JP5151388B2 - Steam supply device - Google Patents

Steam supply device Download PDF

Info

Publication number
JP5151388B2
JP5151388B2 JP2007270204A JP2007270204A JP5151388B2 JP 5151388 B2 JP5151388 B2 JP 5151388B2 JP 2007270204 A JP2007270204 A JP 2007270204A JP 2007270204 A JP2007270204 A JP 2007270204A JP 5151388 B2 JP5151388 B2 JP 5151388B2
Authority
JP
Japan
Prior art keywords
steam
gas
amount
gas supply
steam generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007270204A
Other languages
Japanese (ja)
Other versions
JP2009097800A (en
Inventor
知寿 若杉
孝 志満津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2007270204A priority Critical patent/JP5151388B2/en
Publication of JP2009097800A publication Critical patent/JP2009097800A/en
Application granted granted Critical
Publication of JP5151388B2 publication Critical patent/JP5151388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、液体を気化して発生した蒸気を供給するための蒸気供給装置に関する。   The present invention relates to a vapor supply device for supplying vapor generated by vaporizing a liquid.

例えば供給された水を気化して得た水蒸気を供給する水蒸気供給装置において、下流側の水蒸気消費装置の要求により、水蒸気の発生量を変化させる場合がある。例えば水蒸気発生量を増加する場合、水蒸気の流量増加に伴う圧力損失の増加に伴って、蒸気発生器の圧力の上昇、すなわち蒸気発生を阻害する方向の変化(沸点の上昇)が生じる。   For example, in a water vapor supply device that supplies water vapor obtained by vaporizing the supplied water, the amount of water vapor generated may be changed depending on the demand of the water vapor consumption device on the downstream side. For example, when the amount of generated steam is increased, the pressure of the steam generator increases, that is, changes in the direction that inhibits steam generation (increase in boiling point) accompany an increase in pressure loss accompanying an increase in the flow rate of steam.

また、水蒸気分離器の圧力を一定に保つように、水蒸気ラインに設けた流量調整弁を制御する技術が知られている(例えば、特許文献1参照)。この特許文献1記載の技術では、電気ヒータでの加熱による水蒸気分離器からの水蒸気の供給量に見合う補給水が、常に該水蒸気分離器に供給されるようになっている。
特開平8−250142明細書
Further, a technique for controlling a flow rate adjustment valve provided in a steam line so as to keep the pressure of the steam separator constant is known (for example, see Patent Document 1). In the technique described in Patent Document 1, make-up water commensurate with the amount of steam supplied from the steam separator by heating with an electric heater is always supplied to the steam separator.
JP-A-8-250142 specification

しかしながら、上記の如き従来の技術では、例えば水蒸気の増加要求に対し補給水の供給量及び電気ヒータによる加熱量を同時に増加させるため、蒸気発生量の増加までに要する時間が長く、水蒸気の供給量を急激に変化させることができない。   However, in the conventional technology as described above, for example, in order to simultaneously increase the supply amount of makeup water and the heating amount by the electric heater in response to a request for increase in steam, the time required to increase the amount of steam generated is long, and the amount of steam supply Cannot be changed rapidly.

本発明は、上記事実を考慮して、蒸気発生量を急激に変化させることができる蒸気供給装置を得ることが目的である。   In view of the above fact, an object of the present invention is to obtain a steam supply device capable of changing the steam generation amount rapidly.

請求項1記載の発明に係る蒸気供給装置は、液体を気化するための蒸気発生器と、前記蒸気発生器の蒸気出口側に連通され、ガスの通過に伴い流動抵抗を生じさせる流動抵抗体と、前記蒸気発生器の蒸気出口と前記流動抵抗体のガス入口との間にガスを供給可能なガス供給手段と、前記ガス供給手段によるガス供給量を変化させ得るガス流量変更手段と、前記蒸気発生器の液位を設定された上限又は下限まで前記ガス供給手段の応答時間で変化させる程度に急激な該蒸気発生器による蒸気発生量の時間変化が要求される場合に、該蒸気発生量の増減要求に応じて前記ガス流量変更手段を制御する制御手段と、を備えている。 The steam supply device according to the invention of claim 1 is a steam generator for vaporizing a liquid, a flow resistor connected to the steam outlet side of the steam generator, and causing a flow resistance with the passage of gas, A gas supply means capable of supplying a gas between a steam outlet of the steam generator and a gas inlet of the flow resistor, a gas flow rate changing means capable of changing a gas supply amount by the gas supply means, and the steam when the time variation of the steam generation amount due to rapid steam generator to the extent that changes in response time of the gas supply means to the set liquid level of the generator upper or lower limit is required, of the steam generation amount and a, and control means for controlling the gas flow rate control means in response to the increasing decline the request.

請求項1記載の蒸気供給装置では、蒸気発生器で発生した蒸気は、単独で又はガス供給手段からのガスと共に、流動抵抗体を通過して蒸気の消費装置に供給される。このため、流動抵抗体の上下流で蒸気及びガスの流量に応じた圧力差が生じる。本蒸気供給装置では、制御手段が蒸気発生量の変化に応じて流量可変手段を制御することで、ガス供給手段による蒸気発生器と流動抵抗体との間に供給されるガス量を調整して流動抵抗体上流側、すなわち蒸気発生器の圧力を制御することができる。この蒸気発生器の圧力を変化させることで蒸気発生器内の液体の沸点(蒸発に要する熱量)が変化されるので、蒸気発生量の急激な増減要求があった場合に、流量可変手段を制御して、蒸気発生器による蒸気発生量を要求に応じて急激に(応答良く)変化させることができる。   In the steam supply device according to claim 1, the steam generated by the steam generator passes through the flow resistor alone or together with the gas from the gas supply means and is supplied to the steam consumption device. For this reason, a pressure difference corresponding to the flow rate of the steam and gas is generated upstream and downstream of the flow resistor. In this steam supply apparatus, the control means controls the flow rate variable means according to the change in the amount of steam generated, thereby adjusting the amount of gas supplied between the steam generator and the flow resistor by the gas supply means. The pressure upstream of the flow resistor, that is, the pressure of the steam generator can be controlled. By changing the pressure of the steam generator, the boiling point of the liquid in the steam generator (the amount of heat required for evaporation) is changed. Thus, the amount of steam generated by the steam generator can be changed abruptly (with good response) as required.

このように、請求項1記載の蒸気供給装置では、蒸気発生量を急激に変化させることができる。   Thus, in the steam supply device according to claim 1, the amount of steam generated can be changed abruptly.

請求項2記載の発明に係る蒸気供給装置は、請求項1記載の蒸気供給装置において前記制御手段は、前記蒸気発生器の液位を前記下限まで前記ガス供給手段の応答時間で変化させる程度に急激に前記蒸気発生器による蒸気発生量を増加させる要求に対し、前記ガス供給手段によるガス供給量が減少されるように、前記ガス流量変更手段を制御する。 A steam supply apparatus according to a second aspect of the present invention is the steam supply apparatus according to the first aspect, wherein the control means changes the liquid level of the steam generator to the lower limit in response time of the gas supply means. to request to increase the steam generation amount by rapidly the steam generator, the gas supply amount of the gas supply means so as to reduce, for controlling the gas flow rate changing means.

請求項2記載の蒸気供給装置では、蒸気発生器による蒸気発生量の急激な(一時的な)増加要求がされた場合には、制御手段によるガス流量変更手段の制御によってガス供給手段による蒸気発生器と流動抵抗体との間へのガス供給量が減少される。このため、蒸気発生器の圧力が低下され、蒸気発生器内の液体の沸点が低下するので、蒸気発生器内の過熱液が蒸気として短時間で放出される。すなわち、蒸気発生器による蒸気発生量が急激に増加される。   The steam supply device according to claim 2, wherein when a rapid (temporary) increase in the amount of steam generated by the steam generator is requested, the steam generation by the gas supply means is controlled by the control of the gas flow rate changing means by the control means. The gas supply between the vessel and the flow resistor is reduced. For this reason, since the pressure of the steam generator is lowered and the boiling point of the liquid in the steam generator is lowered, the superheated liquid in the steam generator is released as steam in a short time. That is, the amount of steam generated by the steam generator is rapidly increased.

請求項3記載の発明に係る蒸気供給装置は、請求項1又は請求項2記載の蒸気供給装置において、前記制御手段は、前記蒸気発生器の液位を前記上限まで前記ガス供給手段の応答時間で変化させる程度に急激に前記蒸気発生器による蒸気発生量を減少させる要求に対し、前記ガス供給手段によるガス供給量が増加されるように、前記ガス流量変更手段を制御する。 The steam supply device according to a third aspect of the present invention is the steam supply device according to the first or second aspect, wherein the control means has a response time of the gas supply means up to a liquid level of the steam generator up to the upper limit. in response to a request to decrease little of the steam generation amount by rapidly the steam generator to the extent that changing, as gas supply amount of the gas supply means is increased, to control the gas flow rate changing means.

請求項3記載の蒸気供給装置では、蒸気発生器による蒸気発生量の急激な(一時的な)減少要求がされた場合には、制御手段によるガス流量変更手段の制御によってガス供給手段による蒸気発生器と流動抵抗体との間へのガス供給量が増加される。このため、蒸気発生器の圧力が上昇され、蒸気発生器内の液体の沸点が上昇するので、蒸気発生器内の蒸気の一部(過冷却蒸気)が凝縮する。すなわち、蒸気発生器による蒸気発生量が急激に減少される。   In the steam supply device according to claim 3, when a rapid (temporary) decrease in the amount of steam generated by the steam generator is requested, the steam generation by the gas supply means is controlled by the control of the gas flow rate changing means by the control means. The gas supply between the vessel and the flow resistor is increased. For this reason, since the pressure of the steam generator is increased and the boiling point of the liquid in the steam generator is increased, a part of the steam (supercooled steam) in the steam generator is condensed. That is, the amount of steam generated by the steam generator is rapidly reduced.

請求項4記載の発明に係る蒸気供給装置は、請求項1〜請求項3の何れか1項記載の蒸気供給装置において、前記蒸気発生器に前記液体を供給するための液体供給手段をさらに備え、前記制御手段は、前記蒸気発生器の液位を前記下限まで前記ガス供給手段の応答時間で変化させる程度に急激に前記蒸気発生器による蒸気発生量を増加させる要求に対し、前記ガス供給手段によるガス供給量が減少されるように、前記ガス流量変更手段を制御する蒸気放出モードと、前記蒸気放出モードの実行後に、前記ガス供給手段によるガス供給量が増加されると共に前記蒸気発生器への前記液体の供給量が増加されるように、前記ガス流量変更手段及び前記液体供給手段を制御する回復モードと、を行い得る。 A steam supply apparatus according to a fourth aspect of the present invention is the vapor supply apparatus according to any one of the first to third aspects, further comprising a liquid supply means for supplying the liquid to the steam generator. , wherein, in response to a request to increase the steam generation amount by rapidly the steam generator liquid level of the steam generator to the extent that changes in response time of the gas supply means to said lower limit, the gas supply A steam discharge mode for controlling the gas flow rate changing means so that a gas supply amount by the means is reduced, and after the execution of the steam discharge mode, the gas supply amount by the gas supply means is increased and the steam generator The recovery mode for controlling the gas flow rate changing means and the liquid supply means may be performed so that the supply amount of the liquid is increased.

請求項4記載の蒸気供給装置では、制御手段は、蒸気発生量の急激な(一時的な)増加要求がされた場合に、蒸気放出モードを実行する。蒸気放出モードでは、制御手段によるガス流量変更手段の制御によってガス供給手段による蒸気発生器と流動抵抗体との間へのガス供給量が減少される。このため、蒸気発生器の圧力が低下され、蒸気発生器内の液体の沸点が低下するので、蒸気発生器内の過熱液が蒸気として短時間で放出される。すなわち、蒸気発生器による蒸気発生量が急激に増加される。   In the steam supply device according to the fourth aspect, the control means executes the steam discharge mode when a request for a rapid (temporary) increase in the amount of generated steam is made. In the steam discharge mode, the gas supply amount between the steam generator and the flow resistor by the gas supply means is reduced by the control of the gas flow rate changing means by the control means. For this reason, since the pressure of the steam generator is lowered and the boiling point of the liquid in the steam generator is lowered, the superheated liquid in the steam generator is released as steam in a short time. That is, the amount of steam generated by the steam generator is rapidly increased.

また、制御手段は、蒸気放出モードの実行後、回復モードを実行する。回復モードでは、制御手段によるガス流量変更手段及び液体供給手段の制御によって、ガス供給手段による蒸気発生器と流動抵抗体との間へのガス供給量が増加されると共に、蒸気発生器への液供給量が増加される。このため、蒸気発生器の圧力が蒸気放出モードと比較して上昇し、蒸気発生器内の蒸気の一部(過冷却蒸気)が凝縮して蒸気発生器内の液量が短時間で増す。すなわち、蒸気の発生を維持ししつつ、蒸気発生器内の液量を蒸気放出モード実行前の定常量まで短時間で回復させることができる。   The control means executes the recovery mode after executing the vapor discharge mode. In the recovery mode, the gas supply amount between the steam generator and the flow resistor by the gas supply means is increased by the control of the gas flow rate changing means and the liquid supply means by the control means, and the liquid to the steam generator is increased. Supply volume is increased. For this reason, the pressure of the steam generator rises compared to the steam discharge mode, and a part of the steam (supercooled steam) in the steam generator is condensed, and the amount of liquid in the steam generator increases in a short time. In other words, while maintaining the generation of steam, the amount of liquid in the steam generator can be recovered in a short time to the steady amount before the execution of the steam discharge mode.

請求項5記載の発明に係る蒸気供給装置は、請求項1〜請求項4の何れか1項記載の蒸気供給装置において、前記蒸気発生器に前記液体を供給するための液体供給手段をさらに備え、前記制御手段は、前記蒸気発生器の液位を前記上限まで前記ガス供給手段の応答時間で変化させる程度に急激に前記蒸気発生器による蒸気発生量を減少させる要求に対し、前記ガス供給手段によるガス供給量が増加されるように、前記ガス流量変更手段を制御する蒸気放出抑制モードと、前記蒸気放出抑制モードの実行後に、前記ガス供給手段によるガス供給量が減少されると共に前記蒸気発生器への前記液体の供給量が減少されるように、前記ガス流量変更手段及び前記液体供給手段を制御する回復モードと、を行い得る。 The steam supply device according to a fifth aspect of the present invention is the vapor supply device according to any one of the first to fourth aspects, further comprising a liquid supply means for supplying the liquid to the steam generator. , the control means, the relative steam generator of the liquid level required to decrease little of the steam generation amount by rapidly the steam generator to the extent that changes in response time of the gas supply means to the upper limit, the gas supply After the execution of the vapor discharge suppression mode for controlling the gas flow rate changing means and the vapor discharge suppression mode, the gas supply amount by the gas supply means is reduced and the steam is supplied so that the gas supply amount by the means is increased. A recovery mode for controlling the gas flow rate changing means and the liquid supply means may be performed so that the supply amount of the liquid to the generator is reduced.

請求項5記載の蒸気供給装置では、制御手段は、蒸気発生量の急激な(一時的な)減少要求がされた場合に、蒸気放出抑制モードを実行する。蒸気放出抑制モードでは、制御手段によるガス流量変更手段の制御によってガス供給手段による蒸気発生器と流動抵抗体との間へのガス供給量が増加される。このため、蒸気発生器の圧力が上昇され、蒸気発生器内の蒸気の露点が上昇するので、蒸気発生器内の飽和蒸気が液化して短時間で蒸気放出が抑制される。すなわち、蒸気発生器による蒸気発生量が急激に減少される。   In the steam supply device according to the fifth aspect, the control means executes the steam discharge suppression mode when a rapid (temporary) reduction request of the steam generation amount is requested. In the steam discharge suppression mode, the gas supply amount between the steam generator and the flow resistor by the gas supply means is increased by the control of the gas flow rate changing means by the control means. For this reason, the pressure of the steam generator is increased and the dew point of the steam in the steam generator is increased, so that the saturated steam in the steam generator is liquefied and the steam release is suppressed in a short time. That is, the amount of steam generated by the steam generator is rapidly reduced.

また、制御手段は、蒸気放出抑制モードの実行後、回復モードを実行する。回復モードでは、制御手段によるガス流量変更手段及び液体供給手段の制御によって、ガス供給手段による蒸気発生器と流動抵抗体との間へのガス供給量が減少されると共に、蒸気発生器への液供給量が減少される。このため、蒸気発生器の圧力が蒸気放出モードと比較して低下し、蒸気発生器内の過熱液の一部が蒸発して蒸気発生器内の液量が短時間で減少する。すなわち、蒸気の発生を増加させつつ、蒸気発生器内の液量を蒸気放出抑制モード実行前の定常量まで短時間で回復させることができる。   The control means executes the recovery mode after executing the vapor release suppression mode. In the recovery mode, the gas supply amount between the steam generator and the flow resistor by the gas supply means is reduced by the control of the gas flow rate changing means and the liquid supply means by the control means, and the liquid to the steam generator is reduced. Supply is reduced. For this reason, the pressure of a steam generator falls compared with steam discharge mode, a part of superheated liquid in a steam generator evaporates, and the amount of liquids in a steam generator decreases in a short time. That is, while increasing the generation of steam, the amount of liquid in the steam generator can be recovered in a short time to the steady amount before the execution of the steam release suppression mode.

請求項6記載の発明に係る蒸気供給装置は、液体を気化するための蒸気発生器と、前記蒸気発生器の蒸気出口側に連通され、ガスの通過に伴い流動抵抗を生じさせる流動抵抗体と、前記蒸気発生器の蒸気出口と前記流動抵抗体のガス入口との間にガスを供給可能な第1のガス供給手段と、前記第1のガス供給手段によるガス供給量を変化させ得る第1のガス流量変更手段と、前記流動抵抗体のガス出口側にガスを供給可能な第2のガス供給手段と、前記第2のガス供給手段によるガス供給量を変化させ得る第2のガス流量変更手段と、前記蒸気発生器の液位を設定された上限又は下限まで前記ガス供給手段の応答時間で変化させる程度に急激な該蒸気発生器による蒸気発生量の時間変化が要求される場合に、該蒸気発生量の増減要求に応じて、装置出口での蒸気濃度が所定の濃度に維持されつつ前記蒸気発生量が前記増減要求に応じて変化するように、前記第1のガス流量変更手段及び前記第2のガス流量変更手段を制御する制御手段と、を備えている。 A steam supply device according to a sixth aspect of the present invention includes a steam generator for vaporizing a liquid, a flow resistor that is in communication with a steam outlet side of the steam generator and generates a flow resistance with the passage of gas. The first gas supply means capable of supplying gas between the steam outlet of the steam generator and the gas inlet of the flow resistor, and the first gas supply amount by the first gas supply means can be changed. A gas flow rate change means, a second gas supply means capable of supplying gas to the gas outlet side of the flow resistor, and a second gas flow rate change capable of changing a gas supply amount by the second gas supply means When the time change of the amount of steam generated by the steam generator is required to be rapid enough to change the liquid level of the steam generator to the set upper limit or lower limit with the response time of the gas supply means , depending on the increase decrease request of the steam generation amount The first gas flow rate change means and the second gas flow rate change means are controlled so that the vapor generation amount changes according to the increase / decrease request while the vapor concentration at the apparatus outlet is maintained at a predetermined concentration. Control means.

