JP5152494B2 - Opposed combustion boiler device and operation method thereof - Google Patents

Opposed combustion boiler device and operation method thereof Download PDF

Info

Publication number
JP5152494B2
JP5152494B2 JP2008062625A JP2008062625A JP5152494B2 JP 5152494 B2 JP5152494 B2 JP 5152494B2 JP 2008062625 A JP2008062625 A JP 2008062625A JP 2008062625 A JP2008062625 A JP 2008062625A JP 5152494 B2 JP5152494 B2 JP 5152494B2
Authority
JP
Japan
Prior art keywords
combustion
boiler
combustion boiler
opposed
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008062625A
Other languages
Japanese (ja)
Other versions
JP2009216347A (en
Inventor
沖 佐藤
定幸 小松崎
義之 井端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008062625A priority Critical patent/JP5152494B2/en
Publication of JP2009216347A publication Critical patent/JP2009216347A/en
Application granted granted Critical
Publication of JP5152494B2 publication Critical patent/JP5152494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、互いに対向する缶前壁及び缶後壁に、複数のバーナを縦横に並べて形成したバーナ群をそれぞれ配置して成る対向燃焼ボイラを備えた対向燃焼ボイラ装置及びその運転方法に関するものである。   The present invention relates to an opposed combustion boiler apparatus having an opposed combustion boiler in which a group of burners each formed by arranging a plurality of burners in a vertical and horizontal direction on the can front wall and the can rear wall facing each other, and an operation method thereof. is there.

従来、上記した対向燃焼ボイラ装置としては、例えば、石炭焚きボイラ装置があり、この石炭焚きボイラ装置において、燃料である微粉炭及び一次・二次空気を対向燃焼ボイラにおけるバーナ群の複数のバーナに供給する一方で、対向燃焼ボイラの缶前壁及び缶後壁における各バーナ群の上方にそれぞれ設置した二段燃焼用ポートを介して対向燃焼ボイラ内に二次空気を供給することで、サーマルNOxの低減を図るようにしていた。   Conventionally, as the above-described counter-fired boiler apparatus, for example, there is a coal-fired boiler apparatus. In this coal-fired boiler apparatus, pulverized coal and primary / secondary air as fuel are supplied to a plurality of burners of a burner group in the counter-fired boiler. On the other hand, thermal NOx is supplied by supplying secondary air into the opposed combustion boiler through the two-stage combustion ports respectively installed above the burner groups on the front and rear walls of the opposed combustion boiler. It tried to reduce it.

この石炭焚きボイラ装置において、対向燃焼ボイラの二段燃焼用ポートは、缶前壁及び缶後壁における横方向に複数形成されていて、左右の二段燃焼用ポート間に二次空気の供給量の差をもたせることで、対向燃焼ボイラ内における燃焼ガスの流れを調整するようにしていた(例えば、特許文献1)。
特開平07-12310号公報
In this coal fired boiler apparatus, a plurality of two-stage combustion ports of the opposed combustion boiler are formed in the lateral direction on the front wall of the can and the rear wall of the can, and the supply amount of secondary air between the left and right two-stage combustion ports Thus, the flow of combustion gas in the opposed combustion boiler is adjusted (for example, Patent Document 1).
JP 07-12310 A

ところが、上記した石炭焚きボイラ装置において、バーナ群の複数のバーナのうちの使用するバーナの組み合せによって、対向燃焼ボイラ内における燃焼ガスの流れの状態が変化するため、これに伴って、バーナをバイパスして二段燃焼用ポートを介して対向燃焼ボイラ内に供給する二次空気の最適な流量配分は、燃焼ガスの流れの状態及びボイラ負荷状況により変化することとなる。   However, in the above-described coal fired boiler apparatus, the state of the flow of the combustion gas in the opposed combustion boiler changes depending on the combination of the burners used among the plurality of burners of the burner group. Accordingly, the burner is bypassed. Thus, the optimum flow rate distribution of the secondary air supplied into the opposed combustion boiler via the two-stage combustion port varies depending on the state of combustion gas flow and the boiler load.

すなわち、上記した石炭焚きボイラ装置において、数多くあるバーナの組み合せが変わることに伴って、ボイラの高負荷状況及び低負荷状況の両状況下で燃焼ガスの流れの状態が多数のパターンで変化するので、これらの変化に対応して二次空気の流量バランスを最適に保つことができず、その結果、安定した運転状態を維持できるとは言い難いという問題があり、この問題を解決することが従来の課題となっていた。   That is, in the above-mentioned coal fired boiler apparatus, as the combination of many burners changes, the state of combustion gas flow changes in many patterns under both high and low load conditions of the boiler. In response to these changes, the secondary air flow balance cannot be maintained optimally, and as a result, it is difficult to maintain a stable operating state. It was an issue.

本発明は、上記した従来の課題に着目してなされたもので、対向燃焼ボイラの高負荷状況及び低負荷状況のいずれの状況下においても、対向燃焼ボイラ内における燃焼ガスの流れ状態を修正して、常に安定した状態で運転させることが可能である対向燃焼ボイラ装置及びその運転方法を提供することを目的としている。   The present invention has been made paying attention to the above-described conventional problems, and corrects the flow state of the combustion gas in the opposed combustion boiler in both the high load state and the low load state of the opposed combustion boiler. Therefore, an object of the present invention is to provide an opposed combustion boiler apparatus that can be operated in a stable state at all times and an operation method thereof.

上記した目的を達成するために、本発明の請求項1に係る発明は、燃料及び一次空気が供給されるバーナを水平方向に複数並べて成るバーナ列を垂直方向に複数段配置して形成したバーナ群を有していると共に、前記バーナ群の上方に位置して該バーナ群をバイパスして供給される二次空気を通す二段燃焼用ポートを有する互いに対向する缶前壁及び缶後壁を具備した対向燃焼ボイラと、この対向燃焼ボイラにおける缶前壁及び缶後壁の各二段燃焼用ポートを通して該対向燃焼ボイラ内に供給する二次空気の量を調節する缶前側ダンパ及び缶後側ダンパを備えた対向燃焼ボイラ装置において、前記缶前壁及び缶後壁に配置した各バーナ群における複数段のバーナ列のそれぞれに対して、前記対向燃焼ボイラ内の燃焼ガスの流れに及ぼす影響の度合いに応じた影響度ゲインを割り付けると共に、運転中に使用しているバーナ列に割り付けされた前記影響度ゲインに基づいて算出した数値指標により燃焼ガスの流れのパターンを指標化する制御部を設け、この制御部は、燃焼ガスの流れのパターンを表す前記数値指標に前記対向燃焼ボイラ内の負荷状況を対応させて、前記対向燃焼ボイラにおける缶前壁及び缶後壁の各二段燃焼用ポートを通して該対向燃焼ボイラ内に供給する二次空気の量を適正化するべく前記缶前側ダンパ及び缶後側ダンパを作動させる構成としたことを特徴としており、この対向燃焼ボイラ装置の構成を前述した従来の課題を解決するための手段としている。   In order to achieve the above-mentioned object, the invention according to claim 1 of the present invention is a burner formed by arranging a plurality of burner rows in the vertical direction in which a plurality of burners to which fuel and primary air are supplied are arranged in the horizontal direction. A can front wall and a can rear wall which are opposed to each other and have a two-stage combustion port which is located above the burner group and passes secondary air supplied by bypassing the burner group. The counter-combustion boiler provided, and the can front damper and the can rear side for adjusting the amount of secondary air supplied into the counter combustion boiler through the respective two-stage combustion ports on the front and rear walls of the counter combustion boiler In the opposed combustion boiler apparatus provided with the damper, the influence on the flow of the combustion gas in the opposed combustion boiler with respect to each of the plurality of burner rows in each burner group arranged on the front wall and the rear wall of the can. A control unit is provided that assigns an influence gain according to the balance and indexes the combustion gas flow pattern by a numerical index calculated based on the influence gain assigned to the burner row used during operation. The control unit associates the numerical index representing the combustion gas flow pattern with the load status in the opposed combustion boiler, and each of the two-stage combustion ports on the front and rear walls of the can in the opposed combustion boiler. The can front side damper and the can rear side damper are actuated to optimize the amount of secondary air supplied into the counter combustion boiler through the counter combustion boiler device. It is a means for solving the conventional problems.

