることを特徴とする積層構造体が提供される。また、上記積層構造体からなるフィルターろ材が提供される。 As a result of studies by the present inventors, it has been found that the above problems can be achieved by the following configuration. That is, according to the present invention, a laminated structure composed of two or more layers, at least a superfine fiber layer having a diameter of 10 nm to 500 nm, and a non-woven fabric or a thermoplastic resin partly or entirely made of thermoplastic fibers is attached. plurality consists of a nonwoven fabric layer made of nonwoven, and the least also one surface of the laminated structure, a linear, wavy, or thermocompression bonded portions of the zigzag are formed, the heat crimping portion There is provided a laminated structure characterized by being arranged in parallel. Moreover, the filter medium which consists of the said laminated structure is provided.

本発明の積層構造体は、超極細繊維層と一部または全部が熱可塑性繊維からなるあるいは熱可塑性樹脂が付着した不織布層からなり、プリーツ加工を施す部分に線状、波状、ジグザグ状の熱圧着部を有しているため、容易に該加工を行うことができ、該加工やその後の使用においてプリーツ部で毛羽が発生しない。また、上記積層構造体では、超極細繊維層と不織布層が熱圧着により接合一体化されており層間の剥離が起きにくく、超極細繊維層の存在により捕集効率が良好であり、かつプリーツ部以外には熱圧着部が存在しないため圧力損失が極めて少ない。   The laminated structure of the present invention is composed of a superfine fiber layer and a nonwoven fabric layer partly or entirely made of thermoplastic fibers or attached with a thermoplastic resin, and a linear, wavy or zigzag heat is applied to the part to be pleated. Since it has a crimping portion, the processing can be easily performed, and fluff does not occur in the pleated portion during the processing or subsequent use. Further, in the above laminated structure, the superfine fiber layer and the nonwoven fabric layer are joined and integrated by thermocompression bonding, the separation between the layers hardly occurs, the collection efficiency is good due to the presence of the superfine fiber layer, and the pleat portion Since there is no thermocompression bonding part, pressure loss is extremely small.

本発明の積層構造体は、2層以上からなる積層構造体であって、少なくとも、直径10nm〜500nmの超極細繊維の繊維構造体からなる超極細繊維層と、一部あるいは全部が熱可塑性繊維からなる不織布または熱可塑性樹脂が付着した不織布からなる不織布層とからなる積層構造体である。   The laminated structure of the present invention is a laminated structure composed of two or more layers, and includes at least a superfine fiber layer comprising a fiber structure of ultrafine fibers having a diameter of 10 nm to 500 nm, and a part or all of the thermoplastic fibers. It is a laminated structure which consists of the nonwoven fabric layer which consists of a nonwoven fabric which consists of a nonwoven fabric or a nonwoven fabric which the thermoplastic resin adhered.

発明においては、超極細繊維層を構成する超極細繊維の繊維構造体の目付は捕集効率ならびに圧力損失の点から、0.01〜20g/mであることが好ましく、0.1〜3g/mであることがよりこの好ましい。 In the invention, the basis weight of the ultrafine fiber fiber structure constituting the ultrafine fiber layer is preferably 0.01 to 20 g / m 2 from the viewpoint of collection efficiency and pressure loss, and preferably 0.1 to 3 g. This is more preferably / m 2 .

上記超極細繊維は、エレクトロスピニング法あるいは海島紡糸法、メルトブロー法により成形することが好ましいが、エレクトロスピニング法により成形された繊維であることがかかる繊維径を容易に達成できるの点から好ましい。   The ultrafine fibers are preferably formed by electrospinning, sea-island spinning, or meltblowing, but fibers formed by electrospinning are preferred from the viewpoint that the fiber diameter can be easily achieved.

また、上記超極細繊維を構成する重合体は、公知の方法により繊維に成形可能なものであればよく、特にエレクトロスピニング法により紡糸可能はものが好ましい。具体例としては、例えば、ポリアクリロニトリル(PAN)、ポリメチルメタクリレ−ト(PMMA)、ポリアクリル酸、ポリアクリロニトリル−メタクリレート共重合体、ポリ塩化ビニリデン、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン−アクリレート共重合体、ポリエチレン(PE)、ポリプロピレン(PP)、アラミド、ポリパラフェニレンテレフタラミド、ポリパラフェニレンテレフタラミド−3,4’−オキシジフェニレンテレフタラミド共重合体、ポリメタフェニレンイソフタラミド、ポリビニルアルコール(PVA)、ポリビニルアセテート、セルロース、ポリエチレンサルファイド、ポリ酢酸ビニル、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリ乳酸(PLA)、ポリグリコール酸(PGA)、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリフッ化ビニリデン(FVDF)、ポリウレタン、ポリ(N−ビニルピロリドン)、ポリビニルメチルケトン、ポリエチレンイミド(PEI)、ポリオキシメチレン(POM)、ポリエチレンオキシド(PEO)、ナイロン6、ナイロン66などナイロン系、ポリ臭化ビニル、ポリクロロトリフルオロエチレン、ポリクロロプレン、ノルボルネン系モノマーの開環重合体およびその水添物、フィブロイン、天然ゴム、キチン、キトサン、コラーゲン、ゼインなどの有機材料が挙げられ、これらは共重合したものであっても、混合物で挙げられる。また、シリカ、アルミナ、Y、ZrO、チタニアなどのゾルゲル法を利用できる無機材料であってもよい。 The polymer constituting the ultrafine fiber is not particularly limited as long as it can be formed into a fiber by a known method, and a polymer that can be spun by an electrospinning method is particularly preferable. Specific examples include, for example, polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), polyacrylic acid, polyacrylonitrile-methacrylate copolymer, polyvinylidene chloride, polyvinyl chloride (PVC), and polyvinylidene chloride. Acrylate copolymer, polyethylene (PE), polypropylene (PP), aramid, polyparaphenylene terephthalamide, polyparaphenylene terephthalamide-3,4'-oxydiphenylene terephthalamide copolymer, polymetaphenylene iso Phthalamide, polyvinyl alcohol (PVA), polyvinyl acetate, cellulose, polyethylene sulfide, polyvinyl acetate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polylactic acid (PLA), polyglycol Phosphoric acid (PGA), polyethersulfone, polyetherethersulfone, polyvinylidene fluoride (FVDF), polyurethane, poly (N-vinylpyrrolidone), polyvinylmethylketone, polyethyleneimide (PEI), polyoxymethylene (POM), poly Ring-opening polymers of ethylene oxide (PEO), nylon 6, nylon 66, etc., polyvinyl bromide, polychlorotrifluoroethylene, polychloroprene, norbornene monomers and hydrogenated products thereof, fibroin, natural rubber, chitin, chitosan Organic materials such as collagen, zein, and the like, and these may be copolymerized or mixed. Furthermore, silica, alumina, Y 2 O 3, ZrO 2 , may be an inorganic material that sol-gel method can be utilized, such as titania.

