JP5152726B2 - Polysilane thin film absorbing near-infrared light and method for producing the same - Google Patents

Polysilane thin film absorbing near-infrared light and method for producing the same Download PDF

Info

Publication number
JP5152726B2
JP5152726B2 JP2008277853A JP2008277853A JP5152726B2 JP 5152726 B2 JP5152726 B2 JP 5152726B2 JP 2008277853 A JP2008277853 A JP 2008277853A JP 2008277853 A JP2008277853 A JP 2008277853A JP 5152726 B2 JP5152726 B2 JP 5152726B2
Authority
JP
Japan
Prior art keywords
thin film
polysilane
group
polysilane thin
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008277853A
Other languages
Japanese (ja)
Other versions
JP2010106101A (en
Inventor
橘  浩昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008277853A priority Critical patent/JP5152726B2/en
Publication of JP2010106101A publication Critical patent/JP2010106101A/en
Application granted granted Critical
Publication of JP5152726B2 publication Critical patent/JP5152726B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、太陽電池等に好適に用いられるポリシラン薄膜及びその形成方法に関する。   The present invention relates to a polysilane thin film suitably used for solar cells and the like and a method for forming the same.

近年、アモルファスシリコン膜やポリシリコン膜を使用した太陽電池が普及しつつある。このような近赤外光を吸収するアモルファスシリコン膜やポリシリコン膜の形成方法としては、水素化珪素ガスを用いた熱化学的気相成長(Chemical Vapor Deposition(CVD))法、プラズマCVD法、光CVD法、蒸着法、スパッタ法等が利用されている。特にプラズマCVD法においては、高周波発生装置等、複雑で高価な装置が必要となるだけでなく、高価な高真空装置が必要である。
一方、上述したようなCVD法とは別に、高価な装置を必要としない塗布法によるシリコン膜の形成が検討されている。このようなシリコン膜の形成方法の一例として、液体状の水素化珪素を基体上に塗布した後昇温し、昇温過程を含む熱履歴を経させることにより塗布膜内で分解反応させるシリコン膜の形成方法が報告されている(特許文献1参照)。また、基体上に、単結晶シリコンを粉砕したシリコン微粒子と液体状の水素化珪素を混合してなる組成物を塗布し、得られた塗膜を加熱してポリシリコン膜を形成する方法も報告されている(特許文献2参照)。また、水素化ポリシラン修飾シリコン微粒子が分散された液を基板上に塗布し、塗布膜を形成した後、塗布膜が形成された状態の基板に熱処理または光照射を行うことで、シリコン膜を形成する方法も報告されている。(特許文献3参照)
特許第3517934号公報 特開2005−332913号公報 特開2007−277038号公報
In recent years, solar cells using amorphous silicon films or polysilicon films are becoming widespread. As a method for forming such an amorphous silicon film or a polysilicon film that absorbs near infrared light, a chemical vapor deposition (CVD) method using a silicon hydride gas, a plasma CVD method, Photo CVD, vapor deposition, sputtering, etc. are used. In particular, in the plasma CVD method, not only a complicated and expensive apparatus such as a high-frequency generator is required, but also an expensive high vacuum apparatus is necessary.
On the other hand, apart from the CVD method as described above, formation of a silicon film by a coating method that does not require an expensive apparatus has been studied. As an example of a method for forming such a silicon film, a silicon film that is heated after being coated with liquid silicon hydride and then subjected to a decomposition reaction in the coating film through a thermal history including a temperature rising process. Has been reported (see Patent Document 1). Also reported is a method of applying a composition comprising a mixture of silicon fine particles obtained by pulverizing single crystal silicon and liquid silicon hydride on a substrate, and heating the resulting coating to form a polysilicon film. (See Patent Document 2). In addition, a liquid in which hydrogenated polysilane-modified silicon fine particles are dispersed is applied onto a substrate to form a coating film, and then a silicon film is formed by performing heat treatment or light irradiation on the substrate on which the coating film has been formed. A way to do this has also been reported. (See Patent Document 3)
Japanese Patent No. 3517934 JP-A-2005-332913 JP 2007-277038 A