また、本発明の請求項2に係る対向燃焼ボイラ装置において、前記制御部は、前記対向燃焼ボイラ内が高負荷である状況及び低負荷である状況の各状況下において、燃焼ガスの流れのパターンを表す前記数値指標の大小に応じて前記対向燃焼ボイラにおける缶前壁及び缶後壁の各二段燃焼用ポートを通して該対向燃焼ボイラ内に供給する二次空気の量を適正化するべく前記缶前側ダンパ及び缶後側ダンパをそれぞれ作動させる二種類の制御プログラムを有している構成としており、本発明の請求項3に係る対向燃焼ボイラ装置では、前記制御部において、二種類の制御プログラムは、前記燃焼ガスの流れのパターンを表す前記数値指標の大小に応じて自動的に切り換わる構成としている。   Further, in the opposed combustion boiler apparatus according to claim 2 of the present invention, the control unit is configured such that the flow pattern of the combustion gas in each of a situation where the inside of the opposed combustion boiler is a high load and a situation where the load is low. In order to optimize the amount of secondary air supplied into the opposing combustion boiler through the two-stage combustion ports on the front wall and rear wall of the opposing combustion boiler in accordance with the magnitude of the numerical index representing In the counter-combustion boiler apparatus according to claim 3 of the present invention, the control unit includes two types of control programs for operating the front damper and the can rear damper, respectively. In addition, it is configured to automatically switch according to the magnitude of the numerical index representing the combustion gas flow pattern.

一方、本発明の請求項4に係る発明は、燃料及び一次空気が供給されるバーナを水平方向に複数並べて成るバーナ列を垂直方向に複数段配置して形成したバーナ群を有していると共に、前記バーナ群の上方に位置して該バーナ群をバイパスして供給される二次空気を通す複数の二段燃焼用ポートを有する互いに対向する缶前壁及び缶後壁を具備した対向燃焼ボイラを備えた対向燃焼ボイラ装置の運転方法であって、前記缶前壁及び缶後壁に配置した各バーナ群における複数段のバーナ列のそれぞれに対して、前記対向燃焼ボイラ内の燃焼ガスの流れに及ぼす影響の度合いに応じた影響度ゲインを割り付けると共に、運転中に使用しているバーナ列に割り付けされた前記影響度ゲインに基づいて算出した数値指標により燃焼ガスの流れのパターンを指標化し、この燃焼ガスの流れのパターンを表す前記数値指標に前記対向燃焼ボイラ内の負荷状況を当てはめて、前記対向燃焼ボイラにおける缶前壁及び缶後壁の各二段燃焼用ポートを通して該対向燃焼ボイラ内に供給する二次空気の量を適正化する構成としたことを特徴としており、この対向燃焼ボイラ装置の運転方法の構成を前述した従来の課題を解決するための手段としている。   On the other hand, the invention according to claim 4 of the present invention has a burner group formed by arranging a plurality of burner rows in a vertical direction by arranging a plurality of burners to which fuel and primary air are supplied in a horizontal direction. An opposed combustion boiler having a plurality of two-stage combustion ports positioned above the burner group and through which secondary air supplied by bypassing the burner group is passed, the front and back walls of the can facing each other A combustion gas flow in the opposed combustion boiler for each of a plurality of burner rows in each burner group arranged on the front wall of the can and the rear wall of the can An influence gain according to the degree of influence on the combustion gas is assigned, and the flow pattern of the combustion gas is determined by a numerical index calculated based on the influence gain assigned to the burner train used during operation. And the load condition in the opposed combustion boiler is applied to the numerical index representing the flow pattern of the combustion gas, and the two-stage combustion ports on the front wall and the rear wall of the can in the opposed combustion boiler are used. The configuration is such that the amount of secondary air supplied into the opposed combustion boiler is optimized, and the configuration of the operation method of the opposed combustion boiler device is a means for solving the above-described conventional problems.

また、本発明の請求項5に係る対向燃焼ボイラ装置の運転方法において、前記燃焼ガスの流れのパターンを表す数値指標が所定値以下の大きさの場合には、一方の制御プログラムを用いて、前記対向燃焼ボイラにおける缶前壁及び缶後壁の各二段燃焼用ポートを通して該対向燃焼ボイラ内に供給する二次空気の量を適正化すると共に、前記燃焼ガスの流れのパターンを表す数値指標が所定値を越える場合には、他方の制御プログラムを用いて、前記対向燃焼ボイラにおける缶前壁及び缶後壁の各二段燃焼用ポートを通して該対向燃焼ボイラ内に供給する二次空気の量を適正化する構成とし、本発明の請求項6に係る対向燃焼ボイラ装置の運転方法では、前記一方の制御プログラム及び他方の制御プログラムが、前記燃焼ガスの流れのパターンを表す数値指標の大小に応じて自動的に切り換わる構成としている。   Moreover, in the operation method of the opposed combustion boiler apparatus according to claim 5 of the present invention, when the numerical index representing the combustion gas flow pattern is a predetermined value or less, using one control program, A numerical index representing the flow pattern of the combustion gas while optimizing the amount of secondary air supplied into the opposing combustion boiler through the respective two-stage combustion ports on the front and rear walls of the opposed combustion boiler Is greater than a predetermined value, the amount of secondary air supplied into the opposing combustion boiler through the respective two-stage combustion ports on the front wall and rear wall of the opposing combustion boiler using the other control program. In the operation method of the opposed combustion boiler apparatus according to claim 6 of the present invention, the one control program and the other control program are configured to generate a flow pattern of the combustion gas. It has a configuration which switches automatically in accordance with the magnitude of the numerical index representing.

ここで、上記した対向燃焼ボイラ装置では、図3(a)に示す対向燃焼ボイラ10の上方における燃焼ガスGの流れの左右偏差を、図3(b)に示すように、対向燃焼ボイラ10における缶前壁11及び缶後壁12の各二段燃焼用ポート5において、その左側及び右側で二次空気の供給量の差をもたせることで、対向燃焼ボイラ10内における燃焼ガスGの流れの状態を左右方向で平均化する。   Here, in the above-described counter-fired boiler apparatus, the left-right deviation of the flow of the combustion gas G above the counter-fired boiler 10 shown in FIG. In each of the two-stage combustion ports 5 on the can front wall 11 and the can rear wall 12, the flow state of the combustion gas G in the opposed combustion boiler 10 is provided by providing a difference in the supply amount of the secondary air on the left side and the right side thereof. Are averaged in the horizontal direction.

この際、対向燃焼ボイラ10における缶前壁11及び缶後壁12の各バーナ群の複数のバーナ列のうちの使用するバーナ列の組み合せによって、対向燃焼ボイラ10内における燃焼ガスGの流れの状態が変化するので、対向燃焼ボイラ10内の燃焼ガス量や空気過剰率などの負荷の状況を考慮して、缶前壁11及び缶後壁12の各二段燃焼用ポート5を介してそれぞれ対向燃焼ボイラ10内に供給する二次空気の流量を適正に配分する必要が生じる。   At this time, the state of the flow of the combustion gas G in the opposed combustion boiler 10 by combining the burner rows to be used among the plurality of burner rows of each burner group of the can front wall 11 and the can rear wall 12 in the opposed combustion boiler 10. Therefore, in consideration of the load conditions such as the amount of combustion gas in the opposed combustion boiler 10 and the excess air ratio, the opposed combustion boilers 10 face each other through the two-stage combustion ports 5 on the front wall 11 and the rear wall 12 of the can. It becomes necessary to appropriately distribute the flow rate of the secondary air supplied into the combustion boiler 10.