一方、不織布層を構成する不織布の目付は、フィルター性能およびプリーツ加工性の観点から10〜200g/mが好ましく、20〜70g/mがより好ましい。 On the other hand, the basis weight of the nonwoven fabric constituting the nonwoven fabric layer is preferably 10 to 200 g / m 2 and more preferably 20 to 70 g / m 2 from the viewpoint of filter performance and pleatability.

不織布を構成する繊維は、特に限定されるものではないが、合成繊維であっても天然繊維又は無機繊維であっても良く、その一部に熱可塑性繊維あるいは熱可塑性樹脂が含まれていれば良い。天然繊維としては、セルロース繊維、タンパク質繊維など、無機繊維としては、ガラス繊維、炭素繊維、スチール繊維などが挙げられる。合成繊維のポリマーとしては、特に限定されるものではないが、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリアクリロニトリル、ナイロン6、ナイロン66などのナイロン系、芳香族ポリアミドなどが挙げられる。   The fiber constituting the nonwoven fabric is not particularly limited, and may be a synthetic fiber, a natural fiber or an inorganic fiber, as long as a part thereof includes a thermoplastic fiber or a thermoplastic resin. good. Examples of natural fibers include cellulose fibers and protein fibers, and examples of inorganic fibers include glass fibers, carbon fibers, and steel fibers. The polymer of the synthetic fiber is not particularly limited, and examples thereof include polyethylene, polypropylene, polyethylene terephthalate, polyacrylonitrile, nylons such as nylon 6 and nylon 66, and aromatic polyamides.

本発明においては、積層構造体に熱圧着部を形成するため、上記不織布が、一部あるいは全部が熱可塑性繊維からなる不織布であるか、または、熱可塑性樹脂が付着している必要がある。   In the present invention, in order to form a thermocompression bonding portion in the laminated structure, the nonwoven fabric must be a nonwoven fabric partly or entirely made of thermoplastic fibers, or a thermoplastic resin needs to be attached.

上記の熱可塑性繊維を構成するポリマーおよび熱可塑性樹脂を構成するポリマーとしては、特に限定するものではないが、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン(PS)、ポリテトラフルオロエチレン(PTFE)、アクリロニトリルブタジエンスチレン樹脂、アクリル樹脂(PMMA)などが挙げられる。   The polymer constituting the thermoplastic fiber and the polymer constituting the thermoplastic resin are not particularly limited, and examples thereof include polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), and polyvinylidene chloride. , Polystyrene (PS), polytetrafluoroethylene (PTFE), acrylonitrile butadiene styrene resin, acrylic resin (PMMA), and the like.

上記不織布を形成する繊維の直径は特に限定されないが、積層構造体の剛性の観点より、500nm以上100μm以下が好ましく、1μm以上100μm以下がより好ましい。   Although the diameter of the fiber which forms the said nonwoven fabric is not specifically limited, From the viewpoint of the rigidity of a laminated structure, 500 nm or more and 100 micrometers or less are preferable, and 1 micrometer or more and 100 micrometers or less are more preferable.

上記不織布が、熱可塑性繊維とそれ以外の繊維で構成されている場合、熱可塑性繊維の不織布全重量に対する重量比率は5〜100重量%が好ましく、40〜100重量%がより好ましい。   When the nonwoven fabric is composed of thermoplastic fibers and other fibers, the weight ratio of the thermoplastic fibers to the total weight of the nonwoven fabric is preferably 5 to 100% by weight, and more preferably 40 to 100% by weight.

また、上記不織布を構成する繊維に、熱可塑性樹脂が付着している場合は、熱可塑性樹脂の不織布全重量に対する重量比率は5〜50重量%が好ましく、10〜50重量%がより好ましい。   Moreover, when the thermoplastic resin has adhered to the fiber which comprises the said nonwoven fabric, 5-50 weight% is preferable and the weight ratio with respect to the nonwoven fabric total weight of a thermoplastic resin is more preferable 10-50 weight%.

本発明においては、積層構造体が上記の超極細繊維層および不織布層からなり、少なくとも該積層構造体の一方の面において、線状、波状、または、ジグザグ状の熱圧着部が形成されており、該熱圧着部が複数並列に配されていることが肝要である。該熱圧着部において、プリーツ加工を施されることで、容易にプリーツ加工を行うことができ、該加工やその後の使用において磨耗しやすいプリーツ部(屈曲部)が熱融着されていることから超極細繊維の毛羽立ちもなく、層間剥離が起こりにくい。また、上記繊維構造体では、超極細繊維層が積層されていることにより捕集効率が良好で、圧力損失も小さくすることができるが、さらに熱圧着部がプリーツ部のみに形成され、気体や液体が主に通過する部分にはないため、上記性能を遺憾なく発揮することができる。   In the present invention, the laminated structure is composed of the above ultrafine fiber layer and the nonwoven fabric layer, and at least one surface of the laminated structure is formed with a linear, wavy, or zigzag thermocompression bonding portion. It is important that a plurality of the thermocompression bonding portions are arranged in parallel. Since the pleating process is performed in the thermocompression bonding part, the pleating process can be easily performed, and the pleated part (bending part) that is easily worn during the process or the subsequent use is thermally fused. There is no fluff of ultra-fine fibers, and delamination hardly occurs. Further, in the above fiber structure, the superfine fiber layer is laminated, so that the collection efficiency is good and the pressure loss can be reduced, but the thermocompression bonding part is formed only in the pleat part, and gas or Since the liquid is not mainly in the part through which it passes, the above performance can be exhibited without regret.