しかし、特許文献1に記載されたシリコン膜の形成方法では、液体状の水素化珪素の取り扱いに複雑な装置が必要になる難点を有するほか、シリコン膜の膜厚の制御が困難である。また、特許文献2に記載されたシリコン膜の形成方法では、単結晶シリコンを粉砕した微粒子を用いることで、微粒子表面の酸化膜を除去する作業が煩雑であり、欠陥のない均一な連続膜とすることが難しい。また、液体状の水素化珪素とシリコン微粒子とを混合してシリコン膜を形成しているため、成膜時にシリコン微粒子と水素化珪素の界面に欠陥が生じ易い、という問題がある。また、特許文献3に記載されたシリコン膜の形成方法では、ポリシランをシリコン微粒子に修飾させる必要があり、バンドギャップを連続的に変えられない。   However, the method for forming a silicon film described in Patent Document 1 has a difficulty in requiring a complicated apparatus for handling liquid silicon hydride, and it is difficult to control the thickness of the silicon film. Further, in the method for forming a silicon film described in Patent Document 2, the work of removing the oxide film on the surface of the fine particles is complicated by using fine particles obtained by pulverizing single crystal silicon, and a uniform continuous film having no defects is obtained. Difficult to do. Further, since the silicon film is formed by mixing liquid silicon hydride and silicon fine particles, there is a problem that defects are likely to occur at the interface between the silicon fine particles and the silicon hydride during film formation. Moreover, in the method for forming a silicon film described in Patent Document 3, it is necessary to modify polysilane with silicon fine particles, and the band gap cannot be continuously changed.

本発明は、以上のような事情に鑑みてなされたものであって、大掛かりな設備を必要とせずに、様々な近赤外光を吸収するポリシラン薄膜及びその製造方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a polysilane thin film that absorbs various near-infrared light without requiring a large facility and a method for manufacturing the same. To do.

発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、特定の架橋ポリシランを含む液を塗布した塗布膜を加熱することで、近赤外光を吸収するポリシラン薄膜を作製することが可能となるという知見を得た。
本発明は、これら知見に基づいて完成に至ったものであり、以下のとおりのものである。
[1]下記の一般式で表される架橋ポリシラン薄膜が加熱処理され、近赤外光を吸収する薄膜とされていることを特徴とする近赤外光吸収性ポリシラン薄膜。

Figure 0005152726
(式中、Rは、縮合多環芳香族基を表し、Rは、アリール基又は縮合多環芳香族基のいずれかを表し、Rは、アルキル基を表す。また、x及びyは、整数を表す。)
[2]前記加熱処理の温度及び/又は時間により、バンドギャップが制御されていることを特徴とする[1]の近赤外吸収性ポリシラン薄膜。
[3]基板上に下記の一般式で表される架橋ポリシラン薄膜を形成した後、加熱処理することにより該架橋ポリシラン薄膜の吸収スペクトルを変化させて、近赤外光を吸収するポリシラン薄膜とすることを特徴とする近赤外吸収性ポリシラン薄膜の製造方法。
Figure 0005152726
(式中、Rは、縮合多環芳香族基を表し、Rは、アリール基又は縮合多環芳香族基のいずれかを表し、Rは、アルキル基を表す。また、x及びyは、整数を表す。)
[4]前記加熱処理の温度及び/又は時間を調整することにより、前記架橋ポリシラン薄膜のバンドギャップを制御することを特徴とする[3]に記載の方法。 As a result of intensive studies to achieve the above object, the inventors can produce a polysilane thin film that absorbs near-infrared light by heating a coating film coated with a liquid containing a specific crosslinked polysilane. I got the knowledge that it would be possible.
The present invention has been completed based on these findings, and is as follows.
[1] A near-infrared light-absorbing polysilane thin film characterized in that a crosslinked polysilane thin film represented by the following general formula is heat-treated to absorb near-infrared light.
Figure 0005152726
(In the formula, R 1 represents a condensed polycyclic aromatic group, R 2 represents either an aryl group or a condensed polycyclic aromatic group, and R 3 represents an alkyl group. X and y Represents an integer.)
[2] The near-infrared absorbing polysilane thin film according to [1], wherein the band gap is controlled by the temperature and / or time of the heat treatment.
[3] After forming a crosslinked polysilane thin film represented by the following general formula on the substrate, the absorption spectrum of the crosslinked polysilane thin film is changed by heat treatment to form a polysilane thin film that absorbs near-infrared light. A method for producing a near-infrared absorbing polysilane thin film.
Figure 0005152726
(In the formula, R 1 represents a condensed polycyclic aromatic group, R 2 represents either an aryl group or a condensed polycyclic aromatic group, and R 3 represents an alkyl group. X and y Represents an integer.)
[4] The method according to [3], wherein the band gap of the crosslinked polysilane thin film is controlled by adjusting the temperature and / or time of the heat treatment.