このように、缶前壁11及び缶後壁12の各二段燃焼用ポート5から対向燃焼ボイラ10内に供給する二次空気の流量を適正に配分するために、本発明に係る対向燃焼ボイラ装置及びその運転方法では、まず、図4に示すように、三段のバーナ列4を缶前壁11に有していると共に二段のバーナ列4を缶後壁12に有している対向燃焼ボイラ10の場合において、各バーナ列4に対して以下のように影響度ゲインを割り付けた。   Thus, in order to appropriately distribute the flow rate of the secondary air supplied from the respective two-stage combustion ports 5 of the can front wall 11 and the can rear wall 12 into the counter combustion boiler 10, the counter combustion boiler according to the present invention is used. In the apparatus and its operating method, first, as shown in FIG. 4, the three-stage burner row 4 is provided on the can front wall 11 and the two-stage burner row 4 is provided on the can rear wall 12. In the case of the combustion boiler 10, an influence gain is assigned to each burner row 4 as follows.

すなわち、缶前壁11の上段のバーナ列4U及び缶後壁12の二つのバーナ列4U,4Lは、対向燃焼ボイラ10内における燃焼ガスの流れに及ぼす影響が大きいので、これらのバーナ列4には影響度ゲイン(2)をそれぞれ割り付け、一方、缶前壁11の中段及び下段の各バーナ列4M,4Lは、缶前壁11の上段のバーナ列4U及び缶後壁12の二つのバーナ列4U,4Lに比べて対向燃焼ボイラ10内における燃焼ガスの流れに及ぼす影響が大きくないので、これらのバーナ列4には影響度ゲイン(1)をそれぞれ割り付け、いずれも運転していないときは影響度ゲイン(0)として扱うこととした。   That is, the upper burner row 4U of the can front wall 11 and the two burner rows 4U and 4L of the can rear wall 12 have a great influence on the flow of combustion gas in the opposed combustion boiler 10, and therefore the burner row 4 Assigns an influence gain (2), respectively, while the middle and lower burner rows 4M, 4L of the can front wall 11 are two burner rows of the upper burner row 4U and the can rear wall 12 of the can front wall 11, respectively. Since the influence on the flow of the combustion gas in the opposed combustion boiler 10 is not large compared to 4U and 4L, an influence gain (1) is assigned to each of these burner rows 4, and the influence is exerted when neither of them is operating. It was decided to treat it as a degree gain (0).

そして、このようにして対向燃焼ボイラ10の各バーナ列4に影響度ゲインを割り付けたうえで、式(1)に示すように、運転中における缶前壁11のバーナ列4の合計影響度ゲインFから缶後壁12のバーナ列4の合計影響度ゲインRを減じて得た値Npを燃焼ガスの流れのパターンを指標化する数値指標とし、この数値指標を大小に分ける所定値を(0)と規定した。   Then, after assigning the influence gain to each burner row 4 of the opposed combustion boiler 10 in this way, as shown in the equation (1), the total influence gain of the burner row 4 of the can front wall 11 during operation is shown. The value Np obtained by subtracting the total influence gain R of the burner row 4 of the can rear wall 12 from F is used as a numerical index for indexing the combustion gas flow pattern, and a predetermined value for dividing this numerical index into large and small (0 ).

F−R=Np (式1)
本発明に係る対向燃焼ボイラ装置及びその運転方法では、上記のようにして得た燃焼ガス流のパターンの数値指標が所定値以下の大きさの場合において、すなわち、Np≦0の場合において、低負荷状況下では、図5に示すように、燃焼ガスGが大きく缶前壁11側に偏流するので、図6のグラフに示す制御プログラムを用いて、二次空気の量を缶前壁11の二段燃焼用ポート5側にバイアスさせ、高負荷状況下では、図7に示すように、燃焼ガスが缶後壁12側に偏流して缶後壁12側の酸素濃度が低くなるので、二次空気の量を缶後壁12の二段燃焼用ポート5側にバイアスさせるべく制御し、一方、燃焼ガス流のパターンの数値指標が所定値を越える場合において、すなわち、Np>0の場合において、低負荷状況下では、図8に示すように、燃焼ガスが大きく缶後壁12側に偏流するので、図9のグラフに示す制御プログラムを用いて、二次空気の量を缶後壁12側の二段燃焼用ポート5側にバイアスさせ、高負荷状況下では、図10に示すように、燃焼ガスが缶前壁11側に偏流して缶前壁11側の酸素濃度が低くなるので、二次空気の量を缶前壁11の二段燃焼用ポート5側にバイアスさせるべく制御する。
FR = Np (Formula 1)
In the opposed combustion boiler apparatus and the operation method thereof according to the present invention, when the numerical index of the combustion gas flow pattern obtained as described above is not larger than a predetermined value, that is, when Np ≦ 0, it is low. Under the load condition, as shown in FIG. 5, the combustion gas G is largely drifted toward the can front wall 11, and therefore the amount of secondary air is reduced on the can front wall 11 using the control program shown in the graph of FIG. 6. As shown in FIG. 7, the combustion gas drifts toward the can rear wall 12 side and the oxygen concentration on the can rear wall 12 side becomes lower as shown in FIG. The amount of secondary air is controlled to be biased toward the second stage combustion port 5 side of the rear wall 12 of the can. On the other hand, when the numerical index of the combustion gas flow pattern exceeds a predetermined value, that is, when Np> 0 Under low load condition, shown in Fig.8 In this way, the combustion gas is greatly drifted to the can rear wall 12 side, so the amount of secondary air is biased to the two-stage combustion port 5 side on the can rear wall 12 side using the control program shown in the graph of FIG. Under high load conditions, as shown in FIG. 10, the combustion gas drifts to the can front wall 11 side and the oxygen concentration on the can front wall 11 side becomes low, so the amount of secondary air is reduced on the can front wall 11 side. Control is performed so as to bias the second combustion port 5 side.

本発明の請求項1に係る対向燃焼ボイラ装置及び請求項4に係る対向燃焼ボイラ装置の運転方法では、上記した構成としているので、対向燃焼ボイラの高負荷状況及び低負荷状況のいずれの状況下においても、対向燃焼ボイラ内における燃焼ガスの流れ状態を修正して、常に安定した状態で運転させることが可能であるという非常に優れた効果がもたらされる。   In the operation method of the opposed combustion boiler device according to claim 1 and the opposed combustion boiler device according to claim 4 of the present invention, the above-described configuration is adopted. Therefore, under either the high load condition or the low load condition of the opposed combustion boiler, In this case, the flow state of the combustion gas in the opposed combustion boiler is corrected, so that it is possible to operate in a stable state at all times.

また、本発明の請求項2に係る対向燃焼ボイラ装置及び請求項5に係る対向燃焼ボイラ装置の運転方法では、上記した構成としたから、対向燃焼ボイラの低負荷状況下における燃焼ガス流の過度な偏流を適正なものとすることができると共に、対向燃焼ボイラの高負荷状況下における燃焼用酸素のボイラ内への導入を適正なものとすることができ、本発明の請求項3に係る対向燃焼ボイラ装置及び請求項6に係る対向燃焼ボイラ装置の運転方法では、上記した構成としたから、幅広い運転バーナパターンに対応可能であるという非常に優れた効果がもたらされる。   Further, since the operation method of the opposed combustion boiler apparatus according to claim 2 and the opposed combustion boiler apparatus according to claim 5 of the present invention is configured as described above, excessive combustion gas flow under a low load condition of the opposed combustion boiler is provided. Therefore, it is possible to appropriately introduce the combustion oxygen into the boiler under the high load condition of the opposed combustion boiler. In the operation method of the combustion boiler device and the opposed combustion boiler device according to the sixth aspect, since the above-described configuration is adopted, a very excellent effect that it is possible to cope with a wide range of operation burner patterns is brought about.

以下、本発明に係る対向燃焼ボイラ装置及びその運転方法を図面に基づいて説明する。
図1〜図10は、本発明に係る対向燃焼ボイラ装置の一実施形態を示しており、この実施形態では、対向燃焼ボイラ装置が石炭焚きボイラ装置である場合を例に挙げて説明する。
図1及び図2に示すように、この石炭焚きボイラ装置1は、互いに対向する缶前壁11及び缶後壁12を有していると共に上部に過熱器13及び再熱器14を配置した全体で箱型を成す石炭焚きボイラ(送電能力70万kW)10を備えている。
Hereinafter, an opposed combustion boiler apparatus and an operation method thereof according to the present invention will be described with reference to the drawings.
FIGS. 1-10 has shown one Embodiment of the opposed combustion boiler apparatus which concerns on this invention, In this embodiment, the case where an opposed combustion boiler apparatus is a coal fired boiler apparatus is mentioned as an example, and is demonstrated.
As shown in FIGS. 1 and 2, the coal fired boiler apparatus 1 has a can front wall 11 and a can rear wall 12 facing each other, and a superheater 13 and a reheater 14 arranged at the top. And a coal-fired boiler (power transmission capacity 700,000 kW) 10 in the form of a box.