上記の熱圧着部の形状が、波状およびジグザグ状の場合にはプリーツ加工性の観点から、波状またはジグザグ状の熱圧着部に接する2本の接線間の幅に対する、熱圧着部の幅が1/2以上1未満であることが好ましく、1/2〜3/4であることがより好ましい。また、積層構造体の熱圧着部の厚みは、プリーツ加工性および熱圧着による積層構造体の脆化の観点より、熱圧着されていない部分(以下、非熱圧着部と称することがある)の厚みに対して5〜70%が好ましい。また、積層構造体の熱圧着部を有する面において、該面全体に対する熱圧着部の面積比率は、ろ材各層の接着性ならびに圧力損失の観点から、0.1〜50%が好ましい。 When the shape of the above-mentioned thermocompression bonding part is a wave shape or a zigzag shape, the width of the thermocompression bonding part is 1 with respect to the width between two tangent lines in contact with the wavy or zigzag thermocompression bonding part. / 2 or more and less than 1, more preferably 1/2 to 3/4. In addition, the thickness of the thermocompression bonding portion of the laminated structure is a portion of a portion that is not thermocompression-bonded (hereinafter sometimes referred to as a non-thermocompression bonding portion) from the viewpoint of pleating workability and embrittlement of the laminated structure by thermocompression bonding. 5-70% is preferable with respect to thickness. Moreover, in the surface which has the thermocompression bonding part of a laminated structure, the area ratio of the thermocompression bonding part with respect to the whole surface is 0.1 to 50% from a viewpoint of the adhesiveness of each layer of a filter medium, and a pressure loss.

不織布は、スパンボンド法、メルトブロー法、フラッシュ紡糸法、トウ開繊法、抄紙法、カーディング法、エアレイド法、フィラメント直交法などにより製造できる。これらの不織布はそのまま用いても良いが、制電加工、撥水加工、親水加工などが目的に応じて施されていてもよい。   The nonwoven fabric can be produced by a spunbond method, a melt blow method, a flash spinning method, a tow opening method, a paper making method, a carding method, an airlaid method, a filament orthogonal method, or the like. These nonwoven fabrics may be used as they are, but antistatic processing, water repellent processing, hydrophilic processing, and the like may be applied depending on the purpose.

さらに、不織布層の上に超極細繊維の繊維構造体を形成する。本発明においては、超極細繊維を形成する手法としてはエレクトロスピニング法に好ましく例示することができる。   Furthermore, a fiber structure of ultrafine fibers is formed on the nonwoven fabric layer. In the present invention, a method for forming ultrafine fibers can be preferably exemplified by an electrospinning method.

エレクトロスピニング法とは、前述した超極細繊維を成形できるポリマーの溶液に、高電圧を印加して繊維構造体上にスプレーして超極細繊維を形成する方法である。また、得られる超極細繊維の繊維径は印加電圧、溶液濃度、スプレーの飛散距離等に依存し、これらの条件を調整することで任意の繊維径とすることができる。   The electrospinning method is a method of forming a super fine fiber by applying a high voltage to the polymer solution capable of forming the super fine fiber and spraying it on the fiber structure. Further, the fiber diameter of the obtained ultrafine fiber depends on the applied voltage, the solution concentration, the spray scattering distance, and the like, and can be set to an arbitrary fiber diameter by adjusting these conditions.

前述したポリマーを溶解させる溶媒としては、前記材料により異なり、特に限定されるものではないが、例えば、水、アセトン、クロロホルム、メタノール、エタノール、プロパノール、トルエン、テトラヒドロフラン、ベンゼン、シクロヘキサン、ベンジルアルコール、1,4−ジオキサン、塩化メチレン、四塩化炭素フェノール、ピリジン、トリクロロエタン、酢酸、蟻酸、ヘキサフルオロイソプロパノール、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、アセトニトリルなどを挙げることができる。   The solvent for dissolving the polymer described above varies depending on the material and is not particularly limited. For example, water, acetone, chloroform, methanol, ethanol, propanol, toluene, tetrahydrofuran, benzene, cyclohexane, benzyl alcohol, 1 , 4-dioxane, methylene chloride, carbon tetrachloride, pyridine, trichloroethane, acetic acid, formic acid, hexafluoroisopropanol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, Acetonitrile can be mentioned.

より具他的には、全芳香族ポリアミドの場合は溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシドなどを、ポリアクリロニトリルの場合は溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシドなどを用いることができる。   More specifically, as a solvent in the case of wholly aromatic polyamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc. are used, and in the case of polyacrylonitrile. As the solvent, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide and the like can be used.

電解紡糸と条件しては、濃度は1〜16%、電圧は5.0〜70kV、紡糸距離は5.0〜50cm、単位距離あたりの電圧に換算すると、0.5〜7.0kv/cmであるのが好ましい。   As conditions for electrospinning, the concentration is 1 to 16%, the voltage is 5.0 to 70 kV, the spinning distance is 5.0 to 50 cm, and the voltage per unit distance is 0.5 to 7.0 kv / cm. Is preferred.

具体的には、全芳香族ポリアミドポリマーと溶媒とを5:95〜16:84の重量比で溶解させたポリマー溶液を調製し、5〜70kVの電圧下で行うことにより前述した繊維径を有するアラミド超極細繊維を作製することができる。   Specifically, a polymer solution in which a wholly aromatic polyamide polymer and a solvent are dissolved at a weight ratio of 5:95 to 16:84 is prepared, and the fiber diameter described above is obtained by carrying out under a voltage of 5 to 70 kV. Aramid ultrafine fibers can be produced.