本発明によれば、塗布膜を加熱処理するだけで近赤外光を吸収するポリシラン薄膜を作製でき、さらに、加熱温度の時間を変えることで、近赤外光を吸収するポリシラン膜のバンドギャップを連続的に再現性よく変えることができる。   According to the present invention, a polysilane thin film that absorbs near-infrared light can be produced simply by heat-treating the coating film, and further, the band gap of the polysilane film that absorbs near-infrared light by changing the time of the heating temperature. Can be continuously changed with good reproducibility.

本発明について、更に詳細に説明する。
本発明に用いる架橋ポリシランは、下記の一般式で表される。

Figure 0005152726
The present invention will be described in more detail.
The crosslinked polysilane used in the present invention is represented by the following general formula.
Figure 0005152726

上記一般式において、Rは、ナフチル基、アントラセン基、フェナントレン基、ピレン基等の縮合多環芳香族基を表し、Rは、フェニル基等のアリール基、又は、ナフチル基、アントラセン基、フェナントレン基、ピレン基等の縮合多環芳香族基のいずれかを表し、Rは、アルキル基を表し、x及びyは、整数を表す。すなわち、本発明の架橋ポリシランは、一次元シリコン系高分子の側鎖基に、アリール基又は縮合多環芳香族基とアルキル基が結合し、架橋点には、側鎖基として縮合多環芳香族基が結合しているものである。該アルキル基としては、特に限定されないが、入手のしやすさから、炭素数1〜12のものが好ましい。 In the above general formula, R 1 represents a condensed polycyclic aromatic group such as a naphthyl group, anthracene group, phenanthrene group, or pyrene group, and R 2 represents an aryl group such as a phenyl group, or a naphthyl group, an anthracene group, It represents any of condensed polycyclic aromatic groups such as a phenanthrene group and a pyrene group, R 3 represents an alkyl group, and x and y represent integers. That is, in the crosslinked polysilane of the present invention, an aryl group or a condensed polycyclic aromatic group and an alkyl group are bonded to the side chain group of the one-dimensional silicon polymer, and the condensed polycyclic aromatic group is used as a side chain group at the crosslinking point. The group is bonded. Although it does not specifically limit as this alkyl group, A C1-C12 thing is preferable from availability.

本発明の上記一般式で表される架橋ポリシランは、塗布膜を加熱処理するだけで、近赤外光吸収性ポリシラン薄膜とすることができるものである。さらに、加熱処理の温度及び時間を変更することで、近赤外光を吸収するポリシラン薄膜のバンドギャップを連続的に、しかも再現性よく変えることができるものである。
本発明におけるこの作用効果は、架橋点の側鎖基が縮合多環芳香族基である架橋ポリシラン特有のものであって、架橋点の側鎖基が縮合多環芳香族基ではなく、例えば、フェニル基又はアルキル基である場合には、加熱処理しても、吸収スペクトルが減少するだけで、近赤外光側の吸収スペクトルの増加現象は見られない。
その理由は、加熱処理による近赤外光吸収ポリシラン薄膜の形成過程では架橋点でのケイ素−ケイ素結合の解離と結合の組み換えよる再結合が起こっていると考えることができる。加熱により結合の解離した状態、例えばケイ素イオンやケイ素ラジカルが、側鎖基の縮合多環芳香族基で安定化され、結合の組み換えが起こるのに対して、アルキル基やフェニル基では安定化されず結合の組み換えが起こる前に解離・分解してしまうと考えられる。
The crosslinked polysilane represented by the above general formula of the present invention can be a near-infrared light-absorbing polysilane thin film only by heat-treating the coating film. Furthermore, the band gap of the polysilane thin film which absorbs near-infrared light can be changed continuously and with good reproducibility by changing the temperature and time of the heat treatment.
This effect in the present invention is unique to the crosslinked polysilane in which the side chain group at the crosslinking point is a condensed polycyclic aromatic group, and the side chain group at the crosslinking point is not a condensed polycyclic aromatic group. In the case of a phenyl group or an alkyl group, even if the heat treatment is performed, the absorption spectrum only decreases, and an increase in the absorption spectrum on the near infrared light side is not observed.
The reason can be considered that dissociation of the silicon-silicon bond at the cross-linking point and recombination due to recombination occur in the process of forming the near infrared light absorbing polysilane thin film by heat treatment. The bond is dissociated by heating, for example, silicon ions and silicon radicals are stabilized by the condensed polycyclic aromatic group of the side chain group, and recombination of the bond occurs, whereas it is stabilized by the alkyl group and phenyl group. It is thought that dissociation and decomposition occur before recombination of the bonds occurs.

