JP5150894B2 - Tyrosinase activity inhibitor and method for producing the same - Google Patents

Tyrosinase activity inhibitor and method for producing the same Download PDF

Info

Publication number
JP5150894B2
JP5150894B2 JP2006330017A JP2006330017A JP5150894B2 JP 5150894 B2 JP5150894 B2 JP 5150894B2 JP 2006330017 A JP2006330017 A JP 2006330017A JP 2006330017 A JP2006330017 A JP 2006330017A JP 5150894 B2 JP5150894 B2 JP 5150894B2
Authority
JP
Japan
Prior art keywords
group
formula
bibenzyl
compound
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006330017A
Other languages
Japanese (ja)
Other versions
JP2008056651A (en
Inventor
賢一 二瓶
忠 柳沢
雅之 飯郷
宏美 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utsunomiya University
Original Assignee
Utsunomiya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utsunomiya University filed Critical Utsunomiya University
Priority to JP2006330017A priority Critical patent/JP5150894B2/en
Publication of JP2008056651A publication Critical patent/JP2008056651A/en
Application granted granted Critical
Publication of JP5150894B2 publication Critical patent/JP5150894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

本発明はフェノール類の成分が段階的に着色・ポリマー化する際にその化学反応を促進させる酸化還元酵素であるチロシナーゼに対して、その酵素機能を阻害する機能を持つレゾルシノール誘導体と結合したビベンジル誘導体を含有するチロシナーゼの活性阻害剤とその製造方法等に関する。   The present invention relates to a tyrosinase which is an oxidoreductase that promotes a chemical reaction when a phenol component is colored or polymerized stepwise, and a bibenzyl derivative bound to a resorcinol derivative having a function of inhibiting the enzyme function. The present invention relates to a tyrosinase activity inhibitor containing thiocinase and a method for producing the same.

酸化還元酵素のポリフェノールオキシダーゼ(チロシナーゼを含む)は動植物の細胞構成組織に含まれるフェノール類の化学反応を促進させる作用があり、人の皮膚では褐色化(日焼け)を引き起こし、青果類や魚介類などの食品では褐変による商品価値の低下や食品に含まれ有益な抗酸化活性のあるポリフェノール類を分解し、昆虫では外皮に含まれるフェノール成分を化学変化させることによって変態して成虫になれることが知られている。
このように、ポリフェノールオキシダーゼは動植物におけるフェノール類の着色・ポリマー化現象の初期反応を触媒する酸化還元酵素として知られている。
Polyphenol oxidase (including tyrosinase), an oxidoreductase, promotes the chemical reaction of phenols in animal and plant cell tissues, causing browning (sunburn) in human skin, and fruits and vegetables It is known that in foods of the world, the product value decreases due to browning and polyphenols contained in foods that have beneficial antioxidant activity are decomposed, and in insects, they can be transformed into adults by chemically changing the phenol component contained in the hull. It has been.
Thus, polyphenol oxidase is known as an oxidoreductase that catalyzes the initial reaction of the coloring and polymerizing phenomenon of phenols in animals and plants.

例えば、日焼けが起きる仕組みは、過剰紫外線によって皮膚基底層の色素細胞(メラノサイト)が活性化しチロシンから生成した過剰のメラニンが皮膚に沈着する現象であるが、キシロンからドーパ、ドーパキノン、メラニンへと段階的に化学変化する過程で、酵素であるポリフェノールオキシダーゼが触媒として作用する。その際にその変化は濃度が濃くなる方向に褐色化が進んで行き、その結果、人の顔ではシミやソバカスができ、手足などの皮膚は褐色に日焼けする。
原因となる褐色色素であるメラニンは動植物に広く分布しており、弱いながらも紫外線を吸収する性質を持っているため、動物の皮膚や表皮を紫外線から守る役割を果たしているが、過剰なメラニン色素の沈着はシミやソバカスの原因となり、肌の老化を促進するとともにそのときの過剰紫外線による細胞の損傷は膚がんの主因ともなっている。
動植物における色素形成反応の初期段階には,チロシナーゼ(ポリフェノールオキシダーゼ)が深く関与している。チロシナーゼは,活性中心に銅を含む酸化還元酵素で,モノフェノールのo-ヒドロキシ化と,o-ジフェノールのo-キノンへの酸化という2つの連続した反応を触媒する。最終的に,o-キノン由来の重合体が褐色色素となる。すなわち,これらの色素形成を抑制するためには,チロシナーゼの働きを阻害する必要がある。このようなチロシナーゼのポリマー化現象に係る触媒機能を阻害するための物質として、従来、コウジ酸、ビタミンC、ハイドロキノン、アルブチン、ヘキシルレゾルシノールなどがチロシナーゼ阻害剤として用いられてきた。
For example, the mechanism of sunburn is a phenomenon in which the pigment cells (melanocytes) in the basal layer of the skin are activated by excessive ultraviolet rays, and excess melanin generated from tyrosine is deposited on the skin. In the process of chemical change, the enzyme polyphenol oxidase acts as a catalyst. At that time, the change becomes browning in the direction of increasing concentration, and as a result, spots and freckles are formed on the human face, and skins such as limbs are tanned in brown.
Melanin, the brown pigment that causes it, is widely distributed in animals and plants, and has the property of absorbing ultraviolet rays although it is weak, so it plays a role in protecting animal skin and epidermis from ultraviolet rays, but excess melanin pigments Deposition of the skin causes spots and freckles and promotes aging of the skin. At the same time, cell damage due to excessive ultraviolet rays is a major cause of skin cancer.
Tyrosinase (polyphenol oxidase) is deeply involved in the early stages of pigment formation in animals and plants. Tyrosinase is an oxidoreductase containing copper at the active center and catalyzes two successive reactions: monophenol o-hydroxylation and o-diphenol oxidation to o-quinone. Finally, the o-quinone-derived polymer becomes a brown pigment. That is, in order to suppress these pigment formations, it is necessary to inhibit the action of tyrosinase. Conventionally, kojic acid, vitamin C, hydroquinone, arbutin, hexyl resorcinol, and the like have been used as tyrosinase inhibitors as substances for inhibiting the catalytic function related to the polymerization phenomenon of tyrosinase.

このうちコウジ酸は、日本では、日焼けや褐変を防ぐものとして古くから化粧品や食品に添加されてきたが、発がん性も認められるとの理由で、現在では使用禁止薬物に指定されており使用はされていない。
また、ビタミンCやハイドロキノンは人への毒性はないが色素形成が抑制できる。この色素形成の抑制は、フェノール類の着色・ポリマー化現象を促進するチロシナーゼの触媒機能の阻害によるものではなく、着色・ポリマー化する過程でチロシナーゼで生成されたドーパキノンをドーパ(DOPA)に還元することによって色素の形成を抑制するものである。
Kojic acid has been added to cosmetics and food for a long time in Japan to prevent sunburn and browning, but it is now designated as a prohibited drug because it is carcinogenic. It has not been.
Vitamin C and hydroquinone are not toxic to humans, but can suppress pigment formation. This suppression of pigment formation is not due to inhibition of the catalytic function of tyrosinase that promotes the coloring and polymerization of phenols, but the dopaquinone produced by tyrosinase is reduced to dopa (DOPA) during the process of coloring and polymerization. This suppresses the formation of the pigment.

さらに、アルブチン及び下記特許文献1に開示されたヘキシルレゾルシノールなどのレゾルシノール構造と水溶性の性質を兼ね備えたチロシナーゼの触媒機能を阻害する化合物が、コウジ酸に代わる美白化粧剤として提案されている。その他、新規成分であるピペロナルドオキシムまたはその誘導体   Furthermore, a compound that inhibits the catalytic function of tyrosinase having arbutin and a resorcinol structure and water-soluble properties such as hexyl resorcinol disclosed in Patent Document 1 has been proposed as a whitening cosmetic agent in place of kojic acid. In addition, piperonald oxime or its derivative, which is a new component

特開2006−124358号公報JP 2006-124358 A

そのレゾルシノール構造の化合物のうちアルブチンは美白化粧剤に用いたとき、高い水溶性のために細胞毒性が低い点は評価できてもチロシナーゼ阻害活性が弱いという点ではあまり評価されていない。また、上記特許文献1に開示されたヘキシルレゾルシノール誘導体は、環境ホルモンのノニルフェノールと構造が類似し、強いチロシナーゼの活性阻害剤としての機能が認められているが、水溶性が低く細胞毒性が疑われている。そこで、本発明の課題は、動植物が持つフェノール類を段階的に着色・ポリマー化させるチロシナーゼ(EC1.14.18.1)の活性に対して高い阻害効果が得られ、生命体である動植物に対する毒性が少ないチロシナーゼの活性阻害剤と、その剤の製造方法やその剤の利用方法を提供することにある。   Of the resorcinol-structured compounds, arbutin, when used in a whitening cosmetic agent, has not been highly evaluated in that it has a low water-soluble tyrosinase inhibitory activity even though it can be evaluated as having low cytotoxicity. The hexyl resorcinol derivative disclosed in Patent Document 1 has a structure similar to that of the environmental hormone nonylphenol and has been recognized as a strong tyrosinase activity inhibitor. However, its water solubility is low and cytotoxicity is suspected. ing. Accordingly, the object of the present invention is to obtain a high inhibitory effect on the activity of tyrosinase (EC 1.14.18.1), which gradually colors and polymerizes phenols possessed by animals and plants, and is used for animals and plants that are living organisms. An object is to provide a tyrosinase activity inhibitor with low toxicity, a method for producing the agent, and a method for using the agent.

本発明者らは、上記課題を解決するために鋭意研究し、ユリ科の薬用植物であるChlorophytum arundinaceumの抽出物中に存在する特定のビベンジル配糖体、及び化学合成誘導体が水溶性で強いチロシナーゼ阻害活性を有することを見出し、本発明を完成するに至った。   The present inventors have intensively studied to solve the above-mentioned problems, and specific bibenzyl glycosides and chemically synthesized derivatives present in the extract of Chlorophytum arundinaceum, a medicinal plant of the lily family, are water-soluble and strong tyrosinase. It has been found that it has an inhibitory activity, and the present invention has been completed.

すなわち本発明は、(1)以下の式(Ia)(式中、 及びR は、同一又は異なって、水素原子又は単糖類若しくは二糖類由来のグリコシル基を表わす)で示されるビベンジル誘導体を含有するチロシナーゼの活性阻害剤に関する。

That is, the present invention provides (1) a bibenzyl derivative represented by the following formula ( Ia ) (wherein R 1 and R 2 are the same or different and each represents a hydrogen atom or a monosaccharide or disaccharide-derived glycosyl group ). The present invention relates to a tyrosinase activity inhibitor containing

また本発明は、()グリコシル基が、五糖残基又は六炭糖残基であることを特徴とする上記(1)記載のビベンジル誘導体を含有するチロシナーゼの活性阻害剤や、(グリコシル基が、キシロシル基であることを特徴とする上記(1)記載のビベンジル誘導体を含有するチロシナーゼの活性阻害剤や、()Rがキシロシル基かつが水素原子であるか、R及びRが共にキシロシル基であるか、Rが水素原子かつがキシロシル基であるか、又は、R及びRが共に水素原子であることを特徴とする(1)記載のビベンジル誘導体を含有するチロシナーゼの活性阻害剤に関する。 The present invention, (2) glycosyl groups, pentose activity inhibitor or tyrosinase containing bibenzyl derivative according to (1), which is a sugar residue or a hexose residue, (3 ) A tyrosinase activity inhibitor containing the bibenzyl derivative according to (1) above, wherein the glycosyl group is a xylosyl group, or ( 4 ) R 1 is a xylosyl group and R 2 is a hydrogen atom, R 1 and R 2 are both xylosyl, or R 1 is a hydrogen atom and R 2 is a xylosyl group, or, characterized in that R 1 and R 2 are both hydrogen atoms (1), wherein The present invention relates to an activity inhibitor of tyrosinase containing a bibenzyl derivative of

また本発明は、(5)以下の式(Iaa)(式中、R11は水素原子又はキシロシル基を表し、R21 はキシロシル基を表)で表されるビベンジル誘導体に関する。
The present invention, (5) the following formula (Iaa) (wherein, R 11 represents a hydrogen atom or a xylosyl group, R 21 is to display the key Shiroshiru group) about bibenzyl derivative represented by.