請求項6記載の蒸気供給装置では、蒸気発生器で発生した蒸気は、単独で又はガス供給手段からのガスと共に、流動抵抗体を通過して蒸気の消費装置に供給される。このため、流動抵抗体の上下流で蒸気の流量に応じた圧力差が生じる。本蒸気供給装置では、制御手段が蒸気発生量の変化に応じて第1及び第2の流量可変手段をそれぞれ制御することで、ガス供給手段による蒸気発生器と流動抵抗体との間に供給されるガス量を調整して流動抵抗体上流側すなわち蒸気発生器の圧力を制御しつつ、装置出口での蒸気濃度(蒸気とガスとの混合器に対する蒸気の濃度)を所定の濃度に維持することができる。蒸気発生器の圧力を変化させることで蒸気発生器内の液体の沸点(蒸発に要する熱量)が変化されるので、蒸気発生量の急激な増減要求があった場合に、第1及び第2の流量可変手段をそれぞれ制御して、装置出口での蒸気濃度を維持しつつ蒸気発生器による蒸気発生量を要求に応じて急激に(応答良く)変化させることができる。   In the steam supply device according to the sixth aspect, the steam generated by the steam generator passes through the flow resistor alone or together with the gas from the gas supply means and is supplied to the steam consumption device. For this reason, a pressure difference corresponding to the flow rate of the steam is generated upstream and downstream of the flow resistor. In this steam supply apparatus, the control means controls the first and second flow rate variable means according to the change in the amount of steam generated, so that the steam supply by the gas supply means is supplied between the flow generator and the flow resistor. The vapor concentration upstream of the flow resistor, that is, the pressure of the steam generator is controlled to maintain the vapor concentration at the outlet of the device (the concentration of the vapor with respect to the vapor / gas mixer) at a predetermined concentration. Can do. Since the boiling point of the liquid in the steam generator (the amount of heat required for evaporation) is changed by changing the pressure of the steam generator, when there is a request for rapid increase or decrease in the amount of steam generated, the first and second The flow rate variable means can be controlled to change the amount of steam generated by the steam generator abruptly (with good response) as required while maintaining the steam concentration at the outlet of the apparatus.

このように、請求項6記載の蒸気供給装置では、蒸気発生量を急激に変化させることができる。   Thus, in the steam supply device according to the sixth aspect, the amount of steam generated can be changed abruptly.

請求項7記載の発明に係る蒸気供給装置は、請求項6記載の蒸気供給装置において、前記制御手段は、前記蒸気発生器の液位を前記下限まで前記ガス供給手段の応答時間で変化させる程度に急激に前記蒸気発生器による蒸気発生量を増加させる要求に対し、前記ガス供給手段によるガス供給量が減少されると共に、装置出口での蒸気濃度が所定の濃度に維持されるように、前記第1のガス流量変更手段及び前記第2のガス流量変更手段を制御する。 A steam supply apparatus according to a seventh aspect of the present invention is the steam supply apparatus according to the sixth aspect, wherein the control means changes the liquid level of the steam generator to the lower limit in response time of the gas supply means. as to the request to increase the steam generation amount by rapidly the steam generator, with a gas supply amount is reduced by the gas supply means, the vapor concentration at the device outlet is maintained at a predetermined concentration, The first gas flow rate changing means and the second gas flow rate changing means are controlled.

請求項7記載の蒸気供給装置では、蒸気発生器による急激な(一時的な)蒸気発生量の増加要求がされた場合には、制御手段による第1のガス流量変更手段の制御によって第1のガス供給手段による蒸気発生器と流動抵抗体との間へのガス供給量が減少されると共に、制御手段による第2のガス流量変更手段の制御によって第2のガス供給手段によるガス供給量が増加される。これにより、装置出口での蒸気濃度が所定濃度に維持されつつ蒸気発生器内の圧力が低下され、蒸気発生器内の液体の沸点が低下するので、蒸気発生器内の過熱液が蒸気として短時間で放出される。すなわち、蒸気発生器による蒸気発生量が急激に増加される。   In the steam supply device according to claim 7, when a rapid (temporary) increase in the amount of steam generated by the steam generator is requested, the first gas flow rate changing means is controlled by the control means to control the first gas flow rate changing means. The gas supply amount between the steam generator and the flow resistor by the gas supply means is decreased, and the gas supply amount by the second gas supply means is increased by the control of the second gas flow rate changing means by the control means. Is done. As a result, the pressure in the steam generator is lowered while the vapor concentration at the outlet of the apparatus is maintained at a predetermined concentration, and the boiling point of the liquid in the steam generator is lowered, so that the superheated liquid in the steam generator is short as vapor. Released in time. That is, the amount of steam generated by the steam generator is rapidly increased.

請求項8記載の発明に係る蒸気供給装置は、請求項6又は請求項7記載の蒸気供給装置において、前記制御手段は、前記蒸気発生器の液位を前記上限まで前記ガス供給手段の応答時間で変化させる程度に急激に前記蒸気発生器による蒸気発生量を減少させる要求に対し、前記第1のガス供給手段によるガス供給量が増加されると共に、装置出口での蒸気濃度が所定の濃度に維持されるように、前記第1のガス流量変更手段及び前記第2のガス流量変更手段を制御する。 The steam supply device according to an eighth aspect of the present invention is the steam supply device according to the sixth or seventh aspect, wherein the control means has a response time of the gas supply means up to the upper limit of the liquid level of the steam generator. in response to a request to decrease little of the steam generation amount by rapidly the steam generator to the extent of changing, with a gas supply amount is increased by the first gas supply means, the concentration vapor concentration of a predetermined in the apparatus outlet The first gas flow rate changing means and the second gas flow rate changing means are controlled so as to be maintained.

請求項8記載の蒸気供給装置では、蒸気発生器による急激な(一時的な)蒸気発生量の減少要求がされた場合には、制御手段による第1のガス流量変更手段の制御によって第1のガス供給手段による蒸気発生器と流動抵抗体との間へのガス供給量が増加されると共に、制御手段による第2のガス流量変更手段の制御によって第2のガス供給手段によるガス供給量が減少される。これにより、装置出口での蒸気濃度が所定濃度に維持されつつ蒸気発生器内の圧力が上昇され、蒸気発生器内の液体の沸点が上昇するので、蒸気発生器内の蒸気の一部(過冷却蒸気)が凝縮する。すなわち、蒸気発生器による蒸気発生量が急激に減少される。   In the steam supply device according to claim 8, when a rapid (temporary) reduction in the amount of steam generated by the steam generator is requested, the first gas flow rate changing means is controlled by the control means. The gas supply amount between the steam generator and the flow resistor by the gas supply means is increased, and the gas supply amount by the second gas supply means is decreased by the control of the second gas flow rate changing means by the control means. Is done. This increases the pressure in the steam generator while maintaining the vapor concentration at the outlet of the apparatus at a predetermined concentration, and raises the boiling point of the liquid in the steam generator. Cooling steam) condenses. That is, the amount of steam generated by the steam generator is rapidly reduced.

請求項9記載の発明に係る蒸気供給装置は、請求項6〜請求項8の何れか1項記載の蒸気供給装置において、前記蒸気発生器に前記液体を供給するための液体供給手段をさらに備え、前記制御手段は、前記蒸気発生器の液位を前記下限まで前記ガス供給手段の応答時間で変化させる程度に急激に前記蒸気発生器による蒸気発生量を増加させる要求に対し、前記ガス供給手段によるガス供給量が減少されると共に装置出口での蒸気濃度が所定の濃度に維持されるように、前記第1のガス流量変更手段及び前記第2のガス流量変更手段を制御する蒸気放出モードと、前記蒸気放出モードの実行後に、前記ガス供給手段によるガス供給量が増加されると共に装置出口での蒸気濃度が所定の濃度に維持され、かつ前記蒸気発生器への前記液体の供給量が増加されるように、前記第1のガス流量変更手段、前記第2のガス流量変更手段、及び前記液体供給手段を制御する回復モードと、を行い得る。 A steam supply device according to a ninth aspect of the present invention is the vapor supply device according to any one of the sixth to eighth aspects, further comprising a liquid supply means for supplying the liquid to the steam generator. , wherein, in response to a request to increase the steam generation amount by rapidly the steam generator liquid level of the steam generator to the extent that changes in response time of the gas supply means to said lower limit, the gas supply A vapor discharge mode for controlling the first gas flow rate changing means and the second gas flow rate changing means so that the gas supply amount by the means is reduced and the vapor concentration at the outlet of the apparatus is maintained at a predetermined concentration. After the execution of the vapor discharge mode, the gas supply amount by the gas supply means is increased, the vapor concentration at the outlet of the apparatus is maintained at a predetermined concentration, and the liquid supply amount to the vapor generator As will be increased, the first gas flow rate control means, the second gas flow rate control means, and a recovery mode for controlling the liquid supply unit may perform.

請求項9記載の蒸気供給装置では、制御手段は、蒸気発生量の急激な(一時的な)増加要求がされた場合に、蒸気放出モードを実行する。蒸気放出モードでは、制御手段による第1のガス流量変更手段の制御によって第1のガス供給手段による蒸気発生器と流動抵抗体との間へのガス供給量が減少されると共に、制御手段による第2のガス流量変更手段の制御によって第2のガス供給手段によるガス供給量が増加される。これにより、装置出口での蒸気濃度が所定濃度に維持されつつ蒸気発生器内の圧力が低下され、蒸気発生器内の液体の沸点が低下するので、蒸気発生器内の過熱液が蒸気として短時間で放出される。すなわち、蒸気発生器による蒸気発生量が急激に増加される。   In the steam supply device according to the ninth aspect, the control means executes the steam discharge mode when a rapid (temporary) increase request for the amount of generated steam is made. In the vapor discharge mode, the amount of gas supplied between the steam generator and the flow resistor by the first gas supply means is reduced by the control of the first gas flow rate changing means by the control means, and the first by the control means. The gas supply amount by the second gas supply means is increased by the control of the second gas flow rate changing means. As a result, the pressure in the steam generator is lowered while the vapor concentration at the outlet of the apparatus is maintained at a predetermined concentration, and the boiling point of the liquid in the steam generator is lowered, so that the superheated liquid in the steam generator is short as vapor. Released in time. That is, the amount of steam generated by the steam generator is rapidly increased.

また、制御手段は、蒸気放出モードの実行後、回復モードを実行する。回復モードでは、制御手段による第1のガス流量変更手段、前記第2のガス流量変更手段、及び液体供給手段の制御によって、第1のガス供給手段による蒸気発生器と流動抵抗体との間へのガス供給量が増加されると共に第2のガス供給手段によるガス供給量が減少され、かつ蒸気発生器への液供給量が増加される。このため、装置出口での蒸気濃度は所定の濃度に維持されたまま、蒸気発生器の圧力が蒸気放出モードと比較して上昇し、蒸気発生器内の蒸気の一部(過冷却蒸気)が凝縮して蒸気発生器内の液量が短時間で増す。すなわち、蒸気の発生を維持ししつつ、蒸気発生器内の液量を蒸気放出モード実行前の定常量まで短時間で回復させることができる。   The control means executes the recovery mode after executing the vapor discharge mode. In the recovery mode, by the control of the first gas flow rate changing means, the second gas flow rate changing means, and the liquid supply means by the control means, between the steam generator and the flow resistor by the first gas supply means. As the gas supply amount increases, the gas supply amount by the second gas supply means decreases, and the liquid supply amount to the steam generator increases. For this reason, while the vapor concentration at the outlet of the apparatus is maintained at a predetermined concentration, the pressure of the vapor generator rises compared to the vapor discharge mode, and a part of the vapor (supercooled vapor) in the vapor generator is generated. Condensation increases the amount of liquid in the steam generator in a short time. In other words, while maintaining the generation of steam, the amount of liquid in the steam generator can be recovered in a short time to the steady amount before the execution of the steam discharge mode.

請求項10記載の発明に係る蒸気供給装置は、請求項6〜請求項9の何れか1項記載の蒸気供給装置において、前記蒸気発生器に前記液体を供給するための液体供給手段をさらに備え、前記制御手段は、前記蒸気発生器の液位を前記上限まで前記ガス供給手段の応答時間で変化させる程度に急激に前記蒸気発生器による蒸気発生量を減少させる要求に対し、前記ガス供給手段によるガス供給量が増加されると共に装置出口での蒸気濃度が所定の濃度に維持されるように、前記第1のガス流量変更手段及び前記第2のガス流量変更手段を制御する蒸気放出抑制モードと、前記蒸気放出抑制モードの実行後に、前記ガス供給手段によるガス供給量が減少されると共に装置出口での蒸気濃度が所定の濃度に維持され、かつ前記蒸気発生器への前記液体の供給量が減少されるように、前記第1のガス流量変更手段、前記第2のガス流量変更手段、及び前記液体供給手段を制御する回復モードと、を行い得る。 A steam supply device according to a tenth aspect of the present invention is the vapor supply device according to any one of the sixth to ninth aspects, further comprising a liquid supply means for supplying the liquid to the steam generator. , the control means, the relative steam generator of the liquid level required to decrease little of the steam generation amount by rapidly the steam generator to the extent that changes in response time of the gas supply means to the upper limit, the gas supply Vapor emission suppression for controlling the first gas flow rate change means and the second gas flow rate change means so that the gas supply amount by the means is increased and the vapor concentration at the outlet of the apparatus is maintained at a predetermined concentration And after the execution of the vapor emission suppression mode, the gas supply amount by the gas supply means is reduced, the vapor concentration at the outlet of the apparatus is maintained at a predetermined concentration, and the liquid to the vapor generator is As the amount of feed is reduced, the first gas flow rate control means, the second gas flow rate control means, and a recovery mode for controlling the liquid supply unit may perform.

請求項10記載の蒸気供給装置では、制御手段は、蒸気発生量の急激な(一時的な)減少要求がされた場合に、蒸気放出抑制モードを実行する。蒸気放出抑制モードでは、制御手段による第1のガス流量変更手段の制御によって第1のガス供給手段による蒸気発生器と流動抵抗体との間へのガス供給量が増加されると共に、制御手段による第2のガス流量変更手段の制御によって第2のガス供給手段によるガス供給量が減少される。これにより、装置出口での蒸気濃度が所定濃度に維持されつつ蒸気発生器内の圧力が上昇され、蒸気発生器内の蒸気の露天が上昇するので、蒸気発生器内の飽和蒸気が液化して短時間で蒸気放出が抑制される。すなわち、蒸気発生器による蒸気発生量が急激に減少される。   In the steam supply device according to the tenth aspect, the control means executes the steam discharge suppression mode when a rapid (temporary) reduction request of the steam generation amount is requested. In the steam release suppression mode, the control unit controls the first gas flow rate changing unit to increase the gas supply amount between the steam generator and the flow resistor by the first gas supply unit, and also by the control unit. The amount of gas supplied by the second gas supply means is reduced by the control of the second gas flow rate changing means. This increases the pressure in the steam generator while maintaining the steam concentration at the outlet of the apparatus at a predetermined concentration, and the steam outdoor in the steam generator rises, so that the saturated steam in the steam generator is liquefied. Vapor emission is suppressed in a short time. That is, the amount of steam generated by the steam generator is rapidly reduced.

また、制御手段は、蒸気放出抑制モードの実行後、回復モードを実行する。回復モードでは、制御手段による第1のガス流量変更手段、前記第2のガス流量変更手段、及び液体供給手段の制御によって、第1のガス供給手段による蒸気発生器と流動抵抗体との間へのガス供給量が減少されると共に第2のガス供給手段によるガス供給量が増加され、かつ蒸気発生器への液供給量が減少される。このため、装置出口での蒸気濃度は所定の濃度に維持されたまま、蒸気発生器の圧力が蒸気放出モードと比較して低下し、蒸気発生器内の蒸気の一部(過熱液)が蒸発して蒸気発生器内の液量が短時間で減少する。すなわち、蒸気の発生を維持ししつつ、蒸気発生器内の液量を蒸気放出モード実行前の定常量まで短時間で回復させることができる。   The control means executes the recovery mode after executing the vapor release suppression mode. In the recovery mode, by the control of the first gas flow rate changing means, the second gas flow rate changing means, and the liquid supply means by the control means, between the steam generator and the flow resistor by the first gas supply means. The gas supply amount is reduced, the gas supply amount by the second gas supply means is increased, and the liquid supply amount to the steam generator is reduced. For this reason, while the vapor concentration at the outlet of the device is maintained at a predetermined concentration, the pressure of the vapor generator decreases compared to the vapor discharge mode, and a part of the vapor (superheated liquid) in the vapor generator evaporates. As a result, the amount of liquid in the steam generator decreases in a short time. In other words, while maintaining the generation of steam, the amount of liquid in the steam generator can be recovered in a short time to the steady amount before the execution of the steam discharge mode.

以上説明したように本発明に係る蒸気供給装置は、蒸気発生量を急激に変化させることができるという優れた効果を有する。   As described above, the steam supply apparatus according to the present invention has an excellent effect that the amount of steam generated can be changed abruptly.

本発明の第1の実施形態に係る蒸気供給装置10について、図1〜図9に基づいて説明する。先ず、蒸気供給装置10の全体構成を説明し、次いで、蒸気供給装置10を燃料電池システム100に適用した適用例を説明し、この適用例における蒸気供給装置10作用効果を説明することとする。   A steam supply apparatus 10 according to a first embodiment of the present invention will be described with reference to FIGS. First, the overall configuration of the steam supply apparatus 10 will be described, and then an application example in which the steam supply apparatus 10 is applied to the fuel cell system 100 will be described, and effects of the steam supply apparatus 10 in this application example will be described.

(蒸気供給装置の全体構成)
図1には、蒸気供給装置10のシステム構成図が示されている。この図1に示される如く、蒸気供給装置10は、蒸気発生器12を備えている。蒸気発生器12は、液体タンク14から液供給手段としてのポンプ16によって供給されてきた液体を蒸発させ、蒸気を発生するように構成されている。この実施形態では、蒸気発生器12は、加熱(潜熱の供給)により液体を気化させる加熱式の蒸発器とされている。この蒸気発生器12で発生された蒸気は、蒸気供給ライン18によって、図示しない蒸気消費装置に供給されるようになっている。すなわち、蒸気供給ライン18の下流端18Aが本発明における装置出口に相当する。
(Overall configuration of steam supply device)
FIG. 1 shows a system configuration diagram of the steam supply apparatus 10. As shown in FIG. 1, the steam supply device 10 includes a steam generator 12. The steam generator 12 is configured to evaporate the liquid supplied from the liquid tank 14 by a pump 16 as a liquid supply means and generate steam. In this embodiment, the steam generator 12 is a heating type evaporator that vaporizes a liquid by heating (supply of latent heat). The steam generated by the steam generator 12 is supplied to a steam consuming device (not shown) through a steam supply line 18. That is, the downstream end 18A of the steam supply line 18 corresponds to the apparatus outlet in the present invention.