本発明の架橋ポリシランは、公知のウルツカップリング反応により容易に製造される。
すなわち、例えば、

Figure 0005152726
で表される架橋ポリシランの場合、メチルフェニルジクロロシランと架橋剤であるナフチルトリクロロシランを任意の割合で混合して、ウルツカップリング反応により合成することにより製造することができ、架橋剤の量を制御することによって、二次元的な架橋点含量を変化させることができる。 The crosslinked polysilane of the present invention is easily produced by a known Wurtz coupling reaction.
That is, for example,
Figure 0005152726
Can be produced by mixing methylphenyldichlorosilane and naphthyltrichlorosilane, which is a crosslinking agent, in an arbitrary ratio and synthesizing by a Wurtz coupling reaction. By controlling, the two-dimensional crosslinking point content can be changed.

製造された架橋ポリシランは、溶媒に溶かして溶液とし、高速で回転させながら塗布するスピンコート法などの方法により、基板上に塗布する。塗布の際の溶媒としては、汎用溶媒が用いられるが、中でも、トルエンやテトラヒドロフランが好ましく用いられる。
また、本発明に用いる基板としては、加熱処理の温度において耐熱性を有するものであれば、特に限定されるものでなく、当該分野で一般的に用いられているものを使用することができ、例えば、石英ガラス等の透明基板以外にも、酸化シリコン等の絶縁体基板、酸化インジウム−酸化錫(ITO)等の導体基板などを用いることができる。
The produced cross-linked polysilane is dissolved in a solvent to form a solution, and is applied onto the substrate by a method such as a spin coating method in which the solution is applied while rotating at high speed. A general-purpose solvent is used as a solvent at the time of application, and among these, toluene and tetrahydrofuran are preferably used.
The substrate used in the present invention is not particularly limited as long as it has heat resistance at the temperature of the heat treatment, and those generally used in the field can be used. For example, in addition to a transparent substrate such as quartz glass, an insulating substrate such as silicon oxide, a conductive substrate such as indium oxide-tin oxide (ITO), or the like can be used.

本発明において、基板上に形成された架橋ポリシラン膜の加熱手段は特に限定されないが、真空下で行うのが好ましい。また、加熱処理の温度及び時間を変更することで、近赤外光を吸収するポリシラン薄膜のバンドギャップを連続的に、しかも再現性よく変えることができるものであるが、近赤外吸収性の薄膜を得るためには、400℃以上、好ましくは500℃以上で、1〜36時間、好ましくは6〜12時間行うことが好ましい。   In the present invention, the heating means for the crosslinked polysilane film formed on the substrate is not particularly limited, but it is preferably performed under vacuum. In addition, by changing the temperature and time of the heat treatment, the band gap of the polysilane thin film that absorbs near infrared light can be changed continuously and with good reproducibility. In order to obtain a thin film, it is preferably carried out at 400 ° C. or higher, preferably 500 ° C. or higher, for 1 to 36 hours, preferably 6 to 12 hours.