紡糸溶液の供給は、ノズルや口金から押し出す方法や、紡糸溶液中に浸した円盤やドラムに、必要量となるように紡糸溶液を付着させ、連続回転させることにより供給する方法が挙げられる。ノズルや口金から供給する場合、吐出部の内径は超極細繊維の繊維径と相関がないため、限定はない。   Examples of the spinning solution supply include a method of extruding from a nozzle and a base, and a method of supplying the spinning solution by attaching it to a disk or drum immersed in the spinning solution so that it becomes a required amount and continuously rotating it. When supplying from a nozzle or a nozzle | cap | die, since the internal diameter of a discharge part has no correlation with the fiber diameter of a super extra fine fiber, there is no limitation.

不織布層の上に超極細繊維層を成形した後、これらの層を部分的に熱圧着する。熱圧着部を形成する方法は特に限定されないが、エンボスロールによる熱圧縮が好ましい。エンボスロール温度は、不織布層に含まれる熱可塑性繊維あるいは樹脂の融点の±50℃となる温度領域が好ましく、融点−20℃から融点+20℃の温度領域がより好ましい。   After forming the ultrafine fiber layer on the nonwoven fabric layer, these layers are partially thermocompression bonded. The method for forming the thermocompression bonding part is not particularly limited, but thermal compression with an embossing roll is preferable. The embossing roll temperature is preferably in the temperature range of ± 50 ° C. of the melting point of the thermoplastic fiber or resin contained in the nonwoven fabric layer, and more preferably in the temperature range of melting point −20 ° C. to melting point + 20 ° C.

本発明の部分的に熱圧着部が形成された、超極細繊維層を含む2層以上の不織布の剛軟度は、プリーツ加工性ならびにプリーツ形状維持の観点から、カンチレバー法において7cm以上が好ましい。
プリーツの加工法は特に限定されるものではないが、レシプロ式プリーツ加工機、ロータリー式プリーツ加工機などを用いることができる。
In the cantilever method, the bending resistance of the nonwoven fabric of two or more layers including the ultrafine fiber layer in which the thermocompression bonding part is partially formed in the present invention is preferably 7 cm or more from the viewpoint of pleating workability and pleated shape maintenance.
Although the processing method of a pleat is not specifically limited, A reciprocating pleating machine, a rotary pleating machine, etc. can be used.

本発明の積層構造体の用途は何ら制限されるものではないが、超極細繊維からなる層を含むため、低圧力損失ならびに高捕集効率といった特性を有するため、フィルターとしての使用が好まれる。また、2層以上の繊維構造体は、その片側あるいは両側に熱圧着部を有するため、プリーツ形状への加工も容易であり、プリーツ形状のフィルターろ材として使用することがより好ましい。   The use of the laminated structure of the present invention is not limited in any way, but since it includes a layer made of ultrafine fibers, it has characteristics such as low pressure loss and high collection efficiency, and therefore is preferably used as a filter. Moreover, since the fiber structure of two or more layers has a thermocompression bonding part on one side or both sides thereof, it can be easily processed into a pleated shape, and is more preferably used as a pleated filter material.

以下、実施例に基づいて本発明をさらに詳細に説明する。しかし、以下の例によって、本発明が限定されることはない。なお、実施例中の各特性値は下記の方法で測定した。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited by the following examples. In addition, each characteristic value in an Example was measured with the following method.

(1)繊維径
超極細繊維層から任意にサンプリングした繊維100本について、走査型電子顕微鏡JSM6330F(JEOL社製)にて測定し、繊維径の平均値を求めた。なお測定は、30,000倍の倍率で行った。
(1) Fiber diameter About 100 fibers arbitrarily sampled from the ultra-fine fiber layer, it was measured with a scanning electron microscope JSM6330F (manufactured by JEOL), and the average value of the fiber diameters was obtained. The measurement was performed at a magnification of 30,000 times.

(2)剛軟度
JIS L1096記載のカンチレバー法に準じて求めた。
(2) Bending softness Determined according to the cantilever method described in JIS L1096.

(3)熱圧着部の厚みの非熱圧着部の厚みに対する比率
熱圧着部および非熱圧着部の厚みは、積層構造体の断面をJSM6330F(JEOL社製)にて100倍の倍率で観察し、任意にサンプリングした部分10個について測定し、平均値を求めた。測定した平均値より、熱圧着部の非熱圧着部に対する厚みの割合を算出した。
(3) The ratio of the thickness of the thermocompression bonding part to the thickness of the non-thermocompression bonding part The thickness of the thermocompression bonding part and the non-thermocompression bonding part was obtained by observing the cross section of the laminated structure at a magnification of 100 times with JSM6330F (manufactured by JEOL). Measurement was performed on 10 arbitrarily sampled portions, and an average value was obtained. From the measured average value, the ratio of the thickness of the thermocompression bonding part to the non-thermocompression bonding part was calculated.

(4)フィルター性能評価
実施例および比較例のフィルターを平板に再加工したフィルター用い、0.3μmのNaCl粒子の試験用粉塵含有空気を面速度5.3cm/sになるように試験用フィルターに流し、フィルター前後の圧力差を微差圧計にて測定し、さらにフィルター上流側および下流側におけるNaCl粒子濃度CINおよびCOUTを、それぞれパーティクルカウンタによって測定し、下記式によって捕集効率を求めた。
捕集効率(%)=(1−CIN/COUT)×100
(4) Evaluation of filter performance Using filters obtained by reworking the filters of Examples and Comparative Examples into flat plates, 0.3 μm NaCl particle-containing air for testing was used as a test filter so that the surface speed was 5.3 cm / s. The pressure difference before and after the filter was measured with a micro differential pressure gauge, and the NaCl particle concentrations C IN and C OUT on the upstream side and downstream side of the filter were measured with a particle counter, respectively, and the collection efficiency was determined by the following equation. .
Collection efficiency (%) = (1−C IN / C OUT ) × 100

(5)プリーツ加工性の評価
プリーツ加工性の評価は、プリーツ先端が均一で鋭角なものを○、プリーツ先端がやや均一で鋭角なものを△、プリーツ先端が不均一で一部鈍角なものを×とした。
(5) Evaluation of pleat processability Evaluation of pleat processability is: ○ for pleat tips that are uniform and acute, pleat tips that are somewhat uniform and acute, and pleat tips that are uneven and partially obtuse X.

(6)層間剥離の評価
プリーツ加工後における熱圧着部の層間剥離の評価は、熱圧着部が剥離していないものを○、熱圧着部が剥離しているものを×とした。
(6) Evaluation of delamination In the evaluation of delamination of the thermocompression bonding part after pleating, the case where the thermocompression bonding part was not peeled was evaluated as ◯, and the case where the thermocompression bonding part was peeled off was evaluated as x.

(7)毛羽立ちの評価
プリーツ部の毛羽立ちの評価は、毛羽立ちがないものを○、少しの毛羽立ちはあるが目立たないものを△、毛羽立ちが目立つものを×として、判定を行った。
(7) Evaluation of fluffing Evaluation of fluffing of the pleated part was made by judging that no fluffing was evaluated as “◯”, some fluffing that was not conspicuous was “Δ”, and that fluffing was conspicuous as “x”.

[実施例1]
不織布層には、平均繊維径25μmで、目付け50g/mのポリプロピレンからなるスパンボンド不織布を使用した。
界面重合法により目的のポリマーを製造した。すなわち、イソフタル酸クロライド14.2gを金属ナトリウムにて脱水したテトラヒドロフラン100mlに溶解し、攪拌しながら、メタフェニレンジアミン7.41gをテトラヒドロヒラン100mlに溶解した溶液を細流として徐々に加えていくと白濁した乳化液を作製した。攪拌を約5分継続した後、炭酸ソーダ14.8gおよび食塩28.0gを300mlの水に溶かした水溶液を速やかに加え、約5分間激しく攪拌した。得られた白色重合体を静置して沈殿させ、透明な水溶液相を除去、ろ過することで芳香族ポリアミドポリマー(ポリメタフェニレンイソフタルアミド)を得た。
[Example 1]
For the nonwoven fabric layer, a spunbond nonwoven fabric made of polypropylene having an average fiber diameter of 25 μm and a basis weight of 50 g / m 2 was used.
The target polymer was produced by the interfacial polymerization method. That is, 14.2 g of isophthalic acid chloride was dissolved in 100 ml of tetrahydrofuran dehydrated with sodium metal, and while stirring, a solution in which 7.41 g of metaphenylenediamine was dissolved in 100 ml of tetrahydrohyran was gradually added as a trickle and became cloudy. An emulsion was prepared. Stirring was continued for about 5 minutes, and then an aqueous solution in which 14.8 g of sodium carbonate and 28.0 g of sodium chloride were dissolved in 300 ml of water was quickly added, and the mixture was vigorously stirred for about 5 minutes. The obtained white polymer was allowed to stand and precipitate, and the transparent aqueous solution phase was removed and filtered to obtain an aromatic polyamide polymer (polymetaphenylene isophthalamide).

エレクトロスピニングは特開2006−336173号公報記載の方法に準じ、超極細繊維を製造した。すなわち、得られた芳香族ポリアミドポリマー(ポリメタフェニレンイソフタルアミド)をN,N−ジメチルアセトアミドに、10重量%となるように溶解し、1kV/cmとなるように電界をかけてエレクトロスピニングを20分行い、下層となるスパンボンド不織布上に超極細繊維層を形成した。この超極細繊維層の目付は、0.1g/mであった。
得られた超極細繊維を走査型電子顕微鏡にて観察し、繊維径の測長を行い、その平均値を表1に示した。
Electrospinning was performed according to the method described in JP-A-2006-336173 to produce ultrafine fibers. That is, the obtained aromatic polyamide polymer (polymetaphenylene isophthalamide) was dissolved in N, N-dimethylacetamide so as to be 10% by weight, and an electric field was applied so as to be 1 kV / cm. Then, an ultrafine fiber layer was formed on the spunbonded nonwoven fabric as the lower layer. The basis weight of this ultrafine fiber layer was 0.1 g / m 2 .
The obtained ultrafine fibers were observed with a scanning electron microscope, the fiber diameter was measured, and the average value is shown in Table 1.

次にこの積層体を、金属製で回転方向と直交する方向に線状の彫刻がなされた加熱ローラ(上ローラ)と平滑な耐熱性樹脂ローラ(下ローラ)を用いて、エンボスの熱圧着部の幅が60mm、積層体における熱圧着部の面積比率が10%となるエンボス加工を上ローラの温度を160℃、上下ローラ間の線圧0.5t/30cm、加圧時の上下ローラ間の間隔を0.05mmとして行い、熱圧着部を有する超極細繊維層ならびに不織布層からなる2層繊維構造体を得た。
得られた2層繊維構造体の剛軟度を測定し、レシプロ式プリーツ加工機にて熱圧着部の間隔でプリーツ加工した。
得られた2層繊維構造体はプリーツ加工性に優れ、層間の剥離も認められず、超極細繊維の毛羽立ちも観察されなかった。結果を表1に示す。
Next, this laminated body is made of a metal by using a heating roller (upper roller) and a smooth heat-resistant resin roller (lower roller) that are linearly engraved in a direction orthogonal to the rotation direction, and a thermocompression bonding portion of the emboss. The embossing with a width of 60 mm and the area ratio of the thermocompression bonding part in the laminate is 10%. The temperature of the upper roller is 160 ° C., the linear pressure between the upper and lower rollers is 0.5 t / 30 cm. The interval was set to 0.05 mm to obtain a two-layer fiber structure including a super extra fine fiber layer having a thermocompression bonding portion and a nonwoven fabric layer.
The bending resistance of the obtained two-layer fiber structure was measured and pleated at intervals of the thermocompression bonding portion with a reciprocating pleating machine.
The obtained two-layer fiber structure was excellent in pleatability, no delamination was observed, and no fluffing of ultrafine fibers was observed. The results are shown in Table 1.

[実施例2]
上ローラをエンボスの熱圧着部の幅が80mm、積層体における熱圧着部の面積比率が20%となる加熱ローラに変更した以外は実施例1と同様に2層積層構造体を製造した。得られた2層繊維構造体はプリーツ加工性に優れ、層間の剥離も認められず、超極細繊維の毛羽立ちも観察されなかった。これらの結果を表1に示す。
[Example 2]
A two-layer laminated structure was produced in the same manner as in Example 1 except that the upper roller was changed to a heating roller having an embossed thermocompression bonding portion having a width of 80 mm and an area ratio of the thermocompression bonding portion of the laminate of 20%. The obtained two-layer fiber structure was excellent in pleatability, no delamination was observed, and no fluffing of ultrafine fibers was observed. These results are shown in Table 1.

[実施例3]
上ローラを金属製で回転方向と直交する方向に波状の彫刻がなされた、エンボスの熱圧着部の幅が80mm、積層体における熱圧着部の面積比率が20%となる加熱ローラに変更した以外は実施例1と同様に2層積層構造体を製造した。得られた2層繊維構造体はプリーツ加工性に優れ、層間の剥離も認められず、超極細繊維の毛羽立ちも観察されなかった。これらの結果を表1に示す。
[Example 3]
Other than changing the upper roller to a heating roller made of metal and wavyly engraved in the direction perpendicular to the rotation direction, the embossed thermocompression bonding part width is 80 mm, and the area ratio of the thermocompression bonding part in the laminate is 20% Produced a two-layer laminated structure in the same manner as in Example 1. The obtained two-layer fiber structure was excellent in pleatability, no delamination was observed, and no fluffing of ultrafine fibers was observed. These results are shown in Table 1.

[実施例4〜5]
エレクトロスピニング時間を変更した以外は実施例1と同様に2層からなる繊維構造体を製造した。得られた2層繊維構造体はプリーツ加工性に優れ、層間の剥離も認められず、超極細繊維の毛羽立ちも観察されなかった。これらの結果を表1に示す。
[Examples 4 to 5]
A two-layered fiber structure was produced in the same manner as in Example 1 except that the electrospinning time was changed. The obtained two-layer fiber structure was excellent in pleatability, no delamination was observed, and no fluffing of ultrafine fibers was observed. These results are shown in Table 1.

[実施例6]
不織布層の目付け70g/mを変更した以外は実施例1と同様に2層からなる繊維構造体を製造した。得られた2層繊維構造体はプリーツ加工性に優れ、層間の剥離も認められず、超極細繊維の毛羽立ちも観察されなかった。これらの結果を表1に示す。
[Example 6]
A fiber structure consisting of two layers was produced in the same manner as in Example 1 except that the basis weight of the nonwoven fabric layer was changed to 70 g / m 2 . The obtained two-layer fiber structure was excellent in pleatability, no delamination was observed, and no fluffing of ultrafine fibers was observed. These results are shown in Table 1.

[実施例7]
芳香族ポリアミドポリマー(ポリメタフェニレンイソフタルアミド)をN,N−ジメチルアセトアミドに、16重量%となるように溶解させる以外は実施例1と同様に2層からなる繊維構造体を製造した。得られた2層繊維構造体はプリーツ加工性に優れ、層間の剥離も認められず、超極細繊維の毛羽立ちも観察されなかった。これらの結果を表1に示す。
[Example 7]
A two-layer fiber structure was produced in the same manner as in Example 1 except that the aromatic polyamide polymer (polymetaphenylene isophthalamide) was dissolved in N, N-dimethylacetamide so as to be 16% by weight. The obtained two-layer fiber structure was excellent in pleatability, no delamination was observed, and no fluffing of ultrafine fibers was observed. These results are shown in Table 1.

[実施例8]
上ローラを、積層体における熱圧着部の面積比率が40%となる加熱ローラに変更した以外は実施例1と同様に2層積層構造体を製造した。得られた2層繊維構造体はプリーツ加工性に優れ、層間の剥離も認められず、超極細繊維の毛羽立ちも観察されなかった。圧力損失がやや高くなったが実用的なレベルであった。これらの結果を表1に示す。
[Example 8]
A two-layer laminated structure was produced in the same manner as in Example 1 except that the upper roller was changed to a heating roller having a thermocompression bonding area ratio of 40% in the laminated body. The obtained two-layer fiber structure was excellent in pleatability, no delamination was observed, and no fluffing of ultrafine fibers was observed. The pressure loss was slightly higher but at a practical level. These results are shown in Table 1.

[実施例9]
上ローラを、金属製で回転方向と直交する方向に図2に示す波状の彫刻がなされたもので、熱圧着部の幅(a)が60mm、熱圧着部に接する接線の幅(b)が90mm、a/bが2/3、積層体における熱圧着部の面積比率が40%となる加熱ローラに変更した以外は実施例1と同様に2層積層構造体を製造した。得られた2層繊維構造体はプリーツ加工性に優れ、層間の剥離も認められず、超極細繊維の毛羽立ちも観察されなかった。これらの結果を表1に示す。
[Example 9]
The upper roller is made of metal and has a wave-shaped engraving shown in FIG. 2 in a direction perpendicular to the rotation direction. The thermocompression bonding section has a width (a) of 60 mm and a tangential width (b) in contact with the thermocompression bonding section. A two-layer laminate structure was produced in the same manner as in Example 1 except that the heating roller was changed to 90 mm, a / b was 2/3, and the area ratio of the thermocompression bonding portion in the laminate was 40%. The obtained two-layer fiber structure was excellent in pleatability, no delamination was observed, and no fluffing of ultrafine fibers was observed. These results are shown in Table 1.

[実施例10]
上ローラを、金属製で回転方向と直交する方向に図3に示すジグザク状の彫刻がなされたもので、熱圧着部の幅(a)が60mm、熱圧着部に接する接線の幅(b)が90mm、a/bが2/3、積層体における熱圧着部の面積比率が40%となる加熱ローラに変更した以外は実施例1と同様に2層積層構造体を製造した。得られた2層繊維構造体はプリーツ加工性に優れ、層間の剥離も認められず、超極細繊維の毛羽立ちも観察されなかった。これらの結果を表1に示す。
[Example 10]
The upper roller is made of metal and has a zigzag engraving shown in FIG. 3 in a direction perpendicular to the rotation direction. The width (a) of the thermocompression bonding part is 60 mm, and the width of the tangent line in contact with the thermocompression bonding part (b). Was a 90 mm, a / b was 2/3, and a two-layer laminated structure was produced in the same manner as in Example 1 except that the heating roller had a thermocompression bonding area ratio of 40%. The obtained two-layer fiber structure was excellent in pleatability, no delamination was observed, and no fluffing of ultrafine fibers was observed. These results are shown in Table 1.

[比較例1]
実施例1と同様の製造方法に従い、エンボス加工を実施しない以外は、実施例1と同様の操作を行った。得られた2層繊維構造体はプリーツ加工性に劣り、層間で剥離が発生しやすく、超極細繊維の毛羽立ちが観察された。この結果を表1に示した。
[Comparative Example 1]
According to the same production method as in Example 1, the same operation as in Example 1 was performed except that embossing was not performed. The obtained two-layer fiber structure was inferior in pleatability, easily peeled between layers, and fluffing of ultrafine fibers was observed. The results are shown in Table 1.

[比較例2]
上ローラを、積層体の熱圧着部の面積比率が7.8%、エンボス熱圧着数が62dot/cm(1dot当たりの熱圧着面積0.0013cm)となるよう点状(円形)の加熱ロールに変更する以外は実施例1と同様に2層積層構造体を製造した。得られた2層繊維構造体は、層間で剥離はないものの、プリーツ加工性に劣り、超極細繊維の毛羽立ちが観察された。これらの結果を表1に示す。
[Comparative Example 2]
The upper roller, the heating of the area ratio 7.8% of the thermocompression bonded portions of the laminate, embossing thermocompression bonding number 62dot / cm 2 (thermocompression bonding area per 1 dot 0.0013 cm 2) and so as punctate (circular) A two-layer laminated structure was produced in the same manner as in Example 1 except that the roll was changed. Although the obtained two-layer fiber structure was not peeled between layers, it was inferior in pleatability, and fluffing of ultrafine fibers was observed. These results are shown in Table 1.

Figure 0005155071
Figure 0005155071

本発明によれば、高捕集効率、低圧力損失、微細粒子の捕集能を有する繊維構造体のプリーツ加工が容易になり、さらにプリーツ部における超極細繊維の毛羽立ちが抑制され、例えば、プリーツ加工を施し、フィルターユニットに加工した場合の圧力損失が低くなり、高捕集効率のフィルターユニットを得られるため繊維産業に有用である。   According to the present invention, it becomes easy to pleat a fiber structure having a high collection efficiency, a low pressure loss, and a fine particle collection ability, and further, fluffing of ultrafine fibers in the pleat portion is suppressed. Since the pressure loss when processed into a filter unit is reduced and a filter unit with high collection efficiency can be obtained, it is useful for the textile industry.

線状の熱圧着部を有する本発明の積層構造体の表面の概略図である。It is the schematic of the surface of the laminated structure of this invention which has a linear thermocompression bonding part. 波状の熱圧着部を有する本発明の積層構造体の表面の概略図である。It is the schematic of the surface of the laminated structure of this invention which has a wavy thermocompression bonding part. ジグザグ状の熱圧着部を有する本発明の積層構造体の表面の概略図である。It is the schematic of the surface of the laminated structure of this invention which has a zigzag thermocompression bonding part. 本発明の積層構造体の断面の概略図である。It is the schematic of the cross section of the laminated structure of this invention.

符号の説明Explanation of symbols

A 熱圧着部
a 熱圧着部の幅
b 熱圧着部に接する2本の接線間の幅
c 熱圧着部の厚み
d 非熱圧着部の厚み
A Thermocompression bonding part a Width of thermocompression bonding part b Width between two tangent lines in contact with thermocompression bonding part c Thermocompression bonding part thickness d Non-thermocompression bonding part thickness

Claims (9)

2層以上からなる積層構造体であって、少なくとも、直径10nm〜500nmの超極細繊維の繊維構造体からなる超極細繊維層と、一部あるいは全部が熱可塑性繊維からなる不織布または熱可塑性樹脂が付着した不織布からなる不織布層とからなり、かつ、該積層構造体の少なくと一方の面において、線状、波状、または、ジグザグ状の熱圧着部が形成されており、該熱圧着部が複数並列に並んで配されていることを特徴とする積層構造体。 A laminated structure composed of two or more layers, at least an ultrafine fiber layer made of a fiber structure of ultrafine fibers having a diameter of 10 nm to 500 nm, and a nonwoven fabric or a thermoplastic resin partly or entirely made of thermoplastic fibers. consists of a nonwoven fabric layer made of deposited non-woven fabric, and, in least also one surface of the laminated structure, a linear, wavy, or thermocompression bonded portions of the zigzag are formed, the heat crimping portion A multilayer structure characterized by being arranged in parallel in a plurality. 波状またはジグザグ状の熱圧着部に接する2本の接線間の幅に対する、熱圧着部の幅1/2〜3/4である請求項1記載の積層構造体。 For two width between tangent to the thermocompression bonded portions of the wavy or zigzag-like, layered structure of claim 1, wherein the width of the thermocompression bonded portions is 1 / 2-3 / 4. 熱圧着部の厚みが、熱圧着されていない部分の厚みの5〜70%である請求項1または2記載の積層構造体。 The laminated structure according to claim 1 or 2 , wherein the thickness of the thermocompression bonding part is 5 to 70% of the thickness of the part not thermocompression bonded. 積層構造体の熱圧着部を有する面において、該面全体に対する熱圧着部の面積比率が0.1〜50%である請求項1〜3のいずれかに記載の積層構造体。 The laminated structure according to any one of claims 1 to 3 , wherein an area ratio of the thermocompression bonding portion to the whole surface is 0.1 to 50% on the surface having the thermocompression bonding portion of the laminated structure. 積層構造体のカンチレバー法による剛軟度が7cm以上である請求項1〜4のいずれかに記載の積層構造体。 The laminated structure according to any one of claims 1 to 4 , wherein the bending resistance of the laminated structure by a cantilever method is 7 cm or more. 熱圧着部が、一対のエンボスロール、または、エンボスロールとフラットロールによる熱圧着によって成形されている請求項1〜5のいずれかに記載の積層構造体。 The laminated structure according to any one of claims 1 to 5, wherein the thermocompression bonding part is formed by thermocompression bonding with a pair of embossing rolls or an embossing roll and a flat roll. 熱圧着部においてプリーツ状に折り曲げられている請求項1〜6のいずれかに記載の積層構造体。 The laminated structure according to any one of claims 1 to 6, wherein the laminated structure is bent into a pleat shape at a thermocompression bonding portion. 波状またはジグザグ状の熱圧着部に接する2本の接線が、該圧着部を有する面において、該波状またはジグザグ状の圧着部を挟みかつ該圧着部にそれぞれ外接し、最大間隔となるように平行に引いた2本の接線である請求項2記載の積層構造体。Two tangents in contact with the wavy or zigzag thermocompression bonding part are parallel so that the surface having the crimping part sandwiches the wavy or zigzag crimping part and circumscribes the crimping part, respectively, and has a maximum distance. The laminated structure according to claim 2, wherein the two tangent lines are drawn to each other. 請求項1〜8のいずれか1項に記載の積層構造体からなるフィルターろ材。 The filter medium which consists of a laminated structure of any one of Claims 1-8 .
JP2008224928A 2008-09-02 2008-09-02 Laminated structure and filter medium comprising the same Active JP5155071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224928A JP5155071B2 (en) 2008-09-02 2008-09-02 Laminated structure and filter medium comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224928A JP5155071B2 (en) 2008-09-02 2008-09-02 Laminated structure and filter medium comprising the same

Publications (2)

Publication Number Publication Date
JP2010058328A JP2010058328A (en) 2010-03-18
JP5155071B2 true JP5155071B2 (en) 2013-02-27

Family

ID=42185699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224928A Active JP5155071B2 (en) 2008-09-02 2008-09-02 Laminated structure and filter medium comprising the same

Country Status (1)

Country Link
JP (1) JP5155071B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8711371B2 (en) 2009-09-03 2014-04-29 Canon Kabushiki Kaisha Image forming apparatus, control method, and storage medium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5938572B2 (en) * 2011-09-16 2016-06-22 パナソニックIpマネジメント株式会社 Air filter and air purifier equipped with the air filter
CN103057185A (en) * 2012-12-14 2013-04-24 常熟市华博毛纺织有限公司 Colored etched-out velvet fabric
CN103057186A (en) * 2012-12-14 2013-04-24 常熟市华博毛纺织有限公司 Printed etched-out velvet fabric
CN103057182A (en) * 2012-12-14 2013-04-24 常熟市华博毛纺织有限公司 Dyed etched-out velvet fabric
CN103057183A (en) * 2012-12-14 2013-04-24 常熟市华博毛纺织有限公司 Stripped etched-out velvet fabric
JP7216322B2 (en) * 2019-01-21 2023-02-01 Jnc株式会社 Filter medium and filter using the same
WO2021206312A1 (en) * 2020-04-09 2021-10-14 도레이첨단소재 주식회사 Composite non-woven fabric and article comprising same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486562B2 (en) * 2005-08-08 2010-06-23 東洋紡績株式会社 Filter medium and air cleaner element for internal combustion engine air cleaner
JP4745815B2 (en) * 2005-12-20 2011-08-10 帝人テクノプロダクツ株式会社 Air filter material for internal combustion engines
JP2007284834A (en) * 2006-04-19 2007-11-01 Toray Ind Inc Sheet-shaped material and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8711371B2 (en) 2009-09-03 2014-04-29 Canon Kabushiki Kaisha Image forming apparatus, control method, and storage medium

Also Published As

Publication number Publication date
JP2010058328A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5155071B2 (en) Laminated structure and filter medium comprising the same
JP2011089226A (en) Multilayer fiber structure
JP6638722B2 (en) Spunbonded nonwoven fabric for filter and method for producing the same
JP5165435B2 (en) Filter media for gas filters
KR101687426B1 (en) Filtration material for filters, and filter cartridge
JP4980154B2 (en) Filter medium and method for producing the same
JP5876871B2 (en) Filter medium for filter and water filter device provided with the filter medium
JP2011088349A (en) Multilayer fiber structure and filter medium comprising the same
US8206481B2 (en) HEPA (H-10) performance synthetic nonwoven and nanofiber composite filter media
JP6095647B2 (en) Nonwoven fiber sheet, method for producing the same, and filter
WO2011019022A1 (en) Filtration cloth for dust collection machine
WO2018221122A1 (en) Spunbonded nonwoven fabric for filter and method for producing same
JP2007231500A (en) Nonwoven fabric for filter and method for producing the same
CN104395518B (en) Nonwoven wipe with bonding patterns
CN112261982B (en) Spunbonded nonwoven fabric for filter and manufacturing method thereof
CN114867897B (en) Spun-bonded nonwoven fabric, filter laminated filter medium, pleated filter, and dust collector
JP2007152216A (en) Nonwoven fabric for filter
JP2010089456A (en) Multi-layer fiber structure and filter comprising of the same
JP3702922B2 (en) Heat resistant filter
JP2009263806A (en) Multilayered fiber structure and filter comprising the same
JP2010090512A (en) Laminated structure, and heat-resistant filter medium comprising the same
MX2013004217A (en) Highly uniform spunbonded nonwoven fabrics.
JP2009006317A (en) Nonwoven fabric for cylindrical bag filter and its manufacturing method
JP7552345B2 (en) Spunbond nonwoven fabric for filters, filter media for automobile oil filters and automobile oil filters
JP2011122258A (en) Method for producing ultrafine fiber structure

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5155071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150