蒸気供給ライン18上には、流動抵抗体20が直列に配置されている。流動抵抗体20は、例えば多孔体、焼結体として構成されたり、繊維状の充填物やフィルタとして形成されたりした抵抗体本体がケース内に配設されて構成されており、通過するガスの流量に応じた圧力損失を生じさせるようになっている。このような流動抵抗体20を構成する上記の抵抗体本体やケースは、例えば金属やセラミック等の耐熱材料にて構成されている。   A flow resistor 20 is arranged in series on the steam supply line 18. The flow resistor 20 is configured, for example, as a porous body or a sintered body, or a resistor body formed as a fibrous filler or a filter is disposed in the case, and the flow resistor 20 A pressure loss is generated according to the flow rate. The resistor body and the case constituting the flow resistor 20 are made of a heat resistant material such as metal or ceramic.

また、蒸気供給ライン18における蒸気発生器12の蒸気出口12Aと流動抵抗体20のガス入口20Aとの間には、第1ガス供給ライン22が合流している。第1ガス供給ライン22の上流端には、第1ガス供給装置24のガス供給口24Aが接続されている。また、第1ガス供給ライン22における第1ガス供給装置24のガス供給口24Aと蒸気供給ライン18との合流部J1との間には、第1のガス流量変更手段としての流量制御弁26が配設されている。流量制御弁26は、後述するコントローラ36に制御されて合流部J1に供給するガスの流量を変更(増減)させるようになっている。   The first gas supply line 22 joins between the steam outlet 12A of the steam generator 12 and the gas inlet 20A of the flow resistor 20 in the steam supply line 18. A gas supply port 24 </ b> A of the first gas supply device 24 is connected to the upstream end of the first gas supply line 22. In addition, a flow rate control valve 26 as a first gas flow rate change means is provided between the gas supply port 24A of the first gas supply device 24 in the first gas supply line 22 and the junction J1 of the steam supply line 18. It is arranged. The flow rate control valve 26 is controlled by a controller 36 described later to change (increase / decrease) the flow rate of the gas supplied to the junction portion J1.

一方、蒸気供給ライン18における流動抵抗体20のガス出口20Bよりも下流側部分には、第2ガス供給ライン28が合流している。第2ガス供給ライン28の上流端には、第2ガス供給装置30のガス供給口30Aが接続されている。また、第2ガス供給ライン28における第2ガス供給装置30のガス供給口30Aと蒸気供給ライン18との合流部J2との間には、第2のガス流量変更手段としての流量制御弁32が配設されている。流量制御弁32は、後述するコントローラに制御されて合流部J1に供給するガスの流量を変更させるようになっている。第1ガス供給装置24、第2ガス供給装置30は、例えばブロアやコンプレッサ等の起風装置、ガスボンベ等のガス貯蔵器として構成されている。   On the other hand, the second gas supply line 28 is joined to a portion of the steam supply line 18 downstream of the gas outlet 20B of the flow resistor 20. A gas supply port 30 </ b> A of the second gas supply device 30 is connected to the upstream end of the second gas supply line 28. Further, a flow rate control valve 32 as a second gas flow rate changing means is provided between the gas supply port 30A of the second gas supply device 30 in the second gas supply line 28 and the junction J2 of the steam supply line 18. It is arranged. The flow rate control valve 32 is controlled by a controller to be described later to change the flow rate of the gas supplied to the junction portion J1. The first gas supply device 24 and the second gas supply device 30 are configured, for example, as a wind generator such as a blower or a compressor, or a gas reservoir such as a gas cylinder.

また、蒸気供給装置10は、蒸気供給ライン18における合流部J2の下流側に直列に設けられた混合器34を備えている。混合器34は、蒸気発生器12で発生された蒸気と、第1ガス供給ライン22、第2ガス供給ライン28から蒸気供給ライン18に合流されたガスとが通過に伴って略均一に混合されるように構成されている。したがって、本蒸気供給装置10は、蒸気とガスとの混合気を蒸気消費装置に供給する構成とされている。具体的には蒸気供給装置10は、例えば、燃料蒸気と空気との混合気を燃焼器に供給したり、水蒸気と炭化水素等の改質原料ガスとの混合気を改質型水素発生装置に供給したり、加湿用の水蒸気とカソード空気又はアノード用の水素との混合気を燃料電池に供給したりする用途に適用することができる。別の見方をすれば、蒸気供給装置10は、蒸気を含む混合気消費装置に混合気を供給するための混合気供給装置であると把握することができる。   Further, the steam supply device 10 includes a mixer 34 provided in series on the downstream side of the junction J2 in the steam supply line 18. In the mixer 34, the steam generated by the steam generator 12 and the gas joined from the first gas supply line 22 and the second gas supply line 28 to the steam supply line 18 are mixed substantially uniformly as they pass. It is comprised so that. Therefore, the steam supply device 10 is configured to supply a mixture of steam and gas to the steam consuming device. Specifically, the steam supply device 10 supplies, for example, an air-fuel mixture of fuel vapor and air to the combustor, or an air-fuel mixture of steam and reforming raw material gas such as hydrocarbons to the reforming hydrogen generator. The present invention can be applied to an application in which the fuel cell is supplied or a mixture of humidified water vapor and cathode air or anode hydrogen is supplied to the fuel cell. From another viewpoint, the steam supply device 10 can be grasped as an air-fuel mixture supply device for supplying an air-fuel mixture to an air-fuel mixture consuming device containing steam.

そして、蒸気供給装置10は、上に例示した如き各種の蒸気消費装置に供給する蒸気量を変化させ得る構成とされている。すなわち、蒸気供給装置10は、蒸気消費装置からの要求蒸気量(の変化)に応じた量の蒸気を供給するようになっている。具体的には、蒸気供給装置10は、制御手段としてのコントローラ36を備えている。コントローラ36は、蒸気発生器12での加熱量、及び蒸気の原料である液体の蒸気発生器12への供給量及び変化させるために、蒸気発生器12及びポンプ16を制御し、また蒸気発生器12で発生する蒸気量に応じて蒸気供給ライン18へのガス供給量を変化させるために流量制御弁26、32を制御するように構成されている。   And the steam supply apparatus 10 is set as the structure which can change the vapor | steam quantity supplied to various steam consumption apparatuses as illustrated above. That is, the steam supply device 10 is configured to supply an amount of steam corresponding to (a change in) the required steam amount from the steam consuming device. Specifically, the steam supply apparatus 10 includes a controller 36 as control means. The controller 36 controls the steam generator 12 and the pump 16 in order to change the heating amount in the steam generator 12 and the supply amount of the liquid, which is the raw material of the steam, to the steam generator 12, and also the steam generator. In order to change the gas supply amount to the steam supply line 18 in accordance with the amount of steam generated at 12, the flow control valves 26 and 32 are controlled.

この実施形態では、コントローラ36は、蒸気消費装置側からの蒸気消費量の増減要求に応じて蒸気発生器12の蒸気生成量を制御する通常モードと、一時的な蒸気急増要求に応じて蒸気放出量を一時的に急増させる蒸気放出モードと、蒸気放出モードで減少した蒸気発生器12内の液量を回復させる液量回復モードとを実行し得る構成とされている。   In this embodiment, the controller 36 is configured to control the steam generation amount of the steam generator 12 in response to a steam consumption increase / decrease request from the steam consumption device side, and to release steam in response to a temporary steam rapid increase request. The steam discharge mode for temporarily increasing the amount temporarily and the liquid amount recovery mode for recovering the liquid amount in the steam generator 12 that has decreased in the steam discharge mode can be executed.

通常モードでは、コントローラ36は、蒸気発生器12の内部圧力Pinが略一定になる(所定の範囲内にある)ように、かつ蒸気消費装置に供給される混合気の蒸気濃度(分圧)が略一定になるように、流量制御弁26、32を制御する構成とされている。このため、コントローラ36は、蒸気発生器12(図示しないヒータ)、ポンプ16、流量制御弁26、32と電気的に接続されると共に、流動抵抗体20の内部圧力Pinに応じた信号を出力する圧力計(センサ)38に電気的に接続されている。また、この実施形態では、コントローラ36は、流動抵抗体20の内部温度Tinに応じた信号を出力する温度計(センサ)40にも電気的に接続されている。さらに、コントローラ36は、液量回復モードを実行するために、蒸気発生器12の蒸気流量(単位時間当たりの発生蒸気量)に応じた信号を出力する蒸気流量計42に電気的に接続されている。   In the normal mode, the controller 36 sets the steam concentration (partial pressure) of the air-fuel mixture supplied to the steam consuming device so that the internal pressure Pin of the steam generator 12 becomes substantially constant (within a predetermined range). The flow control valves 26 and 32 are controlled so as to be substantially constant. Therefore, the controller 36 is electrically connected to the steam generator 12 (heater not shown), the pump 16, and the flow rate control valves 26 and 32, and outputs a signal corresponding to the internal pressure Pin of the flow resistor 20. The pressure gauge (sensor) 38 is electrically connected. In this embodiment, the controller 36 is also electrically connected to a thermometer (sensor) 40 that outputs a signal corresponding to the internal temperature Tin of the flow resistor 20. Further, the controller 36 is electrically connected to a steam flow meter 42 that outputs a signal corresponding to the steam flow rate (a generated steam amount per unit time) of the steam generator 12 in order to execute the liquid amount recovery mode. Yes.

通常モードでコントローラ36は、蒸気消費装置から蒸気流量Vsの増加要求を受けた場合には、基本的に、要求された蒸気流量Vsの増加分ΔVsiに応じた分だけ、蒸気発生器12への液体供給量Vpが増すようにポンプ16を制御すると共に、要求された蒸気流量Vsの増加分ΔVsiの分だけ、蒸気発生器12と流動抵抗体20との間の合流部J1へのガス供給量V1が減少するように流量制御弁26を制御する構成とされている。これにより蒸気供給装置10では、発生蒸気量の増加に伴う流動抵抗体20での圧力損失の増大が相殺され、蒸気発生器12の圧力Pinが略一定に保たれるようになっている。   In the normal mode, when the controller 36 receives a request for increasing the steam flow rate Vs from the steam consuming device, basically, the controller 36 supplies the steam generator 12 with an amount corresponding to the increase ΔVsi of the requested steam flow rate Vs. The pump 16 is controlled so as to increase the liquid supply amount Vp, and the gas supply amount to the junction J1 between the steam generator 12 and the flow resistor 20 by the required increase ΔVsi of the steam flow rate Vs. The flow control valve 26 is controlled so that V1 decreases. Thereby, in the steam supply apparatus 10, the increase in pressure loss in the flow resistor 20 accompanying the increase in the amount of generated steam is offset, and the pressure Pin of the steam generator 12 is kept substantially constant.

また、通常モードでコントローラ36は、蒸気消費装置から蒸気流量Vsの増加要求を受けた場合には、基本的に、要求された蒸気流量Vsの増加割合((Vs+ΔVsi)/Vs)と略同じ割合で、合流部J1及び合流部J2から蒸気供給ライン18に供給される総ガス量(V1+V2)が増加するように、流量制御弁26、32を制御する構成とされている。すなわち、合流部J1でのガス供給量V1が上記の通り制限されている蒸気供給装置10では、蒸気供給ライン18全体での総ガス供給量(V1+V2)は、流量制御弁32の制御による合流部J2へのガス供給量V2によって調整されるようになっている。   Further, in the normal mode, when the controller 36 receives a request for increasing the steam flow rate Vs from the steam consuming apparatus, basically, the controller 36 is substantially the same rate as the requested increase rate of the steam flow rate Vs ((Vs + ΔVsi) / Vs). Thus, the flow rate control valves 26 and 32 are controlled so that the total gas amount (V1 + V2) supplied to the steam supply line 18 from the junction J1 and the junction J2 increases. That is, in the steam supply device 10 in which the gas supply amount V1 at the junction portion J1 is limited as described above, the total gas supply amount (V1 + V2) in the entire steam supply line 18 is the junction portion controlled by the flow control valve 32. It is adjusted by the gas supply amount V2 to J2.

一方、通常モードでコントローラ36は、蒸気消費装置から蒸気流量Vsの減少要求を受けた場合には、基本的に、要求された蒸気流量Vsの減少分ΔVsiに応じた分だけ、蒸気発生器12への液体供給量V1が減るようにポンプ16を制御すると共に、要求された蒸気流量Vsの減少分ΔVsiの分だけ、蒸気発生器12と流動抵抗体20との間の合流部J1へのガス供給量V1が増加するように流量制御弁26を制御する構成とされている。これにより蒸気供給装置10では、発生蒸気量の減少に伴う流動抵抗体20での圧力損失の減少が相殺され、蒸気発生器12の圧力Pinが略一定に保たれるようになっている。   On the other hand, in the normal mode, when the controller 36 receives a request to reduce the steam flow rate Vs from the steam consuming device, basically, the steam generator 12 is an amount corresponding to the required decrease ΔVsi of the steam flow rate Vs. The pump 16 is controlled so as to reduce the liquid supply amount V1 to the gas, and the gas to the junction J1 between the steam generator 12 and the flow resistor 20 is reduced by the required decrease ΔVsi of the steam flow rate Vs. The flow control valve 26 is controlled to increase the supply amount V1. Thereby, in the steam supply device 10, the decrease in the pressure loss in the flow resistor 20 accompanying the decrease in the amount of generated steam is offset, and the pressure Pin of the steam generator 12 is kept substantially constant.

また、通常モードでコントローラ36は、蒸気消費装置から蒸気流量Vsの減少要求を受けた場合には、基本的に、要求された蒸気流量Vsの減少割合((Vs−ΔVsi/Vs)と略同じ割合で、合流部J1及び合流部J2から蒸気供給ライン18に供給される総ガス量(V1+V2)が減少するように、流量制御弁26、32を制御する構成とされている。すなわち、合流部J1でのガス供給量V1が上記の通り制限されている蒸気供給装置10では、蒸気供給ライン18全体での総ガス供給量(V1+V2)は、流量制御弁32の制御による合流部J2へのガス供給量V2によって調整されるようになっている。   Further, in the normal mode, when the controller 36 receives a request to reduce the steam flow rate Vs from the steam consuming device, the controller 36 is basically substantially the same as the requested reduction rate ((Vs−ΔVsi / Vs) of the steam flow rate Vs. The flow rate control valves 26 and 32 are controlled such that the total gas amount (V1 + V2) supplied from the merging portion J1 and the merging portion J2 to the steam supply line 18 is reduced at a ratio. In the steam supply device 10 in which the gas supply amount V1 at J1 is limited as described above, the total gas supply amount (V1 + V2) in the entire steam supply line 18 is the gas to the junction J2 under the control of the flow control valve 32. It is adjusted by the supply amount V2.

流量制御弁26に対する制御による合流部J1へのガス供給量V1の変化量のコントローラ36による求め方について補足する。合流部J1へのガス供給量V1の変化分をΔV1とすると、変化後のガス供給量(V1+ΔV1)は、以下に示す式(1)の如く、変化前のガス供給量V1、変化後のポンプ16による変化後の液体供給量(Vp+ΔVp)(蒸気発生器12での蒸気発生量(Vs+ΔVsi)としても良い)、蒸気発生器12の内部温度Tin、及び蒸気発生器12の内部圧力の目標値Ptと現実の内部圧力Pinとの差分eの関数とされる。
V1+ΔV1=f(V1、(Vs+ΔVsi)、Tin、e) (1)
It supplements about the calculation method by the controller 36 of the variation | change_quantity of the gas supply amount V1 to the junction J1 by control with respect to the flow control valve 26. FIG. Assuming that the change in the gas supply amount V1 to the junction J1 is ΔV1, the changed gas supply amount (V1 + ΔV1) is the gas supply amount V1 before the change and the pump after the change as shown in the following equation (1). The liquid supply amount (Vp + ΔVp) after the change by 16 (may be the steam generation amount (Vs + ΔVsi) in the steam generator 12), the internal temperature Tin of the steam generator 12, and the target value Pt of the internal pressure of the steam generator 12 And a function of the difference e between the actual internal pressure Pin.
V1 + ΔV1 = f (V1, (Vs + ΔVsi), Tin, e) (1)

より具体的には、流動抵抗体20を通過するガスの流量Vと圧力損失ΔPとの図3(B)に示す線図Rの如き関係がわかっていれば、蒸気発生器12の内部圧力の目標値Ptと現実の内部圧力Pinとの差分から合流部J1へのガス供給量の増加分ΔV1を得ることができる。ここでは、流動抵抗体20を通過するガスの流量Vと圧力損失ΔPとの関係は、流動抵抗体20を図3(B)に示す如く多数の細孔20Cが形成された抵抗体本体20Dを内蔵するモデルとした場合の流動抵抗体20を通過するガスの流量Vと圧力損失ΔPとの関係を以下の如く例示する。   More specifically, if the relationship between the flow rate V of the gas passing through the flow resistor 20 and the pressure loss ΔP as shown in the diagram R in FIG. 3B is known, the internal pressure of the steam generator 12 From the difference between the target value Pt and the actual internal pressure Pin, an increase ΔV1 in the gas supply amount to the junction J1 can be obtained. Here, the relationship between the flow rate V of the gas passing through the flow resistor 20 and the pressure loss ΔP indicates that the resistor body 20D in which a large number of pores 20C are formed as shown in FIG. The relationship between the flow rate V of the gas passing through the flow resistor 20 and the pressure loss ΔP in the case of the built-in model is exemplified as follows.

流動抵抗体20の圧力損失ΔPは、以下の式(2)に示される如く、多数の細孔20Cの通過に伴う損失(微細流路内部損失)ΔPc、多数の細孔20Cへのガス流入に伴う損失(縮小損失)ΔPin、多数の細孔20Cからのガス流出に伴う損失(拡大損失)ΔPoutの和として把握することができる。
ΔP=ΔPc+ΔPin+ΔPout (2)
The pressure loss ΔP of the flow resistor 20 is caused by the loss (microchannel internal loss) ΔPc associated with the passage of the large number of pores 20C and the gas inflow into the large number of pores 20C, as shown in the following equation (2). It can be grasped as the sum of a loss (reduction loss) ΔPin and a loss (expansion loss) ΔPout associated with gas outflow from a large number of pores 20C.
ΔP = ΔPc + ΔPin + ΔPout (2)

微細流路内部損失ΔPcは、流動抵抗体20を通過する混合気の密度をρ,抵抗体本体20Dの長さをL、多数の細孔20Cを通過する混合気の流速、動粘性係数をそれぞれu、ν、各細孔20Cの直径をde、蒸気供給ライン18の内径(流動抵抗体20を構成するケースの直径)をDe、レイノルズ数をRe(=u×de/ν)としてf=(64/Re)とすると、以下の式(3)から得ることができる。なお、流速uは、流動抵抗体20を通過する蒸気の流量(Vs+ΔVsi)、ガスの流量V1と、流路形状とから算出することができる。また、説明は省略するが、密度ρ、レイノルズ数Re(動粘性係数ν)は、温度Tinの関数でもあり、温度計40からの信号に応じて選択又は算出される。
ΔPc=(ρ×L×u)×f/(2×de) (3)
The internal loss ΔPc of the fine flow path is expressed by the density of the air-fuel mixture passing through the flow resistor 20, the length of the resistor body 20D as L, the flow velocity of the air-fuel mixture passing through the numerous pores 20C, and the kinematic viscosity coefficient. Denote that u, ν, the diameter of each pore 20C is de, the inner diameter of the steam supply line 18 (the diameter of the case constituting the flow resistor 20) is De, and the Reynolds number is Re (= u × de / ν), f = ( 64 / Re), it can be obtained from the following formula (3). The flow velocity u can be calculated from the flow rate of steam (Vs + ΔVsi) passing through the flow resistor 20, the flow rate V1 of gas, and the flow path shape. Although not described, the density ρ and the Reynolds number Re (dynamic viscosity coefficient ν) are also functions of the temperature Tin and are selected or calculated according to a signal from the thermometer 40.
ΔPc = (ρ × L × u 2 ) × f / (2 × de) (3)

また、抵抗体本体20Dの収縮係数をCc(ε)、開口比をεとすると、縮小損失ΔPin、拡大損失ΔPoutは、以下の式(4)、(5)からそれぞれ得ることができる。
ΔPin=1/2×ρ×u×{(1/Cc(ε)−1)} (4)
ΔPout=1/2×ρ×u×(1−ε) (5)
Further, when the contraction coefficient of the resistor body 20D is Cc (ε) and the aperture ratio is ε, the reduction loss ΔPin and the expansion loss ΔPout can be obtained from the following equations (4) and (5), respectively.
ΔPin = ½ × ρ × u 2 × {(1 / Cc (ε) −1)} 2 (4)
ΔPout = 1/2 × ρ × u 2 × (1-ε) 2 (5)

以上により、式(2)で示す流動抵抗体20の流量Vと圧力損失ΔPとの関係を算出することができるので、蒸気発生器12の内部圧力の目標値Ptと現実の内部圧力Pinとの差分eによりガス供給量の変化分ΔV1を得ることができる。なお、例えば略一定の運転温度で運転される用途においては、図3(B)に示す如き流量Vと圧力損失ΔPとの関係をコントローラ36に記憶させておいても良い。   As described above, the relationship between the flow rate V of the flow resistor 20 and the pressure loss ΔP represented by the equation (2) can be calculated, so that the target value Pt of the internal pressure of the steam generator 12 and the actual internal pressure Pin are A change ΔV1 in the gas supply amount can be obtained from the difference e. For example, in an application operated at a substantially constant operating temperature, the controller 36 may store the relationship between the flow rate V and the pressure loss ΔP as shown in FIG.