次に、本発明を実施例に基づいてさらに具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
(実施例1)
メチルナフチルジクロロシランと、架橋剤であるナフチルトリクロロシランを用いて、架橋点にナフチル基が導入されたポリメチルナフチルシランを得た。得られたポリシランの架橋点含量は50%であった。なお、架橋点含量50%とは、ポリシラン主鎖のSi原子100個内の50個で、他のポリシラン主鎖と架橋していることを表している。およその重合度は、x=y=40であった。
得られた架橋ポリシランをトルエンに溶かし、スピンコート法により石英基板上に薄膜を形成した。
得られた薄膜を真空下、種々の加熱温度で、30分加熱した後、室温まで冷却して大気下で紫外−近赤外吸収スペクトルを測定した。
図1に、得られた吸収スペクトルを示す。
図から、加熱温度が高くなるにつれて、吸収の減少とともに4.2eVの吸収の幅が広くなり、低エネルギー側に裾を引き始めることがわかる。この結果は、架橋点にナフチル基が導入された架橋ポリメチルナフチルシラン薄膜を加熱することにより、バンドギャップが減少していることを示唆している。
Next, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples.
Example 1
Using methylnaphthyldichlorosilane and naphthyltrichlorosilane which is a crosslinking agent, polymethylnaphthylsilane having a naphthyl group introduced at a crosslinking point was obtained. The resulting polysilane had a crosslinking point content of 50%. In addition, the content of 50% of cross-linking points indicates that 50 of the 100 Si atoms in the polysilane main chain are cross-linked with another polysilane main chain. The approximate degree of polymerization was x = y = 40.
The obtained crosslinked polysilane was dissolved in toluene, and a thin film was formed on a quartz substrate by spin coating.
The obtained thin film was heated under vacuum at various heating temperatures for 30 minutes, then cooled to room temperature, and an ultraviolet-near infrared absorption spectrum was measured under the atmosphere.
FIG. 1 shows the obtained absorption spectrum.
From the figure, it can be seen that as the heating temperature increases, the absorption width of 4.2 eV becomes wider as the absorption decreases, and the tail begins to be pulled toward the low energy side. This result suggests that the band gap is reduced by heating the crosslinked polymethylnaphthylsilane thin film in which the naphthyl group is introduced at the crosslinking point.

(実施例2)
次に、実施例1で用いた50%架橋のポリメチルナフチルシラン薄膜の加熱温度を500℃に固定して、加熱時間を変えて加熱した後の吸収スペクトル変化について調べた。
その結果を図2に示す。図から明らかなように、加熱時間の増加とともに、5.5eVの吸収ピークの減少とともに、吸収の幅が広がり、低エネルギー側に裾を引き始める。この吸収スペクトル変化は、ポリシラン薄膜の色が加熱時間の増加とともに無色透明から褐色透明に変化することでも確認できる。これは、加熱時間の増加とともにバンドギャップが減少していることを示唆している。
(Example 2)
Next, the change in absorption spectrum after heating with the heating temperature of the polymethylnaphthylsilane thin film with 50% crosslinking used in Example 1 fixed at 500 ° C. was examined.
The result is shown in FIG. As is apparent from the figure, as the heating time increases, the absorption width widens with the decrease in the absorption peak of 5.5 eV, and begins to skirt toward the low energy side. This change in absorption spectrum can also be confirmed by the color of the polysilane thin film changing from colorless and transparent to brown and transparent as the heating time increases. This suggests that the band gap decreases with increasing heating time.

(実施例3)
実施例1の50%架橋のポリメチルナフチルシラン薄膜に代えて、20%架橋のポリメチルナフチルシラン薄膜を用い、500℃での加熱時間の違いによる吸収スペクトル変化を調べた。
その結果を図3に示す。50%架橋のポリシラン薄膜と同じスペクトル変化を示したが、5.5eVの吸収ピークの減少の割合は大きかった。
(Example 3)
Instead of the 50% crosslinked polymethylnaphthylsilane thin film of Example 1, a 20% crosslinked polymethylnaphthylsilane thin film was used, and the change in absorption spectrum due to the difference in heating time at 500 ° C. was examined.
The result is shown in FIG. It showed the same spectral change as the 50% crosslinked polysilane thin film, but the rate of decrease of the absorption peak at 5.5 eV was large.