さらに、本発明は、()2,4−ジヒドロキシベンズアルデヒドを出発物質として、該化合物から得られる以下の式(II)



(式中、X及びXは、同一又は異なって、水酸基の保護基を表す)で表されるベンズアルデヒド誘導体と、同じく、2,4−ジヒドロキシベンズアルデヒドから得られる以下の式(III)




(式中、Y及びYは、同一又は異なって、水酸基の保護基を表し、Zはハロゲン原子を表す)で表されるホスホニウム塩とを、ウィッティッヒ(Wittig)反応条件下に反応させ、以下の式(IV)




(式中、X、X、Y及びYは、前記と同義である;波線はシス又はトランスを表す)で表されるスチルベン誘導体を得、次いで、式(IV)で表される化合物を水素添加反応に付すことにより、以下の式(V)



(式中、X11、X21、Y11及びY21は、同一又は異なって、水素原子又は水酸基の保護基を表す)で表されるビベンジル誘導体を製造する工程を含む、以下の式(Iaa)


式中、R 11 は水素原子又はキシロシル基を表し、R 21 は水素原子又はキシロシル基を表し、R 11 及びR 21 は同時に水素原子ではない)で表されるビベンジル誘導体の製造方法や、()以下の式(VI)



(式中、X12及びX22の少なくとも1つは水素原子を表し、他は水酸基の保護基を表し、Y及びYは、同一又は異なって、水酸基の保護基を表す)で表されるビベンジル誘導体をアグリコン部分として、以下の式(VII)


(式中、Sugは、糖残基の官能基が保護されたグリコシル基を表す)
で表されるイミデートでグリコシル化し、次いで、保護基を脱離することからなる、以下の式(Iaa)


式中、R 11 は水素原子又はキシロシル基を表し、R 21 は水素原子又はキシロシル基を表し、R 11 及びR 21 は同時に水素原子ではない)で表されるビベンジル誘導体の製造方法に関する。
Furthermore, the present invention provides the following formula (II) obtained from the compound using ( 6 ) 2,4-dihydroxybenzaldehyde as a starting material.



(Wherein, X 1 and X 2 are the same or different and each represents a hydroxyl-protecting group) and, similarly, the following formula (III) obtained from 2,4-dihydroxybenzaldehyde




(Wherein Y 1 and Y 2 are the same or different and each represents a hydroxyl-protecting group and Z represents a halogen atom) and a phosphonium salt represented by Wittig reaction conditions, The following formula (IV)




(Wherein X 1 , X 2 , Y 1 and Y 2 have the same meanings as above; the wavy line represents cis or trans), and then represented by the formula (IV) By subjecting the compound to a hydrogenation reaction, the following formula (V)



( Wherein X 11 , X 21 , Y 11 and Y 21 are the same or different and each represents a hydrogen atom or a hydroxyl-protecting group), and a process for producing a bibenzyl derivative represented by the following formula (Iaa )


( Wherein R 11 represents a hydrogen atom or a xylosyl group, R 21 represents a hydrogen atom or a xylosyl group, and R 11 and R 21 are not hydrogen atoms at the same time ), 7 ) The following formula (VI)



(Wherein at least one of X 12 and X 22 represents a hydrogen atom, the other represents a hydroxyl-protecting group, and Y 1 and Y 2 are the same or different and represent a hydroxyl-protecting group ). And the following formula (VII):


(In the formula, Sug represents a glycosyl group in which the functional group of the sugar residue is protected)
The following formula (Iaa) consisting of glycosylation with an imidate represented by


( Wherein R 11 represents a hydrogen atom or a xylosyl group, R 21 represents a hydrogen atom or a xylosyl group, and R 11 and R 21 are not hydrogen atoms at the same time ).

本発明のビベンジル誘導体を含有するチロシナーゼの活性阻害剤は、皮膚褐色化防止機能性化粧品即ち皮膚の美白化粧品や、野菜など植物カット食材の鮮度保持を目的とする褐変防止機能性添加剤や昆虫のさなぎ化抑止機能による殺虫剤としての用途が期待できる。また、本発明のビベンジル誘導体を含有するチロシナーゼの活性阻害剤の製造方法は、安価なジヒドロキシベンズアルデヒドから多くて8段階程度の短い工程で合成できるため、グラムスケールでの各化合物の供給が可能となる。   The tyrosinase activity inhibitor containing the bibenzyl derivative of the present invention is an anti-browning functional additive for the purpose of maintaining the freshness of skin-browning-preventing functional cosmetics, that is, skin whitening cosmetics, vegetable-cut foodstuffs such as vegetables, and insects. It can be expected to be used as an insecticide by the pupalization inhibiting function. In addition, since the method for producing a tyrosinase activity inhibitor containing a bibenzyl derivative of the present invention can be synthesized from inexpensive dihydroxybenzaldehyde in a short process of about 8 steps, each compound can be supplied on a gram scale. .

本発明は、上記式(I)で示される化合物[以下、化合物(I)という]において、置換基ORの置換数は1〜2で、好ましくは2であり、その場合のORは、同一又は異なっていてもよい。また、置換基の位置は、置換可能な何れの位置でもよく、特に制限されないが、好ましくはエチレン鎖が置換している位置からオルト又はパラ位であり、上記式(Ia)で表される化合物[以下、化合物(Ia)という]がより好ましい。   In the compound represented by the above formula (I) [hereinafter referred to as compound (I)], the number of substituents OR in the present invention is 1 to 2, preferably 2, and the ORs are the same or May be different. Further, the position of the substituent may be any position where substitution is possible, and is not particularly limited, but is preferably a compound represented by the above formula (Ia) which is ortho or para from the position where the ethylene chain is substituted. [Hereinafter referred to as Compound (Ia)] is more preferred.

式(I)等の各基の定義において、グリコシル基は、水溶性を示す糖残基であれば特に制限されず、単糖類又はオリゴ糖類の何れの残基でもよい。単糖類としては、三〜七炭糖類の何れでもよいが、好ましくは、五炭糖類又は六炭糖類である。五炭糖類の具体例としては、リボース、キシロース、アラビノース等が挙げられ、六炭糖類の具体例としては、グルコース、マンノース、ガラクトース、フルクトース等が挙げられ、特に、五炭糖のキシロースが好ましい。オリゴ糖類としては、二〜六糖類が好ましく、特に、二糖類が好ましい。二糖類の具体例としては、スクロース、マルトース、ラクトース、セロビオース、トレハロース等が挙げられる。その他、三糖類としては、ラフィノース、パノース、メレジトース、ゲンチアノース等が、四糖類としては、スタキオース等が挙げられる。その他のグリコシル基としては、デオキシリボース、フコース、ラムノース等のデオキシ糖、グルクロン酸等のウロン酸、グルコサミン等のアミノ糖の各残基も挙げられる。また、これら糖類は、D−体、L−体又はこれらの混合物等、何れの異性体も、使用することができる。   In the definition of each group such as formula (I), the glycosyl group is not particularly limited as long as it is a sugar residue exhibiting water solubility, and may be any residue of a monosaccharide or an oligosaccharide. The monosaccharide may be any of 3-7 heptasaccharides, but is preferably a pentose saccharide or a hexose saccharide. Specific examples of the pentose include ribose, xylose, arabinose, and the like. Specific examples of the hexose include glucose, mannose, galactose, fructose, and the like. Particularly, the pentose xylose is preferable. As the oligosaccharide, di-hexasaccharide is preferable, and disaccharide is particularly preferable. Specific examples of the disaccharide include sucrose, maltose, lactose, cellobiose, trehalose and the like. In addition, examples of the trisaccharide include raffinose, panose, melezitose, and gentianose, and examples of the tetrasaccharide include stachyose. Other glycosyl groups also include deoxy sugars such as deoxyribose, fucose, and rhamnose, uronic acids such as glucuronic acid, and amino sugars such as glucosamine. Moreover, any isomers such as D-form, L-form or a mixture thereof can be used as these saccharides.

水酸基の保護基及び糖の官能基の保護基としては、通常の有機合成化学で常用されている保護基を使用することができ、例えば、塩基性条件化に脱保護できる、アセチル基、ベンゾイル基などのアシル基等、酸性条件下で脱保護できる、メトキシメチル基、テトラヒドロフラニル基などのエーテル類等、加水素分解により脱保護できるベンジル基などがあげられる。また、目的化合物により、特定の位置の保護基を選択的に脱保護することを所望の場合は、前記保護基を適宜組み合わせて用いればよい。また、ハロゲン原子としては、塩素、臭素、ヨウ素等を例示することができる。   As a protecting group for a hydroxyl group and a protecting group for a sugar functional group, a protecting group commonly used in ordinary organic synthetic chemistry can be used. For example, an acetyl group or a benzoyl group that can be deprotected under basic conditions. Examples thereof include acyl groups such as, ethers such as methoxymethyl group and tetrahydrofuranyl group that can be deprotected under acidic conditions, and benzyl groups that can be deprotected by hydrogenolysis. In addition, when it is desired to selectively deprotect a protecting group at a specific position depending on the target compound, the protecting groups may be used in appropriate combination. Further, examples of the halogen atom include chlorine, bromine, iodine and the like.

本発明のチロシナーゼの活性阻害剤として好ましく使用することができる具体的化合物としては、前記式(Ia)中、Rがキシロシル基を表わし、Rが水素原子を表わす下記式で示される化合物(以下「化合物(1)」という)が例示される。
Specific compounds that can be preferably used as the tyrosinase activity inhibitor of the present invention include compounds represented by the following formula (Ia) wherein R 1 represents a xylosyl group and R 2 represents a hydrogen atom ( Hereinafter, “compound (1)” is exemplified.

また、式(Ia)中、R及びRが、共にキシロシル基を表わす下記式で示される化合物(以下、「化合物(2)」という)が例示される Further, in the formula (Ia), a compound represented by the following formula in which R 1 and R 2 both represent a xylosyl group (hereinafter referred to as “compound (2)”) is exemplified.

また、式(Ia)中、Rが水素原子を表わし、Rがキシロシル基を表わす下記式で示される化合物(以下、「化合物(3)」という)が例示される。 Examples of the compound represented by the following formula (hereinafter referred to as “compound (3)”) in which R 1 represents a hydrogen atom and R 2 represents a xylosyl group in formula (Ia) are exemplified.

さらに、式(Ia)中及びRが、共に水素原子を表わす下記式で示される化合物(以下、「化合物(4)」という)が例示される。 Further, in formula (Ia), R 1 and R 2, the following compound represented by the formula together represent a hydrogen atom (hereinafter, referred to as "compound (4)") are exemplified.

特に、化合物(2)と化合物(3)は、天然には存在しない新規化合物であり、その合成が本願製造方法で初めて可能になった。
上記化合物(1)〜(4)など、化合物(I)は、いずれもレゾルシノール誘導体と結合したビベンジル誘導体であり、レゾルシノール誘導体である従来のヘキシルレゾルシノール誘導体とはビベンジル誘導体部分が全く異なった分子構成となっている。
酸化還元酵素のチロシナーゼに対して、化学結合しやすい化学構成となっており、チロシナーゼの分子がレゾルシノール誘導体に一部置換されて別物質になり、フェノール類の着色・ポリマー化する際の酸化還元酵素としての機能が失われるため、フェノール類の着色・ポリマー化を阻害する機能を有する化合物、即ちチロシナーゼの活性阻害剤となる。
In particular, compound (2) and compound (3) are novel compounds that do not exist in nature, and their synthesis has become possible for the first time by the production method of the present application.
Compound (I) such as the above-mentioned compounds (1) to (4) is a bibenzyl derivative bonded to a resorcinol derivative, and has a molecular configuration in which the bibenzyl derivative portion is completely different from the conventional hexyl resorcinol derivative which is a resorcinol derivative. It has become.
It has a chemical structure that is easy to chemically bond to the oxidoreductase tyrosinase, and the tyrosinase molecule is partially substituted with a resorcinol derivative to become a separate substance, and the oxidoreductase when coloring and polymerizing phenols Therefore, it becomes a compound having a function of inhibiting the coloring and polymerization of phenols, that is, an activity inhibitor of tyrosinase.

化合物(1)は、古代の医術書であるアーユルヴェーダに薬用植物として記載され強壮剤として現在も利用されているインド産のユリ科植物Chlorophytum arundinaceumに含まれている。この物質は1993年、Tandonらがこの植物から2’,4,4’−トリヒドロキシ−2−β−D−キシロピラノシルビベンジルを単離し構造決定した。しかし,その全合成は達成されておらず、生理活性についても未だ明らかにされていない。   Compound (1) is contained in the Indian lily family plant Chlorophytum arundinaceum, which is described as a medicinal plant in Ayurveda, an ancient medical book, and is still used as a tonic. In 1993, Tandon et al. Isolated and determined the structure of 2 ', 4,4'-trihydroxy-2-β-D-xylopyranosylbibenzyl from this plant. However, the total synthesis has not been achieved, and the physiological activity has not been clarified yet.

本発明では、そのレゾルシノールと糖構造の両方を有するビベンジル配糖体に着目し、その物質の全合成を可能にした。
さらにレゾルシノール誘導体を持つビベンジル誘導体の化合物の化学合成に成功し、製造した各物質のチロシナーゼ阻害活性の効果を確認した。
In the present invention, the bibenzyl glycoside having both the resorcinol and sugar structure is focused on, and the total synthesis of the substance is made possible.
Furthermore, the chemical synthesis of the bibenzyl derivative compound having resorcinol derivative was succeeded, and the effect of the tyrosinase inhibitory activity of each substance produced was confirmed.

次に本発明のビベンジル誘導体の製造方法について、グリコシル基としてキシロシル基を用いた場合[化合物(1)〜(3)]及び化合物(4)を例として、以下詳しく説明する。   Next, the production method of the bibenzyl derivative of the present invention will be described in detail below by taking [Compounds (1) to (3)] and Compound (4) as examples when a xylosyl group is used as the glycosyl group.

製造法A.化合物(1)の製造方法
化合物(1)は、下記[化16]及び[化17]に示す反応工程に従い製造することができる。
Production Method A. Method for Producing Compound (1) Compound (1) can be produced according to the reaction steps shown in the following [Chemical 16] and [Chemical 17].

[化合物(5)の合成]
2,4−ジヒドロキシベンズアルデヒドの溶媒中、ベンジルブロミド(BnBr)、塩基、触媒量のテトラブチルアンモニウムヨージド(TBAI)を加えて反応し、4位の水酸基を選択的にベンジル(Bn)化し、4−ベンジルオキシサリチルアルデヒド(5)を得る。
この反応の際、塩基としては、炭酸水素ナトリウム、炭酸カリウム、フッ化カリウムなどが用いられ、また、溶媒はアセトニトリル、アセトンなどが用いられる。
[Synthesis of Compound (5)]
In a solvent of 2,4-dihydroxybenzaldehyde, benzyl bromide (BnBr), a base, and a catalytic amount of tetrabutylammonium iodide (TBAI) are added and reacted to selectively benzyl (Bn) the 4-position hydroxyl group. -Benzyloxysalicylaldehyde (5) is obtained.
In this reaction, sodium hydrogen carbonate, potassium carbonate, potassium fluoride and the like are used as the base, and acetonitrile, acetone and the like are used as the solvent.

(工程a)
アルデヒド(5)の溶液に、クロロメチルメチルエーテル(MOMC1)と塩基、触媒量のTBAIを加えて反応し、2位の水酸基をメトキシメチル(MOM)化し、2−メトキシメチル−4−ベンジルオキシベンズアルデヒド(6)を得る。
この反応の際、塩基としては、N,N−ジイソプロピルエチルアミン(DIPEA)、トリエチルアミン(TEA)、炭酸カリウムなどが用いられ、溶媒は、ジクロロメタン、四塩化炭素、クロロホルム等のハロゲン化炭化水素類、テトラヒドロフラン(THF)等のエーテル類、N,N−ジメチルホルムアミド(DMF)などが用いられる。
(Process a)
To the aldehyde (5) solution, chloromethyl methyl ether (MOMC1), a base, and a catalytic amount of TBAI were added to react, and the 2-position hydroxyl group was converted to methoxymethyl (MOM) to give 2-methoxymethyl-4-benzyloxybenzaldehyde. (6) is obtained.
In this reaction, N, N-diisopropylethylamine (DIPEA), triethylamine (TEA), potassium carbonate or the like is used as a base, and halogenated hydrocarbons such as dichloromethane, carbon tetrachloride and chloroform, tetrahydrofuran, and the like. Ethers such as (THF), N, N-dimethylformamide (DMF) and the like are used.

[化合物(7)の合成]
2,4−ジヒドロキシベンズアルデヒドを溶媒に溶解し、BnBr、塩基を加え反応し、水酸基をベンジル化し、2,4−ジベンジルオキシベンズアルデヒドを得る。この反応の際の塩基は炭酸カリウム、水素化ナトリウム、炭酸ナトリウムなどが用いられ、溶媒は、DMF、アセトニトリル、ジメチルスルホキシド(DMSO)、アセトン、THFなどが用いられ、使用する塩基に応じて選択すればよい。次いで、得られたジベンジル体を溶媒に溶解し、還元剤を加えてアルデヒド基を還元し、2,4−ジベンジルオキシベンジルアルコールを得る。 この反応の際の還元剤は、水素化ホウ素ナトリウム、水素化リチウムアルミニウム、水素化ホウ素リチウムなどが用いられる。溶媒はメタノール(MeOH)、エタノール、プロパノール、イソプロパノールなどのアルコール類単独や、それらとジエチルエーテル、ベンゼン、トルエン等との混合溶媒が用いられ、使用する還元剤に応じて選択すればよい。その後、このベンジルアルコール体のベンジル位をクロロ化することによりクロロ体(7)を得る。この反応の際、クロロ化試薬としては、例えば、塩化チオニル、三塩化リン、オキサリルクロリドなどが用いられ、また、化合物(7)は、三臭化リンなどのブロモ化試薬によるブロモ化することによりブロモ体としても、以降の反応に使用することができる。溶媒は、トルエン、ベンゼンなどの芳香族炭化水素類、四塩化炭素などのハロゲン化炭化水素類が用いられる。
[Synthesis of Compound (7)]
2,4-dihydroxybenzaldehyde is dissolved in a solvent, BnBr and a base are added and reacted to benzylate the hydroxyl group to obtain 2,4-dibenzyloxybenzaldehyde. The base used in this reaction is potassium carbonate, sodium hydride, sodium carbonate or the like, and the solvent is DMF, acetonitrile, dimethyl sulfoxide (DMSO), acetone, THF or the like, which is selected according to the base used. That's fine. Next, the obtained dibenzyl compound is dissolved in a solvent, and a reducing agent is added to reduce the aldehyde group to obtain 2,4-dibenzyloxybenzyl alcohol. As the reducing agent in this reaction, sodium borohydride, lithium aluminum hydride, lithium borohydride, or the like is used. As the solvent, alcohols such as methanol (MeOH), ethanol, propanol, and isopropanol alone, or a mixed solvent thereof with diethyl ether, benzene, toluene, and the like are used, and may be selected according to the reducing agent to be used. Then, chloro form (7) is obtained by chlorinating the benzyl position of this benzyl alcohol form. In this reaction, for example, thionyl chloride, phosphorus trichloride, oxalyl chloride and the like are used as the chlorinating reagent, and the compound (7) is brominated with a brominating reagent such as phosphorus tribromide. The bromo compound can also be used in the subsequent reaction. As the solvent, aromatic hydrocarbons such as toluene and benzene, and halogenated hydrocarbons such as carbon tetrachloride are used.

(工程b)
クロロ体(7)に溶媒とトリフェニルホスフィンを加えて反応し、ホスホニウム塩(8)を得る。
この反応の際の溶媒は、トルエン、ベンゼンなどの芳香族炭化水素類や四塩化炭素などのハロゲン化炭化水素類が用いられる。
(Process b)
A phosphonium salt (8) is obtained by reacting the chloro compound (7) with a solvent and triphenylphosphine.
As the solvent for this reaction, aromatic hydrocarbons such as toluene and benzene and halogenated hydrocarbons such as carbon tetrachloride are used.

(工程c)
工程aで得られるアルデヒド(6)と工程bで得られるホスホニウム塩(8)を用いてウィッティッヒ(Wittig)反応を行い、スチルベン(9)を得る。
この反応の際、塩基としては、例えば、リチウムビス(トリメチルシリル)アミド、ナトリウムビス(トリメチルシリル)アミド、カリウムビス(トリメチルシリル)アミド、n−ブチルリチウム、tert−ブトキシカリウム、水素化ナトリウム、1,8−ジアザビシクロ[5.4.0]ウンデク−7−エン(DBU)などが用いられる。また、溶媒としては、例えば、THF、アセトニトリル、ジエチルエーテル、DMFなどが用いられる。
(Process c)
A Wittig reaction is performed using the aldehyde (6) obtained in step a and the phosphonium salt (8) obtained in step b to obtain stilbene (9).
In this reaction, examples of the base include lithium bis (trimethylsilyl) amide, sodium bis (trimethylsilyl) amide, potassium bis (trimethylsilyl) amide, n-butyllithium, tert-butoxypotassium, sodium hydride, 1,8- Diazabicyclo [5.4.0] undec-7-ene (DBU) and the like are used. Moreover, as a solvent, THF, acetonitrile, diethyl ether, DMF etc. are used, for example.

(工程d)
スチルベン(9)を用いて、溶媒中、パラジウム-活性炭素エチレンジアミン複合体を加えて水素添加反応を行い、スチルベンの二重結合を選択的に還元し、ビベンジル(10)を得る。この反応の際、溶媒としては、例えば、THF、ジエチルエーテルなどのエーテル類、MeOH、エタノールなどのアルコール類が用いられる。
(Process d)
Using stilbene (9), a palladium-activated carbon ethylenediamine complex is added in a solvent to carry out a hydrogenation reaction, and the double bond of stilbene is selectively reduced to obtain bibenzyl (10). In this reaction, examples of the solvent include ethers such as THF and diethyl ether, and alcohols such as MeOH and ethanol.