この石炭焚きボイラ10の缶前壁11には、微粉炭及び一次空気並びに二次空気が制御ダンパ2を介して供給されるバーナ3を水平方向に複数並べて成るバーナ列4を垂直方向に三段配置して形成したバーナ群が設けてあると共に、缶後壁12には、同じく微粉炭及び一次空気並びに二次空気が制御ダンパ2を介して供給されるバーナ3を水平方向に複数並べて成るバーナ列4を垂直方向に二段配置して形成したバーナ群が設けてあり(図1ではバーナ装着孔3aのみ示している)、缶前壁11及び缶後壁12には、各バーナ群の上方において水平方向に複数並べて配置されて該バーナ群をバイパスして供給される二次空気を通す二段燃焼用ポート5が配置してあって、両端に位置する二段燃焼用ポート5をサイドポート5Aとしている。   On the can front wall 11 of the coal-fired boiler 10, there are three vertical stages of burner rows 4 in which a plurality of burners 3 to which pulverized coal, primary air, and secondary air are supplied via the control damper 2 are arranged in the horizontal direction. A burner group which is formed by being arranged is provided, and on the rear wall 12 of the can, a burner in which a plurality of burners 3 to which pulverized coal, primary air and secondary air are supplied via the control damper 2 are arranged in the horizontal direction is also provided. Burner groups formed by arranging the rows 4 in two stages in the vertical direction are provided (only the burner mounting hole 3a is shown in FIG. 1), and the can front wall 11 and the can rear wall 12 are provided above the respective burner groups. , Two-stage combustion ports 5 that are arranged side by side in the horizontal direction and pass secondary air supplied by bypassing the burner group are arranged, and the two-stage combustion ports 5 located at both ends are provided as side ports. 5A.

また、この石炭焚きボイラ装置1は、石炭焚きボイラ10における缶前壁11及び缶後壁12の各二段燃焼用ポート5を通して該石炭焚きボイラ10内に供給する二次空気の量を調節する缶前側ダンパ6及び缶後側ダンパ7を備えていると共に、缶前壁11及び缶後壁12の各二段燃焼用ポート5を通して該石炭焚きボイラ10内に供給する二次空気の量を適正化するべく缶前側ダンパ6及び缶後側ダンパ7を作動させる制御部20を備えている。   Further, the coal fired boiler apparatus 1 adjusts the amount of secondary air supplied into the coal fired boiler 10 through the two-stage combustion ports 5 of the can front wall 11 and the can rear wall 12 in the coal fired boiler 10. A can front side damper 6 and a can rear side damper 7 are provided, and the amount of secondary air supplied into the coal-fired boiler 10 through the respective two-stage combustion ports 5 on the can front wall 11 and the can rear wall 12 is appropriate. In order to achieve this, a control unit 20 for operating the front can damper 6 and the rear can damper 7 is provided.

この場合、制御部20は、石炭焚きボイラ10における缶前壁11及び缶後壁12の各二段燃焼用ポート5において、図3(b)に示すように、その左側及び右側で二次空気の供給量の差をもたせることで、石炭焚きボイラ10内における燃焼ガスGの流れの状態を左右方向で平均化するように制御しているほか、缶前壁11及び缶後壁12の各バーナ群の複数のバーナ列4のうちの使用するバーナ列4の組み合せに応じて、缶前壁11及び缶後壁12の各二段燃焼用ポート5から石炭焚きボイラ10内に供給する二次空気の流量を適正に配分するように制御している。   In this case, as shown in FIG. 3 (b), the control unit 20 uses the secondary air on the left and right sides of each of the two-stage combustion ports 5 on the can front wall 11 and the can rear wall 12 in the coal burning boiler 10. In addition to controlling the flow state of the combustion gas G in the coal-fired boiler 10 to be averaged in the left and right directions, the burners on the front wall 11 and the rear wall 12 of the can Secondary air supplied into the coal-fired boiler 10 from each of the two-stage combustion ports 5 on the can front wall 11 and the can rear wall 12 according to the combination of the burner rows 4 to be used among the plurality of burner rows 4 in the group. It is controlled so that the flow rate is properly distributed.

具体的には、図4に示すように、缶前壁11の上段のバーナ列4U及び缶後壁12の二つのバーナ列4U,4Lには影響度ゲイン(2)をそれぞれ割り付け、一方、缶前壁11の中段及び下段の各バーナ列4M,4Lには影響度ゲイン(1)をそれぞれ割り付け、いずれも運転していないときは影響度ゲイン(0)として扱うこととしたうえで、上記した式(1)に示すように、運転中における缶前壁11のバーナ列4の合計影響度ゲインFから缶後壁12のバーナ列4の合計影響度ゲインRを減じて得た値Npを燃焼ガスの流れのパターンを指標化する数値指標とし、この数値指標を大小に分ける所定値を(0)と規定している。   Specifically, as shown in FIG. 4, an influence gain (2) is assigned to the upper burner row 4U of the can front wall 11 and the two burner rows 4U and 4L of the can rear wall 12, respectively. An influence gain (1) is assigned to each of the middle and lower burner rows 4M and 4L of the front wall 11 and is treated as an influence gain (0) when neither is operating. As shown in the equation (1), the value Np obtained by subtracting the total influence gain R of the burner row 4 of the can rear wall 12 from the total influence gain F of the burner row 4 of the can front wall 11 during operation is burned. A numerical index for indexing the gas flow pattern is defined, and a predetermined value that divides the numerical index into large and small is defined as (0).

そして、この実施形態では、燃焼ガス流のパターンの数値指標が所定値以下の大きさの場合において、すなわち、Np≦0の場合において、低負荷状況下では、図5に示すように、燃焼ガスGが大きく缶前壁11側に偏流するので、図6のグラフに示す制御プログラムを用いて、二次空気の量を缶前壁11の二段燃焼用ポート5側にバイアスさせ、高負荷状況下では、図7に示すように、燃焼ガスGが缶後壁12側に偏流して缶後壁12側の酸素濃度が低くなるので、二次空気の量を缶後壁12の二段燃焼用ポート5側にバイアスさせるべく制御し、一方、燃焼ガス流のパターンの数値指標が所定値を越える場合において、すなわち、Np>0の場合において、低負荷状況下では、図8に示すように、燃焼ガスGが大きく缶後壁12側に偏流するので、図9のグラフに示す制御プログラムを用いて、二次空気の量を缶後壁12の二段燃焼用ポート5側にバイアスさせ、高負荷状況下では、図10に示すように、燃焼ガスGが缶前壁11側に偏流して缶前壁11側の酸素濃度が低くなるので、二次空気の量を缶前壁11の二段燃焼用ポート5側にバイアスさせるべく制御するようにしている。   In this embodiment, when the numerical index of the combustion gas flow pattern is not larger than a predetermined value, that is, when Np ≦ 0, under the low load condition, as shown in FIG. Since G is large and drifts toward the can front wall 11 side, the amount of secondary air is biased toward the two-stage combustion port 5 side of the can front wall 11 using the control program shown in the graph of FIG. Below, as shown in FIG. 7, since the combustion gas G drifts to the can rear wall 12 side and the oxygen concentration on the can rear wall 12 side becomes low, the amount of secondary air is reduced by two-stage combustion on the can rear wall 12. When the numerical index of the combustion gas flow pattern exceeds a predetermined value, that is, when Np> 0, under a low load condition, as shown in FIG. , Combustion gas G is large and drifts to the rear wall 12 side Therefore, using the control program shown in the graph of FIG. 9, the amount of secondary air is biased to the second combustion port 5 side of the can rear wall 12, and under a high load condition, as shown in FIG. Since the combustion gas G drifts to the can front wall 11 side and the oxygen concentration on the can front wall 11 side becomes low, control is performed to bias the amount of secondary air to the two-stage combustion port 5 side of the can front wall 11. I am doing so.

なお、制御部20において、図6及び図9に示した二種類の制御プログラムは、燃焼ガスの流れのパターンを表す数値指標の大小に応じて自動的に切り換わるようになっている。
[実施例1]
次に、上記した石炭焚きボイラ装置1の運転方法の一実施例を説明する。
In the control unit 20, the two types of control programs shown in FIGS. 6 and 9 are automatically switched according to the magnitude of the numerical index representing the combustion gas flow pattern.
[Example 1]
Next, an embodiment of a method for operating the coal fired boiler apparatus 1 will be described.

図11における破線は、石炭焚きボイラ装置1の石炭焚きボイラ10における缶前壁11の上段及び中段のバーナ列4U,4Mと、缶後壁12の下段のバーナ列4Lを使用している際に、石炭焚きボイラ10内が低負荷の状況にある場合の不安定な燃焼ガスGの流れを示している。
この状況において、制御部20では、運転中の缶前壁11のバーナ列4U,4M及び缶後壁12のバーナ列4Lに上記した要領で影響度ゲイン(2),(1),(2)をそれぞれ割り付けしたうえで、式(1)を用いて数値指標Np=1>0を算出し、この結果に基づいて、図9のグラフに示す制御プログラムを自動的に採用して、二次空気の量を缶後壁12の二段燃焼用ポート5側にバイアスさせるべく、図12に示すように、缶前側ダンパ6の開度を減らすと共に缶後側ダンパ7の開度を増加させる。
The broken lines in FIG. 11 indicate when the upper and middle burner rows 4U and 4M of the can front wall 11 and the lower burner row 4L of the can rear wall 12 in the coal burning boiler 10 of the coal burning boiler apparatus 1 are used. The flow of unstable combustion gas G when the inside of the coal-fired boiler 10 is in a low load state is shown.
In this situation, the control unit 20 affects the burner rows 4U and 4M of the can front wall 11 and the burner row 4L of the can rear wall 12 in operation in the manner described above in the influence gains (2), (1), (2). Are assigned, and numerical index Np = 1> 0 is calculated using equation (1). Based on this result, the control program shown in the graph of FIG. As shown in FIG. 12, the opening degree of the can front side damper 6 is reduced and the opening degree of the can rear side damper 7 is increased, as shown in FIG.

このように、二次空気の量を缶後壁12の二段燃焼用ポート5側にバイアスさせると、図11に太線で示すように、燃焼ガスGの流れが修正され、図13及び図14に示すように、NOx変動及び再熱器14の出口温度変動がいずれも安定することとなる。
[実施例2]
図15(a)は、石炭焚きボイラ装置1の石炭焚きボイラ10における缶前壁11の上段,中段及び下段のバーナ列4U,4M,4Lを使用している場合で且つ石炭焚きボイラ10内が低負荷の状況にある場合において、燃焼ガスGの流れが缶後壁12側に偏流して、石炭焚きボイラ10内での滞留時間が増大することにより、燃焼ガスGの流れの缶前壁11側にスペースSが生じて不安定傾向になった状況を示している。
In this way, when the amount of secondary air is biased toward the second-stage combustion port 5 side of the can rear wall 12, the flow of the combustion gas G is corrected as shown by the thick line in FIG. As shown in FIG. 5, both NOx fluctuation and outlet temperature fluctuation of the reheater 14 are stabilized.
[Example 2]
FIG. 15A shows the case where the upper, middle and lower burner rows 4U, 4M and 4L of the can front wall 11 in the coal burning boiler 10 of the coal burning boiler apparatus 1 are used, and the inside of the coal burning boiler 10 is inside. In a low load situation, the flow of the combustion gas G drifts toward the rear wall 12 of the can, and the residence time in the coal-fired boiler 10 increases, so that the front wall 11 of the flow of the combustion gas G This shows a situation in which a space S is formed on the side and the tendency becomes unstable.

この状況において、制御部20では、図15(b)に示すように、運転中の缶前壁11のバーナ列4U,4M,4Lに上記した要領で影響度ゲイン(2),(1),(1)をそれぞれ割り付けしたうえで、式(1)を用いて数値指標Np=4>0を算出し、この結果に基づいて、図9のグラフに示す制御プログラムを自動的に採用して、二次空気の量を缶後壁12の二段燃焼用ポート5側にバイアスさせるべく、缶前側ダンパ6の開度を減らすと共に缶後側ダンパ7の開度を増加させる。   In this situation, as shown in FIG. 15 (b), in the control unit 20, the influence gains (2), (1), After assigning each (1), the numerical index Np = 4> 0 is calculated using the equation (1), and based on this result, the control program shown in the graph of FIG. 9 is automatically adopted, In order to bias the amount of secondary air toward the second combustion port 5 side of the can rear wall 12, the opening of the can front side damper 6 is reduced and the opening of the can rear side damper 7 is increased.

このように、二次空気の量を缶後壁12の二段燃焼用ポート5側にバイアスさせると、燃焼ガスGの流れが修正され、NOx変動及び再熱器14の出口温度変動がいずれも安定することとなる。
[実施例3]
図16(a)は、石炭焚きボイラ装置1の石炭焚きボイラ10における缶前壁11の下段のバーナ列4L及び缶後壁12の上下段のバーナ列4U,4Lを使用している場合で且つ石炭焚きボイラ10内が低負荷の状況にある場合において、燃焼ガスGの流れが缶前壁11側に偏流して、石炭焚きボイラ10内での滞留時間が減少することにより、燃焼ガスGの流れの缶後壁12側にスペースSが生じて不安定傾向になった状況を示している。
In this way, when the amount of secondary air is biased toward the second-stage combustion port 5 side of the can rear wall 12, the flow of the combustion gas G is corrected, and both NOx fluctuations and outlet temperature fluctuations of the reheater 14 are both changed. It will be stable.
[Example 3]
FIG. 16A shows a case where the lower burner row 4L of the can front wall 11 and the upper and lower burner rows 4U and 4L of the can rear wall 12 in the coal burning boiler 10 of the coal burning boiler apparatus 1 are used. When the inside of the coal-fired boiler 10 is in a low load state, the flow of the combustion gas G drifts to the can front wall 11 side, and the residence time in the coal-fired boiler 10 is reduced. This shows a situation in which a space S is generated on the side of the rear wall 12 of the flow and the tendency becomes unstable.

この状況において、制御部20では、図16(b)に示すように、運転中の缶前壁11のバーナ列4L及び缶後壁12のバーナ列4U,4Lに上記した要領で影響度ゲイン(1),(2),(2)をそれぞれ割り付けしたうえで、式(1)を用いて数値指標Np=−3≦0を算出し、この結果に基づいて、図6のグラフに示す制御プログラムを自動的に採用して、二次空気の量を缶前壁11の二段燃焼用ポート5側にバイアスさせるべく、缶前側ダンパ6の開度を増加させると共に缶後側ダンパ7の開度を減少させる。   In this situation, as shown in FIG. 16 (b), the control unit 20 affects the burner row 4L of the can front wall 11 and the burner rows 4U and 4L of the can rear wall 12 in the above-described manner. After assigning 1), (2), and (2), the numerical index Np = −3 ≦ 0 is calculated using the equation (1). Based on this result, the control program shown in the graph of FIG. In order to bias the amount of secondary air to the second combustion port 5 side of the can front wall 11, the opening of the can front damper 6 and the opening of the can rear damper 7 are increased. Decrease.