(実施例4)
加熱温度の効果を検討するために、実施例3における加熱温度を450℃に下げて、加熱時間の違いによる吸収スペクトル変化を調べた。
その結果を図4に示す。加熱温度が500℃の時と同様に、加熱時間の増加とともに、5.5eVの吸収ピークの減少とともに、吸収の幅が広がり、低エネルギー側に裾を引き始める。しかし、裾の広がり方が少ない。これらの結果は、バンドギャップを制御するためには、一定の加熱温度が必要であることを示している。
Example 4
In order to examine the effect of the heating temperature, the heating temperature in Example 3 was lowered to 450 ° C., and the change in absorption spectrum due to the difference in heating time was examined.
The result is shown in FIG. As with the heating temperature of 500 ° C., as the heating time increases, the absorption width widens with the decrease in the absorption peak of 5.5 eV, and begins to skirt toward the low energy side. However, there is little way to spread the hem. These results indicate that a constant heating temperature is required to control the band gap.

(比較例1)
実施例1の架橋点にナフチル基が導入されたポリシラン薄膜に代えて、架橋点がないポリメチルナフチルシラン薄膜を用いた以外は、実施例1と同様にして、基板上に形成されたポリシラン薄膜を加熱処理して、紫外−近赤外吸収スペクトルを測定した。
その結果、架橋点がないポリメチルナフチルシラン薄膜の加熱温度を変えて加熱しても吸収スペクトルが減少するだけであった。この結果から、架橋点が加熱効果に影響を及ぼしていることが分かった。
(Comparative Example 1)
A polysilane thin film formed on a substrate in the same manner as in Example 1 except that a polymethylnaphthylsilane thin film having no crosslinking point was used instead of the polysilane thin film having a naphthyl group introduced at the crosslinking point in Example 1. Was subjected to heat treatment, and an ultraviolet-near infrared absorption spectrum was measured.
As a result, even when the heating temperature of the polymethylnaphthylsilane thin film having no crosslinking point was changed and heated, the absorption spectrum only decreased. From this result, it was found that the crosslinking point had an effect on the heating effect.

(比較例2)
実施例1の架橋点にナフチル基が導入されたポリシラン薄膜に代えて、架橋点にフェニル基が導入されたポリメチルフェニルシラン薄膜、又は架橋点にアルキル基が導入されたポリジヘキシルシラン薄膜を用いた以外は、実施例1と同様にして、基板上に形成された架橋ポリシラン薄膜を加熱処理して、紫外−近赤外吸収スペクトルを測定した。
その結果、架橋点含量によらず、架橋点にフェニル基、又はアルキル基が導入された架橋ポリシラン薄膜の加熱温度を変えて加熱しても吸収スペクトルが減少するだけであった。また、架橋点含量が100%(二次元的なポリシラン)のポリフェニルシリレン薄膜、又はポリアルキルシリレン薄膜を加熱しても、同様の結果であった。
これらの結果から、架橋点の側鎖基が加熱効果に影響を及ぼしていることが分かった。
(Comparative Example 2)
Instead of the polysilane thin film in which a naphthyl group is introduced at the crosslinking point of Example 1, a polymethylphenylsilane thin film in which a phenyl group is introduced at the crosslinking point or a polydihexylsilane thin film in which an alkyl group is introduced at the crosslinking point is used. The crosslinked polysilane thin film formed on the substrate was heat-treated in the same manner as in Example 1 except that the ultraviolet-near infrared absorption spectrum was measured.
As a result, the absorption spectrum only decreased even when the heating temperature of the crosslinked polysilane thin film having a phenyl group or an alkyl group introduced at the crosslinking point was changed regardless of the crosslinking point content. Further, even when a polyphenylsilylene thin film having a crosslinking point content of 100% (two-dimensional polysilane) or a polyalkylsilylene thin film was heated, the same result was obtained.
From these results, it was found that the side chain group at the crosslinking point affects the heating effect.