(工程e)
ビベンジル(10)の2位のメトキシメチル基を脱保護するため、酸処理することにより、ビベンジル(11)を得る。この反応の際、酸としては、p−トルエンスルホン酸、カンファースルホン酸、ピリジニウムp−トルエンスルホナート、塩酸、硫酸、トリフルオロ酢酸などが用いられる。また、溶媒としては、MeOH、エタノール、プロパノール、イソプロパノールなどのアルコール類が単独に、あるいは、それらとジエチルエーテル、THFなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類との混合溶媒として用いられる。
(Process e)
In order to deprotect the methoxymethyl group at the 2-position of bibenzyl (10), bibenzyl (11) is obtained by acid treatment. In this reaction, as the acid, p-toluenesulfonic acid, camphorsulfonic acid, pyridinium p-toluenesulfonate, hydrochloric acid, sulfuric acid, trifluoroacetic acid and the like are used. As the solvent, alcohols such as MeOH, ethanol, propanol and isopropanol are used alone or as a mixed solvent thereof with ethers such as diethyl ether and THF, and aromatic hydrocarbons such as benzene and toluene. It is done.

[化合物(12)の合成]
キシロースをピリジンなどの溶媒に溶解し、無水酢酸及びTEAなどの塩基を加え反応し、1,2,3,4−テトラアセチルキシロースを得る。
次いで、得られたテトラアセチル体の溶液に、塩基を加えて反応し、1位のアセチル基を選択的に脱保護して、2,3,4−トリアセチルキシロースを得る。
この際、塩基としては、例えば、ピペリジン、ベンジルアミン、ヒドラジンアセテートなどが用いられ、溶媒としては、DMF、アセトニトリルなどを使用する塩基に応じて選択すればよい。さらに、このトリアセチル体の溶液に、トリクロロアセトニトリルと触媒量のDBUを加え反応し、イミデート(12)を得る。この反応では、溶媒としては、ジクロロメタン、四塩化炭素などのハロゲン化炭化水素類、ベンゼンなどが用いられる。
[Synthesis of Compound (12)]
Xylose is dissolved in a solvent such as pyridine, and a base such as acetic anhydride and TEA is added and reacted to obtain 1,2,3,4-tetraacetylxylose.
Next, a base is added to the resulting tetraacetyl derivative solution to react to selectively deprotect the acetyl group at the 1-position to obtain 2,3,4-triacetylxylose.
In this case, for example, piperidine, benzylamine, hydrazine acetate or the like is used as the base, and the solvent may be selected according to the base using DMF, acetonitrile or the like. Further, trichloroacetonitrile and a catalytic amount of DBU are added to the triacetyl derivative solution to react to obtain imidate (12). In this reaction, as the solvent, halogenated hydrocarbons such as dichloromethane and carbon tetrachloride, benzene, and the like are used.

(工程f)
得られたイミデート(12)を用いて、工程eで合成したアグリコン(11)のグリコシル化を行う。反応は、ルイス酸存在下にカップリング反応を行い、ベンジル(13)を得る。この反応では、ルイス酸として、トリフルオロメタンスルホン酸トリメチルシリル(TMSOTf)、三フッ化ホウ素ジエチルエーテル複合体、塩化スズ、塩化鉄、塩化アルミニウム、塩化チタンなどが用いられる。また、溶媒としては、ジクロロメタン、四塩化炭素などのハロゲン化炭化水素類、ベンゼンなどが用いられる。
(Process f)
Glycosylation of the aglycone (11) synthesized in step e is performed using the obtained imidate (12). In the reaction, a coupling reaction is performed in the presence of a Lewis acid to obtain benzyl (13). In this reaction, trimethylsilyl trifluoromethanesulfonate (TMSOTf), boron trifluoride diethyl ether complex, tin chloride, iron chloride, aluminum chloride, titanium chloride or the like is used as a Lewis acid. As the solvent, halogenated hydrocarbons such as dichloromethane and carbon tetrachloride, benzene and the like are used.

(工程g)
ビベンジル(13)を溶媒中、触媒の存在下に加水素分解を行い、ベンジル基を脱保護し、脱ベンジル体を得る。この反応では、加水分解触媒として、例えば、水酸化パラジウム−炭素、パラジウム−炭素、酸化白金などが用いられ、溶媒としては、酢酸エチル、THF、MeOH、エタノールなどが単独あるいは混合して用いられる。
(Process g)
Bibenzyl (13) is subjected to hydrogenolysis in a solvent in the presence of a catalyst to deprotect the benzyl group to obtain a debenzylated form. In this reaction, for example, palladium hydroxide-carbon, palladium-carbon, platinum oxide or the like is used as a hydrolysis catalyst, and ethyl acetate, THF, MeOH, ethanol or the like is used alone or in combination as a solvent.

(工程h)
工程gで得られる脱ベンジル体を溶媒中、塩基の存在下に反応し、アセチル基の脱保護を行い、目的とするビベンジル配糖体(1)を得る。この反応では、塩基として、例えば、ナトリウムメトキシド(NaOMe)、炭酸カリウム、炭酸ナトリウムなども用いられ、溶媒も使用する塩基にあわせて、MeOH、エタノール、THFなどが、単独又は混合して用いられる。
(Process h)
The debenzylated product obtained in step g is reacted in a solvent in the presence of a base to deprotect the acetyl group to obtain the desired bibenzyl glycoside (1). In this reaction, for example, sodium methoxide (NaOMe), potassium carbonate, sodium carbonate or the like is also used as a base, and MeOH, ethanol, THF or the like is used alone or in combination according to the base used as a solvent. .

なお、これら各工程における反応温度は、−78℃から使用する溶媒の沸点の間で、また、反応時間は、5分から48時間の間で行われ、使用する溶媒、触媒及び塩基等により適宜選択すればよい。   The reaction temperature in each step is between −78 ° C. and the boiling point of the solvent used, and the reaction time is between 5 minutes and 48 hours, and is appropriately selected depending on the solvent, catalyst, base, etc. used. do it.

製造法B.化合物(2)の製造方法
化合物(2)は、下記[化18]及び[化19]に示す反応工程に従い製造することができる。
Production Method B. Method for Producing Compound (2) Compound (2) can be produced according to the reaction steps shown in the following [Chemical Formula 18] and [Chemical Formula 19].

[化合物(14)の合成]
2,4−ジヒドロキシベンズアルデヒドの溶液に、MOMC1と塩基を加えて反応し、2位及び4位の水酸基をメトキシメチル化し、アルデヒド(14)を得る。
この反応において使用する塩基は、例えば、TEA、DIPEA、炭酸カリウムなどが用いられ、溶媒は塩基の種類に応じて、THF、ジクロロメタン、ジエチルエーテル、DMFなどが用いられる。反応時間は、−78℃から使用する溶媒の沸点の間で、また、反応時間は、5分から48時間の間で行われ、使用する溶媒及び塩基等により適宜選択すればよい。
[Synthesis of Compound (14)]
MOMC1 and a base are added to a 2,4-dihydroxybenzaldehyde solution and reacted to methoxymethylate the 2- and 4-position hydroxyl groups to obtain aldehyde (14).
For example, TEA, DIPEA, potassium carbonate or the like is used as the base used in this reaction, and THF, dichloromethane, diethyl ether, DMF or the like is used as the solvent according to the type of the base. The reaction time is between −78 ° C. and the boiling point of the solvent used, and the reaction time is between 5 minutes and 48 hours, and may be appropriately selected depending on the solvent and base used.

(工程a)
アルデヒド(14)と製造法A、工程bで得られるホスホニウム塩(8)を用いてウィッティッヒ反応を行い、スチルベン(15)を得る。反応は、製造法A、工程c記載の方法に準じて行うことができる。
(工程b)
スチルベン(15)は、水素添加反応を行い、スチルベンの二重結合を選択的に還元し、ビベンジル(16)を得る。反応は、製造法A、工程d記載の方法に準じて行うことができる。
(工程c)
ビベンジル(16)の2位、4位のメトキシメチル基を脱保護し、ビベンジル(17)を得る。反応は、製造法A、工程e記載の方法に準じて行うことができる。
(工程d)
製造法Aで得られるイミデート(12)の過剰量を用いて、アグリコン(17)のグリコシル化を行い、ビベンジル(18)を得る。反応は、製造法A、工程f記載の方法に準じて行うことができる。
(工程e)
ビベンジル(18)は、製造法A、工程g記載の方法に準じて、ベンジル基の脱保護を行うことができる。
(工程f)
次いで、製造法A、工程h記載の方法に準じて、アセチル基の脱保護を行うことにより、目的とするビベンジル配糖体(2)を得る。
(Process a)
A Wittig reaction is performed using the aldehyde (14) and the phosphonium salt (8) obtained in production method A, step b, to obtain stilbene (15). The reaction can be carried out according to the method described in Production Method A, Step c.
(Process b)
Stilbene (15) undergoes a hydrogenation reaction to selectively reduce the double bond of stilbene to obtain bibenzyl (16). The reaction can be carried out according to the method described in Production Method A, Step d.
(Process c)
Deprotection of the 2- and 4-position methoxymethyl groups of bibenzyl (16) yields bibenzyl (17). The reaction can be carried out according to the method described in Production Method A, Step e.
(Process d)
Glycosylation of aglycone (17) is carried out using an excess amount of imidate (12) obtained in production method A to obtain bibenzyl (18). The reaction can be carried out according to the method described in Production Method A, Step f.
(Process e)
Bibenzyl (18) can be deprotected according to the method described in Production Method A, Step g.
(Process f)
Next, the target bibenzyl glycoside (2) is obtained by deprotecting the acetyl group according to the method described in Production Method A, Step h.

製造法C.化合物(3)の製造方法
化合物(3)は、上記[化19]に示す反応工程に従い製造することができる。
(工程g)
製造法B、工程cで得られるアグリコン(17)に、製造法Aで得られるイミデート(12)の1当量を加えて、ルイス酸存在下にカップリング反応を行い、4位がキシロシル化したビベンジル(19)を得る。反応は、製造法A、工程f記載の方法に準じて行うことができる。
(工程h)
ビベンジル(19)は、製造法A、工程g記載の方法に準じて、ベンジル基の脱保護を行うことができる。
(工程i)
次いで、製造法A、工程h記載の方法に準じて、アセチル基の脱保護を行うことにより、目的とするビベンジル配糖体(3)を得る。
Production method C.I. Method for Producing Compound (3) Compound (3) can be produced according to the reaction step shown in the above [Chemical Formula 19].
(Process g)
Bibenzyl with 4-position xylosylated by adding 1 equivalent of the imidate (12) obtained by the production method A to the aglycon (17) obtained in the production method B and the step c, and performing a coupling reaction in the presence of Lewis acid. (19) is obtained. The reaction can be carried out according to the method described in Production Method A, Step f.
(Process h)
Bibenzyl (19) can be deprotected according to the method described in Production Method A, Step g.
(Process i)
Next, the target bibenzyl glycoside (3) is obtained by deprotecting the acetyl group according to the method described in Production Method A, Step h.

製造法D.化合物(4)の製造方法
化合物(4)は、下記[化20]に示す反応工程に従い製造することができる。
Production method Method for Producing Compound (4) Compound (4) can be produced according to the reaction step shown in the following [Chemical Formula 20].

(工程a)
2,4−ジヒドロキシベンズアルデヒドから、製造法A、化合物(7)の製法と同様の方法で得られる2,4−ジベンジルオキシベンズアルデヒド(20)と製造法A、工程bで得られるホスホニウム塩(8)を用いて、製造法A、工程cの方法に準じてスチルベン(21)を得る。
(工程b)
スチルベン(21)は、触媒の存在下に水素添加反応を行うことにより、二重結合の還元及びベンジル基の脱保護を同時に行い、目的とするビベンジル誘導体(4)を得る。
この反応では、触媒として、例えば、水酸化パラジウム-活性炭素、パラジウム−炭素、酸化白金などが用いられ、溶媒としては、酢酸エチル、THF、MeOH、エタノールなどが、単独又は混合して用いられる。反応時間は、−78℃から使用する溶媒の沸点の間で、また、反応時間は、5分から48時間の間で行われ、使用する溶媒及び塩基等により適宜選択すればよい。
(Process a)
2,4-Dibenzyloxybenzaldehyde (20) obtained from 2,4-dihydroxybenzaldehyde in the same manner as in production method A and compound (7) and phosphonium salt obtained in production method A and step b (8 ) To obtain stilbene (21) according to the method of production method A and step c.
(Process b)
Stilbene (21) undergoes a hydrogenation reaction in the presence of a catalyst to simultaneously reduce the double bond and deprotect the benzyl group to obtain the desired bibenzyl derivative (4).
In this reaction, for example, palladium hydroxide-activated carbon, palladium-carbon, platinum oxide or the like is used as a catalyst, and ethyl acetate, THF, MeOH, ethanol or the like is used alone or in combination as a solvent. The reaction time is between −78 ° C. and the boiling point of the solvent used, and the reaction time is between 5 minutes and 48 hours, and may be appropriately selected depending on the solvent and base used.

上記各製造法における中間体および目的化合物は、有機合成化学で常用される精製法、例えば、中和、濾過、抽出、洗浄、乾燥、濃縮、再結晶、各種クロマトグラフィー等に付して単離精製することができる。また、中間体においては、特に精製することなく次の反応に供することも可能である。   The intermediates and target compounds in each of the above production methods are isolated by purification methods commonly used in synthetic organic chemistry, such as neutralization, filtration, extraction, washing, drying, concentration, recrystallization, and various chromatography. Can be purified. In addition, the intermediate can be subjected to the next reaction without any particular purification.

なお、化合物(I)において、グリコシル基がキシロシル基以外の基を有する化合物についても、糖類等の有機合成化学で常用される保護基の導入及び脱離等の方法、また、置換基の位置についても、所望の位置に水酸基を有する原料を用いる等の手段により、上記製造法で詳述したキシロシル基についての製造法に準じて製造することができる。化合物(I)は、水又は各種溶媒との付加物として存在し、単離精製される場合もあるが、これら付加物も本発明の阻害剤として使用することができる。また、化合物(I)は、光学異性体等、各種異性体が存在するが、これら全ての可能な異性体及びそれらの混合物も本発明の阻害剤として使用することができる。   In addition, in the compound (I), a compound having a glycosyl group other than a xylosyl group, a method such as introduction and removal of a protecting group commonly used in organic synthetic chemistry such as saccharides, and a position of a substituent. Alternatively, it can be produced according to the production method for the xylosyl group described in detail in the above production method by means such as using a raw material having a hydroxyl group at a desired position. Compound (I) exists as an adduct with water or various solvents, and may be isolated and purified, but these adducts can also be used as the inhibitor of the present invention. Compound (I) has various isomers such as optical isomers, and all of these possible isomers and mixtures thereof can also be used as the inhibitor of the present invention.

また、上記化合物(1)〜(4)における親水性をコンピュータで計算した結果を下記に示す。
(化合物) (LogP)
1 1.68
2 0.38
3 1.68
4 2.99
この表のLogPの値は、小さいほど親水性が高く、水に溶けやすいことを示している。
ビベンジル誘導体のうち、化合物(1)〜(3)には糖類のキシロースを含むので毒性が少なく、安全性が高いので食品など多様な用途に使用可能となる。
Moreover, the result of having calculated the hydrophilicity in said compound (1)-(4) with the computer is shown below.
(Compound) (LogP)
1 1.68
2 0.38
3 1.68
4 2.99
The value of LogP in this table indicates that the smaller the value, the higher the hydrophilicity and the easier it is to dissolve in water.
Among the bibenzyl derivatives, since the compounds (1) to (3) contain xylose saccharide, they are less toxic and highly safe, so that they can be used for various applications such as food.

上記データから明らかなように、本発明の阻害剤として使用される化合物は、水溶性に優れており、また、チロシナーゼの活性に対してコウジ酸の5倍〜20倍にもなる極めて高い阻害効果が得られる(実施例5参照)。
一般に、ビベンジル誘導体に糖類のキシロースを含む場合は毒性が少なくなることが知られているので、人体や食品等に用途が広がる可能性がある。
As is apparent from the above data, the compound used as the inhibitor of the present invention is excellent in water solubility, and has an extremely high inhibitory effect of 5 to 20 times that of kojic acid with respect to the activity of tyrosinase. (See Example 5).
In general, it is known that when a bibenzyl derivative contains a sugar xylose, its toxicity is reduced.

化合物(I)を本発明のチロシナーゼの活性阻害剤として使用する場合、そのまま単独で使用することも可能であるが、通常、各種用途に応じた使用形態とすることが望ましく、活性成分である化合物(I)と医薬品、化粧品などに一般に用いられる各種成分、例えば、水性成分、油性成分、粉末成分、界面活性剤、保湿剤、増粘剤、色剤、香料、pH調整剤、抗酸化剤、防腐剤、あるいは紫外線防御剤などを1種又は2種以上を本発明の効果を損なわない範囲で配合することができる。   When compound (I) is used as an activity inhibitor of tyrosinase of the present invention, it can be used alone as it is, but it is usually desirable to use it according to various uses, and it is an active ingredient compound (I) and various components generally used in pharmaceuticals, cosmetics, etc., for example, aqueous components, oily components, powder components, surfactants, moisturizers, thickeners, colorants, fragrances, pH adjusters, antioxidants, One or two or more preservatives or ultraviolet protective agents can be blended within a range that does not impair the effects of the present invention.

例えば、化合物(I)や化合物(I)を含有する本発明のチロシナーゼの活性阻害剤を、水やペースト基材と混合して塗布用の異皮膚褐色化防止機能性化粧品、即ち皮膚の美白化粧品(美白効果の高い皮膚外用剤や美白用皮膚外用剤)として使用でき、また、化合物(I)や化合物(I)を含有する本発明のチロシナーゼの活性阻害剤を、水と混合して植物カット食材の褐変防止機能性添加剤や散布剤として使用すれば野菜野鮮度保持に効果が得られ、さらに昆虫のさなぎ化抑止剤、殺虫剤として人畜無害な薬剤として安全に使用することが可能となる。化合物(I)や本発明のチロシナーゼの活性阻害剤はメラニン生成を抑制することから、美白剤として有用であり、皮膚外用剤に好適に配合される。そして、本発明のピペロナルドキシムとその類似体は細胞毒性が非常に低いため、配合量を高く設定することができる。本発明の美白剤を皮膚外用剤として用いる場合、通常化粧品や医薬品等の皮膚外用剤に用いられる他の成分、例えば、粉末成分、液体油脂、固体油脂、高級脂肪酸、高級アルコール、低級アルコール、多価アルコール、エステル類、シリコーン、各種界面活性剤、保湿剤、水溶性高分子化合物、増粘剤、紫外線吸収剤、金属イオン封鎖剤、糖類、アミノ酸類、有機アミン類、pH調整剤、皮膚栄養剤、ビタミン類、酸化防止剤、酸化防止助剤、香料、水等を必要に応じて適宜配合することができる。さらに、ビタミンC、アスコルビン酸リン酸マグネシウム、アスコルビン酸グルコシド、アルブチン、コウジ酸等の他の美白剤も適宜配合することができる。   For example, the functional skin care product for preventing skin browning for application by mixing the compound (I) or the tyrosinase activity inhibitor of the present invention containing the compound (I) with water or a paste base material, that is, skin whitening cosmetic product. It can be used as a skin whitening agent having a high whitening effect or a skin whitening external preparation, and the plant tyrosinase activity inhibitor of the present invention containing compound (I) or compound (I) is mixed with water to cut the plant. When used as a functional additive or spraying agent to prevent browning of foodstuffs, it is effective in maintaining the freshness of vegetables, and it can be safely used as an insect puppeting inhibitor and insecticide without harm to humans and animals. . The compound (I) or the tyrosinase activity inhibitor of the present invention suppresses melanin production, and thus is useful as a whitening agent and is suitably blended into a skin external preparation. And since piperonaldoxime and its analog of this invention have very low cytotoxicity, a compounding quantity can be set high. When the whitening agent of the present invention is used as a skin external preparation, other components that are usually used in skin external preparations such as cosmetics and pharmaceuticals, such as powder components, liquid fats and oils, solid fats and oils, higher fatty acids, higher alcohols, lower alcohols, many Monohydric alcohol, esters, silicone, various surfactants, moisturizers, water-soluble polymer compounds, thickeners, UV absorbers, sequestering agents, sugars, amino acids, organic amines, pH adjusters, skin nutrition Agents, vitamins, antioxidants, antioxidant aids, fragrances, water and the like can be appropriately blended as necessary. Furthermore, other whitening agents such as vitamin C, magnesium ascorbate phosphate, glucoside ascorbate, arbutin, and kojic acid can be appropriately blended.

以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, the technical scope of this invention is not limited to these illustrations.

2’,4,4’−トリヒドロキシ−2−β−D−キシロピラノシルビベンジル[化合物(1)]の合成
i)ホスホニウム塩(8)の合成
出発物資である2,4-ジヒドロキシベンズアルデヒドをDMFに溶解し、ベンジルブロマイド及び炭酸カリウムを加え、60℃で一晩攪拌して水酸基をベンジル化した。
結果、収率99%で2,4-ジベンジルオキシベンズアルデヒドを得た。
これを、ジエチルエーテルとMeOHの混合溶媒に溶解し、氷冷下で水素化ホウ素ナトリウムを加えてアルデヒド基を還元し、2,4-ジベンジルオキシベンジルアルコールを収率98%で得た。その後、このトルエン溶液に塩化チオニルを加えてベンジル位をクロロ化し、クロロ体(7)とした。反応液中の過剰の塩化チオニル及び酸を減圧下で完全に除去した後、トルエンとトリフェニルホスフィンを加えて30分間リフラックスし、ホスホニウム塩(8)を収率59%で得た。
Synthesis of 2 ′, 4,4′-trihydroxy-2-β-D-xylopyranosylbibenzyl [compound (1)]
i) Synthesis of phosphonium salt (8) The starting material 2,4-dihydroxybenzaldehyde was dissolved in DMF, benzyl bromide and potassium carbonate were added, and the mixture was stirred overnight at 60 ° C to benzylate the hydroxyl group.
As a result, 2,4-dibenzyloxybenzaldehyde was obtained with a yield of 99%.
This was dissolved in a mixed solvent of diethyl ether and MeOH, sodium borohydride was added under ice cooling to reduce the aldehyde group, and 2,4-dibenzyloxybenzyl alcohol was obtained in a yield of 98%. Thereafter, thionyl chloride was added to the toluene solution to chlorinate the benzyl position to obtain a chloro compound (7). Excess thionyl chloride and acid in the reaction solution were completely removed under reduced pressure, and then toluene and triphenylphosphine were added and refluxed for 30 minutes to obtain a phosphonium salt (8) in a yield of 59%.

ii)アグリコン(11)の合成
2,4−ジヒドロキシベンズアルデヒドのアセトニトリル溶液に、ベンジルブロミド、炭酸水素ナトリウム、触媒量のテトラブチルアンモニウムヨージドを加え、16時間リフラックスし、78%の収率で4-ベンジルオキシサリチルアルデヒド(5)を得た。
アルデヒド(5)のジクロロメタン溶液に、MOMC1とN,N-ジイソプロピルエチルアミン(DIPEA)、触媒量のTBAIを加えて一晩攪拌し、2位の水酸基をMOM化し、2-メトキシメチル-4-ベンジルオキシベンズアルデヒド(6)を収率100%で得た。
このアルデヒド(6)とホスホニウム塩(8)のTHF溶液に、氷冷下でリチウムビス(トリメチルシリル)アミドを加え、室温で12時間、ウイッティッヒ反応を行い、収率90%でスチルベン(9)を得た。ウイッテイッヒ反応におけるシスとトランスの比率はH−NMR解析により3:2であった。スチルベン(9)は酸性条件下で不安定であったため、THF中、パラジウム-活性炭素エチレンジアミン複合体を加えて水素添加反応を行い、スチルベンの二重結合を選択的に還元し、ビベンジル(10)を収率86%で得た。
さらに、ビベンジル(10)の2位のMOM基を脱保護するため、THF/MeOH溶液中に、p-トルエンスルホン酸を加えて2時間リフラックスし、収率89%でビベンジル(11)を得た。
ii) Synthesis of Aglycon (11) Benzyl bromide, sodium bicarbonate, and a catalytic amount of tetrabutylammonium iodide were added to an acetonitrile solution of 2,4-dihydroxybenzaldehyde and refluxed for 16 hours. -Benzyloxysalicylaldehyde (5) was obtained.
MOMC1, N, N-diisopropylethylamine (DIPEA) and a catalytic amount of TBAI were added to a dichloromethane solution of aldehyde (5) and stirred overnight, and the hydroxyl group at the 2-position was converted to MOM and 2-methoxymethyl-4-benzyloxy Benzaldehyde (6) was obtained with a yield of 100%.
Lithium bis (trimethylsilyl) amide was added to a THF solution of the aldehyde (6) and the phosphonium salt (8) under ice cooling, and the Wittig reaction was performed at room temperature for 12 hours to obtain stilbene (9) in a yield of 90%. It was. The ratio of cis to trans in the Wittig reaction was 3: 2 by 1 H-NMR analysis. Since stilbene (9) was unstable under acidic conditions, a palladium-activated carbon ethylenediamine complex was added in THF to perform a hydrogenation reaction, and the double bond of stilbene was selectively reduced to obtain bibenzyl (10). Was obtained in a yield of 86%.
Further, in order to deprotect the 2-position MOM group of bibenzyl (10), p-toluenesulfonic acid was added to the THF / MeOH solution and refluxed for 2 hours to obtain bibenzyl (11) in 89% yield. It was.

iii)ビベンジル配糖体(1)の合成
ピリジンにD-(+)-キシロースを溶解し、無水酢酸、TEAを加え、一晩攪拌してテトラアセチルキシロースを収率75%で得た。次に、このTHF溶液に、ピペリジンを加えて一晩攪拌し、1位のアセチル基を選択的に脱保護して、収率53%で2,3,4-トリアセチルキシロースを得た。さらに、このジクロロメタン溶液に氷冷下でトリクロロアセトニトリルと触媒量のDBUを加え、室温で2時間攪拌し、収率72%でイミデート(12)を得た。最後に、得られたイミデート(12)を用いて合成したアグリコン(11)のグリコシル化を行った。イミデート(12)とアグリコン(11)のジクロロメタン中、氷冷下でルイス酸であるトリフルオロメタンスルホン酸トリメチルシリル(TMSOTf)を加え、5分間、カップリング反応を行った結果、収率100%でビベンジル(13)を得た。ビベンジル(13)を酢酸エチル/MeOH中、水酸化パラジウムを触媒として加水素分解を行い、ベンジル基を脱保護し(収率100%)、さらにMeOH溶液中に、氷冷下で、NaOMeを滴下し、約30分間攪拌して、アセチル基の脱保護を行った。反応液は、酸処理した後に、分取HPLCによって目的物質であるビベンジル配糖体(1)を単離し、H−NMR、13C−NMR、DEPT、HMQC及びHMBCにより、天然物と同一の構造であることを確認した。合成の総収率は51%であった。
iii) Synthesis of bibenzyl glycoside (1) D-(+)-xylose was dissolved in pyridine, acetic anhydride and TEA were added, and the mixture was stirred overnight to obtain tetraacetylxylose at a yield of 75%. Next, piperidine was added to this THF solution and stirred overnight, and the acetyl group at position 1 was selectively deprotected to obtain 2,3,4-triacetylxylose in a yield of 53%. Further, trichloroacetonitrile and a catalytic amount of DBU were added to this dichloromethane solution under ice cooling, and the mixture was stirred at room temperature for 2 hours to obtain imidate (12) in a yield of 72%. Finally, the aglycon (11) synthesized using the obtained imidate (12) was glycosylated. Trimethylsilyl trifluoromethanesulfonate (TMSOTf), a Lewis acid, was added in dichloromethane of imidate (12) and aglycone (11) under ice-cooling, and a coupling reaction was performed for 5 minutes. As a result, bibenzyl (100% yield) was obtained. 13) was obtained. Hydrogenolysis of bibenzyl (13) in ethyl acetate / MeOH using palladium hydroxide as a catalyst to deprotect the benzyl group (yield 100%), and NaOMe was added dropwise to the MeOH solution under ice-cooling. The mixture was stirred for about 30 minutes to deprotect the acetyl group. The reaction solution is acid-treated, and then the bibenzyl glycoside (1), which is the target substance, is isolated by preparative HPLC, and is the same as the natural product by 1 H-NMR, 13 C-NMR, DEPT, HMQC, and HMBC. Confirmed the structure. The total yield of synthesis was 51%.

2’,4,4’−トリヒドロキシ−2−β−D−キシロピラノシルビベンジル化合物[化合物(1)]
1H-NMR(400MHz,CDOD)δ6.89(d,J=8.3Hz,1H),6.83(d,J=8.3Hz,1H),6.36(dd,J=2.4,8.3Hz,1H),6.27(d,J=2.4Hz,1H),6.19(dd,J=2.4,8.3Hz,1H),4.79(d,J=7.3Hz,1H),3.94(dd,J=5.4,11.2Hz,1H),3.60(dt,J=5.4,8.8Hz,1H),3.52(dd,J=7.3,8.8Hz,1H),3.43(t,J=8.8Hz,1H),3.36(m,1H),2.70(m,4H).
13C-NMR(400MHz,CDOD)δ157.5(s),157.3(s),156.7(s),131.8(d),131.5(d),124.2(s),121.4(s),110.0(d),107.5(d),104.0(d),103.5(d),103.4(d),77.7(d),74.9(d),71.1(d),66.9(t),32.1(t),31.9(t).
2 ′, 4,4′-Trihydroxy-2-β-D-xylopyranosylbibenzyl compound [compound (1)]
1 H-NMR (400 MHz, CD 3 OD) δ 6.89 (d, J = 8.3 Hz, 1 H), 6.83 (d, J = 8.3 Hz, 1 H), 6.36 (dd, J = 2.4, 8.3 Hz, 1 H) , 6.27 (d, J = 2.4 Hz, 1H), 6.19 (dd, J = 2.4, 8.3 Hz, 1H), 4.79 (d, J = 7.3 Hz, 1H), 3.94 (dd, J = 5.4, 11.2 Hz, 1H), 3.60 (dt, J = 5.4, 8.8Hz, 1H), 3.52 (dd, J = 7.3, 8.8Hz, 1H), 3.43 (t, J = 8.8Hz, 1H), 3.36 (m, 1H), 2.70 (m, 4H).
13 C-NMR (400 MHz, CD 3 OD) δ 157.5 (s), 157.3 (s), 156.7 (s), 131.8 (d), 131.5 (d), 124.2 (s), 121.4 (s), 110.0 ( d), 107.5 (d), 104.0 (d), 103.5 (d), 103.4 (d), 77.7 (d), 74.9 (d), 71.1 (d), 66.9 (t), 32.1 (t), 31.9 ( t).

2’,4’−ジヒドロキシ−2,4−β−D−キシロピラノシルビベンジル[化合物(2)]の合成
2,4−ジヒドロキシベンズアルデヒドのテトラヒドフラン溶液に、氷冷下でMOM1とTEAを加えて1時間攪拌し、2位,4位の水酸基をMOM化し、アルデヒド(14)を収率100%で得た。アルデヒド(14)とホスホニウム塩(8)のTHF溶液に、氷冷下でリチウムビス(トリメチルシリル)アミドを加え、室温で1.5時間、ウイッティッヒ反応を行い、収率84%でスチルベン(15)を得た。ウィッテイッヒ反応におけるシスとトランスの比率はH−NMR解析により3:1であった。スチルベン(15)は酸性条件下で不安定であったため、THF中、パラジウム-活性炭素エチレンジアミン複合体を加えて水素添加反応を行い、スチルベンの二重結合を選択的に還元し、ビベンジル(16)を収率72%で得た。さらに、ビベンジル(16)の2位、4位のMOM基を脱保護するため、THF/MeOH溶液中に、p−トルエンスルホン酸を加えて30分間リフラックスし、収率100%でビベンジル(17)を得た。過剰量のイミデート(12)とアグリコン(17)のジクロロメタン溶液中、氷冷下でルイス酸であるトリフルオロメタンスルホン酸トリメチルシリル(TMSOTf)加え、カップリング反応を行った結果、収率77%でビベンジル(18)を得た。ビベンジル(18)を酢酸エチル/MeOH中、水酸化パラジウム−炭素を触媒として加水素分解を行い、ベンジル基を50%の収率で脱保護した。さらにMeOH溶液中に、氷冷下でナトリウムメトキシド(NaOMe)を滴下し、約10分間攪拌して、アセチル基の脱保護を行った。反応液は、酸処理した後に、分取HPLCによって目的物質であるビベンジル配糖体(2)を単離し、H−NMR、13C−NMRにより目的の構造であることを確認した。合成の総収率は17%であった。
Synthesis of 2 ′, 4′-dihydroxy-2,4-β-D-xylopyranosylbibenzyl [Compound (2)] MOM1 and TEA were added to a tetrahydrane solution of 2,4-dihydroxybenzaldehyde under ice cooling. In addition, the mixture was stirred for 1 hour, and the hydroxyl groups at the 2-position and 4-position were converted to MOM to obtain aldehyde (14) in a yield of 100%. Lithium bis (trimethylsilyl) amide was added to a THF solution of aldehyde (14) and phosphonium salt (8) under ice-cooling, and Wittig reaction was performed at room temperature for 1.5 hours. Stilbene (15) was obtained in a yield of 84%. Obtained. The ratio of cis to trans in the Wittig reaction was 3: 1 by 1 H-NMR analysis. Since stilbene (15) was unstable under acidic conditions, a palladium-activated carbon ethylenediamine complex was added in THF to perform a hydrogenation reaction, and the double bond of stilbene was selectively reduced to obtain bibenzyl (16). Was obtained in a yield of 72%. Furthermore, in order to deprotect the 2- and 4-position MOM groups of bibenzyl (16), p-toluenesulfonic acid was added to the THF / MeOH solution and refluxed for 30 minutes, and bibenzyl (17 ) In a dichloromethane solution of an excess amount of imidate (12) and aglycon (17), trimethylsilyl trifluoromethanesulfonate (TMSOTf) as a Lewis acid was added under ice-cooling, and a coupling reaction was performed. 18) was obtained. Bibenzyl (18) was subjected to hydrogenolysis in ethyl acetate / MeOH using palladium hydroxide-carbon as a catalyst to deprotect the benzyl group in a yield of 50%. Furthermore, sodium methoxide (NaOMe) was added dropwise to the MeOH solution under ice cooling, and the mixture was stirred for about 10 minutes to deprotect the acetyl group. The reaction solution was acid-treated, and the bibenzyl glycoside (2), which was the target substance, was isolated by preparative HPLC, and the target structure was confirmed by 1 H-NMR and 13 C-NMR. The total yield of synthesis was 17%.

2’,4’−ジヒドロキシ−2,4−β−D−キシロピラノシルビベンジル[化合物(2)]
1H-NMR(400MHz,CDOD)δ6.99(d,J=8.3Hz,1H),6.84(d,J=2.4Hz,1H),6.81(d,J=8.3Hz,1H),6.64(dd,J=2.4,8.3Hz,1H),6.27(d,J=2.4Hz,1H),6.18(dd,J=2.4,8.3Hz,1H),4.81(d,J=7.4Hz,1H),4.78(m,1H),3.94(dd,J=5.4,11.2Hz,1H),3.92(dd,J=5.4,11.2Hz,1H),3.60(td,J=5.4,8.8,9.8Hz,1H),3.55(td,J=5.4,8.7,9.8Hz,1H),3.52(dd,J=7.4,8.8Hz,1H),3.43(t,J=8.8Hz,1H),3.41(m,1H),3.38(m,1H),3.36(m,1H),3.33(m,1H),2.74(m,4H).
13C-NMR(400MHz,CDOD)δ158.1(s),157.4(s,2C),156.7(s),131.8(d),131.4(d),127.4(s),121.1(s),111.1(d),107.5(d),105.9(d),103.5(d),103.4(d),103.3(d),77.7(d,2C),74.9(t),74.7(t),71.0(d,2C),67.0(d),66.9(d),31.9(t,2C).
2 ′, 4′-Dihydroxy-2,4-β-D-xylopyranosylbibenzyl [compound (2)]
1 H-NMR (400 MHz, CD 3 OD) δ6.99 (d, J = 8.3 Hz, 1H), 6.84 (d, J = 2.4 Hz, 1H), 6.81 (d, J = 8.3 Hz, 1H), 6.64 (Dd, J = 2.4, 8.3 Hz, 1H), 6.27 (d, J = 2.4 Hz, 1H), 6.18 (dd, J = 2.4, 8.3 Hz, 1H), 4.81 (d, J = 7.4 Hz, 1H) , 4.78 (m, 1H), 3.94 (dd, J = 5.4, 11.2Hz, 1H), 3.92 (dd, J = 5.4, 11.2Hz, 1H), 3.60 (td, J = 5.4, 8.8, 9.8Hz, 1H) ), 3.55 (td, J = 5.4, 8.7, 9.8Hz, 1H), 3.52 (dd, J = 7.4, 8.8Hz, 1H), 3.43 (t, J = 8.8Hz, 1H), 3.41 (m, 1H) , 3.38 (m, 1H), 3.36 (m, 1H), 3.33 (m, 1H), 2.74 (m, 4H).
13 C-NMR (400 MHz, CD 3 OD) δ 158.1 (s), 157.4 (s, 2C), 156.7 (s), 131.8 (d), 131.4 (d), 127.4 (s), 121.1 (s), 111.1 (d), 107.5 (d), 105.9 (d), 103.5 (d), 103.4 (d), 103.3 (d), 77.7 (d, 2C), 74.9 (t), 74.7 (t), 71.0 (d , 2C), 67.0 (d), 66.9 (d), 31.9 (t, 2C).

2,2’,4’−トリヒドロキシ−4−β−D−キシロピラノシルビベンジル[化合物(3)]の合成
アグリコン(17)と1当量のイミデート(12)をジクロロメタン溶液中に加えて、氷冷下にルイス酸としてのトリフルオロメタンスルホン酸トリメチルシリル存在下に、5分間カップリング反応を行った結果、4位がキシロシル化したビベンジル(19)を71%の収率で得た。得られたビベンジル(19)を酢酸エチル/MeOH中、水酸化パラジウム−炭素を触媒として、室温で1時間加水素分解を行い、ベンジル基を脱保護し(収率96%)、さらにMeOH溶液中に、氷冷下でNaOMeを滴下し、約30分間攪拌して、アセチル基の脱保護を行った。反応液は、酸処理した後に、分取HPLCによって目的物質であるビベンジル配糖体3を単離し、H−NMR、13C−NMR、DEPT、HMQC及びHMBCにより、構造を確認した。
Synthesis of 2,2 ′, 4′-trihydroxy-4-β-D-xylopyranosylbibenzyl [compound (3)] Aglycon (17) and 1 equivalent of imidate (12) were added into a dichloromethane solution, As a result of coupling reaction for 5 minutes in the presence of trimethylsilyl trifluoromethanesulfonate as a Lewis acid under ice cooling, bibenzyl (19) in which the 4-position was xylosylated was obtained in a yield of 71%. The obtained bibenzyl (19) was subjected to hydrogenolysis for 1 hour at room temperature in ethyl acetate / MeOH using palladium hydroxide-carbon as a catalyst to deprotect the benzyl group (yield 96%), and further in MeOH solution. Then, NaOMe was added dropwise under ice-cooling, and the mixture was stirred for about 30 minutes to deprotect the acetyl group. The reaction solution was acid-treated, and then the bibenzyl glycoside 3 as the target substance was isolated by preparative HPLC, and the structure was confirmed by 1 H-NMR, 13 C-NMR, DEPT, HMQC, and HMBC.

2,2’,4’−トリヒドロキシ−4−β−D−キシロピラノシルビベンジル[化合物(3)]
1H-NMR(400MHz,CDOD)δ6.88(d,J=8.3Hz,1H),6.76(d,J=8.3Hz,1H),6.52(d,J=2.4Hz,1H),6.42(dd,J=2.4,8.3Hz,1H),6.26(d,J=2.4Hz,1H),6.16(dd,J=2.4,8.3Hz,1H),4.76(d,J=2.4,5.2Hz,1H),3.89(dd,J=5.4,11.7Hz,1H),3.53(m,1H),3.38(m,2H),3.33(m,1H),2.69(m,4H).
13C-NMR(400MHz,CDOD)δ156.5(s),155.8(s),155.5(s),155.4(s),130.0(d),129.9(d),122.9(s),119.7(s),107.0(d),105.7(d),103.4(d),101.9(d),101.6(d),76.3(d),73.3(d),69.6(d),65.4(t),31.4(t),31.3(t).
2,2 ′, 4′-trihydroxy-4-β-D-xylopyranosylbibenzyl [compound (3)]
1 H-NMR (400 MHz, CD 3 OD) δ 6.88 (d, J = 8.3 Hz, 1 H), 6.76 (d, J = 8.3 Hz, 1 H), 6.52 (d, J = 2.4 Hz, 1 H), 6.42 (Dd, J = 2.4, 8.3 Hz, 1H), 6.26 (d, J = 2.4 Hz, 1H), 6.16 (dd, J = 2.4, 8.3 Hz, 1H), 4.76 (d, J = 2.4, 5.2 Hz, 1H), 3.89 (dd, J = 5.4, 11.7 Hz, 1H), 3.53 (m, 1H), 3.38 (m, 2H), 3.33 (m, 1H), 2.69 (m, 4H).
13 C-NMR (400 MHz, CD 3 OD) δ 156.5 (s), 155.8 (s), 155.5 (s), 155.4 (s), 130.0 (d), 129.9 (d), 122.9 (s), 119.7 ( s), 107.0 (d), 105.7 (d), 103.4 (d), 101.9 (d), 101.6 (d), 76.3 (d), 73.3 (d), 69.6 (d), 65.4 (t), 31.4 ( t), 31.3 (t).

2,2’,4,4’−テトラヒドロキシビベンジル[化合物(4)]の合成
2,4-ジベンジルオキシベンズアルデヒド(20)とホスホニウム塩(8)とをTHF中、LiHMDS存在下で、室温で1時間、ウイッテイッヒ反応を行い、スチルベン(21)を42%の収率で得た。このスチルベンは不安定であったため、速やかに次の反応を行った。スチルベン(21)をTHF溶媒中、20%水酸化パラジウム-活性炭素を触媒として、室温で12時間、水素添加反応を行うことにより、二重結合の還元及びベンジル基の脱保護を同時に行い、85%の収率で白色結晶のビベンジル誘導体(4)を得た。総収率は、36%であった。得られた化合物(4)の構造は、H−NMR及び13C−NMRにより決定した。
2,2 ', 4,4'-tetrahydroxy-bibenzyl [Compound (4)] in THF Synthesis of 2,4-di-benzyloxy-benzaldehyde (20) and a phosphonium salt (8), in the presence of LiHMDS, at room temperature The Wittig reaction was performed for 1 hour to obtain stilbene (21) in a yield of 42%. Since this stilbene was unstable, the following reaction was promptly performed. Hydrogenation reaction of stilbene (21) in THF solvent with 20% palladium hydroxide-activated carbon as a catalyst at room temperature for 12 hours simultaneously reduces the double bond and deprotects the benzyl group. The bibenzyl derivative (4) of white crystals was obtained with a yield of%. The total yield was 36%. The structure of the obtained compound (4) was determined by 1 H-NMR and 13 C-NMR.

2,2’,4,4’−テトラヒドロキシビベンジル[化合物(4)]
1H-NMR(400MHz,CDOD)δ6.75(d,J=7.8,1H),6.23(d,J=2.4,1H),6.14(dd,J=2.4,7.8),2.63(s,2H).
13C-NMR(400MHz,CDOD)δ157.4(s),157.1(s),131.6(d),121.6(s),107.5(d),103.6(d),31.6(t).
2,2 ', 4,4'-tetrahydroxy-bibenzyl [Compound (4)]
1 H-NMR (400 MHz, CD 3 OD) δ 6.75 (d, J = 7.8, 1H), 6.23 (d, J = 2.4, 1H), 6.14 (dd, J = 2.4, 7.8), 2.63 (s, 2H).
13 C-NMR (400 MHz, CD 3 OD) δ 157.4 (s), 157.1 (s), 131.6 (d), 121.6 (s), 107.5 (d), 103.6 (d), 31.6 (t).

チロシナーゼの活性阻害効果
DOPA49mgを50mlの精製水に溶解し、5mMのDOPA水溶液を調製した。
合成したビベンジル誘導体(1)〜(4)とコウジ酸(対照化合物)は、それぞれDMSOに溶解し、5mMのサンプル溶液を調製した。
チロシナーゼを50mMのリン酸ナトリウム緩衝液(pH6.5)に溶解し、0.67mg/mlの酵素溶液を調製した。サンプル溶液をDMSOで希釈し、その0.1mlを3ml容のキュベットに量り取った。次にキュベットに、250mMのリン酸ナトリウム緩衝液(pH6.5)0.6ml、DOPA溶液0.3ml、精製水1.9mlおよび酵素溶液0.1mlを加えてすばやく混合し、分光光度計で475nmの吸光値の変化を計測した。各測定は、30℃で60秒間行い、1秒ごとの吸光値をコンピュータに保存した。得られた吸光値を直線回帰し、ブランク測定時の傾きを100%として50%阻害濃度(IC50)を算出した。この実験は各サンプルに付き3回行った。結果を[表1]に示す。
Activity inhibitory effect of tyrosinase 49 mg of DOPA was dissolved in 50 ml of purified water to prepare a 5 mM DOPA aqueous solution.
The synthesized bibenzyl derivatives (1) to (4) and kojic acid (control compound) were each dissolved in DMSO to prepare a 5 mM sample solution.
Tyrosinase was dissolved in 50 mM sodium phosphate buffer (pH 6.5) to prepare a 0.67 mg / ml enzyme solution. The sample solution was diluted with DMSO, and 0.1 ml thereof was weighed into a 3 ml cuvette. Next, 0.6 ml of 250 mM sodium phosphate buffer (pH 6.5), 0.3 ml of DOPA solution, 1.9 ml of purified water and 0.1 ml of enzyme solution were added to the cuvette and mixed quickly, and the spectrophotometer measured 475 nm. The change in the absorbance value of was measured. Each measurement was performed at 30 ° C. for 60 seconds, and the absorbance value per second was stored in a computer. The obtained absorbance value was linearly regressed, and the 50% inhibitory concentration (IC 50 ) was calculated with the slope at blank measurement as 100%. This experiment was performed three times for each sample. The results are shown in [Table 1].

また、試験化合物(1)〜(4)及びコウジ酸の濃度変化による阻害活性との関係について、[図1]〜[図4]及び[図6]に示す。また、上記各化合物のデータを比較するために棒グラフに表したのが[図5]である。
上記[表1]のIC50に示されるデータは、50%阻害する各誘導体の濃度を示し、値が低いほどチロシナーゼに対する阻害活性が強いことを示している。また、±以下の数値は実験3回による標準誤差を示している。
Moreover, it is shown in [FIG. 1]-[FIG. 4] and [FIG. 6] about the relationship with the inhibitory activity by the test compound (1)-(4) and a kojic acid concentration change. In addition, FIG. 5 shows a bar graph for comparing the data of the respective compounds.
The data shown in the IC 50 of the above [Table 1] shows the concentration of each derivative that inhibits 50%, and the lower the value, the stronger the inhibitory activity against tyrosinase. In addition, the numerical values below ± indicate standard errors of three experiments.

この実験データから、従来、国内で化粧品や食品にチロシナーゼ阻害剤として用いられてきたコウジ酸と比較すると、本発明のチロシナーゼ阻害剤として使用される化合物(1)では約5倍、化合物(2)は約10倍、化合物(3)及び(4)では約20倍と、いずれも非常に強いチロシナーゼ阻害活性を示しているこが確認できる。   From this experimental data, the compound (1) used as the tyrosinase inhibitor of the present invention is about 5 times as much as the compound (2) compared with kojic acid that has been conventionally used as a tyrosinase inhibitor in cosmetics and foods in Japan. Is about 10 times, and about 20 times for compounds (3) and (4), it can be confirmed that both show very strong tyrosinase inhibitory activity.

本発明の化合物1のグラフ図である。1 is a graph of Compound 1 of the present invention. 本発明の化合物2のグラフ図である。It is a graph of the compound 2 of this invention. 本発明の化合物3のグラフ図である。It is a graph of the compound 3 of this invention. 本発明の化合物4のグラフ図である。It is a graph of the compound 4 of this invention. 各化合物を比較した棒グラフ図である。It is the bar graph which compared each compound. 従来のコウジ酸のグラフ図である。It is a graph figure of the conventional kojic acid.

Claims (7)

式(Ia)
(式中、R及びRは、同一又は異なって、水素原子又は単糖類若しくは二糖類由来のグリコシル基を表わす)
で示されるビベンジル誘導体を含有するチロシナーゼの活性阻害剤。
Formula (Ia)
(Wherein R 1 and R 2 are the same or different and each represents a hydrogen atom or a monosaccharide or disaccharide-derived glycosyl group)
A tyrosinase activity inhibitor containing a bibenzyl derivative represented by the formula:
グリコシル基が、五炭糖残基又は六炭糖残基であることを特徴とする請求項1記載のビベンジル誘導体を含有するチロシナーゼの活性阻害剤。 The activity inhibitor of tyrosinase containing a bibenzyl derivative according to claim 1, wherein the glycosyl group is a pentose residue or a hexose residue. グリコシル基が、キシロシル基であることを特徴とする請求項1記載のビベンジル誘導体を含有するチロシナーゼの活性阻害剤。 2. The tyrosinase activity inhibitor containing a bibenzyl derivative according to claim 1, wherein the glycosyl group is a xylosyl group. がキシロシル基かつRが水素原子であるか、R及びRが共にキシロシル基であるか、Rが水素原子かつRがキシロシル基であるか、又は、R及びRが共に水素原子であることを特徴とする請求項1記載のビベンジル誘導体を含有するチロシナーゼの活性阻害剤。 R 1 is a xylosyl group and R 2 is a hydrogen atom, R 1 and R 2 are both xylosyl groups, R 1 is a hydrogen atom and R 2 is a xylosyl group, or R 1 and R 2 The tyrosinase activity inhibitor containing a bibenzyl derivative according to claim 1, wherein both are hydrogen atoms. 式(Iaa)
(式中、R11は水素原子又はキシロシル基を表し、R21 はキシロシル基を表)で表されるビベンジル誘導体。
Formula (Iaa)
(Wherein, R 11 represents a hydrogen atom or a xylosyl group, R 21 is table to a key Shiroshiru group) bibenzyl derivative represented by the.
2,4−ジヒドロキシベンズアルデヒドを出発物質として、該化合物から得られる式(II)
(式中、X及びXは、同一又は異なって、水酸基の保護基を表す)
で表されるベンズアルデヒド誘導体と、同じく、2,4−ジヒドロキシベンズアルデヒドから得られる式(III)
(式中、Y及びYは、同一又は異なって、水酸基の保護基を表し、Zはハロゲン原子を表す)
で表されるホスホニウム塩とを、ウィッティッヒ(Wittig)反応条件下に反応させ、式(IV)
(式中、X、X、Y及びYは、前記と同義である)
で表されるスチルベン誘導体を得、次いで、式(IV)で表される化合物を水素添加反応に付すことにより、式(V)
(式中、X11、X21、Y11及びY21は、同一又は異なって、水素原子又は水酸基の保護基を表す)
で表されるビベンジル誘導体を製造する工程を含む、式(Iaa)
(式中、R11は水素原子又はキシロシル基を表し、R21は水素原子又はキシロシル基を表し、R11及びR21は同時に水素原子ではない)
で表されるビベンジル誘導体の製造方法。
The formula (II) obtained from the compound starting from 2,4-dihydroxybenzaldehyde
(Wherein, X 1 and X 2 are the same or different and represent a hydroxyl-protecting group)
As well as the formula (III) obtained from 2,4-dihydroxybenzaldehyde
(In the formula, Y 1 and Y 2 are the same or different and each represents a hydroxyl-protecting group, and Z represents a halogen atom)
And a phosphonium salt represented by the formula (IV):
(Wherein X 1 , X 2 , Y 1 and Y 2 have the same meanings as described above).
And then subjecting the compound represented by the formula (IV) to a hydrogenation reaction, the formula (V)
(Wherein, X 11, X 21, Y 11 and Y 21 are the same or different, represent a hydrogen atom or a hydroxyl-protecting group)
Comprising a step of producing a bibenzyl derivative represented by the formula (Iaa)
(In the formula, R 11 represents a hydrogen atom or a xylosyl group, R 21 represents a hydrogen atom or a xylosyl group, and R 11 and R 21 are not hydrogen atoms at the same time)
The manufacturing method of bibenzyl derivative represented by these.
式(VI)
(式中、X12及びX22の少なくとも1つは水素原子を表し、他は水酸基の保護基を表し、Y及びYは、同一又は異なって、水酸基の保護基を表す)
で表されるビベンジル誘導体をアグリコン部分として、式(VII)
(式中、Sugは、糖残基の官能基が保護されたキシロシル基を表す)
で表されるイミデートでグリコシル化し、次いで、保護基を脱離することからなる、式(Iaa)
(式中、R11は水素原子又はキシロシル基を表し、R21は水素原子又はキシロシル基を表し、R11及びR21は同時に水素原子ではない)
で表されるビベンジル誘導体の製造方法。
Formula (VI)
(Wherein at least one of X 12 and X 22 represents a hydrogen atom, the other represents a hydroxyl-protecting group, and Y 1 and Y 2 are the same or different and represent a hydroxyl-protecting group)
A bibenzyl derivative represented by the formula (VII)
(In the formula, Sug represents a xylosyl group in which the functional group of the sugar residue is protected)
Glycosylation with an imidate of the formula (Iaa), followed by removal of the protecting group
(In the formula, R 11 represents a hydrogen atom or a xylosyl group, R 21 represents a hydrogen atom or a xylosyl group, and R 11 and R 21 are not hydrogen atoms at the same time)
The manufacturing method of bibenzyl derivative represented by these.
JP2006330017A 2006-08-03 2006-12-06 Tyrosinase activity inhibitor and method for producing the same Active JP5150894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006330017A JP5150894B2 (en) 2006-08-03 2006-12-06 Tyrosinase activity inhibitor and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006211538 2006-08-03
JP2006211538 2006-08-03
JP2006330017A JP5150894B2 (en) 2006-08-03 2006-12-06 Tyrosinase activity inhibitor and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008056651A JP2008056651A (en) 2008-03-13
JP5150894B2 true JP5150894B2 (en) 2013-02-27

Family

ID=39239824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006330017A Active JP5150894B2 (en) 2006-08-03 2006-12-06 Tyrosinase activity inhibitor and method for producing the same

Country Status (1)

Country Link
JP (1) JP5150894B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2730265C (en) * 2008-07-21 2016-06-28 Unigen, Inc. Series of skin-whitening (lightening) compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335472A (en) * 2000-05-24 2001-12-04 Kansai Koso Kk Tyrosinase activity inhibitor and cosmetic

Also Published As

Publication number Publication date
JP2008056651A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
RU2603769C2 (en) Family of aryl, heteroaryl, o-aryl and o-heteroaryl carbasugars
JP2006262910A (en) Method for producing phloretin glycoside
CA3010323C (en) C-glycoside derivatives having fused phenyl ring or pharmaceutically acceptable salts thereof, method for preparing the same and pharmaceutical composition comprising the same
JP6262569B2 (en) Resveratrol derivative and tyrosinase activity inhibitor
Murakami et al. Medicinal foodstuffs. XXV. Hepatoprotective principle and structures of ionone glucoside, phenethyl glycoside, and flavonol oligoglycosides from young seedpods of garden peas, Pisum sativum L.
JP5150894B2 (en) Tyrosinase activity inhibitor and method for producing the same
Ponticelli et al. Synthesis and antiperoxidant activity of new phenolic O-glycosides
US7622563B2 (en) Process for producing glycoside
JP2002193990A (en) Hydrochalcone glycoside and cosmetic formulated with the same as effective component
JP7376058B2 (en) Resorcinol derivatives and tyrosinase activity inhibitors containing them
JP5893442B2 (en) Tyrosinase activity inhibitor
AU2006258853B2 (en) Method for the synthesis of anthocyanins
JP7573319B2 (en) Resorcinol derivatives and tyrosinase activity inhibitors containing the same
JP4410971B2 (en) Naphthol glycoside and whitening external preparation composition containing the same
JP4473511B2 (en) Method for synthesizing naphthol glycoside and its intermediate
JP2004224762A (en) Naphthol glycoside and bleaching external preparation composition containing the same
JP2004339152A (en) Material for inhibiting production of melanin
JP2013213024A (en) Rhododendrol derivative
JPH0640883A (en) Production of whitening cosmetic and ingredient thereof
JP3443737B2 (en) Whitening cosmetics
JPH07138261A (en) Spiro compound and its production
KR100621741B1 (en) Water-soluble curcumin and manufacturing method thereof
KR101882876B1 (en) Acetophenone compound, preparing method and use thereof
Kawada et al. Synthesis of plantamajoside, a bioactive dihydroxyphenylethyl glycoside from Plantago major L.
JP2004224761A (en) Naphthol glycoside and bleaching external preparation composition containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150