このように、二次空気の量を缶前壁11の二段燃焼用ポート5側にバイアスさせると、燃焼ガスGの流れが修正され、NOx変動及び再熱器14の出口温度変動がいずれも安定することとなる。
[実施例4]
図17(a)は、石炭焚きボイラ装置1の石炭焚きボイラ10における缶前壁11の上段,中段及び下段のバーナ列4U,4M,4Lと、缶後壁12の下段のバーナ列4Lを使用している場合で且つ石炭焚きボイラ10内が高負荷の状況にある場合において、燃焼ガスGの流れが缶前壁11側に偏流して、石炭焚きボイラ10上方における缶前壁11側の酸素濃度が低くなっている状況を示している。
In this way, when the amount of secondary air is biased toward the second stage combustion port 5 side of the can front wall 11, the flow of the combustion gas G is corrected, and both NOx fluctuations and outlet temperature fluctuations of the reheater 14 are corrected. It will be stable.
[Example 4]
FIG. 17 (a) uses the upper, middle and lower burner rows 4U, 4M, 4L of the can front wall 11 and the lower burner row 4L of the can rear wall 12 in the coal fired boiler 10 of the coal fired boiler apparatus 1. In the case where the coal burning boiler 10 is in a high load state, the flow of the combustion gas G drifts to the can front wall 11 side, and oxygen on the can front wall 11 side above the coal burning boiler 10 It shows a situation where the concentration is low.

この状況において、制御部20では、図17(b)に示すように、運転中の缶前壁11のバーナ列4U,4M,4L及び缶後壁12のバーナ列4Lに上記した要領で影響度ゲイン(2),(1),(1),(2)をそれぞれ割り付けしたうえで、式(1)を用いて数値指標Np=2>0を算出し、この結果に基づいて、図9のグラフに示す制御プログラムを自動的に採用して、二次空気の量を缶前壁11の二段燃焼用ポート5側にバイアスさせるべく、缶前側ダンパ6の開度を増加させると共に缶後側ダンパ7の開度を減少させる。   In this situation, the control unit 20 affects the burner rows 4U, 4M, 4L of the can front wall 11 and the burner row 4L of the can rear wall 12 in the manner described above, as shown in FIG. After assigning the gains (2), (1), (1), and (2), the numerical index Np = 2> 0 is calculated using the equation (1). The control program shown in the graph is automatically adopted to increase the opening of the front damper 6 and the rear side of the can in order to bias the amount of secondary air toward the second combustion port 5 side of the front wall 11 of the can. The opening degree of the damper 7 is decreased.

このように、二次空気の量を缶前壁11の二段燃焼用ポート5側にバイアスさせて燃焼に必要な酸素を供給補正すると、石炭焚きボイラ10の出口における燃焼ガスGの流れが安定することとなる。
[実施例5]
図18(a)は、石炭焚きボイラ装置1の石炭焚きボイラ10における缶前壁11の中段及び下段のバーナ列4M,4Lと、缶後壁12の上下段のバーナ列4U,4Lを使用している場合で且つ石炭焚きボイラ10内が高負荷の状況にある場合において、燃焼ガスGの流れが缶後壁12側に偏流して、石炭焚きボイラ10上方における缶後壁12側の酸素濃度が低くなっている状況を示している。
In this way, when the amount of secondary air is biased toward the second stage combustion port 5 side of the can front wall 11 to supply and correct oxygen necessary for combustion, the flow of the combustion gas G at the outlet of the coal-fired boiler 10 is stabilized. Will be.
[Example 5]
18 (a) uses the middle and lower burner rows 4M and 4L of the can front wall 11 and the upper and lower burner rows 4U and 4L of the can rear wall 12 in the coal fired boiler 10 of the coal fired boiler apparatus 1. FIG. When the inside of the coal-fired boiler 10 is in a high load state, the flow of the combustion gas G drifts to the can rear wall 12 side, and the oxygen concentration on the can rear wall 12 side above the coal fired boiler 10 Indicates a situation where the value is low.

この状況において、制御部20では、図18(b)に示すように、運転中の缶前壁11のバーナ列4M,4L及び缶後壁12のバーナ列4U,4Lに上記した要領で影響度ゲイン(1),(1),(2),(2)をそれぞれ割り付けしたうえで、式(1)を用いて数値指標Np=−2≦0を算出し、この結果に基づいて、図6のグラフに示す制御プログラムを自動的に採用して、二次空気の量を缶後壁12の二段燃焼用ポート5側にバイアスさせるべく、缶前側ダンパ6の開度を減らすと共に缶後側ダンパ7の開度を増加させる。   In this situation, as shown in FIG. 18B, the control unit 20 affects the burner rows 4M and 4L of the can front wall 11 and the burner rows 4U and 4L of the can rear wall 12 in the manner described above. After assigning the gains (1), (1), (2), and (2), the numerical index Np = −2 ≦ 0 is calculated using the equation (1), and based on this result, FIG. The control program shown in the graph is automatically adopted to reduce the opening of the front damper 6 and the rear side of the can in order to bias the amount of secondary air to the second combustion port 5 side of the rear wall 12 of the can. The opening degree of the damper 7 is increased.

このように、二次空気の量を缶後壁12の二段燃焼用ポート5側にバイアスさせて燃焼に必要な酸素を供給補正すると、石炭焚きボイラ10の出口における燃焼ガスGの流れが安定することとなる。
上記したように、この実施形態による石炭焚きボイラ装置1では、石炭焚きボイラ10の高負荷状況及び低負荷状況のいずれの状況下においても、石炭焚きボイラ10内における燃焼ガスGの流れ状態を修正して、常に安定した状態で運転させ得ることとなる。
As described above, when the amount of secondary air is biased toward the second combustion port 5 side of the rear wall 12 of the can to correct supply of oxygen necessary for combustion, the flow of the combustion gas G at the outlet of the coal-fired boiler 10 is stabilized. Will be.
As described above, in the coal fired boiler apparatus 1 according to this embodiment, the flow state of the combustion gas G in the coal fired boiler 10 is corrected regardless of whether the coal fired boiler 10 is in a high load state or a low load state. Thus, the vehicle can always be operated in a stable state.

本発明に係る対向燃焼ボイラ装置の一実施形態を示す対向燃焼ボイラである石炭焚きボイラの斜視説明図である。It is a perspective explanatory view of a coal burning boiler which is an opposed combustion boiler showing one embodiment of an opposed combustion boiler device concerning the present invention. 図1における対向燃焼ボイラ装置である石炭焚きボイラ装置の空気供給系統及び制御系統を示す系統説明図である。It is system | strain explanatory drawing which shows the air supply system and control system of a coal fired boiler apparatus which is an opposing combustion boiler apparatus in FIG. 図1における石炭焚きボイラ内の燃焼ガス流が左右に偏差している状態を示す斜視説明図(a)及び二次空気の量を左右にバイアスさせて燃焼ガス流を平均化させた状態を示す斜視説明図(b)である。FIG. 1 is a perspective explanatory view showing a state where the combustion gas flow in the coal burning boiler in FIG. 1 is deviated left and right, and a state where the combustion gas flow is averaged by biasing the amount of secondary air to the left and right. It is a perspective explanatory view (b). 図1における石炭焚きボイラ内の燃焼ガス流パターンを数値指標化するためにバーナに対して行う影響度ゲイン割り付け要領説明図である。FIG. 2 is an explanatory diagram of an influence gain assignment procedure performed on a burner in order to numerically index a combustion gas flow pattern in the coal burning boiler in FIG. 1. 図1における石炭焚きボイラ内の燃焼ガス流の数値指標が所定値以下の場合で且つ石炭焚きボイラ内が低負荷状況にある場合のバイアス要領説明図である。FIG. 2 is an explanatory diagram of a bias procedure when a numerical index of combustion gas flow in the coal burning boiler in FIG. 1 is equal to or less than a predetermined value and when the inside of the coal burning boiler is in a low load state. 図1における石炭焚きボイラ内の燃焼ガス流の数値指標が所定値以下の場合に用いる制御プログラムを示すグラフである。It is a graph which shows the control program used when the numerical index of the combustion gas flow in the coal burning boiler in FIG. 1 is below a predetermined value. 図1における石炭焚きボイラ内の燃焼ガス流の数値指標が所定値以下の場合で且つ石炭焚きボイラ内が高負荷状況にある場合のバイアス要領説明図である。FIG. 3 is an explanatory diagram of a bias procedure when a numerical index of a combustion gas flow in the coal burning boiler in FIG. 1 is equal to or less than a predetermined value and when the inside of the coal burning boiler is in a high load state. 図1における石炭焚きボイラ内の燃焼ガス流の数値指標が所定を越える場合で且つ石炭焚きボイラ内が低負荷状況にある場合のバイアス要領説明図である。FIG. 2 is an explanatory diagram of a bias procedure when the numerical index of the combustion gas flow in the coal burning boiler in FIG. 1 exceeds a predetermined value and when the inside of the coal burning boiler is in a low load state. 図1における石炭焚きボイラ内の燃焼ガス流の数値指標が所定を越える場合に用いる制御プログラムを示すグラフである。It is a graph which shows the control program used when the numerical index of the combustion gas flow in the coal burning boiler in FIG. 1 exceeds predetermined. 図1における石炭焚きボイラ内の燃焼ガス流の数値指標が所定値を越える場合で且つ石炭焚きボイラ内が高負荷状況にある場合のバイアス要領説明図である。FIG. 2 is an explanatory diagram of a bias procedure when a numerical index of a combustion gas flow in the coal burning boiler in FIG. 1 exceeds a predetermined value and when the inside of the coal burning boiler is in a high load state. 図1における対向燃焼ボイラ装置である石炭焚きボイラ装置の一実施例による運転方法を示すバイアス要領説明図である。It is bias point explanatory drawing which shows the operation method by one Example of the coal burning boiler apparatus which is an opposing combustion boiler apparatus in FIG. 図11の石炭焚きボイラ装置の運転中におけるダンパ開度を示すグラフである。It is a graph which shows the damper opening degree during driving | operation of the coal burning boiler apparatus of FIG. 図11の石炭焚きボイラ装置の運転中におけるNOx変動の推移を示すグラフである。It is a graph which shows transition of NOx fluctuation | variation during operation | movement of the coal burning boiler apparatus of FIG. 図11の石炭焚きボイラ装置の運転中における再熱器出口温度変動の推移を示すグラフである。It is a graph which shows transition of the reheater exit temperature fluctuation | variation in the driving | operation of the coal burning boiler apparatus of FIG. 図1の対向燃焼ボイラ装置である石炭焚きボイラ装置の他の実施例による運転方法を示す二次空気量のバイアス前後における燃焼ガス流の状態説明図(a),(b)である。It is state explanatory drawing (a), (b) of the combustion gas flow before and behind the bias of the amount of secondary air which shows the operating method by the other Example of the coal burning boiler apparatus which is an opposing combustion boiler apparatus of FIG. 図1の対向燃焼ボイラ装置である石炭焚きボイラ装置のさらに他の実施例による運転方法を示す二次空気量のバイアス前後における燃焼ガス流の状態説明図(a),(b)である。FIG. 6 is an explanatory diagram (a) and (b) of the state of combustion gas flow before and after the bias of the secondary air amount, showing an operation method according to still another embodiment of the coal burning boiler device which is the opposed combustion boiler device of FIG. 1. 図1の対向燃焼ボイラ装置である石炭焚きボイラ装置のさらに他の実施例による運転方法を示す二次空気量のバイアス前後における燃焼ガス流の状態説明図(a),(b)である。FIG. 6 is an explanatory diagram (a) and (b) of the state of combustion gas flow before and after the bias of the secondary air amount, showing an operation method according to still another embodiment of the coal burning boiler device which is the opposed combustion boiler device of FIG. 1. 図1の対向燃焼ボイラ装置である石炭焚きボイラ装置のさらに他の実施例による運転方法を示す二次空気量のバイアス前後における燃焼ガス流の状態説明図(a),(b)である。FIG. 6 is an explanatory diagram (a) and (b) of the state of combustion gas flow before and after the bias of the secondary air amount, showing an operation method according to still another embodiment of the coal burning boiler device which is the opposed combustion boiler device of FIG. 1.

符号の説明Explanation of symbols

1 石炭焚きボイラ装置(対向燃焼ボイラ装置)
3 バーナ
4(4U,4M,4L)バーナ列
5(5A) 二段燃焼用ポート
6 缶前側ダンパ
7 缶後側ダンパ
10 石炭焚きボイラ(対向燃焼ボイラ)
11 缶前壁
12 缶後壁
20 制御部
G 燃焼ガス
Np 数値指標
1 Coal-fired boiler equipment (opposed combustion boiler equipment)
3 Burner 4 (4U, 4M, 4L) Burner row 5 (5A) Two-stage combustion port 6 Can front side damper 7 Can rear side damper 10 Coal-fired boiler (opposed combustion boiler)
11 Can front wall 12 Can rear wall 20 Control part G Combustion gas Np Numerical index

Claims (6)

燃料及び一次空気が供給されるバーナを水平方向に複数並べて成るバーナ列を垂直方向に複数段配置して形成したバーナ群を有していると共に、前記バーナ群の上方に位置して該バーナ群をバイパスして供給される二次空気を通す二段燃焼用ポートを有する互いに対向する缶前壁及び缶後壁を具備した対向燃焼ボイラと、
この対向燃焼ボイラにおける缶前壁及び缶後壁の各二段燃焼用ポートを通して該対向燃焼ボイラ内に供給する二次空気の量を調節する缶前側ダンパ及び缶後側ダンパを備えた対向燃焼ボイラ装置において、
前記缶前壁及び缶後壁に配置した各バーナ群における複数段のバーナ列のそれぞれに対して、前記対向燃焼ボイラ内の燃焼ガスの流れに及ぼす影響の度合いに応じた影響度ゲインを割り付けると共に、運転中に使用しているバーナ列に割り付けされた前記影響度ゲインに基づいて算出した数値指標により燃焼ガスの流れのパターンを指標化する制御部を設け、
この制御部は、燃焼ガスの流れのパターンを表す前記数値指標に前記対向燃焼ボイラ内の負荷状況を対応させて、前記対向燃焼ボイラにおける缶前壁及び缶後壁の各二段燃焼用ポートを通して該対向燃焼ボイラ内に供給する二次空気の量を適正化するべく前記缶前側ダンパ及び缶後側ダンパを作動させる
ことを特徴とする対向燃焼ボイラ装置。
A burner group formed by arranging a plurality of burner rows in which a plurality of burners to which fuel and primary air are supplied are arranged in the horizontal direction and arranged in a plurality of stages in the vertical direction; and the burner group positioned above the burner group An opposed combustion boiler having a can front wall and a can rear wall facing each other and having a two-stage combustion port for passing secondary air supplied by bypassing
The opposed combustion boiler provided with a can front side damper and a can rear side damper for adjusting the amount of secondary air supplied into the opposed combustion boiler through the respective two-stage combustion ports on the front and rear walls of the opposed combustion boiler In the device
Assigning an influence gain corresponding to the degree of the influence on the flow of combustion gas in the opposed combustion boiler to each of a plurality of burner rows in each burner group arranged on the can front wall and the can rear wall, A control unit that indexes the flow pattern of the combustion gas by a numerical index calculated based on the influence gain assigned to the burner row used during operation;
The control unit associates the load index in the opposed combustion boiler with the numerical index representing the combustion gas flow pattern, and passes through the two-stage combustion ports on the front wall and the rear wall of the opposed combustion boiler. The counter-combustion boiler apparatus, wherein the can front side damper and the can rear side damper are operated so as to optimize the amount of secondary air supplied into the counter combustion boiler.
前記制御部は、前記対向燃焼ボイラ内が高負荷である状況及び低負荷である状況の各状況下において、燃焼ガスの流れのパターンを表す前記数値指標の大小に応じて前記対向燃焼ボイラにおける缶前壁及び缶後壁の各二段燃焼用ポートを通して該対向燃焼ボイラ内に供給する二次空気の量を適正化するべく前記缶前側ダンパ及び缶後側ダンパをそれぞれ作動させる二種類の制御プログラムを有している請求項1に記載の対向燃焼ボイラ装置。   The control unit is configured such that the can in the counter-combustion boiler is in accordance with the magnitude of the numerical index representing a combustion gas flow pattern in each of a high-load condition and a low-load condition in the counter-combustion boiler. Two kinds of control programs for operating the can front side damper and the can rear side damper, respectively, in order to optimize the amount of secondary air supplied into the opposing combustion boiler through the two-stage combustion ports on the front wall and the rear wall of the can The opposing combustion boiler apparatus of Claim 1 which has. 前記制御部において、二種類の制御プログラムは、前記燃焼ガスの流れのパターンを表す数値指標の大小に応じて自動的に切り換わる請求項2に記載の対向燃焼ボイラ装置。   3. The opposed combustion boiler apparatus according to claim 2, wherein in the control unit, the two types of control programs are automatically switched according to the magnitude of a numerical index representing the combustion gas flow pattern. 燃料及び一次空気が供給されるバーナを水平方向に複数並べて成るバーナ列を垂直方向に複数段配置して形成したバーナ群を有していると共に、前記バーナ群の上方に位置して該バーナ群をバイパスして供給される二次空気を通す複数の二段燃焼用ポートを有する互いに対向する缶前壁及び缶後壁を具備した対向燃焼ボイラを備えた対向燃焼ボイラ装置の運転方法であって、
前記缶前壁及び缶後壁に配置した各バーナ群における複数段のバーナ列のそれぞれに対して、前記対向燃焼ボイラ内の燃焼ガスの流れに及ぼす影響の度合いに応じた影響度ゲインを割り付けると共に、運転中に使用しているバーナ列に割り付けされた影響度ゲインに基づいて算出した数値指標により燃焼ガスの流れのパターンを指標化し、
この燃焼ガスの流れのパターンを表す前記数値指標に前記対向燃焼ボイラ内の負荷状況を当てはめて、前記対向燃焼ボイラにおける缶前壁及び缶後壁の各二段燃焼用ポートを通して該対向燃焼ボイラ内に供給する二次空気の量を適正化する
ことを特徴とする対向燃焼ボイラ装置の運転方法。
A burner group formed by arranging a plurality of burner rows in which a plurality of burners to which fuel and primary air are supplied are arranged in the horizontal direction and arranged in a plurality of stages in the vertical direction; and the burner group positioned above the burner group A method of operating an opposed combustion boiler apparatus having an opposed combustion boiler having a can front wall and a can rear wall facing each other having a plurality of two-stage combustion ports through which secondary air supplied by bypassing is passed. ,
Assigning an influence gain corresponding to the degree of the influence on the flow of combustion gas in the opposed combustion boiler to each of a plurality of burner rows in each burner group arranged on the can front wall and the can rear wall, The flow pattern of combustion gas is indexed by a numerical index calculated based on the influence gain assigned to the burner row used during operation,
By applying the load condition in the counter combustion boiler to the numerical index representing the flow pattern of the combustion gas, the counter combustion boiler has a two-stage combustion port on the front wall and the rear wall of the counter combustion boiler. A method for operating an opposed combustion boiler device, characterized by optimizing the amount of secondary air supplied to the boiler.
前記燃焼ガスの流れのパターンを表す数値指標が所定値以下の大きさの場合には、一方の制御プログラムを用いて、前記対向燃焼ボイラにおける缶前壁及び缶後壁の各二段燃焼用ポートを通して該対向燃焼ボイラ内に供給する二次空気の量を適正化すると共に、前記燃焼ガスの流れのパターンを表す数値指標が所定値を越える場合には、他方の制御プログラムを用いて、前記対向燃焼ボイラにおける缶前壁及び缶後壁の各二段燃焼用ポートを通して該対向燃焼ボイラ内に供給する二次空気の量を適正化する請求項4に記載の対向燃焼ボイラ装置の運転方法。   When the numerical index indicating the flow pattern of the combustion gas has a magnitude equal to or smaller than a predetermined value, one control program is used to set each two-stage combustion port on the front wall and the rear wall of the counter combustion boiler. When the numerical index indicating the flow pattern of the combustion gas exceeds a predetermined value, the other control program is used to optimize the amount of secondary air supplied to the counter combustion boiler through the counter control boiler. The operation method of the opposing combustion boiler apparatus of Claim 4 which optimizes the quantity of the secondary air supplied in this opposing combustion boiler through each two-stage combustion port of the can front wall and can rear wall in a combustion boiler. 前記一方の制御プログラム及び他方の制御プログラムが、前記燃焼ガスの流れのパターンを表す数値指標の大小に応じて自動的に切り換わる請求項5に記載の対向燃焼ボイラ装置の運転方法。   The operation method of the opposed combustion boiler apparatus according to claim 5, wherein the one control program and the other control program are automatically switched according to the magnitude of a numerical index representing the combustion gas flow pattern.
JP2008062625A 2008-03-12 2008-03-12 Opposed combustion boiler device and operation method thereof Active JP5152494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062625A JP5152494B2 (en) 2008-03-12 2008-03-12 Opposed combustion boiler device and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062625A JP5152494B2 (en) 2008-03-12 2008-03-12 Opposed combustion boiler device and operation method thereof

Publications (2)

Publication Number Publication Date
JP2009216347A JP2009216347A (en) 2009-09-24
JP5152494B2 true JP5152494B2 (en) 2013-02-27

Family

ID=41188391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062625A Active JP5152494B2 (en) 2008-03-12 2008-03-12 Opposed combustion boiler device and operation method thereof

Country Status (1)

Country Link
JP (1) JP5152494B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042154A (en) * 2010-08-20 2012-03-01 Ihi Corp Method of operating opposed firing boiler device and the opposed firing boiler device
CN101943396B (en) * 2010-09-29 2012-05-23 神华集团有限责任公司 Combustion control method and combustion control system of pulverized-fuel boiler
CN102588956B (en) * 2012-03-15 2014-09-10 北京志源恒通科技有限公司 Novel rotational flow impact boiler and manufacturing method thereof
CN105889911A (en) * 2016-04-08 2016-08-24 国网天津市电力公司 Method for changing Babcock and Wilcox 1165 type boiler combustor combination
JP6199466B2 (en) * 2016-10-06 2017-09-20 新潟原動機株式会社 Gas turbine combustor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292415U (en) * 1989-01-10 1990-07-23
JP3528354B2 (en) * 1995-09-06 2004-05-17 石川島播磨重工業株式会社 Combustion-related damper control device for coal-fired boiler

Also Published As

Publication number Publication date
JP2009216347A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP5152494B2 (en) Opposed combustion boiler device and operation method thereof
EP2527735B1 (en) System and method for optimising combustion in pulverised solid fuel boilers, and boiler including such a system
KR19990076794A (en) A method of controlling the NOX emission of a combustion system to a low level
JP5970368B2 (en) Boiler control device
WO2010021176A1 (en) Control system, control system program, combustion control method, and boiler system
AU2010264723B2 (en) Method for controlling a combustion process, in particular in a combustion chamber of a fossil-fueled steam generator, and combustion system
KR20100110826A (en) Method of controlling a process of generating power by oxyfuel combustion
JP5914147B2 (en) Multi-can type once-through boiler unit control system
US4653276A (en) Automatic control system for thermal power plant
JP2006317104A (en) Multiple can boiler system
JP5214721B2 (en) Boiler oxygen supply control method and apparatus
JP4632361B2 (en) Multi-can installation boiler with unit control
JP2008151471A (en) Pulverized coal burning boiler
JP2012042154A (en) Method of operating opposed firing boiler device and the opposed firing boiler device
US8478446B2 (en) Oxygen control system for oxygen enhanced combustion
JP2013130370A (en) Reheat steam temperature control device
KR100689150B1 (en) Multiplex control system of boiler air and fuel ratio
KR101191496B1 (en) Reheat boiler and gas temperature control method of reheat boiler
JP3652849B2 (en) Method for controlling the combustion state of a boiler having a plurality of furnace regions
JP4129818B2 (en) Boiler automatic control method and apparatus
JP2565142B2 (en) Automatic plant controller
JP4118260B2 (en) Boiler control method and boiler control apparatus
JPH06257741A (en) Combustion control device for many kinds of fuels
KR102086164B1 (en) Method for controlling temperature of generating boiler
CN115681956A (en) Opposed combustion boiler and starting method thereof, pulverized coal adjusting system and pulverized coal adjusting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5152494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250