本発明の架橋ポリシランは、塗布膜を加熱処理するだけで、近赤外光吸収性ポリシラン薄膜とすることができるものであり、さらに、加熱処理の温度及び時間を変更することで、近赤外光を吸収するポリシラン薄膜のバンドギャップを連続的に、しかも再現性よく変えることができるものであるため、太陽電池、電界発光(Electroluminescence(EL))やセンサー等を初めとした種々の機能性材料としての利用が期待できる。   The crosslinked polysilane of the present invention can be a near-infrared light-absorbing polysilane thin film only by heat-treating the coating film, and further, by changing the temperature and time of the heat treatment, Because the band gap of polysilane thin film that absorbs light can be changed continuously and with good reproducibility, various functional materials such as solar cells, electroluminescence (EL), sensors, etc. It can be expected to be used as

架橋点にナフチル基が導入された50%架橋のポリメチルナフチルシラン薄膜の、加熱温度を変更して30分間加熱した際の吸収スペクトルの変化を示す図。The figure which shows the change of the absorption spectrum when changing the heating temperature and heating the polymethylnaphthylsilane thin film of 50% bridge | crosslinking by which the naphthyl group was introduce | transduced into the crosslinking point for 30 minutes. 架橋点にナフチル基が導入された50%架橋のポリメチルナフチルシラン薄膜の、500℃での加熱時間の違いによる吸収スペクトルの変化を示す図。The figure which shows the change of the absorption spectrum by the difference in the heating time at 500 degreeC of the polymethylnaphthylsilane thin film of 50% bridge | crosslinking by which the naphthyl group was introduce | transduced into the crosslinking point. 架橋点にナフチル基が導入された20%架橋のポリメチルナフチルシラン薄膜の、500℃での加熱時間の違いによる吸収スペクトルの変化を示す図。The figure which shows the change of the absorption spectrum by the difference in the heating time at 500 degreeC of the polymethylnaphthylsilane thin film of 20% bridge | crosslinking by which the naphthyl group was introduce | transduced into the crosslinking point. 架橋点にナフチル基が導入された20%架橋のポリメチルナフチルシラン薄膜の、450℃での加熱時間の違いによる吸収スペクトルの変化を示す図。The figure which shows the change of the absorption spectrum by the difference in the heating time at 450 degreeC of the polymethylnaphthylsilane thin film of 20% bridge | crosslinking by which the naphthyl group was introduce | transduced into the crosslinking point.

Claims (4)

下記の一般式で表される架橋ポリシラン薄膜が加熱処理され、近赤外光を吸収する薄膜とされていることを特徴とする近赤外吸収性ポリシラン薄膜。
Figure 0005152726
(式中、Rは、縮合多環芳香族基を表し、Rは、アリール基又は縮合多環芳香族基のいずれかを表し、Rは、アルキル基を表す。また、x及びyは、整数を表す。)
A near-infrared absorptive polysilane thin film characterized in that a crosslinked polysilane thin film represented by the following general formula is heat-treated to absorb near-infrared light.
Figure 0005152726
(In the formula, R 1 represents a condensed polycyclic aromatic group, R 2 represents either an aryl group or a condensed polycyclic aromatic group, and R 3 represents an alkyl group. X and y Represents an integer.)
前記加熱処理の温度及び/又は時間により、バンドギャップが制御されていることを特徴とする請求項1に記載の近赤外吸収性ポリシラン薄膜。   The near-infrared absorptive polysilane thin film according to claim 1, wherein the band gap is controlled by the temperature and / or time of the heat treatment. 基板上に下記の一般式で表される架橋ポリシラン薄膜を形成した後、加熱処理することにより該架橋ポリシラン薄膜の吸収スペクトルを変化させて、近赤外光を吸収するポリシラン薄膜とすることを特徴とする近赤外吸収性ポリシラン膜の製造方法。
Figure 0005152726
(式中、Rは、縮合多環芳香族基を表し、Rは、アリール基又は縮合多環芳香族基のいずれかを表し、Rは、アルキル基を表す。また、x及びyは、整数を表す。)
A cross-linked polysilane thin film represented by the following general formula is formed on a substrate, and then the absorption spectrum of the cross-linked polysilane thin film is changed by heat treatment to form a polysilane thin film that absorbs near-infrared light. A method for producing a near-infrared absorbing polysilane film.
Figure 0005152726
(In the formula, R 1 represents a condensed polycyclic aromatic group, R 2 represents either an aryl group or a condensed polycyclic aromatic group, and R 3 represents an alkyl group. X and y Represents an integer.)
前記加熱処理の温度及び/又は時間を調整することにより、前記架橋ポリシラン薄膜のバンドギャップを制御することを特徴とする請求項3に記載の方法。   The method according to claim 3, wherein a band gap of the crosslinked polysilane thin film is controlled by adjusting a temperature and / or time of the heat treatment.
JP2008277853A 2008-10-29 2008-10-29 Polysilane thin film absorbing near-infrared light and method for producing the same Expired - Fee Related JP5152726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277853A JP5152726B2 (en) 2008-10-29 2008-10-29 Polysilane thin film absorbing near-infrared light and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008277853A JP5152726B2 (en) 2008-10-29 2008-10-29 Polysilane thin film absorbing near-infrared light and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010106101A JP2010106101A (en) 2010-05-13
JP5152726B2 true JP5152726B2 (en) 2013-02-27