また、蒸気放出モードでは、コントローラ36は、図8(A)に示されるように、蒸気発生器12の内部圧力Pinの制御目標値Ptが、通常モード及び液量回復モードでの内部圧力の目標値Pt(以下、内部圧力Pt2という)よりも低いPt1になり、かつ蒸気消費装置に供給される混合気の蒸気濃度(分圧)が略一定になるように、流量制御弁26、32を制御する構成とされている。これにより、蒸気放出モードの蒸気供給装置10では、主に蒸気発生器12の内部圧力低下(Pt2−Pt1)に基づく液体の沸点低下(過熱液の増加)分だけ、一時的に蒸気発生量を増す構成とされている。なお、蒸気放出モードでの内部圧力Pt1(の下限)は、任意の圧力とすることができるが、この実施形態では、予め設定された一定値とされている。   Further, in the steam discharge mode, the controller 36 determines that the control target value Pt of the internal pressure Pin of the steam generator 12 is the target of the internal pressure in the normal mode and the liquid amount recovery mode, as shown in FIG. The flow control valves 26 and 32 are controlled so that the Pt1 is lower than the value Pt (hereinafter referred to as the internal pressure Pt2), and the vapor concentration (partial pressure) of the air-fuel mixture supplied to the vapor consuming device is substantially constant. It is supposed to be configured. Thereby, in the steam supply device 10 in the steam discharge mode, the amount of steam generated is temporarily reduced by the amount corresponding to the decrease in the boiling point of the liquid (increase in superheated liquid) mainly based on the internal pressure decrease (Pt2-Pt1) of the steam generator 12. It is configured to increase. Note that the internal pressure Pt1 (lower limit) in the vapor discharge mode can be set to an arbitrary pressure, but in this embodiment, is set to a predetermined constant value.

一方、液量回復モードでは、コントローラ36は、蒸気発生器12への液体供給量が増加されるようにポンプ16を制御すると共に、蒸気発生器12の内部圧力がPt1よりも上昇し、かつ蒸気消費装置に供給される混合気の蒸気濃度(分圧)が略一定になるように、流量制御弁26、32を制御する構成とされている。したがって、液量回復モードでは、蒸気発生器12からの所定の(通常モードで要求される)蒸気供給量が維持されながら、蒸気発生器12の貯液量(液位)が増すようになっている。   On the other hand, in the liquid amount recovery mode, the controller 36 controls the pump 16 so that the liquid supply amount to the steam generator 12 is increased, the internal pressure of the steam generator 12 rises above Pt1, and the steam The flow control valves 26 and 32 are controlled so that the vapor concentration (partial pressure) of the air-fuel mixture supplied to the consuming device is substantially constant. Therefore, in the liquid amount recovery mode, the liquid storage amount (liquid level) of the steam generator 12 is increased while the predetermined steam supply amount (required in the normal mode) from the steam generator 12 is maintained. Yes.

(燃料電池システムへの適用例)
図2には、蒸気供給装置10の燃料電池システム100への適用例が模式的なシステム構成図にて示されている。この図に示される如く、蒸気供給装置10は、燃料電池102に対し水素を高濃度で含む燃料ガスを供給するための燃料供給装置104の一部を構成している。燃料供給装置104は、炭化水素(例えば、プロパンやブタンなど)を主成分とする燃料を、水蒸気改質反応及び部分酸化反応を含む改質反応によって水素及び一酸化炭素を含む改質ガスに改質する改質反応部106を含んで構成されている。そして、蒸気供給装置10は、液体タンク14に貯留された水から蒸気発生器12にて水蒸気を発生させ、この水蒸気にブロアである第1ガス供給装置24、第2ガス供給装置30からの空気を混合し、水蒸気改質反応に供される水蒸気と部分酸化反応に供される空気との混合気を燃料供給装置104の改質反応部106に供給する構成とされている。
(Application example for fuel cell system)
FIG. 2 is a schematic system configuration diagram showing an application example of the steam supply device 10 to the fuel cell system 100. As shown in this figure, the steam supply device 10 constitutes a part of a fuel supply device 104 for supplying a fuel gas containing hydrogen at a high concentration to the fuel cell 102. The fuel supply device 104 modifies a fuel mainly composed of hydrocarbons (for example, propane and butane) into a reformed gas containing hydrogen and carbon monoxide by a reforming reaction including a steam reforming reaction and a partial oxidation reaction. The reforming reaction part 106 to be processed is included. The steam supply device 10 generates water vapor from the water stored in the liquid tank 14 by the steam generator 12, and air from the first gas supply device 24 and the second gas supply device 30 that are blowers is used for the water vapor. And a mixture of water vapor used for the steam reforming reaction and air used for the partial oxidation reaction is supplied to the reforming reaction unit 106 of the fuel supply device 104.

また、図2に示される如く、燃料供給装置104は、水ポンプ108による液体タンク14からの水を改質ガスに噴霧して水蒸気と改質ガスとからなる混合ガスとすると共に所定範囲の温度に混合ガスを冷却する熱交換部110と、混合ガス中の一酸化炭素をシフト反応により水素と二酸化炭素とにシフトするシフト反応部112と、シフト反応部112ではシフトできなかった一酸化炭素をブロア114により供給される空気中の酸素を用いて酸化して水素リッチで一酸化炭素濃度が低い燃料ガスとする一酸化炭素浄化部116とを備える。燃料供給装置104は、一酸化炭素浄化部116の出口ガスを上記した燃料ガスとして燃料電池102に供給するようになっている。   In addition, as shown in FIG. 2, the fuel supply device 104 sprays water from the liquid tank 14 by the water pump 108 onto the reformed gas to form a mixed gas composed of water vapor and the reformed gas, and at a predetermined range of temperatures. The heat exchange unit 110 that cools the mixed gas, the shift reaction unit 112 that shifts carbon monoxide in the mixed gas into hydrogen and carbon dioxide by a shift reaction, and the carbon monoxide that could not be shifted by the shift reaction unit 112 And a carbon monoxide purifying unit 116 that is oxidized using oxygen in the air supplied by the blower 114 to form a fuel gas rich in hydrogen and having a low carbon monoxide concentration. The fuel supply device 104 supplies the outlet gas of the carbon monoxide purification unit 116 to the fuel cell 102 as the fuel gas described above.

図2に示される如く、蒸気供給装置10の混合器34には、燃料ポンプ118により燃料タンク120から炭化水素系燃料が供給されるようになっている。燃料は、図示しないインジェクタ等により混合器34に噴霧されても良く、図示しない気化器にて気化されたのちに混合器34に供給されても良い。したがって、蒸気供給装置10の混合器34は、燃料、水蒸気、空気が混合された改質原料ガスを、燃料供給装置104の改質反応部106に供給する構成とされている。   As shown in FIG. 2, hydrocarbon fuel is supplied from the fuel tank 120 to the mixer 34 of the steam supply apparatus 10 by the fuel pump 118. The fuel may be sprayed to the mixer 34 by an injector (not shown) or the like, and may be supplied to the mixer 34 after being vaporized by a vaporizer (not shown). Therefore, the mixer 34 of the steam supply device 10 is configured to supply the reforming raw material gas mixed with fuel, water vapor, and air to the reforming reaction unit 106 of the fuel supply device 104.

蒸気供給装置10のコントローラ36は、燃料電池システム100の全体を制御するメインコントローラから要求される水蒸気量に基づいて、通常モードにおいて水蒸気濃度を略一定に維持しつつ水蒸気発生量を増減させるようになっている。また、コントローラ36は、メインコントローラからのヒートスポット冷却要求に基づいて、蒸気放出モードを実行し、その後、液量回復モードを実行する構成とされている。   The controller 36 of the steam supply device 10 increases or decreases the amount of water vapor generation while maintaining the water vapor concentration substantially constant in the normal mode based on the water vapor amount required from the main controller that controls the entire fuel cell system 100. It has become. Further, the controller 36 is configured to execute the vapor discharge mode based on the heat spot cooling request from the main controller and then execute the liquid amount recovery mode.

ここで、ヒートスポットについて補足する。燃料電池システム100の燃料供給装置104では、発熱反応を伴う改質反応部106及びシフト反応部112でヒートスポットを生じ得る。改質反応部106では、部分酸化反応、シフト反応、メタネーション反応等の発熱反応と、吸熱反応である水蒸気改質反応とが並行して進む。水蒸気改質反応は、発熱反応で発生した熱の一部を利用することで反応を維持する。一方、部分酸化反応は、水蒸気改質反応を含む改質反応を維持し得る温度において、発熱量と吸熱量とがバランスするように供給される空気量が制御されている(蒸気供給装置10により水蒸気と空気との混合気の水蒸気濃度が一定とされている)。しかしながら、水蒸気改質反応に対し部分酸化反応の反応速度が速いため、ガス流れ方向における両反応の分布は完全に一致することはなく、反応速度の速い部分酸化反応が集中する改質反応部106の入口側において強い温度分布が発生する。ところで、燃料電池102による発電量の増加時には、燃料電池102からの燃料ガスの供給量増加要求に対し、改質原料(燃料、水蒸気、空気)の燃料供給装置104への供給量の増加制御が行われる。この反応量変化の過渡期においても、上記の通り水蒸気改質反応よりも部分酸化反応の反応速度が速いため、改質反応部106での反応が定常状態に至るまでに一時的な熱量のアンバランスが発生し、部分酸化反応が集中する改質反応部106の入口付近で局部的に温度の高い部分すなわちヒートスポットが生じる場合がある。   Here, it supplements about a heat spot. In the fuel supply device 104 of the fuel cell system 100, heat spots can be generated in the reforming reaction unit 106 and the shift reaction unit 112 that involve an exothermic reaction. In the reforming reaction unit 106, an exothermic reaction such as a partial oxidation reaction, a shift reaction, and a methanation reaction and a steam reforming reaction that is an endothermic reaction proceed in parallel. The steam reforming reaction maintains the reaction by utilizing a part of the heat generated by the exothermic reaction. On the other hand, in the partial oxidation reaction, the amount of air supplied is controlled so that the calorific value and the endothermic amount are balanced at a temperature at which a reforming reaction including a steam reforming reaction can be maintained (by the steam supply device 10). The water vapor concentration of the mixture of water vapor and air is constant). However, since the reaction rate of the partial oxidation reaction is higher than that of the steam reforming reaction, the distributions of both reactions in the gas flow direction do not completely coincide with each other, and the reforming reaction unit 106 in which partial oxidation reactions having a high reaction rate are concentrated. A strong temperature distribution occurs on the inlet side of the. By the way, when the amount of power generation by the fuel cell 102 is increased, an increase control of the supply amount of reforming raw materials (fuel, water vapor, air) to the fuel supply device 104 is performed in response to a request for an increase in the supply amount of fuel gas from the fuel cell 102. Done. Even during the transition period of this reaction amount change, the reaction rate of the partial oxidation reaction is faster than the steam reforming reaction as described above, so that the temporary amount of heat is reduced until the reaction in the reforming reaction unit 106 reaches a steady state. In some cases, a portion having a high temperature, that is, a heat spot is generated in the vicinity of the inlet of the reforming reaction unit 106 where the balance occurs and the partial oxidation reaction concentrates.

一方、シフト反応部112においては、シフト反応、メタネーション反応等の発熱反応が進行し、これら発熱反応により生じた熱は改質ガス(と水蒸気との混合ガス)の温度上昇(顕熱)により吸収されることで、所定の温度範囲でシフト反応が維持される。これにより、混合ガス中の一酸化炭素の濃度が低減される。このシフト反応部112の上流側に位置する改質反応部106において、燃料と水蒸気との供給量の変化速度の差に起因してS/C比(炭化水素ガス中のカーボン量に対する水蒸気量)が一時的に低下する(水蒸気が不足する)場合がある。この場合、改質反応部106の出口における一酸化炭素の濃度は一時的に増加するので、シフト反応部112において発熱量が吸熱量を上回ることとなり、該シフト反応部112に高温部分すなわちヒートスポットが生じ得る。   On the other hand, in the shift reaction section 112, exothermic reactions such as shift reaction and methanation reaction proceed, and the heat generated by these exothermic reactions is caused by the temperature rise (sensible heat) of the reformed gas (and the mixed gas of water vapor). By being absorbed, the shift reaction is maintained within a predetermined temperature range. Thereby, the concentration of carbon monoxide in the mixed gas is reduced. In the reforming reaction section 106 located on the upstream side of the shift reaction section 112, the S / C ratio (the amount of water vapor relative to the amount of carbon in the hydrocarbon gas) due to the difference in the change rate of the supply amount of fuel and water vapor. May temporarily drop (water vapor may be insufficient). In this case, since the concentration of carbon monoxide at the outlet of the reforming reaction unit 106 temporarily increases, the amount of heat generated in the shift reaction unit 112 exceeds the endothermic amount. Can occur.

燃料電池システム100のメインコントローラは、改質反応部106、シフト反応部112でヒートスポットを検出した場合、ヒートスポットの発生を予測した場合、又はヒートスポットの発生確率が高い運転条件の場合(例えば発電量を増加する際の過渡期等)等に、蒸気供給装置10のコントローラ36に対しヒートスポット冷却要求を出力するようになっている。   The main controller of the fuel cell system 100 detects a heat spot at the reforming reaction unit 106 and the shift reaction unit 112, predicts the occurrence of a heat spot, or operates under an operating condition with a high probability of heat spot (for example, A heat spot cooling request is output to the controller 36 of the steam supply device 10 during a transition period when the power generation amount is increased.

次に、第1の実施形態の作用について、図4〜図6に示すフローチャートを参照しつつ説明する。   Next, the operation of the first embodiment will be described with reference to the flowcharts shown in FIGS.

上記構成の燃料電池システム100に適用された蒸気供給装置10では、運転開始後、コントローラ36は、図4に示される如く、ステップS100で、メインコントローラからヒートスポットの冷却要求がされているか否かを判断する。メインコントローラからヒートスポットの冷却要求がされていないと判断したコントローラ36は、ステップS102で蒸気発生器12の内部圧力の目標値PtをPt2としてステップS104に進み、通常モードの制御を実行する。   In the steam supply apparatus 10 applied to the fuel cell system 100 having the above-described configuration, after the operation is started, the controller 36 determines whether or not a heat spot cooling request is issued from the main controller in step S100 as shown in FIG. Judging. The controller 36 that has determined that a heat spot cooling request has not been issued from the main controller sets the target value Pt of the internal pressure of the steam generator 12 to Pt2 in step S102, proceeds to step S104, and executes normal mode control.

一方、コントローラ36は、メインコントローラからヒートスポットの冷却要求がされていると判断した場合には、ステップS106で蒸気発生器12の内部圧力の目標値PtをPt1としてステップS108に進み、蒸気放出モードの制御を実行する。さらに、コントローラ36は、蒸気放出モードの制御の実行後、ステップS110で蒸気発生器12の内部圧力の目標値Ptの設定値をPt2としてステップS112に進み、液量回復モードの制御を実行する。コントローラ36は、ステップS104又はステップS112の実行後、ステップS100に戻る。以下、通常モード、蒸気放出モード、液量回復モードの各制御について説明する。   On the other hand, if the controller 36 determines that a heat spot cooling request has been made from the main controller, the target value Pt of the internal pressure of the steam generator 12 is set to Pt1 in step S106, and the process proceeds to step S108. Execute the control. Further, after executing the control of the steam discharge mode, the controller 36 sets the set value of the target value Pt of the internal pressure of the steam generator 12 as Pt2 in step S110, proceeds to step S112, and executes the control of the liquid amount recovery mode. After executing step S104 or step S112, the controller 36 returns to step S100. Hereinafter, each control in the normal mode, the vapor discharge mode, and the liquid amount recovery mode will be described.

(通常モード)
通常モードでは、図5に示されるフローが実行される。すなわち、通常モードにおいてコントローラ36は、ステップS10で、蒸気供給対象である蒸気消費装置から要求蒸気量、濃度に応じた情報を受け取る。次いでコントローラ36は、ステップS12に進み、要求蒸気量、濃度に応じてポンプ16による蒸気発生器12への供給液量、ステップS12での加熱量、流動抵抗体20の上下流の合流部J1、J2への供給ガス量をそれぞれ算出する。なお、ステップS12での処理には、各制御量の算出に必要な情報(例えば温度Tinの入力)が含まれる。そして、ステップS14では、ステップS12で算出した供給液量、加熱量、及び合流部J1、J2への供給ガス量に基づいて、ポンプ16、流量制御弁26、流量制御弁32、ステップS12のヒータへの給電量に応じた信号を出力する。これにより、蒸気供給装置10は、要求蒸気量、濃度の蒸気とガスとの混合器を生成し、蒸気消費装置に供給する。
(Normal mode)
In the normal mode, the flow shown in FIG. 5 is executed. That is, in the normal mode, in step S10, the controller 36 receives information corresponding to the required steam amount and concentration from the steam consuming apparatus that is the target of steam supply. Next, the controller 36 proceeds to step S12, the amount of liquid supplied to the steam generator 12 by the pump 16 according to the required steam amount and concentration, the heating amount in step S12, the upstream and downstream junction J1 of the flow resistor 20, The amount of gas supplied to J2 is calculated. Note that the processing in step S12 includes information necessary for calculation of each control amount (for example, input of temperature Tin). In step S14, the pump 16, the flow control valve 26, the flow control valve 32, and the heater in step S12 are based on the supply liquid amount, the heating amount, and the supply gas amount to the junctions J1 and J2 calculated in step S12. A signal corresponding to the amount of power supplied to is output. Thereby, the vapor | steam supply apparatus 10 produces | generates the mixer of the vapor | steam and gas of required vapor | steam amount and density | concentration, and supplies it to a vapor | steam consumption apparatus.

コントローラ36は、ステップS16で圧力計38からの信号を入力し、ステップS18で、蒸気発生器12の内部圧力Pinが目標値Ptの90%を下回っているか否かを判断する。蒸気発生器12の内部圧力Pinが目標値Ptの90%を下回っていると判断した場合には、ステップS20に進む。ステップS20では、流量制御弁26、32を制御して合流部J1への供給ガス量を増してPinを上昇させる一方、合流部J2への供給ガス量を減少して、蒸気供給ライン18へのトータルでのガス供給量を維持する。   The controller 36 inputs a signal from the pressure gauge 38 in step S16, and determines in step S18 whether or not the internal pressure Pin of the steam generator 12 is below 90% of the target value Pt. When it is determined that the internal pressure Pin of the steam generator 12 is lower than 90% of the target value Pt, the process proceeds to step S20. In step S20, the flow control valves 26 and 32 are controlled to increase the amount of gas supplied to the junction portion J1 and increase Pin, while the amount of gas supplied to the junction portion J2 is decreased to supply the steam supply line 18 to the steam supply line 18. Maintain total gas supply.

コントローラ36は、ステップS18において蒸気発生器12の内部圧力Pinが目標値Ptの90%以上であると判断した場合には、ステップS22に進む。ステップS22では、蒸気発生器12の内部圧力Pinが目標値Ptの110%を上回っているか否かを判断する。蒸気発生器12の内部圧力Pinが目標値Ptの110%を上回っていると判断した場合には、ステップS24に進む。ステップS24では、流量制御弁26、32を制御して合流部J1への供給ガス量を減じてPinを低減させる一方、合流部J2への供給ガス量を増して、蒸気供給ライン18へのトータルでのガス供給量を維持する。   When the controller 36 determines in step S18 that the internal pressure Pin of the steam generator 12 is 90% or more of the target value Pt, the controller 36 proceeds to step S22. In step S22, it is determined whether or not the internal pressure Pin of the steam generator 12 exceeds 110% of the target value Pt. If it is determined that the internal pressure Pin of the steam generator 12 exceeds 110% of the target value Pt, the process proceeds to step S24. In step S24, the flow control valves 26 and 32 are controlled to reduce the amount of gas supplied to the junction J1 to reduce Pin, while the amount of gas supplied to the junction J2 is increased to provide a total to the steam supply line 18. Maintain gas supply at

コントローラ36は、ステップS24において蒸気発生器12の内部圧力Pinが目標値Ptの110%以下であると判断した場合には、ステップS26に進む。ステップS26では、コントローラ36による制御の終了条件が成立したか否かを判断する。コントローラ36による制御の終了条件が成立したと判断した場合には、本制御を終了し、コントローラ36による制御の終了条件が成立していないと判断した場合には、ステップS10に戻る。   If the controller 36 determines in step S24 that the internal pressure Pin of the steam generator 12 is 110% or less of the target value Pt, the controller 36 proceeds to step S26. In step S26, it is determined whether a condition for ending control by the controller 36 is satisfied. When it is determined that the condition for ending the control by the controller 36 is satisfied, the present control is terminated, and when it is determined that the condition for ending the control by the controller 36 is not satisfied, the process returns to step S10.

ステップS10でコントローラ36は、蒸気消費装置から要求蒸気量、濃度に応じた情報を再度受け取る。したがって、供給蒸気量の変動が生じた場合には、ステップS10で入力された情報が前回の情報とは異なり、ステップS12では、変更された要求蒸気量に応じて蒸気発生器12への供給液量、加熱量、及び合流部J1、J2への供給ガス量が算出される。この際、合流部J1へのガス供給量V1の変化分ΔV1は、上記した通り図3に示す圧力差を解消するだけのガス流量の変化分として算出され、さらにこのように変化した合流部J1へのガス供給量(V1+ΔV1)を用いて、蒸気濃度を維持するために合流部J2に供給される要求蒸気量の変化に応じたガス量V2rev(又はガス供給量V2に対する変化分ΔV2)が算出される。すなわち、ガス量V2は、以下の式(6)を満たすように決められる。
(Vs+ΔVsi)/(V2rev+(V1+ΔV1))=Vs/(V2+V1)
(6)
In step S <b> 10, the controller 36 receives again information corresponding to the required steam amount and concentration from the steam consuming apparatus. Accordingly, when the supply steam amount fluctuates, the information input in step S10 is different from the previous information, and in step S12, the supply liquid to the steam generator 12 according to the changed required steam amount. The amount, the heating amount, and the amount of gas supplied to the junctions J1 and J2 are calculated. At this time, the change amount ΔV1 of the gas supply amount V1 to the junction portion J1 is calculated as the change amount of the gas flow rate enough to eliminate the pressure difference shown in FIG. 3 as described above, and further the junction portion J1 changed in this way. The gas amount V2rev (or the change ΔV2 relative to the gas supply amount V2) corresponding to the change in the required steam amount supplied to the junction J2 in order to maintain the vapor concentration is calculated using the gas supply amount (V1 + ΔV1) Is done. That is, the gas amount V2 is determined so as to satisfy the following formula (6).
(Vs + ΔVsi) / (V2rev + (V1 + ΔV1)) = Vs / (V2 + V1)
(6)

そしてコントローラ36は、上記したのと同様に、ステップS18、S22で蒸気発生器12の圧力に変動があると判断された場合はステップS20、S24でガス供給量を補正しつつ、ステップS26で制御終了と判断されるまで、図5のフローを繰り返す。   Similarly to the above, the controller 36 controls in step S26 while correcting the gas supply amount in steps S20 and S24 when it is determined in steps S18 and S22 that the pressure of the steam generator 12 is fluctuated. The flow of FIG. 5 is repeated until it is determined that the processing is finished.

ここで、蒸気供給装置10では、上流端が蒸気発生器12の蒸気出口12Aに接続された蒸気供給ライン18に流動抵抗体20が配設されると共に、該流動抵抗体20のガス入口20Aと蒸気発生器12の蒸気出口12Aとの間の合流部J1への供給ガス量を変化させ得る流量制御弁26を第1ガス供給ライン22に設けたので、要求発生量の変化に対し高応答で供給(発生)蒸気量を追従させることができる。   Here, in the steam supply apparatus 10, the flow resistor 20 is disposed in the steam supply line 18 whose upstream end is connected to the steam outlet 12 </ b> A of the steam generator 12, and the gas inlet 20 </ b> A of the flow resistor 20 is connected to the steam supply line 18. Since the flow rate control valve 26 that can change the amount of gas supplied to the junction J1 between the steam generator 12 and the steam outlet 12A is provided in the first gas supply line 22, it is highly responsive to changes in the required amount of generation. The amount of supplied (generated) steam can be made to follow.

この点を図7に示す例を参照しつつ補足する。図7(A)には、蒸気供給ライン18の下流端18Aでの蒸気濃度が一定となるように要求蒸気量がSr1とSr2(=Sr1/5)との間で変化される場合における蒸気供給装置10を構成する各部の圧力が示されている。太い実線(白抜き丸プロット)は、要求蒸気量がSr1である場合の各部の圧力、細い実線(黒塗り参画プロット)は、要求蒸気量がSr2である場合の各部の圧力、破線(黒塗り丸プロット)は、要求蒸気量がSr2で合流部J1へのガス供給量の変化がない比較例における各部の圧力が示されている。   This point will be supplemented with reference to the example shown in FIG. FIG. 7A shows steam supply when the required steam amount is changed between Sr1 and Sr2 (= Sr1 / 5) so that the steam concentration at the downstream end 18A of the steam supply line 18 is constant. The pressure of each part which comprises the apparatus 10 is shown. The thick solid line (open circle plot) is the pressure of each part when the required steam amount is Sr1, and the thin solid line (black paint plot) is the pressure of each part when the required steam amount is Sr2, and the broken line (black paint) The circle plot) shows the pressures of the respective parts in the comparative example in which the required steam amount is Sr2 and there is no change in the gas supply amount to the merging portion J1.

この図から、合流部J1(流動抵抗体20のガス入口20Aの直上流)に供給するガス流量を、要求蒸気量がSr1である場合に、要求蒸気量がSr2である場合と比較して蒸気発生量の差分(Sr1−Sr2)だけ小さくし、換言すれば、要求蒸気量がSr2である場合に、要求蒸気量がSr1である場合と比較して蒸気発生量の差分(Sr1−Sr2)だけ大きくすることで、蒸気発生器12の内部圧力Pinが蒸気発生量に依らず一定に保たれることがわかる。これにより、蒸気供給装置10では、図7(B)に示される如く、沸点Tbを一定にすることができ、蒸気発生器12(ヒータ)の加熱量の増減によって蒸気発生量を良好に制御することができる。   From this figure, the gas flow rate supplied to the junction J1 (immediately upstream of the gas inlet 20A of the flow resistor 20) is higher than that when the required steam amount is Sr2 when the required steam amount is Sr1. The difference in generated amount (Sr1-Sr2) is reduced. In other words, when the required steam amount is Sr2, only the difference in steam generation amount (Sr1-Sr2) is compared with the case where the required steam amount is Sr1. It can be seen that by increasing the pressure, the internal pressure Pin of the steam generator 12 is kept constant regardless of the amount of steam generated. Thereby, in the steam supply apparatus 10, as shown in FIG. 7 (B), the boiling point Tb can be made constant, and the steam generation amount is controlled well by increasing / decreasing the heating amount of the steam generator 12 (heater). be able to.

例えば図7(A)に破線にて比較例として示した如く合流部J1へのガス供給量を変化させない構成では、要求発生量がSr1からSr2に減少した場合に蒸気発生器12の内部圧力Pinが低くなってしまうことがわかる。この作用は、図12に示す流動抵抗体20を備えない蒸気供給装置での作用と定性的に同じであるため、この図12に基づいて補足する。図12(A)には、蒸気供給ライン18の下流端18Aでの蒸気濃度が一定となるように要求蒸気量がSr1とSr2(=Sr1/5)との間で変化される場合における比較例に係る構成の各部の圧力が示されている。この図から、要求蒸気量(発生量)が大きい場合には、供給ガス量も大きくなるため装置各部で圧力が高く、逆に要求蒸気量(発生量)が小さい場合には、供給ガス量も小さくなるため装置各部で圧力が低くなり、蒸気発生器12の内部圧力Pinが要求蒸気量に応じて(ほぼ比例して)変化してしまうことがわかる。この場合、図12(B)に示される如く、蒸気発生器12の内部では圧力Pinに応じて沸点Tbが変化する。具体的には、要求蒸気量Sr1である大きい場合の沸点Tb3は、要求蒸気量Sr2である場合の沸点Tb4に対し高くなる。このため、例えば要求蒸気量をSr2からSr1に変化(増加)させる場合には、沸点が高くなるために蒸気が不足しやすい状態になり、逆に要求蒸気量をSr1からSr2に変化(減少)させる場合には、沸点が低くなるために蒸気が過剰になりやすい状態になる。すなわち、蒸気発生器12の内部圧力Pinの変化によって、要求蒸気量の変化に追従し難くなってしまう。   For example, in the configuration in which the gas supply amount to the merging portion J1 is not changed as shown as a comparative example by a broken line in FIG. 7A, the internal pressure Pin of the steam generator 12 is reduced when the required generation amount decreases from Sr1 to Sr2. It turns out that becomes low. Since this action is qualitatively the same as that in the steam supply device that does not include the flow resistor 20 shown in FIG. 12, supplementary explanation will be given based on FIG. FIG. 12A shows a comparative example when the required steam amount is changed between Sr1 and Sr2 (= Sr1 / 5) so that the steam concentration at the downstream end 18A of the steam supply line 18 is constant. The pressure of each part of the structure which concerns on is shown. From this figure, when the required steam amount (generated amount) is large, the supply gas amount also increases, so the pressure in each part of the device is high. Conversely, when the required steam amount (generated amount) is small, the supply gas amount is also high. It can be seen that the pressure becomes lower in each part of the apparatus because it becomes smaller, and the internal pressure Pin of the steam generator 12 changes (approximately proportionally) according to the required steam amount. In this case, as shown in FIG. 12B, the boiling point Tb changes in the steam generator 12 according to the pressure Pin. Specifically, the boiling point Tb3 when the required steam amount Sr1 is large is higher than the boiling point Tb4 when the required steam amount Sr2 is set. For this reason, for example, when the required amount of steam is changed (increased) from Sr2 to Sr1, the boiling point becomes higher, so that the steam tends to be insufficient, and conversely, the required amount of steam is changed (decreased) from Sr1 to Sr2. In this case, since the boiling point is lowered, the vapor tends to become excessive. That is, it becomes difficult to follow the change in the required steam amount due to the change in the internal pressure Pin of the steam generator 12.

これに対して蒸気供給装置10では、上記した通り要求蒸気量の変動時にも蒸気発生器12の内部圧力Pinが一定に保たれるので、ポンプ16(供給液量)、流動抵抗体20(ヒータによる加熱量)の制御によって、要求蒸気量に従って応答良く蒸気供給量を変化させることができる。   On the other hand, in the steam supply device 10, the internal pressure Pin of the steam generator 12 is kept constant even when the required steam amount fluctuates as described above, so that the pump 16 (supply liquid amount), the flow resistor 20 (heater) By controlling the heating amount), the steam supply amount can be changed with good response according to the required steam amount.

またここで、蒸気供給装置10では、蒸気発生器12の内部圧力Pinを一定に保つために合流部J1にガスを供給する第1ガス供給ライン22、第1ガス供給装置24、流量制御弁26に加えて、流動抵抗体20の下流である合流部J2にガスを供給する第2ガス供給ライン28、第2ガス供給装置30、流量制御弁32を備えるため、上記の通り蒸気発生器12の内部圧力Pinを一定に保ちながら、要求蒸気量の変化に応じて供給蒸気量を増加させると共に蒸気消費装置に供給する混合気中の蒸気濃度を維持することができる。すなわち、蒸気供給装置10では、高い応答性で安定した出力(混合気の量、蒸気濃度)を得ることができる。以下、この点を実験結果に基づき確認する。   Here, in the steam supply device 10, the first gas supply line 22, the first gas supply device 24, and the flow rate control valve 26 that supply gas to the junction J <b> 1 in order to keep the internal pressure Pin of the steam generator 12 constant. In addition, since the second gas supply line 28, the second gas supply device 30, and the flow rate control valve 32 for supplying gas to the joining portion J2 downstream of the flow resistor 20 are provided, the steam generator 12 of the steam generator 12 is provided as described above. While maintaining the internal pressure Pin constant, it is possible to increase the supply steam amount according to the change in the required steam amount and maintain the steam concentration in the air-fuel mixture supplied to the steam consuming device. That is, the steam supply device 10 can obtain a stable output with high responsiveness (amount of gas mixture, steam concentration). Hereinafter, this point will be confirmed based on experimental results.

図9は、要求蒸気量を急激に増加させた場合の実験結果を示している。図9(A)は、蒸気供給装置10の蒸気発生器12への供給液量、合流部J1、J2への供給ガス量の時間変化を示している。時間0で要求蒸気量の増加指令が入力され、蒸気発生器12への供給液量(発生蒸気量)の増加に伴って、合流部J1への供給ガス量が減じられると共に、合流部J2への供給ガス量が増加されていることがわかる。図9(B)は、蒸気消費装置の入口(蒸気供給ライン18の下流端18A)の圧力、及び蒸気濃度の時間変化(応答)を示している。時間0から供給蒸気量の増加に伴い圧力が増加することがわかる。そして、この図から、蒸気供給装置10では、混合気中の蒸気濃度が蒸気供給量(圧力)の変化に依らず、ほぼ一定であることが確かめられた。換言すれば、増加されたガス供給量に対して蒸気が高い応答性で発生されていることがわかる。なお、図示は省略しているが、流動抵抗体20のガス入口20A側、すなわち蒸気発生器12内の内部圧力Pinは、合流部J1への供給ガス量の減少により、蒸気量の増加要求がされた時間0から略一定に保たれることが確認されている。   FIG. 9 shows the experimental results when the required steam amount is rapidly increased. FIG. 9A shows changes over time in the amount of liquid supplied to the steam generator 12 of the steam supply device 10 and the amount of gas supplied to the junctions J1 and J2. At time 0, an instruction to increase the required steam amount is input, and as the amount of liquid supplied to the steam generator 12 (the amount of generated steam) increases, the amount of gas supplied to the junction J1 is reduced and to the junction J2. It can be seen that the amount of gas supplied is increased. FIG. 9B shows the pressure at the inlet of the steam consuming apparatus (downstream end 18A of the steam supply line 18) and the change over time (response) of the steam concentration. From time 0, it can be seen that the pressure increases as the amount of steam supplied increases. From this figure, it was confirmed that in the steam supply device 10, the steam concentration in the gas mixture was substantially constant regardless of the change in the steam supply amount (pressure). In other words, it can be seen that the steam is generated with high responsiveness to the increased gas supply amount. Although not shown in the drawing, the gas pressure 20A side of the flow resistor 20, that is, the internal pressure Pin in the steam generator 12, is requested to increase the amount of steam due to a decrease in the amount of gas supplied to the junction J1. It has been confirmed that it is kept substantially constant from the set time 0.

この図9(B)に破線にて示す線図は、比較例に係る制御方法で制御した場合の蒸気濃度の応答を示している。この制御方法は、図9(C)に示される如く、合流部J1へのガス供給を常時0とし、合流部J2へのガス供給のみで蒸気濃度を一定に維持しようとするものである。この比較例に係る制御では、図9(B)に示される如く、要求蒸気量の変化直後から蒸気濃度が著しく低下し、蒸気の供給不安定状態になってしまう。すなわち、この比較例では、要求蒸気量の増加に対応してガス供給量が増すが、これによる蒸気発生器12の内部圧力Pinの増大に伴って図12(B)に示される如く沸点Tbが上昇してしまい、蒸気発生(量の増加)が抑制されるために、上記した蒸気濃度の低下が生じる。この実験例では、蒸気濃度が所定濃度に回復するのに略100秒を要している。この比較例との比較により、蒸気供給装置10が著しく高い応答性を示し、要求蒸気量の変化に追従して蒸気濃度を維持することができることが確かめられた。   A diagram indicated by a broken line in FIG. 9B shows a response of the vapor concentration when controlled by the control method according to the comparative example. In this control method, as shown in FIG. 9C, the gas supply to the junction J1 is always set to 0, and the vapor concentration is kept constant only by the gas supply to the junction J2. In the control according to this comparative example, as shown in FIG. 9B, the steam concentration is remarkably reduced immediately after the change in the required steam amount, and the steam supply becomes unstable. That is, in this comparative example, the gas supply amount increases corresponding to the increase in the required steam amount, but as the internal pressure Pin of the steam generator 12 increases due to this, the boiling point Tb becomes lower as shown in FIG. As a result, the generation of steam (increase in amount) is suppressed, and the above-described decrease in the vapor concentration occurs. In this experimental example, it takes approximately 100 seconds for the vapor concentration to recover to the predetermined concentration. By comparison with this comparative example, it was confirmed that the steam supply device 10 showed extremely high responsiveness and was able to maintain the steam concentration following the change in the required steam amount.

そして、蒸気供給装置10では、蒸気供給ライン18に流動抵抗体20を設けると共に該流動抵抗体20の上下流にそれぞれガス供給部を設けた構成にて、上記した各効果を得ることができる。すなわち、蒸気を発生させるため高温となる蒸気供給ライン18に、高温・耐熱の高価なシール材を用い、かつ駆動部の冷却のために大型化された流量調整弁等を設ける必要がないので、蒸気供給装置10を安価でかつコンパクトに構成することはできる。しかも、上記の如き流量調整弁を設けた構成では、材料の耐熱温度の制限によって高温での始動が許容されないので、初期始動の際に装置(蒸気発生器12)の昇温に長時間を要することとなる。これに対して蒸気供給ライン18に流量調整弁を備えない蒸気供給装置10では、高温での始動が可能であり、早期に装置(蒸気発生器12)の昇温すなわち通常運転への移行を果たすことができる。   In the steam supply device 10, the above-described effects can be obtained with the configuration in which the flow resistor 20 is provided in the steam supply line 18 and the gas supply units are provided on the upstream and downstream sides of the flow resistor 20. That is, since it is not necessary to use a high-temperature, heat-resistant and expensive sealing material in the steam supply line 18 that is at a high temperature to generate steam and to provide a flow control valve that is enlarged for cooling the drive unit, etc. The steam supply apparatus 10 can be configured inexpensively and compactly. In addition, in the configuration provided with the flow rate adjusting valve as described above, starting at a high temperature is not permitted due to the limitation of the heat resistant temperature of the material, so that it takes a long time to raise the temperature of the device (steam generator 12) at the initial starting. It will be. On the other hand, the steam supply device 10 that does not include the flow rate adjusting valve in the steam supply line 18 can be started at a high temperature, and the temperature of the device (steam generator 12) is increased at an early stage, that is, the normal operation is performed. be able to.

(蒸気放出モード)
蒸気放出モードでは、Pin=Pt1である点、及びステップS26の制御終了条件が異なる点を除いて、図5に示す通常モードと同様の制御が行われる。このため、上記した通常モードと異なる点について補足する。
(Vapor release mode)
In the vapor release mode, the same control as in the normal mode shown in FIG. 5 is performed except that Pin = Pt1 and the control end condition in step S26 are different. For this reason, it supplements about a different point from above-mentioned normal mode.

蒸気放出モードでは、蒸気発生器12の制御目標である蒸気発生器12の内部圧力の目標値PtがPt2からPt1に切り替わるので、先ずステップS22からステップS24に進んで合流部J1への供給ガス量が減少されるので、内部圧力Pinが急減される。このため、蒸気発生器12の内部では、図8(B)に示される如く、水の沸点TbがTb1からTb2へ低下し、圧力Pt1での過熱水が瞬間的に蒸発して一時的に水蒸気の排出量が増す。その後は、ステップS26で制御(蒸気放出モード)終了と判断されるまで、図5のフローを繰り返す。この場合において、蒸気発生器12の内部圧力の目標値Pt=Pt1となっているので、蒸気発生器12は、通常モードと比較して(加熱量一定)、水蒸気の放出量が多い。また、燃料電池システム100への蒸気供給濃度が一定(ステップS10で設定)である蒸気供給装置10では、水蒸気の放出量の増加に伴って合流部J2へのガス供給量が増す。   In the steam discharge mode, the target value Pt of the internal pressure of the steam generator 12, which is the control target of the steam generator 12, is switched from Pt2 to Pt1, so first the process proceeds from step S22 to step S24, and the amount of gas supplied to the junction J1 Is reduced, the internal pressure Pin is rapidly reduced. For this reason, inside the steam generator 12, as shown in FIG. 8B, the boiling point Tb of water decreases from Tb1 to Tb2, and the superheated water at the pressure Pt1 evaporates momentarily to temporarily vaporize water vapor. The amount of emissions increases. Thereafter, the flow of FIG. 5 is repeated until it is determined in step S26 that the control (steam discharge mode) is finished. In this case, the target value Pt of the internal pressure of the steam generator 12 is Pt = Pt1, so that the steam generator 12 has a larger amount of water vapor compared to the normal mode (constant heating amount). Further, in the steam supply device 10 in which the steam supply concentration to the fuel cell system 100 is constant (set in step S10), the gas supply amount to the junction J2 increases as the amount of water vapor released increases.

この蒸気放出モードで水蒸気、空気の供給量が増すことで、改質反応部106、シフト反応部112では、水蒸気、空気増加分の顕熱冷却効果、熱容量流量の増加効果により、温度上昇が抑制される。特に、改質反応部106、シフト反応部112への供給が増加されるガスが水蒸気を主要ガスとして含むため、例えば発熱反応を促進する空気(のみ)を導入する場合と比較して、改質反応部106、シフト反応部112の温度上昇抑制効果が高い。また、蒸気発生器12内の水を蒸発して生成する水蒸気を冷媒として用いるため、蒸気発生器12の圧力をPin2からPin1に急減させることで、瞬間的に水蒸気を放出することができる。すなわち、ホットスポットの冷却要求から短時間で水蒸気を放出して改質反応部106、シフト反応部112の温度上昇を効果的に抑制することができる。   By increasing the supply amount of water vapor and air in this vapor discharge mode, the reforming reaction unit 106 and the shift reaction unit 112 suppress the temperature rise by the sensible heat cooling effect due to the increase in water vapor and air and the effect of increasing the heat capacity flow rate. Is done. In particular, since the gas to be supplied to the reforming reaction unit 106 and the shift reaction unit 112 includes water vapor as a main gas, for example, reforming compared to the case of introducing air (only) that promotes an exothermic reaction. The temperature rise suppression effect of the reaction unit 106 and the shift reaction unit 112 is high. Further, since water vapor generated by evaporating water in the steam generator 12 is used as a refrigerant, the water vapor can be instantaneously released by rapidly decreasing the pressure of the steam generator 12 from Pin2 to Pin1. That is, it is possible to effectively suppress the temperature rise of the reforming reaction unit 106 and the shift reaction unit 112 by releasing water vapor in a short time from the hot spot cooling request.

しかも、蒸気供給装置10では、改質反応部106への供給水蒸気量を増すことで、S/C比が一時的に増加するので、吸熱反応である水蒸気改質反応が促進されて、改質反応部106の温度上昇が抑制される。また、水蒸気改質反応が促進されることで改質反応部106から排出される一酸化炭素の濃度が一時的に低下するため、シフト反応部112でのシフト反応に伴う発熱が抑制され、該シフト反応部112での温度上昇がさらに抑制される。   In addition, in the steam supply device 10, the S / C ratio is temporarily increased by increasing the amount of steam supplied to the reforming reaction section 106, so that the steam reforming reaction, which is an endothermic reaction, is promoted and reforming is performed. The temperature rise of the reaction unit 106 is suppressed. Moreover, since the concentration of carbon monoxide discharged from the reforming reaction unit 106 is temporarily reduced by promoting the steam reforming reaction, heat generation due to the shift reaction in the shift reaction unit 112 is suppressed, The temperature rise in the shift reaction unit 112 is further suppressed.

以上により、蒸気供給装置10が蒸気放出モードで運転されることで、ヒートスポットの冷却効果が得られる。   As described above, when the steam supply device 10 is operated in the steam discharge mode, a heat spot cooling effect can be obtained.

(液量回復モード)
そして、例えば、蒸気放出モードにおけるステップS26では、ヒートスポットの冷却要求が解除された場合に、コントローラ36は、制御終了と判断し、蒸気放出モードを終了する。このコントローラ36は、図4のステップS110で蒸気発生器12の内部圧力の目標値PtをPt1からPt2(>Pt1)に切り替え、図6に示される液量回復モードを実行する。
(Liquid recovery mode)
For example, in step S26 in the steam release mode, when the cooling request for the heat spot is canceled, the controller 36 determines that the control is finished, and finishes the steam release mode. The controller 36 switches the target value Pt of the internal pressure of the steam generator 12 from Pt1 to Pt2 (> Pt1) in step S110 of FIG. 4, and executes the liquid amount recovery mode shown in FIG.

液量回復モードにおいてコントローラ36は、ステップS30で、蒸気供給対象である蒸気消費装置から要求蒸気量(Vs)、濃度、及び蒸気発生器12に貯蔵すべき液量(蒸気換算でΔVsd)に応じた情報を受け取る。次いでコントローラ36は、ステップS32に進み、要求蒸気量及び貯蔵液量、濃度に応じてポンプ16による蒸気発生器12への供給液量(蒸気換算でVs+ΔVsd)、ステップS12での加熱量、流動抵抗体20の上下流の合流部J1、J2への供給ガス量をそれぞれ算出する。なお、ステップS12での処理には、各制御量の算出に必要な情報(例えば温度Tinの入力)が含まれる。そして、ステップS34では、ステップS32で算出した供給液量、加熱量、及び合流部J1、J2への供給ガス量に基づいて、ポンプ16、流量制御弁26、流量制御弁32、ステップS12のヒータへの給電量に応じた信号を出力する。   In the liquid amount recovery mode, in step S30, the controller 36 responds to the required steam amount (Vs), the concentration, and the amount of liquid to be stored in the steam generator 12 (ΔVsd in terms of steam) from the steam consuming apparatus that is the target of steam supply. Receive information. Next, the controller 36 proceeds to step S32, and the amount of liquid supplied to the steam generator 12 by the pump 16 (Vs + ΔVsd in terms of steam) according to the required steam amount, stored liquid amount, and concentration, heating amount in step S12, and flow resistance The amount of gas supplied to the upstream and downstream junctions J1 and J2 of the body 20 is calculated. Note that the processing in step S12 includes information necessary for calculation of each control amount (for example, input of temperature Tin). In step S34, the pump 16, the flow control valve 26, the flow control valve 32, and the heater in step S12 are based on the supply liquid amount, the heating amount calculated in step S32, and the supply gas amount to the junctions J1 and J2. A signal corresponding to the amount of power supplied to is output.

これにより、蒸気供給装置10は、要求蒸気量、濃度の蒸気とガスとの混合器を生成し、蒸気消費装置に供給しつつ、蒸気発生器12の内部圧力の目標値PtがPt2(>Pt1)に切り替わることで、圧力(沸点)上昇分だけ蒸気発生器12内の蒸気(圧力Pt2での過冷却蒸気)が凝縮して液として蒸気発生器12に蓄えられる。すなわち、図8(B)に示される如く、蒸気放出モードで減少した分の液が蒸気発生器12に蓄えられる。   As a result, the steam supply device 10 generates a mixer of the required steam amount and concentration of steam and gas and supplies it to the steam consuming device, while the target value Pt of the internal pressure of the steam generator 12 is Pt2 (> Pt1). ), The steam in the steam generator 12 (supercooled steam at the pressure Pt2) is condensed by the amount corresponding to the increase in pressure (boiling point) and stored in the steam generator 12 as a liquid. That is, as shown in FIG. 8B, the liquid reduced in the vapor discharge mode is stored in the steam generator 12.

コントローラ36は、ステップS36で蒸気流量計42からの信号を入力し、ステップS38で、蒸気発生器12の蒸気量(蒸気流量)Vsが目標値Vtの90%を下回っているか否かを判断する。蒸気発生器12の蒸気流量Vsが目標値Vtの90%を下回っていると判断した場合には、ステップS40に進む。ステップS40では、流量制御弁26、32を制御して合流部J1への供給ガス量を減じてVsを増加させる一方、合流部J2への供給ガス量を増加して、蒸気供給ライン18へのトータルでのガス供給量を維持する。   The controller 36 inputs a signal from the steam flow meter 42 in step S36, and determines in step S38 whether or not the steam amount (steam flow rate) Vs of the steam generator 12 is less than 90% of the target value Vt. . When it is determined that the steam flow rate Vs of the steam generator 12 is less than 90% of the target value Vt, the process proceeds to step S40. In step S40, the flow rate control valves 26 and 32 are controlled to reduce the amount of gas supplied to the junction J1 and increase Vs, while increasing the amount of gas supplied to the junction J2 to the steam supply line 18. Maintain total gas supply.

コントローラ36は、ステップS38において蒸気発生器12の蒸気流量Vsが目標値Vtの90%以上であると判断した場合には、ステップS42に進む。ステップS42では、蒸気発生器12のVsが目標値Vtの110%を上回っているか否かを判断する。蒸気発生器12の蒸気流量Vsが目標値Vtの110%を上回っていると判断した場合には、ステップS44に進む。ステップS44では、流量制御弁26、32を制御して合流部J1への供給ガス量を増してVsを減少させる一方、合流部J2への供給ガス量を減少させて、蒸気供給ライン18へのトータルでのガス供給量を維持する。   When the controller 36 determines in step S38 that the steam flow rate Vs of the steam generator 12 is 90% or more of the target value Vt, the process proceeds to step S42. In step S42, it is determined whether or not Vs of the steam generator 12 exceeds 110% of the target value Vt. When it is determined that the steam flow rate Vs of the steam generator 12 exceeds 110% of the target value Vt, the process proceeds to step S44. In step S44, the flow control valves 26 and 32 are controlled to increase the amount of gas supplied to the junction J1 and decrease Vs, while the amount of gas supplied to the junction J2 is decreased to supply the steam supply line 18 to the steam supply line 18. Maintain total gas supply.

コントローラ36は、ステップS44において蒸気発生器12の蒸気流量Vsが目標値Ptの110%以下であると判断した場合には、ステップS46に進む。ステップS46では、コントローラ36による制御(液量回復モード)の終了条件が成立したか否かを判断する。制御終了条件としては、例えば、蒸気放出モードの実行時間及び蒸気発生器12の容量に応じて設定される設定時間の経過、液位計を設けた場合における液位計の出力信号が設定値に至った場合等とすることができる。コントローラ36による制御の終了条件が成立したと判断した場合には、本制御を終了し、コントローラ36による制御の終了条件が成立していないと判断した場合には、ステップS30に戻る。   If the controller 36 determines in step S44 that the steam flow rate Vs of the steam generator 12 is 110% or less of the target value Pt, the controller 36 proceeds to step S46. In step S46, it is determined whether or not an end condition for control by the controller 36 (liquid amount recovery mode) is satisfied. As the control end condition, for example, the elapse time of the steam discharge mode and the set time set according to the capacity of the steam generator 12, the output signal of the liquid level meter when the liquid level meter is provided become the set value. It can be the case when it arrives. When it is determined that the condition for ending the control by the controller 36 is satisfied, the present control is terminated. When it is determined that the condition for ending the control by the controller 36 is not satisfied, the process returns to step S30.

ステップS30でコントローラ36は、蒸気消費装置から要求蒸気量、濃度に応じた情報を再度受け取る。したがって、供給蒸気流量Vsの変動が生じた場合にコントローラ36は、上記した通常モードと同様に、供給蒸気量に応じてJ1、J2への供給ガス量を算出し、供給蒸気流量Vsの変化に追従すると共に供給ガスの濃度を維持しつつ蒸気発生器12内の液量を増加させる。そしてコントローラ36は、上記したのと同様に、ステップS38、S42で蒸気発生器12の蒸気流量Vsに変動があると判断された場合はステップS40、S44で蒸気流量Vsを補正しつつ、ステップS26で制御終了と判断されるまで、図6のフローを繰り返す。   In step S <b> 30, the controller 36 receives again information corresponding to the required steam amount and concentration from the steam consuming apparatus. Therefore, when the supply steam flow rate Vs fluctuates, the controller 36 calculates the supply gas amount to J1 and J2 according to the supply steam amount in the same manner as the normal mode described above, and changes the supply steam flow rate Vs. The amount of liquid in the steam generator 12 is increased while following and maintaining the concentration of the supply gas. Similarly to the above, when it is determined in steps S38 and S42 that the steam flow rate Vs of the steam generator 12 is varied, the controller 36 corrects the steam flow rate Vs in steps S40 and S44 while step S26. 6 is repeated until it is determined that the control is finished.

これにより、蒸気供給装置10では、ヒートスポットの冷却のために水蒸気として供給した分の液量を、燃料電池システム100からの要求に応じた水蒸気(と空気との混合ガス)を供給しながら回復することができる。液量回復モードでは、蒸気発生器12への供給液量をΔVsd分だけ増しつつ蒸気発生器12の内部圧力の目標値Pt=Pt2(>Pt1)とするので、換言すれば、図8(B)に示される如く沸点TbがTb1からTb2へ上昇するので、瞬間的に蒸気発生器12の液量が回復する。すなわち、次回のヒートスポット冷却要求に応じて蒸気放出モードを行い得る状態に短時間で復帰する。   As a result, the steam supply apparatus 10 recovers the amount of liquid supplied as steam for cooling the heat spot while supplying steam (mixed gas of air and air) according to the request from the fuel cell system 100. can do. In the liquid amount recovery mode, the target value Pt = Pt2 (> Pt1) of the internal pressure of the steam generator 12 is set while increasing the amount of liquid supplied to the steam generator 12 by ΔVsd. In other words, FIG. ), The boiling point Tb rises from Tb1 to Tb2, so that the liquid amount of the steam generator 12 is instantaneously recovered. That is, it returns to the state which can perform vapor | steam discharge | release mode in a short time according to the next heat spot cooling request | requirement.

以上説明したように、蒸気供給装置10では、蒸気発生器12の内部圧力を変化させて液の沸点(露点)を変化させることで、急激に水蒸気放出量を変化させることができる。ここで、この実施形態において急激とは、流量制御弁26、32の応答時間で規定された蒸気放出時間、貯蔵時間(数秒)において、蒸気発生器12の液位(貯液量)を内圧に応じた液位まで変化させる程度の蒸気発生量の時間変化率を生じる場合をいう。この実施形態では、液位の変化幅として、蒸気発生器12の全液位の20%から80%までの変化を上下限として設定している。より具体的には、例えば蒸気発生器12の全液位の50%が通常の液位である場合に、流量制御弁26、32の応答時間で液位を50%から20%まで低減する程度に蒸気発生量を増し、又は流量制御弁26、32の応答時間で液位を50%から80%まで増加させる程度に蒸気発生器12の内部圧力の目標値Ptが設定されている。蒸気発生器12の液位が20%を下回ると伝熱面積の不足による蒸気発生の減少が懸念され、蒸気発生器12の液位が80%を上回ると過熱液の液溢れが懸念されるが、上記の如く蒸気発生器12の全液位の20%から80%までの範囲で変化させる蒸気発生器12の内部圧力の目標値Ptを設定することで、急激な内圧変化に追従して十分な蒸気発生の増加量を所定時間に亘って得ることができ、また過熱液の溢れを防止することができる。   As described above, in the steam supply device 10, the water vapor discharge amount can be rapidly changed by changing the internal pressure of the steam generator 12 to change the boiling point (dew point) of the liquid. Here, in this embodiment, rapid means that the liquid level (stored amount) of the steam generator 12 is set to the internal pressure in the vapor discharge time and storage time (several seconds) defined by the response time of the flow control valves 26 and 32. This refers to the case where the rate of change in the amount of steam generated is changed to the corresponding liquid level. In this embodiment, as the change range of the liquid level, a change from 20% to 80% of the total liquid level of the steam generator 12 is set as the upper and lower limits. More specifically, for example, when 50% of the total liquid level of the steam generator 12 is a normal liquid level, the liquid level is reduced from 50% to 20% with the response time of the flow control valves 26 and 32. The target value Pt of the internal pressure of the steam generator 12 is set to such an extent that the steam generation amount is increased or the liquid level is increased from 50% to 80% in response time of the flow control valves 26 and 32. When the liquid level of the steam generator 12 is less than 20%, there is a concern about a decrease in steam generation due to insufficient heat transfer area, and when the liquid level of the steam generator 12 exceeds 80%, there is a concern about overflow of superheated liquid. By setting the target value Pt of the internal pressure of the steam generator 12 to be changed in the range of 20% to 80% of the total liquid level of the steam generator 12 as described above, it is sufficient to follow a sudden change in internal pressure. An increased amount of steam generation can be obtained over a predetermined time, and overflow of the superheated liquid can be prevented.

(第2の実施形態)
次に、本発明の第2の実施形態に係る蒸気供給装置50について、図10及び図11に基づいて説明する。なお、上記した第1の実施形態と基本的に同一の部品・部分については、上記した第1の実施形態と同一の符号を付して説明を省略する。
(Second Embodiment)
Next, a steam supply device 50 according to a second embodiment of the present invention will be described with reference to FIGS. Note that parts and portions that are basically the same as those in the first embodiment described above are denoted by the same reference numerals as those in the first embodiment described above, and a description thereof is omitted.

図10には、蒸気供給装置50が図1に対応するフロー図にて示されている。この図に示される如く、蒸気供給装置50は、第2ガス供給装置30、流量制御弁32、及び第2ガス供給ライン28を備えず、蒸気供給ライン18に合流部J2が設けられていない点で、第1の実施形態に係る蒸気供給装置10とは異なる。また、蒸気供給装置50は、コントローラ36に代えて、制御手段としてのコントローラ52を備えている。   In FIG. 10, the steam supply apparatus 50 is shown by the flowchart corresponding to FIG. As shown in this figure, the steam supply device 50 does not include the second gas supply device 30, the flow rate control valve 32, and the second gas supply line 28, and the merging portion J <b> 2 is not provided in the steam supply line 18. Thus, it is different from the steam supply apparatus 10 according to the first embodiment. Further, the steam supply device 50 includes a controller 52 as a control means instead of the controller 36.

コントローラ52は、蒸気消費装置から蒸気流量Vsの増加要求を受けた場合には、基本的に、要求された蒸気流量Vsの増加分ΔVsiに応じた分だけ、蒸気発生器12への液体供給量Vpが増すようにポンプ16を制御すると共に、要求された蒸気流量Vsの増加分ΔVsiの分だけ、蒸気発生器12と流動抵抗体20との間の合流部J1へのガス供給量V1が減少するように流量制御弁26を制御する構成とされている。これにより蒸気供給装置10では、発生蒸気量の増加に伴う流動抵抗体20での圧力損失の増大が相殺され、蒸気発生器12の圧力Pinが略一定に保たれるようになっている。   When the controller 52 receives a request to increase the steam flow rate Vs from the steam consuming device, basically, the amount of liquid supplied to the steam generator 12 by an amount corresponding to the required increase ΔVsi of the steam flow rate Vs. The pump 16 is controlled so as to increase Vp, and the gas supply amount V1 to the junction J1 between the steam generator 12 and the flow resistor 20 is decreased by the required increase ΔVsi of the steam flow rate Vs. Thus, the flow control valve 26 is controlled. Thereby, in the steam supply apparatus 10, the increase in pressure loss in the flow resistor 20 accompanying the increase in the amount of generated steam is offset, and the pressure Pin of the steam generator 12 is kept substantially constant.

一方、コントローラ52は、蒸気消費装置から蒸気流量Vsの減少要求を受けた場合には、基本的に、要求された蒸気流量Vsの減少分ΔVsiに応じた分だけ、蒸気発生器12への液体供給量V1が減るようにポンプ16を制御すると共に、要求された蒸気流量Vsの減少分ΔVsiの分だけ、蒸気発生器12と流動抵抗体20との間の合流部J1へのガス供給量V1が増加するように流量制御弁26を制御する構成とされている。これにより蒸気供給装置10では、発生蒸気量の減少に伴う流動抵抗体20での圧力損失の減少が相殺され、蒸気発生器12の圧力Pinが略一定に保たれるようになっている。   On the other hand, when the controller 52 receives a request to reduce the steam flow rate Vs from the steam consuming device, basically, the controller 52 supplies liquid to the steam generator 12 by an amount corresponding to the requested decrease ΔVsi of the steam flow rate Vs. The pump 16 is controlled so that the supply amount V1 is reduced, and the gas supply amount V1 to the junction J1 between the steam generator 12 and the flow resistor 20 by the required decrease ΔVsi of the steam flow rate Vs. The flow rate control valve 26 is controlled so as to increase. Thereby, in the steam supply device 10, the decrease in the pressure loss in the flow resistor 20 accompanying the decrease in the amount of generated steam is offset, and the pressure Pin of the steam generator 12 is kept substantially constant.

流量制御弁26に対する制御による合流部J1へのガス供給量V1の変化量のコントローラ52による求め方は、第1の実施形態におけるコントローラ36と同様である。そして、ガス供給量V1の変化量のコントローラ52による制御フローは、図5に示すステップS20、S24で合流部J2に対する制御を行わないことを除き、図5に示すフローによる。   The method of obtaining the change amount of the gas supply amount V1 to the junction J1 by the control of the flow control valve 26 by the controller 52 is the same as that of the controller 36 in the first embodiment. And the control flow by the controller 52 of the variation | change_quantity of the gas supply amount V1 is based on the flow shown in FIG. 5 except not performing control with respect to the junction part J2 by step S20, S24 shown in FIG.

また、コントローラ52は、燃料電池システム100のメインコントローラからヒートスポット冷却要求を受けた場合には、蒸気発生器12の内部圧力の目標値PtをPt2からPt1に減少させることで瞬間的に水蒸気の放出量を増す蒸気放出モードを実行する構成とされている。さらに、コントローラ52は、蒸気発生器12の内部圧力の目標値PtをPt1からPt2に増加させると共に蒸気発生器12への供給液量を増すことで、燃料電池システム100への蒸気供給量を維持しつつ、蒸気放出モードで減少した蒸気発生器12の液量を回復させる液量回復モードを実行する構成とされている。蒸気供給装置50の他の構成は、蒸気供給装置10の対応する構成と同じである。   When the controller 52 receives a heat spot cooling request from the main controller of the fuel cell system 100, the controller 52 instantaneously reduces the target value Pt of the internal pressure of the steam generator 12 from Pt2 to Pt1. It is set as the structure which performs the vapor | steam discharge | release mode which increases discharge | release amount. Further, the controller 52 maintains the steam supply amount to the fuel cell system 100 by increasing the target value Pt of the internal pressure of the steam generator 12 from Pt1 to Pt2 and increasing the amount of liquid supplied to the steam generator 12. However, the liquid amount recovery mode for recovering the liquid amount of the steam generator 12 decreased in the steam discharge mode is executed. The other configuration of the steam supply device 50 is the same as the corresponding configuration of the steam supply device 10.

したがって、第2の実施形態に係る蒸気供給装置50によっても、合流部J2へガス供給量を変化させて蒸気供給ライン18の下流端18Aでの蒸気濃度を一定に維持する効果を除き、第1の実施形態に係る蒸気供給装置10と同様の効果を得ることができる。すなわち、蒸気供給装置50では、上流端が蒸気発生器12の蒸気出口12Aに接続された蒸気供給ライン18に流動抵抗体20が配設されると共に、該流動抵抗体20のガス入口20Aと蒸気発生器12の蒸気出口12Aとの間の合流部J1への供給ガス量を変化させ得る流量制御弁26を第1ガス供給ライン22に設けたので、要求発生量の変化に対し高応答で供給(発生)蒸気量を追従させることができる。この効果について、図11を用いて補足する。   Therefore, the steam supply device 50 according to the second embodiment also has the effect of changing the gas supply amount to the junction J2 and maintaining the steam concentration at the downstream end 18A of the steam supply line 18 constant. The same effect as the steam supply apparatus 10 according to the embodiment can be obtained. That is, in the steam supply device 50, the flow resistor 20 is disposed in the steam supply line 18 whose upstream end is connected to the steam outlet 12 </ b> A of the steam generator 12, and the gas inlet 20 </ b> A of the flow resistor 20 and the steam are connected. Since the first gas supply line 22 is provided with a flow rate control valve 26 capable of changing the amount of gas supplied to the junction J1 between the steam outlet 12A of the generator 12 and supplied with high response to changes in the required amount of generation. (Generation) The amount of steam can be followed. This effect will be supplemented with reference to FIG.

図11は、要求蒸気量を急激に増加させた場合の実験結果を示している。図11(A)は、蒸気供給装置50の蒸気発生器12への供給液量、合流部J1への供給ガス量の時間変化を示している。時間0で要求蒸気量の増加指令が入力され、蒸気発生器12への供給液量(発生蒸気量)の増加に伴って、合流部J1への供給ガス量が減じられていることがわかる。図11(B)は、蒸気消費装置の入口(蒸気供給ライン18の下流端18A)への蒸気流量の時間変化(応答)を示している。この図から、蒸気供給装置10では、要求蒸気量の増加指令(時間0)から短時間(約4秒)で蒸気流量が増加(整定)し、その後安定した蒸気流量が維持されることが確かめられた。図示は省略するが、蒸気消費装置の入口圧力についても、短時間で一定になることが確かめられている。   FIG. 11 shows the experimental results when the required steam amount is rapidly increased. FIG. 11A shows changes over time in the amount of liquid supplied to the steam generator 12 of the steam supply device 50 and the amount of gas supplied to the junction J1. An instruction to increase the required steam amount is input at time 0, and it can be seen that the amount of gas supplied to the junction J1 is reduced as the amount of liquid supplied to the steam generator 12 (the amount of generated steam) increases. FIG. 11B shows a change with time (response) of the steam flow rate to the inlet of the steam consuming apparatus (downstream end 18A of the steam supply line 18). From this figure, it is confirmed that in the steam supply device 10, the steam flow rate increases (sets) in a short time (about 4 seconds) from the required steam volume increase command (time 0), and then the stable steam flow rate is maintained. It was. Although illustration is omitted, it has been confirmed that the inlet pressure of the steam consuming apparatus becomes constant in a short time.

図11(B)に破線にて示す線図は、比較例に係る制御方法で制御した場合の蒸気濃度の応答を示している。この制御方法は、合流部J1へのガス供給を常時0とするものである。この比較例に係る制御では、図11(B)に示される如く、要求蒸気量の変化直後から蒸気流量が著しく低下し、蒸気の供給不安定状態になってしまう。すなわち、この比較例では、要求蒸気量の増加に伴って蒸気発生器12の内部圧力Pinが増大し、図12(B)に示される如く沸点Tbが上昇してしまう。すると、蒸気発生(量の増加)が抑制されるために、上記した蒸気流量の低下が生じる。この実験例では、蒸気流量が所定流量に回復するのに略120秒を要している。この比較例との比較により、蒸気供給装置10が著しく高い応答性を示し、要求蒸気量の変化に追従して蒸気濃度を維持することができることが確かめられた。   A diagram indicated by a broken line in FIG. 11B shows the response of the vapor concentration when controlled by the control method according to the comparative example. In this control method, the gas supply to the junction J1 is always zero. In the control according to this comparative example, as shown in FIG. 11 (B), the steam flow rate is remarkably reduced immediately after the change of the required steam amount, and the steam supply becomes unstable. That is, in this comparative example, the internal pressure Pin of the steam generator 12 increases as the required steam amount increases, and the boiling point Tb increases as shown in FIG. Then, since steam generation (increase in amount) is suppressed, the above-described decrease in the steam flow rate occurs. In this experimental example, it takes approximately 120 seconds for the steam flow rate to recover to the predetermined flow rate. By comparison with this comparative example, it was confirmed that the steam supply device 10 showed extremely high responsiveness and was able to maintain the steam concentration following the change in the required steam amount.

また、蒸気供給装置50では、燃料電池システム100のメインコントローラからヒートスポット冷却要求を受けた場合には、蒸気放出モードを実行して瞬間的に水蒸気の放出量を増すため、改質反応部106、シフト反応部112の温度上昇を効果的に抑制することができる。また、蒸気供給装置50では、蒸気放出モードの実行後には、液量回復モードを実行して燃料電池システム100への蒸気供給を維持しつつ蒸気発生器12の液量を瞬間的に回復させることができる。すなわち、次回のヒートスポット冷却要求に応じて蒸気放出モードを行い得る状態に短時間で復帰する。   Further, in the steam supply device 50, when the heat spot cooling request is received from the main controller of the fuel cell system 100, the steam release mode is executed to instantaneously increase the amount of water vapor released. In addition, the temperature increase of the shift reaction unit 112 can be effectively suppressed. Further, in the steam supply device 50, after executing the steam discharge mode, the liquid amount recovery mode is executed to instantaneously recover the liquid amount of the steam generator 12 while maintaining the supply of steam to the fuel cell system 100. Can do. That is, it returns to the state which can perform vapor | steam discharge | release mode in a short time according to the next heat spot cooling request | requirement.

なお、上記した各実施形態では、燃料電池システム100の燃料供給装置104に適用された蒸気供給装置10、50について例示したが、本発明はこれに限定されず、蒸気消費装置に蒸気、好ましくは蒸気とガスとの混合気を供給するための各種用途に適用することができる。したがって、例えば、燃料蒸気を空気と混合させて燃焼機器に供給するための燃料混合気供給装置等に本発明を適用することも可能である。このような各種の用途において、合流部J1へのガス供給量を増して蒸気発生器12の内部圧力Pinを急増させることで、蒸気の供給を瞬間的に急減(停止)させる制御(蒸気放出抑制モード)を採ることも可能である。この場合、第2ガス供給ライン28、第2ガス供給装置30、流量制御弁32を備えた構成においては、合流部J1へのガス供給量の増加に合わせて合流部J2へのガス供給量を減少させることで、燃焼機器に供給する燃料混合気の濃度を一定にすることも可能である。さらにこの場合、蒸気の供給を瞬間的に急減(停止)させると、蒸気発生器12の液量は増すが、上記した回復モードと逆の動作(通常モードに対する蒸気放出モードと同様の動作)により、液量を回復させることができる。   In each of the above-described embodiments, the steam supply devices 10 and 50 applied to the fuel supply device 104 of the fuel cell system 100 are exemplified. However, the present invention is not limited to this, and the steam consuming device preferably uses steam, preferably The present invention can be applied to various uses for supplying a mixture of steam and gas. Therefore, for example, the present invention can also be applied to a fuel mixture supply device for mixing fuel vapor with air and supplying it to combustion equipment. In such various applications, the control of steam supply suppression (steam emission suppression) is realized by increasing the gas supply amount to the junction J1 and increasing the internal pressure Pin of the steam generator 12 suddenly. Mode). In this case, in the configuration including the second gas supply line 28, the second gas supply device 30, and the flow rate control valve 32, the gas supply amount to the junction portion J2 is increased in accordance with the increase in the gas supply amount to the junction portion J1. By reducing it, it is possible to make the concentration of the fuel mixture supplied to the combustion equipment constant. Further, in this case, if the supply of steam is suddenly decreased (stopped) instantaneously, the amount of liquid in the steam generator 12 increases. However, by the operation opposite to the recovery mode described above (the operation similar to the steam discharge mode for the normal mode). The amount of liquid can be recovered.

また、上記した各実施形態では、通常モードでコントローラ36が蒸気発生器12の内部圧力Pinを一定に保つための制御を行う例を示したが、本発明はこれに限定されず、例えば、要求蒸気量の増加に伴って、蒸気発生を促進するために合流部J1へのガス供給量を蒸気発生量の増加分以上に減らすように制御しても良い。   Further, in each of the above-described embodiments, an example in which the controller 36 performs control for keeping the internal pressure Pin of the steam generator 12 constant in the normal mode has been described. However, the present invention is not limited thereto. As the amount of steam increases, in order to promote steam generation, the gas supply amount to the junction J1 may be controlled so as to be reduced more than the increase in steam generation amount.

さらに、上記した第1の実施形態では、通常モードで要求蒸気量に応じて合流部J1、J2へのガス供給量を算出する制御例を示したが、本発明はこれに限定されず、各種の制御にて蒸気発生器12の内部圧力Pinを略一定に保つ等することができる。したがって、例えば、蒸気供給ライン18における混合器34の下流に蒸気濃度計を設け、該蒸気濃度計と圧力計38との信号に基づくフィードバック制御により蒸気発生器12の内部圧力Pin、蒸気供給ライン18の下流端18Aでの蒸気濃度を維持する制御を採用しても良い。   Furthermore, in the above-described first embodiment, the control example in which the gas supply amount to the junctions J1 and J2 is calculated according to the required steam amount in the normal mode is shown, but the present invention is not limited to this, With this control, the internal pressure Pin of the steam generator 12 can be kept substantially constant. Therefore, for example, a steam concentration meter is provided downstream of the mixer 34 in the steam supply line 18, and the internal pressure Pin of the steam generator 12 and the steam supply line 18 are controlled by feedback control based on signals from the steam concentration meter and the pressure gauge 38. Control for maintaining the vapor concentration at the downstream end 18A may be employed.

またさらに、上記した各実施形態では、蒸気とガスとの混合気が蒸気消費装置に供給される例を示したが、本発明はこれに限定されず、例えば、混合器34に代えて蒸気供給ライン18に蒸気分離膜等を設け、蒸気のみを蒸気消費装置に供給するように構成しても良い。   Furthermore, in each of the above-described embodiments, an example in which a mixture of steam and gas is supplied to the steam consuming device has been described. However, the present invention is not limited to this. For example, instead of the mixer 34, steam supply A vapor separation membrane or the like may be provided in the line 18 so that only the vapor is supplied to the vapor consuming device.

本発明の第1の実施形態に係る蒸気供給装置の概略全体構成を示すシステムフロー図である。1 is a system flow diagram showing a schematic overall configuration of a steam supply apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係る蒸気供給装置が適用された燃料電池システムの概略全体構成を示すブロック図である。1 is a block diagram showing a schematic overall configuration of a fuel cell system to which a steam supply device according to a first embodiment of the present invention is applied. 本発明の第1の実施形態に係る蒸気供給装置を構成する流動抵抗体に係る図であって、(A)は概略構造を模式的に示す斜視図、(B)は通過するガス量−圧力損失特性を示す線図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which concerns on the flow resistance body which comprises the steam supply apparatus which concerns on the 1st Embodiment of this invention, Comprising: (A) is a perspective view which shows a schematic structure typically, (B) is the gas amount-pressure which passes. It is a diagram which shows a loss characteristic. 本発明の第1の実施形態に係る蒸気供給装置を構成するコントローラによるメイン制御フローを示すフローチャートである。It is a flowchart which shows the main control flow by the controller which comprises the steam supply apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る蒸気供給装置を構成するコントローラによる通常モード、蒸気放出モードの制御フローを示すフローチャートである。It is a flowchart which shows the control flow of the normal mode by the controller which comprises the steam supply apparatus which concerns on the 1st Embodiment of this invention, and a vapor | steam discharge mode. 本発明の第1の実施形態に係る蒸気供給装置を構成するコントローラによる液量回復モードの制御フローを示すフローチャートである。It is a flowchart which shows the control flow of the liquid quantity recovery | restoration mode by the controller which comprises the steam supply apparatus which concerns on the 1st Embodiment of this invention. (A)は、本発明の第1の実施形態に係る蒸気発生器の運転状態における各部の圧力を示す線図、(B)は、蒸気発生器の蒸気圧線である。(A) is a diagram which shows the pressure of each part in the driving | running state of the steam generator which concerns on the 1st Embodiment of this invention, (B) is a steam pressure line of a steam generator. (A)は、本発明の第1の実施形態に係る蒸気発生器の蒸気放出モードと液量回復モードとの各部の圧力の違いを示す線図、(B)は、蒸気発生器の蒸気圧線である。(A) is a diagram which shows the difference in the pressure of each part of the vapor | steam discharge mode and liquid quantity recovery mode of the steam generator which concerns on the 1st Embodiment of this invention, (B) is the vapor pressure of a steam generator Is a line. 本発明の第1の実施形態に係る蒸気発生器による要求蒸気量を増大させた場合の実験結果を示す図であって、(A)は蒸気発生器への供給液量及び蒸気供給ラインへの供給ガス量の時間変化を示す線図、(B)は、蒸気消費装置の入口圧力及び蒸気濃度の時間変化を示す線図、(C)は、比較例に係る制御をした場合の蒸気発生器への供給液量及び蒸気供給ラインへの供給ガス量の時間変化を示す線図である。It is a figure which shows the experimental result at the time of increasing the request | requirement steam volume by the steam generator which concerns on the 1st Embodiment of this invention, Comprising: (A) is the supply liquid quantity to a steam generator, and a steam supply line A diagram showing the change over time in the amount of gas supplied, (B) is a diagram showing the change over time in the inlet pressure and the vapor concentration of the steam consuming device, and (C) is a steam generator when the control according to the comparative example is performed. It is a diagram which shows the time change of the amount of supply liquids to and the amount of gas supply to a steam supply line. 本発明の第2の実施形態に係る蒸気供給装置の概略全体構成を示すシステムフロー図である。It is a system flow figure which shows the schematic whole structure of the steam supply apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る蒸気発生器による要求蒸気量を増大させた場合の実験結果を示す図であって、(A)は蒸気発生器への供給液量及び蒸気供給ラインへの供給ガス量の時間変化を示す線図、(B)は、発生した蒸気量の時間変化を示す線図である。It is a figure which shows the experimental result at the time of increasing the request | requirement steam volume by the steam generator which concerns on the 2nd Embodiment of this invention, Comprising: (A) is the supply liquid quantity to a steam generator, and a steam supply line FIG. 4B is a diagram showing a change over time in the amount of supplied gas, and FIG. 5B is a diagram showing a change over time in the amount of generated steam. (A)は、本発明の実施形態との比較例に係る蒸気発生器の運転状態における各部の圧力を示す線図、(B)は、該比較例における蒸気発生器の蒸気圧線である。(A) is a diagram which shows the pressure of each part in the operation state of the steam generator which concerns on the comparative example with embodiment of this invention, (B) is the vapor | steam pressure line of the steam generator in this comparative example.

符号の説明Explanation of symbols

10 蒸気供給装置
12 蒸気発生器
16 ポンプ(液供給手段)
20 流動抵抗体
22 第1ガス供給ライン(ガス供給手段、第1のガス供給手段)
24 第1ガス供給装置(ガス供給手段、第1のガス供給手段)
26 流量制御弁(ガス流量変更手段、第1のガス流量変更手段)
28 第2ガス供給ライン(第2のガス供給手段)
30 ガス供給装置(第2のガス供給手段)
32 流量制御弁(第2のガス流量変更手段)
36 コントローラ(制御手段)
50 蒸気供給装置
52 コントローラ(制御手段)
10 Steam supply device 12 Steam generator 16 Pump (liquid supply means)
20 Flow resistor 22 First gas supply line (gas supply means, first gas supply means)
24 1st gas supply apparatus (gas supply means, 1st gas supply means)
26 Flow control valve (gas flow rate changing means, first gas flow rate changing means)
28 Second gas supply line (second gas supply means)
30 Gas supply device (second gas supply means)
32 Flow control valve (second gas flow rate changing means)
36 controller (control means)
50 Steam supply device 52 Controller (control means)

Claims (10)

液体を気化するための蒸気発生器と、
前記蒸気発生器の蒸気出口側に連通され、ガスの通過に伴い流動抵抗を生じさせる流動抵抗体と、
前記蒸気発生器の蒸気出口と前記流動抵抗体のガス入口との間にガスを供給可能なガス供給手段と、
前記ガス供給手段によるガス供給量を変化させ得るガス流量変更手段と、
前記蒸気発生器の液位を設定された上限又は下限まで前記ガス供給手段の応答時間で変化させる程度に急激な該蒸気発生器による蒸気発生量の時間変化が要求される場合に、該蒸気発生量の増減要求に応じて前記ガス流量変更手段を制御する制御手段と、
を備えた蒸気供給装置。
A steam generator for vaporizing the liquid;
A flow resistor that is in communication with the steam outlet side of the steam generator and generates a flow resistance as the gas passes;
Gas supply means capable of supplying gas between a steam outlet of the steam generator and a gas inlet of the flow resistor;
A gas flow rate changing means capable of changing a gas supply amount by the gas supply means;
When the time variation of the steam generation amount due to rapid steam generator is required to the extent that changes in response time of the gas supply means to the set upper limit or lower limit liquid level in the steam generator, the steam generator and control means for controlling the gas flow rate changing means in accordance with the amount of increase decrease request,
A steam supply device comprising:
前記制御手段は、前記蒸気発生器の液位を前記下限まで前記ガス供給手段の応答時間で変化させる程度に急激に前記蒸気発生器による蒸気発生量を増加させる要求に対し、前記ガス供給手段によるガス供給量が減少されるように、前記ガス流量変更手段を制御する請求項1記載の蒸気供給装置。 Wherein, in response to a request to increase the steam generation amount by rapidly the steam generator liquid level of the steam generator to the extent that changes in response time of the gas supply means to said lower limit, the gas supply means The steam supply device according to claim 1, wherein the gas flow rate changing means is controlled so that the gas supply amount by the gas is reduced. 前記制御手段は、前記蒸気発生器の液位を前記上限まで前記ガス供給手段の応答時間で変化させる程度に急激に前記蒸気発生器による蒸気発生量を減少させる要求に対し、前記ガス供給手段によるガス供給量が増加されるように、前記ガス流量変更手段を制御する請求項1又は請求項2記載の蒸気供給装置。 It said control means, in response to a request to decrease little of the steam generation amount by rapidly the steam generator liquid level of the steam generator to the extent that changes in response time of the gas supply means to the upper limit, the gas supply means The steam supply device according to claim 1, wherein the gas flow rate changing unit is controlled so that the gas supply amount by the gas is increased. 前記蒸気発生器に前記液体を供給するための液体供給手段をさらに備え、
前記制御手段は、
前記蒸気発生器の液位を前記下限まで前記ガス供給手段の応答時間で変化させる程度に急激に前記蒸気発生器による蒸気発生量を増加させる要求に対し、前記ガス供給手段によるガス供給量が減少されるように、前記ガス流量変更手段を制御する蒸気放出モードと、
前記蒸気放出モードの実行後に、前記ガス供給手段によるガス供給量が増加されると共に前記蒸気発生器への前記液体の供給量が増加されるように、前記ガス流量変更手段及び前記液体供給手段を制御する回復モードと、
を行い得る請求項1〜請求項3の何れか1項記載の蒸気供給装置。
A liquid supply means for supplying the liquid to the vapor generator;
The control means includes
To request to increase the steam generation amount by rapidly the steam generator liquid level of the steam generator to the extent that changes in response time of the gas supply means to said lower limit, the gas supply amount of the gas supply means A vapor discharge mode for controlling the gas flow rate changing means to be reduced;
After the execution of the vapor discharge mode, the gas flow rate changing means and the liquid supply means are arranged such that the gas supply amount by the gas supply means is increased and the liquid supply amount to the steam generator is increased. Recovery mode to control,
The steam supply device according to any one of claims 1 to 3, wherein
前記蒸気発生器に前記液体を供給するための液体供給手段をさらに備え、
前記制御手段は、
前記蒸気発生器の液位を前記上限まで前記ガス供給手段の応答時間で変化させる程度に急激に前記蒸気発生器による蒸気発生量を減少させる要求に対し、前記ガス供給手段によるガス供給量が増加されるように、前記ガス流量変更手段を制御する蒸気放出抑制モードと、
前記蒸気放出抑制モードの実行後に、前記ガス供給手段によるガス供給量が減少されると共に前記蒸気発生器への前記液体の供給量が減少されるように、前記ガス流量変更手段及び前記液体供給手段を制御する回復モードと、
を行い得る請求項1〜請求項4の何れか1項記載の蒸気供給装置。
A liquid supply means for supplying the liquid to the vapor generator;
The control means includes
To request to decrease little of the steam generation amount by rapidly the steam generator liquid level of the steam generator to the extent that changes in response time of the gas supply means to the upper limit, gas supply amount of the gas supply means A vapor emission suppression mode for controlling the gas flow rate changing means to be increased; and
The gas flow rate changing means and the liquid supply means so that the gas supply amount by the gas supply means is reduced and the supply amount of the liquid to the steam generator is reduced after the execution of the vapor emission suppression mode. Recovery mode to control,
The steam supply apparatus according to any one of claims 1 to 4, wherein
液体を気化するための蒸気発生器と、
前記蒸気発生器の蒸気出口側に連通され、ガスの通過に伴い流動抵抗を生じさせる流動抵抗体と、
前記蒸気発生器の蒸気出口と前記流動抵抗体のガス入口との間にガスを供給可能な第1のガス供給手段と、
前記第1のガス供給手段によるガス供給量を変化させ得る第1のガス流量変更手段と、
前記流動抵抗体のガス出口側にガスを供給可能な第2のガス供給手段と、
前記第2のガス供給手段によるガス供給量を変化させ得る第2のガス流量変更手段と、
前記蒸気発生器の液位を設定された上限又は下限まで前記ガス供給手段の応答時間で変化させる程度に急激な該蒸気発生器による蒸気発生量の時間変化が要求される場合に、該蒸気発生量の増減要求に応じて、装置出口での蒸気濃度が所定の濃度に維持されつつ前記蒸気発生量が前記増減要求に応じて変化するように、前記第1のガス流量変更手段及び前記第2のガス流量変更手段を制御する制御手段と、
を備えた蒸気供給装置。
A steam generator for vaporizing the liquid;
A flow resistor that is in communication with the steam outlet side of the steam generator and generates a flow resistance as the gas passes;
First gas supply means capable of supplying gas between a steam outlet of the steam generator and a gas inlet of the flow resistor;
First gas flow rate changing means capable of changing a gas supply amount by the first gas supply means;
Second gas supply means capable of supplying gas to the gas outlet side of the flow resistor;
Second gas flow rate changing means capable of changing a gas supply amount by the second gas supply means;
When the time variation of the steam generation amount due to rapid steam generator is required to the extent that changes in response time of the gas supply means to the set upper limit or lower limit liquid level in the steam generator, the steam generator depending on the amount of increase down requests, so that the steam generation amount vapor concentration being maintained at a predetermined concentration at the device outlet is changed according to the increase or decrease request, the first gas flow rate control means and said second Control means for controlling the gas flow rate changing means of 2;
A steam supply device comprising:
前記制御手段は、前記蒸気発生器の液位を前記下限まで前記ガス供給手段の応答時間で変化させる程度に急激に前記蒸気発生器による蒸気発生量を増加させる要求に対し、前記ガス供給手段によるガス供給量が減少されると共に、装置出口での蒸気濃度が所定の濃度に維持されるように、前記第1のガス流量変更手段及び前記第2のガス流量変更手段を制御する請求項6記載の蒸気供給装置。 Wherein, in response to a request to increase the steam generation amount by rapidly the steam generator liquid level of the steam generator to the extent that changes in response time of the gas supply means to said lower limit, the gas supply means 7. The first gas flow rate changing means and the second gas flow rate changing means are controlled so that the gas supply amount due to the gas is reduced and the vapor concentration at the apparatus outlet is maintained at a predetermined concentration. The steam supply device described. 前記制御手段は、前記蒸気発生器の液位を前記上限まで前記ガス供給手段の応答時間で変化させる程度に急激に前記蒸気発生器による蒸気発生量を減少させる要求に対し、前記第1のガス供給手段によるガス供給量が増加されると共に、装置出口での蒸気濃度が所定の濃度に維持されるように、前記第1のガス流量変更手段及び前記第2のガス流量変更手段を制御する請求項6又は請求項7記載の蒸気供給装置。 Said control means, in response to a request to decrease little of the steam generation amount by rapidly the steam generator liquid level of the steam generator to the extent that changes in response time of the gas supply means to the upper limit, the first The first gas flow rate changing means and the second gas flow rate changing means are controlled so that the gas supply amount by the gas supply means is increased and the vapor concentration at the outlet of the apparatus is maintained at a predetermined concentration. The steam supply apparatus according to claim 6 or 7. 前記蒸気発生器に前記液体を供給するための液体供給手段をさらに備え、
前記制御手段は、
前記蒸気発生器の液位を前記下限まで前記ガス供給手段の応答時間で変化させる程度に急激に前記蒸気発生器による蒸気発生量を増加させる要求に対し、前記ガス供給手段によるガス供給量が減少されると共に装置出口での蒸気濃度が所定の濃度に維持されるように、前記第1のガス流量変更手段及び前記第2のガス流量変更手段を制御する蒸気放出モードと、
前記蒸気放出モードの実行後に、前記ガス供給手段によるガス供給量が増加されると共に装置出口での蒸気濃度が所定の濃度に維持され、かつ前記蒸気発生器への前記液体の供給量が増加されるように、前記第1のガス流量変更手段、前記第2のガス流量変更手段、及び前記液体供給手段を制御する回復モードと、
を行い得る請求項6〜請求項8の何れか1項記載の蒸気供給装置。
A liquid supply means for supplying the liquid to the vapor generator;
The control means includes
To request to increase the steam generation amount by rapidly the steam generator liquid level of the steam generator to the extent that changes in response time of the gas supply means to said lower limit, the gas supply amount of the gas supply means A vapor discharge mode for controlling the first gas flow rate changing means and the second gas flow rate changing means so that the vapor concentration at the outlet of the apparatus is reduced and maintained at a predetermined concentration;
After execution of the vapor discharge mode, the gas supply amount by the gas supply means is increased, the vapor concentration at the outlet of the apparatus is maintained at a predetermined concentration, and the supply amount of the liquid to the vapor generator is increased. A recovery mode for controlling the first gas flow rate changing means, the second gas flow rate changing means, and the liquid supply means;
The steam supply device according to any one of claims 6 to 8, wherein
前記蒸気発生器に前記液体を供給するための液体供給手段をさらに備え、
前記制御手段は、
前記蒸気発生器の液位を前記上限まで前記ガス供給手段の応答時間で変化させる程度に急激に前記蒸気発生器による蒸気発生量を減少させる要求に対し、前記ガス供給手段によるガス供給量が増加されると共に装置出口での蒸気濃度が所定の濃度に維持されるように、前記第1のガス流量変更手段及び前記第2のガス流量変更手段を制御する蒸気放出抑制モードと、
前記蒸気放出抑制モードの実行後に、前記ガス供給手段によるガス供給量が減少されると共に装置出口での蒸気濃度が所定の濃度に維持され、かつ前記蒸気発生器への前記液体の供給量が減少されるように、前記第1のガス流量変更手段、前記第2のガス流量変更手段、及び前記液体供給手段を制御する回復モードと、
を行い得る請求項6〜請求項9の何れか1項記載の蒸気供給装置。
A liquid supply means for supplying the liquid to the vapor generator;
The control means includes
To request to decrease little of the steam generation amount by rapidly the steam generator liquid level of the steam generator to the extent that changes in response time of the gas supply means to the upper limit, gas supply amount of the gas supply means A vapor discharge suppression mode for controlling the first gas flow rate change means and the second gas flow rate change means so that the vapor concentration at the outlet of the apparatus is maintained at a predetermined concentration,
After execution of the vapor emission suppression mode, the gas supply amount by the gas supply means is decreased, the vapor concentration at the outlet of the apparatus is maintained at a predetermined concentration, and the liquid supply amount to the vapor generator is decreased. A recovery mode for controlling the first gas flow rate changing means, the second gas flow rate changing means, and the liquid supply means;
The steam supply device according to any one of claims 6 to 9, wherein
JP2007270204A 2007-10-17 2007-10-17 Steam supply device Active JP5151388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007270204A JP5151388B2 (en) 2007-10-17 2007-10-17 Steam supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270204A JP5151388B2 (en) 2007-10-17 2007-10-17 Steam supply device

Publications (2)

Publication Number Publication Date
JP2009097800A JP2009097800A (en) 2009-05-07
JP5151388B2 true JP5151388B2 (en) 2013-02-27

Family

ID=40700968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270204A Active JP5151388B2 (en) 2007-10-17 2007-10-17 Steam supply device

Country Status (1)

Country Link
JP (1) JP5151388B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5903573B2 (en) * 2011-11-17 2016-04-13 パナソニックIpマネジメント株式会社 Fuel cell system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957273B2 (en) * 2007-02-01 2012-06-20 株式会社豊田中央研究所 Steam supply device

Also Published As

Publication number Publication date
JP2009097800A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
EP1703102B1 (en) Liquefied natural gas power plant and operation method thereof
JP4479096B2 (en) Hydrogen generation system
EP1513766A1 (en) Fuel reforming device
EP3671925B1 (en) Fuel cell system and fuel cell system warm-up method
JP2008019159A (en) Hydrogen generating apparatus and fuel battery system equipped with the same
JPWO2006088018A1 (en) Hydrogen generator, operating method thereof, and fuel cell system
JP2002343385A (en) Fuel cell system
JP2015204172A (en) fuel cell system
JP5151388B2 (en) Steam supply device
US20080011462A1 (en) Microchannel-Type Evaporator and System Using the Same
KR101203454B1 (en) Hydrogen generator and fuel cell power generator
JP4957273B2 (en) Steam supply device
JP4352822B2 (en) Heat exchanger operation control device
JP6453595B2 (en) Solid oxide fuel cell system
JP2011144062A (en) System for reforming fuel, and method for controlling fuel-reforming system
JP2003077517A (en) Fuel cell system
JP4370865B2 (en) Fuel cell water recovery system
JP2006046132A (en) Gas turbine system, reformed fuel combustion gas turbine system, and reformed fuel supply method for gas turbine system
JP2001010803A (en) Controller for reformer
JP2016125567A (en) Evaporator for liquefied gas
JP5520013B2 (en) Fuel cell system
JP6777237B2 (en) Fuel cell system control method and fuel cell system
JP3882550B2 (en) Control device for mobile fuel reforming system
JP2005067952A (en) Modification system, and warming-up method in modification system
WO2019234934A1 (en) Temperature control method and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5151388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3