Family

ID=42295878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277853A Expired - Fee Related JP5152726B2 (en) 2008-10-29 2008-10-29 Polysilane thin film absorbing near-infrared light and method for producing the same

Country Status (1)

Country Link
JP (1) JP5152726B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140048240A (en) * 2011-07-07 2014-04-23 다우 코닝 도레이 캄파니 리미티드 Organo polysiloxane, and method for producing same
JP6281848B2 (en) * 2016-01-21 2018-02-21 たまき 野間 Thermal coating

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3291564B2 (en) * 1992-02-19 2002-06-10 達哉 庄野 Method for producing network polymer having Si-Si bond as skeleton
JP3184907B2 (en) * 1992-02-19 2001-07-09 達哉 庄野 Method for producing network polymer having Si-Si bond as skeleton
JPH05247218A (en) * 1992-03-10 1993-09-24 Tatsuya Shono Production of network polymer having si-si skeleton
JP2005332913A (en) * 2004-05-19 2005-12-02 Jsr Corp Method for forming silicon film for solar battery, and solar battery
JP4944423B2 (en) * 2005-10-28 2012-05-30 日本曹達株式会社 Method for producing branched polysilane compound

Also Published As

Publication number Publication date
JP2010106101A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
TWI600614B (en) Method of forming siliceous film and the siliceous film formed by using the method thereof
JP3701700B2 (en) Method for forming Si-O containing film
JP6348801B2 (en) Doping a substrate through a dopant-containing polymer film
JP5933575B2 (en) Method for producing indium oxide-containing layer
JP6151158B2 (en) Surface modifier for transparent oxide electrode, transparent oxide electrode with surface modification, and method for producing transparent oxide electrode with surface modification
US9096922B2 (en) Silicon layers formed from polymer-modified liquid silane formulations
JP5152726B2 (en) Polysilane thin film absorbing near-infrared light and method for producing the same
TW202031738A (en) Method for the preparation of hydridosilane oligomers
JP6012469B2 (en) Silicon layer manufacturing method
JP2003055556A (en) Method for forming silicon film or silicon oxide film and composition for them
Wu et al. Manipulating Crystallographic Orientation via Cross‐Linkable Ligand for Efficient and Stable Perovskite Solar Cells
KR102225181B1 (en) Polysiloxane, semiconductor material, semiconductor and solar cell manufacturing method
JP2002246384A (en) Method of forming silicon oxide film and composition used for forming the same
EP1000949A1 (en) Organosilicon nanocluster and process for producing the same
CN110372040A (en) A method of rhenium disulfide nanometer sheet is prepared using liquid phase removing transfer
CN106521415B (en) Improved annealing method for indium oxide transparent conductive film
JPH1149507A (en) Production of silicon particles and formation of silicon film
JP2010248299A (en) Visible light-absorbing thin film and method for producing the same
JP2002110663A (en) Method for manufacturing silicon and silicon oxide thin film by plasma irradiation of organosilicon nanocluster thin film
JP2681481B2 (en) Method of forming silicon oxide film
US10414661B2 (en) Method of producing silicon hydride oxide-containing solvent
JP2024059064A (en) Silicon quantum dot precursor, silicon quantum dot, LED device using silicon quantum dot, method for manufacturing silicon quantum dot precursor, method for manufacturing silicon quantum dot, and method for manufacturing LED device using silicon quantum dot
JP2019506350A (en) Doped composition, process for its production and use thereof
CN114464694A (en) Photoelectric detector and preparation method thereof
JP2018503970A (en) Method for producing doped polycrystalline semiconductor film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5152726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees