JP5149081B2 - Fastener with strain measurement function - Google Patents

Fastener with strain measurement function Download PDF

Info

Publication number
JP5149081B2
JP5149081B2 JP2008148855A JP2008148855A JP5149081B2 JP 5149081 B2 JP5149081 B2 JP 5149081B2 JP 2008148855 A JP2008148855 A JP 2008148855A JP 2008148855 A JP2008148855 A JP 2008148855A JP 5149081 B2 JP5149081 B2 JP 5149081B2
Authority
JP
Japan
Prior art keywords
fastener
strain
sensor
holding member
amount measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008148855A
Other languages
Japanese (ja)
Other versions
JP2009294122A (en
Inventor
ひろみ 島津
裕之 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP2008148855A priority Critical patent/JP5149081B2/en
Publication of JP2009294122A publication Critical patent/JP2009294122A/en
Application granted granted Critical
Publication of JP5149081B2 publication Critical patent/JP5149081B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

本発明は、締結具に係る応力に対応したひずみを高精度に測定する機能を有する締結具に関する。   The present invention relates to a fastener having a function of measuring a strain corresponding to a stress related to the fastener with high accuracy.

ボルト等の締結具における軸ひずみを測定する技術として、ボルトの軸中心近傍の軸方向に穴を設け、その穴の内部にひずみゲージと温度センサを設置した軸力管理ボルトが知られている(例えば、特許文献1)。特許文献1に記載の軸力管理ボルトにおいては、作製した該管理ボルトに対し、各雰囲気温度における軸力とひずみゲージ抵抗値変化との関係をあらかじめ測定して較正値を測定器に記憶させ、較正処理機能を有する測定器とコネクタ接続することによって、実使用環境で簡便にボルトの軸力が測定できるとされている。この軸力管理ボルトは、ひずみゲージを用いた通常のひずみ測定の場合のように、ひずみ測定器内部の3個の固定抵抗と組み合わせたホイートストンブリッジを構成していないことから、測定器を小さくでき簡便に測定できる利点を有するが、測定精度が低下する欠点も有する。   As a technique for measuring axial strain in fasteners such as bolts, an axial force management bolt is known in which a hole is provided in the axial direction near the axial center of the bolt, and a strain gauge and a temperature sensor are installed inside the hole ( For example, Patent Document 1). In the axial force management bolt described in Patent Document 1, with respect to the produced management bolt, the relationship between the axial force and the strain gauge resistance value change at each ambient temperature is measured in advance and the calibration value is stored in the measuring instrument. It is said that the axial force of a bolt can be easily measured in an actual use environment by connecting a measuring instrument having a calibration processing function with a connector. This axial force management bolt does not constitute a Wheatstone bridge combined with three fixed resistors inside the strain measuring instrument as in the case of normal strain measurement using a strain gauge. Although it has an advantage that it can be measured easily, it also has a drawback that the measurement accuracy is lowered.

一方、シリコン単結晶基板上に所定の結晶方位となるように制御した不純物拡散抵抗を形成し、これらの抵抗を組み合わせてホイートストンブリッジを構成した半導体ひずみセンサを用い、ボルトの長軸線方向に設けた穴の内部に設置したひずみ量測定機能付きボルトが開示されている(例えば、特許文献2)。特許文献2に記載のひずみ量測定機能付きボルトにおいては、ひずみ検知抵抗とダミー抵抗を同一の基板上に近接して形成することでホイートストンブリッジ自体をボルト内に構成することができ、各抵抗の温度が略同じとなることから自動的に温度補正を行うことができるとされている。また、半導体デバイスの製造プロセスを利用できることから、数100μm程度以下の小さなホイートストンブリッジが実現可能であり、径の小さなボルトにも利用できるとされている。   On the other hand, an impurity diffusion resistance controlled to have a predetermined crystal orientation is formed on a silicon single crystal substrate, and a semiconductor strain sensor in which a Wheatstone bridge is configured by combining these resistances is provided in the major axis direction of the bolt. A bolt with a strain amount measuring function installed inside a hole is disclosed (for example, Patent Document 2). In the bolt with strain amount measuring function described in Patent Document 2, the Wheatstone bridge itself can be configured in the bolt by forming the strain detection resistor and the dummy resistor close to each other on the same substrate. It is said that the temperature can be automatically corrected because the temperatures are substantially the same. In addition, since a semiconductor device manufacturing process can be used, a small Wheatstone bridge of about several hundred μm or less can be realized, and it can be used for a bolt having a small diameter.

特開平6−347349号公報JP-A-6-347349 特開2005−114441号公報JP 2005-114441 A

上述したようなボルトの軸方向に設けた穴の内部にひずみゲージや半導体ひずみセンサが設置されたボルト型ひずみ測定装置の場合、ひずみを精度良く計測するためには、穴内部における所定の位置・所定の方向にひずみゲージや半導体ひずみセンサを正しく設置することが重要である。特に半導体ひずみセンサにおいては、センサ自体の大きさが非常に小さいため、穴内部の所定の位置・方向に正しく設置することに多大な労力を要していた。また、センサの設置がずれた場合に、ひずみ測定の精度や感度がばらつく問題があった。   In the case of a bolt-type strain measuring device in which a strain gauge or a semiconductor strain sensor is installed inside the hole provided in the axial direction of the bolt as described above, in order to accurately measure strain, a predetermined position / It is important to correctly install a strain gauge and a semiconductor strain sensor in a predetermined direction. Particularly, in the semiconductor strain sensor, since the size of the sensor itself is very small, a great amount of labor is required to correctly install the sensor in a predetermined position and direction inside the hole. In addition, there is a problem that the accuracy and sensitivity of strain measurement vary when the installation of the sensor is deviated.

したがって、本発明の目的は、半導体ひずみセンサを内部に設けたひずみ測定機能付き締結具において、穴内部へのひずみセンサの正しい設置を容易とし、その結果、高精度にひずみを測定することが可能で、かつ感度ばらつきが小さいひずみ測定機能付き締結具を提供することにある。   Therefore, the object of the present invention is to facilitate the correct installation of the strain sensor inside the hole in a fastener with a strain measurement function provided with a semiconductor strain sensor inside, and as a result, it is possible to measure strain with high accuracy. Another object of the present invention is to provide a fastener with a strain measuring function with small sensitivity variations.

本発明は、上記目的を達成するため、締結具のひずみ量を計測する半導体ひずみセンサを有する締結具であって、
前記半導体ひずみセンサを保持するセンサ保持部材と、
前記半導体ひずみセンサおよび/または前記センサ保持部材へ前記締結具に係る応力を伝える応力伝播部材とを具備し、
前記締結具には締結具の中心軸を含む軸方向に穴が設けられ、
前記穴には前記半導体ひずみセンサを保持した前記センサ保持部材が挿入され、
前記穴と前記センサ保持部材との間には前記応力伝播部材が充填されていることを特徴とするひずみ量測定機能付き締結具を提供する。
In order to achieve the above object, the present invention is a fastener having a semiconductor strain sensor for measuring the strain amount of the fastener,
A sensor holding member for holding the semiconductor strain sensor;
A stress propagation member for transmitting stress on the fastener to the semiconductor strain sensor and / or the sensor holding member;
The fastener is provided with a hole in an axial direction including a central axis of the fastener,
The sensor holding member holding the semiconductor strain sensor is inserted into the hole,
A fastener with a strain amount measuring function is provided, wherein the stress propagation member is filled between the hole and the sensor holding member.

また、本発明は、上記目的を達成するため、上記の本発明に係るひずみ量測定機能付き締結具において、以下のような改良や変更を加えることができる。さらに、それらを組み合わせることができる。
(1)前記半導体ひずみセンサから見て前記センサ保持部材の軸方向両端の領域に応力伝播補助部材が具備されている。
(2)前記センサ保持部材が前記締結具の穴の内壁に当接している。
(3)前記半導体ひずみセンサが前記締結具の略中心軸上に設置されている。
(4)前記締結具のヤング率E1と前記応力伝播部材のヤング率E2との関係が少なくとも「E1 ≧ E2 ≧5GPa」であり、かつ前記締結具のヤング率E1と前記センサ保持部材のヤング率E3との関係が少なくとも「E1 ≧ E3 ≧5GPa」である。
(5)前記センサ保持部材が、エポキシ系樹脂、マグネシウム合金、アルミニウム、アルミニウム合金、銅、銅合金またはシリコン基板のいずれかである。
(6)前記応力伝播補助部材が、マグネシウム合金、アルミニウム、アルミニウム合金、銅、銅合金またはシリコン基板のいずれかである。
(7)前記センサ保持部材がシリコン単結晶基板であり、前記半導体ひずみセンサが前記センサ保持部材の表面領域に直接形成されている。
(8)前記半導体ひずみセンサは、シリコン単結晶基板の表面領域に不純物拡散抵抗が形成されたたものであり、4本の前記不純物拡散抵抗によってホイートストンブリッジ回路が構成されたものである。
(9)前記不純物拡散抵抗はp型不純物拡散抵抗であり、前記ホイートストンブリッジ回路は、前記p型不純物拡散抵抗の内の2本の長手方向が前記シリコン単結晶基板の<110>方向と平行であり、かつ他の2本の長手方向が前記<110>方向と垂直方向に平行である。
(10)前記不純物拡散抵抗はn型不純物拡散抵抗であり、前記ホイートストンブリッジ回路は、前記n型不純物拡散抵抗の内の2本の長手方向が前記シリコン単結晶基板の<100>方向と平行であり、かつ他の2本の長手方向が前記<100>方向と垂直方向に平行である。
In addition, in order to achieve the above object, the present invention can make the following improvements and changes in the above-described fastener with a strain amount measuring function according to the present invention. Furthermore, they can be combined.
(1) Stress propagation assisting members are provided in regions on both ends in the axial direction of the sensor holding member as viewed from the semiconductor strain sensor.
(2) The sensor holding member is in contact with the inner wall of the hole of the fastener.
(3) The semiconductor strain sensor is installed on a substantially central axis of the fastener.
(4) The relationship between the Young's modulus E1 of the fastener and the Young's modulus E2 of the stress propagation member is at least “E1 ≧ E2 ≧ 5 GPa”, and the Young's modulus E1 of the fastener and the Young's modulus of the sensor holding member The relationship with E3 is at least “E1 ≧ E3 ≧ 5 GPa”.
(5) The sensor holding member is one of an epoxy resin, a magnesium alloy, aluminum, an aluminum alloy, copper, a copper alloy, or a silicon substrate.
(6) The stress propagation auxiliary member is any of a magnesium alloy, aluminum, an aluminum alloy, copper, a copper alloy, or a silicon substrate.
(7) The sensor holding member is a silicon single crystal substrate, and the semiconductor strain sensor is directly formed on a surface region of the sensor holding member.
(8) In the semiconductor strain sensor, an impurity diffusion resistance is formed in a surface region of a silicon single crystal substrate, and a Wheatstone bridge circuit is configured by the four impurity diffusion resistances.
(9) The impurity diffusion resistor is a p-type impurity diffusion resistor, and in the Wheatstone bridge circuit, two longitudinal directions of the p-type impurity diffusion resistors are parallel to a <110> direction of the silicon single crystal substrate. And the other two longitudinal directions are parallel to the <110> direction and the vertical direction.
(10) The impurity diffusion resistor is an n-type impurity diffusion resistor, and in the Wheatstone bridge circuit, two longitudinal directions of the n-type impurity diffusion resistors are parallel to a <100> direction of the silicon single crystal substrate. And the other two longitudinal directions are parallel to the <100> direction and the vertical direction.

本発明によれば、締結具の中心軸を含む軸方向に設けられた穴に対して半導体ひずみセンサを所定の位置・方向に正しく設置することが容易となり、その結果、高精度にひずみを測定することが可能で、かつ感度ばらつきが小さいひずみ測定機能付き締結具を提供することができる。   According to the present invention, it becomes easy to correctly install a semiconductor strain sensor in a predetermined position and direction with respect to a hole provided in an axial direction including the central axis of the fastener, and as a result, strain can be measured with high accuracy. Thus, it is possible to provide a fastener with a strain measuring function that can be performed and has a small sensitivity variation.

以下に、図を参照しながら、本発明に係る実施の形態を説明する。ただし、本発明はここで取り上げた実施の形態に限定されることはない。   Embodiments according to the present invention will be described below with reference to the drawings. However, the present invention is not limited to the embodiment taken up here.

〔本発明の第1の実施形態〕
(ひずみ測定機能付き締結具の構造)
図1は、本発明の第1の実施形態に係るひずみ測定機能付き締結具の主要部分の構造例を示す縦断面模式図であり、図2は、図1のA−A断面を示す模式図である。図1,2に示すように、締結具(例えば、ボルトやピン等)1には中心軸を含む軸方向に穴1aが設けられ、穴1aには半導体ひずみセンサ4を保持したセンサ保持部材3が挿入され、穴1aとセンサ保持部材3との間には応力伝播部材2が充填されている。半導体ひずみセンサ4は、センサ保持部材3の所定の位置に接合部材(例えば、接着剤、はんだ等)で固定されている。
[First embodiment of the present invention]
(Structure of fastener with strain measurement function)
FIG. 1 is a schematic longitudinal sectional view showing a structural example of a main part of a fastener with a strain measuring function according to a first embodiment of the present invention, and FIG. 2 is a schematic view showing a cross section taken along line AA of FIG. It is. As shown in FIGS. 1 and 2, a fastener (for example, a bolt or a pin) 1 is provided with a hole 1a in the axial direction including the central axis, and a sensor holding member 3 holding a semiconductor strain sensor 4 in the hole 1a. The stress propagation member 2 is filled between the hole 1a and the sensor holding member 3. The semiconductor strain sensor 4 is fixed to a predetermined position of the sensor holding member 3 with a joining member (for example, adhesive, solder, etc.).

本発明によれば、特に、従来は半導体ひずみセンサ4の設置が困難であった穴1aの内径が小さい場合においても、半導体ひずみセンサ4を締結具1の所定位置・方向に正確・容易に設置することができる。言い換えると、穴1aの内径を小さくできることから、締結具1の機械的強度に対する影響を無視できるレベルに小さくできる。   According to the present invention, the semiconductor strain sensor 4 can be accurately and easily installed at a predetermined position and direction of the fastener 1 even when the inner diameter of the hole 1a, which has conventionally been difficult to install the semiconductor strain sensor 4, is small. can do. In other words, since the inner diameter of the hole 1a can be reduced, the influence on the mechanical strength of the fastener 1 can be reduced to a level that can be ignored.

なお、図1,2においては、センサ保持部材3が略円柱形状をしている場合について示したが、センサ保持部材3を角柱あるいは板状としてもよい。半導体ひずみセンサ4を固定する箇所に平坦面が形成されていれば、センサ保持部材3の形状は特に限定されない。また、図1においては穴1aが締結具頭部から設けられているが、必要に応じて締結部尾部から穴1aを設けてもよく、締結部頭部から尾部までの貫通孔としてもよい。   1 and 2 show the case where the sensor holding member 3 has a substantially cylindrical shape, the sensor holding member 3 may be a prism or a plate. If the flat surface is formed in the location which fixes the semiconductor strain sensor 4, the shape of the sensor holding member 3 will not be specifically limited. Further, in FIG. 1, the hole 1a is provided from the fastener head, but the hole 1a may be provided from the fastening part tail as necessary, or may be a through hole from the fastening part head to the tail.

また、図1に示すように、穴1aの底部にセンサ保持部材3の位置決め用穴1bを設けることは好ましい。センサ保持部材3を位置決め用穴1bに差し込むことにより、センサ保持部材3の穴1a内での位置決めをより確実に行うことができる。なお、位置決め用穴1bの代わりにリング等の位置決め用部材(図示せず)を用いてもよい。また、穴1aの開口部付近を防水・防湿性材料5で封止することは好ましい。これにより、穴1aへの水分等の浸入を抑制でき、水分等による応力伝播部材2やセンサ保持部材3等の劣化を抑制することができる。   Further, as shown in FIG. 1, it is preferable to provide a positioning hole 1b for the sensor holding member 3 at the bottom of the hole 1a. By inserting the sensor holding member 3 into the positioning hole 1b, the positioning of the sensor holding member 3 in the hole 1a can be more reliably performed. A positioning member (not shown) such as a ring may be used instead of the positioning hole 1b. Moreover, it is preferable to seal the vicinity of the opening of the hole 1a with the waterproof / moisture-proof material 5. Thereby, the penetration | invasion of the water | moisture content etc. to the hole 1a can be suppressed, and deterioration of the stress propagation member 2, the sensor holding member 3, etc. by a water | moisture content etc. can be suppressed.

本発明においては、半導体ひずみセンサ4が穴1aの内壁と直接接触していないことから、締結具1のひずみを半導体ひずみセンサ4に伝える応力伝播部材2および/またはセンサ保持部材3が重要な役割を果たす。締結具1のヤング率E1と応力伝播部材2のヤング率E2との関係が「E1 ≧ E2 ≧5GPa」であり、かつ締結具1のヤング率E1とセンサ保持部材3のヤング率E3との関係が「E1 ≧ E3 ≧5GPa」であることが望ましい。一方、「E1 < E2, E3」となると、締結具1のひずみが半導体ひずみセンサ4に伝わりにくくなり、半導体ひずみセンサ4の出力信号が小さくなるので測定感度や精度が劣化する。   In the present invention, since the semiconductor strain sensor 4 is not in direct contact with the inner wall of the hole 1a, the stress propagation member 2 and / or the sensor holding member 3 for transmitting the strain of the fastener 1 to the semiconductor strain sensor 4 is an important role. Fulfill. The relationship between the Young's modulus E1 of the fastener 1 and the Young's modulus E2 of the stress propagation member 2 is “E1 ≧ E2 ≧ 5 GPa”, and the relationship between the Young's modulus E1 of the fastener 1 and the Young's modulus E3 of the sensor holding member 3 Is preferably “E1 ≧ E3 ≧ 5 GPa”. On the other hand, when “E1 <E2, E3”, the strain of the fastener 1 is not easily transmitted to the semiconductor strain sensor 4, and the output signal of the semiconductor strain sensor 4 is reduced, so that the measurement sensitivity and accuracy are deteriorated.

センサ保持部材3の材料の例としては、エポキシ系樹脂(ヤング率:約5GPa)、マグネシウム合金(例えば、AZ31、ヤング率:約45 GPa)、アルミニウム(ヤング率:約70 GPa)、アルミニウム合金(例えば、A7075、ヤング率:約70 GPa)、銅合金(例えば、C2801、ヤング率:約100 GPa)、銅(例えば、C1020、ヤング率:約120 GPa)、シリコン基板(多結晶基板のヤング率:約160 GPa、単結晶基板のヤング率:約190 GPa)などが挙げられる。また、応力伝播部材2の材料の例としては、エポキシ系樹脂(ヤング率:約5GPa)などの樹脂材料が挙げられる。例えば、センサ保持部材3をエポキシ系樹脂とし、応力伝播部材2もエポキシ系樹脂とすることにより、「E1 ≧ E2 = E3 ≧5GPa」となる。   Examples of the material of the sensor holding member 3 include epoxy resin (Young's modulus: about 5 GPa), magnesium alloy (for example, AZ31, Young's modulus: about 45 GPa), aluminum (Young's modulus: about 70 GPa), aluminum alloy ( For example, A7075, Young's modulus: about 70 GPa), copper alloy (for example, C2801, Young's modulus: about 100 GPa), copper (for example, C1020, Young's modulus: about 120 GPa), silicon substrate (Young's modulus of polycrystalline substrate) : About 160 GPa, Young's modulus of a single crystal substrate: about 190 GPa). Moreover, as an example of the material of the stress propagation member 2, resin materials, such as an epoxy resin (Young's modulus: about 5 GPa), are mentioned. For example, when the sensor holding member 3 is made of epoxy resin and the stress propagation member 2 is also made of epoxy resin, “E1 ≧ E2 = E3 ≧ 5 GPa”.

(ひずみ測定機能付き締結具の製造)
本発明に係るひずみ量測定機能付き締結具の製造方法は、センサ保持部材3の所定の位置に所定の方向を向けた半導体ひずみセンサ4を固定する「半導体ひずみセンサの固定工程」と、半導体ひずみセンサ4が固定されたセンサ保持部材3を締結具の穴1a内部の所定位置に挿入する「センサ保持部材の挿入工程」と、応力伝播部材2を穴1aの内部に充填する「応力伝播部材の充填工程」とを有する。応力伝播部材中に気泡等の空隙が存在すると、締結具のひずみが半導体ひずみセンサに伝播しづらくなることから好ましくない。そこで、締結具の穴径の絶対値が小さく(すなわち、穴とセンサ保持部材との間の空間が小さく)応力伝播部材を充填する際に穴の内部に気泡等が残存し易い場合には、「応力伝播部材の充填工程」の後で応力伝播部材が硬化する前に「センサ保持部材の挿入工程」を行ってもよい。これにより、穴内部での気泡等の残存を抑制することができる。また、締結具の穴1aを締結部頭部から尾部までの貫通孔とすることによっても、気泡等の残存抑制に有利となる。
(Manufacture of fasteners with strain measurement function)
The manufacturing method of the fastener with a strain amount measuring function according to the present invention includes a “semiconductor strain sensor fixing step” for fixing the semiconductor strain sensor 4 in a predetermined direction at a predetermined position of the sensor holding member 3, and a semiconductor strain. The “sensor holding member insertion step” in which the sensor holding member 3 to which the sensor 4 is fixed is inserted into a predetermined position inside the hole 1a of the fastener, and the stress propagation member 2 is filled in the hole 1a “stress propagation member Filling step ". If voids such as bubbles are present in the stress propagation member, it is not preferable because the strain of the fastener is difficult to propagate to the semiconductor strain sensor. Therefore, when the absolute value of the hole diameter of the fastener is small (i.e., the space between the hole and the sensor holding member is small), when filling the stress propagation member, bubbles or the like are likely to remain inside the hole, After the “stress propagation member filling step”, the “sensor holding member insertion step” may be performed before the stress propagation member is cured. Thereby, it is possible to suppress the remaining of bubbles and the like inside the hole. In addition, it is advantageous for suppressing the remaining of air bubbles or the like by making the hole 1a of the fastener a through hole from the head of the fastening part to the tail.

〔本発明の第2の実施形態〕
(ひずみ測定機能付き締結具の構造)
図3は、本発明の第2の実施形態に係るひずみ測定機能付き締結具の構造例を示す横断面模式図であり、第1の実施形態と共通の部分には同一の符号を付した。本実施の形態において、主要部分の構造は第1の実施形態と同様であるが、センサ保持部材3が穴1aの内壁に当接している点で第1の実施形態と異なる。なお、図3においては、センサ保持部材3として板状の部材を用い、半導体ひずみセンサ4が締結具の略中心軸上に設置されており、半導体ひずみセンサ4がセンサ保持部材3の内部に埋め込み固定されている例を示した。
[Second Embodiment of the Present Invention]
(Structure of fastener with strain measurement function)
FIG. 3 is a schematic cross-sectional view showing an example of the structure of a fastener with a strain measurement function according to the second embodiment of the present invention, and the same reference numerals are given to the parts common to the first embodiment. In this embodiment, the structure of the main part is the same as that of the first embodiment, but differs from the first embodiment in that the sensor holding member 3 is in contact with the inner wall of the hole 1a. In FIG. 3, a plate-like member is used as the sensor holding member 3, the semiconductor strain sensor 4 is installed on the substantially central axis of the fastener, and the semiconductor strain sensor 4 is embedded in the sensor holding member 3. A fixed example is shown.

センサ保持部材3の少なくとも2辺が穴1aの内壁に当接する構造とすることにより、穴1aの内部におけるセンサ保持部材3の位置決めがより安定し、ひずみ測定の精度・感度のばらつきを抑制することができる。さらに、締結具1の剪断方向に掛かる応力・ひずみがセンサ保持部材3に直接的に伝わることから、剪断方向におけるひずみ測定の精度・感度が向上する利点もある。   By adopting a structure in which at least two sides of the sensor holding member 3 are in contact with the inner wall of the hole 1a, the positioning of the sensor holding member 3 in the hole 1a is more stable, and variations in strain measurement accuracy and sensitivity are suppressed. Can do. Furthermore, since the stress and strain applied in the shearing direction of the fastener 1 are directly transmitted to the sensor holding member 3, there is an advantage that the accuracy and sensitivity of strain measurement in the shearing direction is improved.

また、半導体ひずみセンサ4が締結具1の中心軸上に配置されることは好ましい。締結具の曲げ変形に対する中立線である中心軸上に半導体ひずみセンサ4を設置することにより、曲げ変形による余分な圧縮/引張ひずみの影響を排除できセンサ出力の余分な変動を抑制することができることから、高精度のひずみ測定が可能となる。   Moreover, it is preferable that the semiconductor strain sensor 4 is disposed on the central axis of the fastener 1. By installing the semiconductor strain sensor 4 on the central axis that is a neutral line for the bending deformation of the fastener, it is possible to eliminate the influence of excessive compression / tensile strain due to bending deformation and to suppress excessive fluctuations in the sensor output. Therefore, highly accurate strain measurement is possible.

また、半導体ひずみセンサ4がセンサ保持部材3の内部に埋め込み固定されることは好ましい。センサ保持部材3の表面がなだらかになることから、半導体ひずみセンサ4の周りでの気泡等の残存を抑制できる利点がある。   Moreover, it is preferable that the semiconductor strain sensor 4 is embedded and fixed inside the sensor holding member 3. Since the surface of the sensor holding member 3 becomes gentle, there is an advantage that the remaining of bubbles and the like around the semiconductor strain sensor 4 can be suppressed.

図4は、本発明の第2の実施形態に係るひずみ測定機能付き締結具の別の構造例を示す縦断面模式図である。図5は図4のB−B断面の1例を示す模式図であり、図6は図4のB−B断面の別の1例を示す模式図である。図4〜6に示すように、応力伝播補助部材2’を付加することによって、締結具1の軸方向に掛かる応力・ひずみがセンサ保持部材3および/または半導体ひずみセンサ4に伝わりやすくなることから、軸方向におけるひずみ測定の精度・感度が向上する。応力伝播補助部材2’の材料の例としては、マグネシウム合金(例えば、AZ31、ヤング率:約45 GPa)、アルミニウム(ヤング率:約70 GPa)、アルミニウム合金(例えば、A7075、ヤング率:約70 GPa)、銅合金(例えば、C2801、ヤング率:約100 GPa)、銅(例えば、C1020、ヤング率:約120 GPa)、シリコン基板(多結晶基板のヤング率:約160 GPa、単結晶基板のヤング率:約190 GPa)などが挙げられる。なお、前述の第1の実施形態に応力伝播補助部材2’を適用することも勿論可能である。好ましくは、応力伝播補助部材2’の材料を応力伝播部材2の材料よりも高いヤング率の材料とすることにより、応力・ひずみがセンサ保持部材3および/または半導体ひずみセンサ4に伝わりやすくなる。   FIG. 4 is a schematic longitudinal sectional view showing another structural example of the fastener with a strain measuring function according to the second embodiment of the present invention. FIG. 5 is a schematic diagram showing an example of the BB cross section of FIG. 4, and FIG. 6 is a schematic diagram showing another example of the BB cross section of FIG. As shown in FIGS. 4 to 6, by adding the stress propagation auxiliary member 2 ′, the stress and strain applied in the axial direction of the fastener 1 can be easily transmitted to the sensor holding member 3 and / or the semiconductor strain sensor 4. The accuracy and sensitivity of strain measurement in the axial direction is improved. Examples of the material of the stress propagation assisting member 2 ′ include magnesium alloy (for example, AZ31, Young's modulus: about 45 GPa), aluminum (Young's modulus: about 70 GPa), aluminum alloy (for example, A7075, Young's modulus: about 70). GPa), copper alloy (eg C2801, Young's modulus: about 100 GPa), copper (eg C1020, Young's modulus: about 120 GPa), silicon substrate (polycrystalline substrate Young's modulus: about 160 GPa, single crystal substrate Young's modulus: about 190 GPa). Of course, the stress propagation assisting member 2 ′ can be applied to the first embodiment described above. Preferably, the stress propagation assisting member 2 ′ is made of a material having a Young's modulus higher than that of the stress propagation member 2, so that the stress / strain is easily transmitted to the sensor holding member 3 and / or the semiconductor strain sensor 4.

図7は、本発明の第2の実施形態に係るひずみ測定機能付き締結具の別の構造例を示す横断面模式図である。図7に示すように、センサ保持部材3の少なくとも2辺が穴1aの内壁に当接しており、半導体ひずみセンサ4が締結具の穴1aの内壁にできるだけ接近するように配置されている。このような構造は、締結具に対する曲げ応力がほとんど無く、締結具軸方向の微小ひずみを感度・精度よく測定する場合に好適である。   FIG. 7: is a cross-sectional schematic diagram which shows another structural example of the fastener with a strain measurement function which concerns on the 2nd Embodiment of this invention. As shown in FIG. 7, at least two sides of the sensor holding member 3 are in contact with the inner wall of the hole 1a, and the semiconductor strain sensor 4 is arranged as close as possible to the inner wall of the hole 1a of the fastener. Such a structure has little bending stress to the fastener and is suitable for measuring a small strain in the fastener axial direction with high sensitivity and accuracy.

また、本実施の形態においては、図7に示すようにセンサ保持部材3を仕切り材として見立て、センサ保持部材3の表裏で異なる材質の応力伝播部材21,22を用いてもよい。この場合、締結具の穴1aの内壁とセンサ保持部材3の面との距離(空間)が小さい方に充填される応力伝播部材21は、他方に充填される応力伝播部材22よりも、同一温度・同一応力下でのクリープ速度が小さい材質を用いることが好ましい。これにより、締結具1に生じるひずみを半導体ひずみセンサ4により効率よく伝えることができる。   In the present embodiment, as shown in FIG. 7, the sensor holding member 3 may be regarded as a partition member, and stress propagation members 21 and 22 made of different materials may be used on the front and back of the sensor holding member 3. In this case, the stress propagation member 21 filled in the smaller distance (space) between the inner wall of the hole 1a of the fastener and the surface of the sensor holding member 3 has the same temperature as the stress propagation member 22 filled in the other. -It is preferable to use a material having a low creep rate under the same stress. Thereby, the strain generated in the fastener 1 can be efficiently transmitted by the semiconductor strain sensor 4.

なお、半導体ひずみセンサ4が固定されているセンサ保持部材の面3aの側に応力伝播部材21が充填されている場合、他方の面3bの側には応力伝播部材22を充填しないことも可能である。これにより、応力伝播部材を充填する工程を簡略化することができる。この場合、面3b側のその空間に不活性ガスを充填することは好ましい。それにより、センサ保持部材3や応力伝播部材21の酸化劣化を抑制でき、耐久性の向上に寄与できる。   When the stress propagation member 21 is filled on the surface 3a side of the sensor holding member to which the semiconductor strain sensor 4 is fixed, the stress propagation member 22 may not be filled on the other surface 3b side. is there. Thereby, the process of filling the stress propagation member can be simplified. In this case, it is preferable to fill the space on the surface 3b side with an inert gas. Thereby, the oxidative deterioration of the sensor holding member 3 and the stress propagation member 21 can be suppressed, and the durability can be improved.

〔半導体ひずみセンサの構成〕
つぎに、半導体ひずみセンサの構成について説明する。以下の説明では、半導体材料としてシリコンの場合を説明するが、本発明はシリコンによる半導体ひずみセンサに限定されることは無く、他の半導体材料を用いてもよい。図8は、半導体ひずみセンサの1例を示す部分拡大模式図である。図8に示すように、半導体ひずみセンサ4はセンサ保持部材3の所定の位置に設けられている。また、半導体ひずみセンサ4はシリコン単結晶基板からなり、例えば、その同一基板の表面領域に4本のp型不純物拡散抵抗4a,4b,4c,4dが形成され、これら4本の不純物拡散抵抗でホイートストンブリッジ回路(単に「ブリッジ回路」と称する場合もある)が形成されている。
[Configuration of semiconductor strain sensor]
Next, the configuration of the semiconductor strain sensor will be described. In the following description, the case where silicon is used as the semiconductor material will be described. However, the present invention is not limited to the semiconductor strain sensor using silicon, and other semiconductor materials may be used. FIG. 8 is a partially enlarged schematic view showing an example of a semiconductor strain sensor. As shown in FIG. 8, the semiconductor strain sensor 4 is provided at a predetermined position of the sensor holding member 3. The semiconductor strain sensor 4 is made of a silicon single crystal substrate. For example, four p-type impurity diffusion resistors 4a, 4b, 4c, and 4d are formed in the surface region of the same substrate, and these four impurity diffusion resistors are used. A Wheatstone bridge circuit (sometimes simply referred to as a “bridge circuit”) is formed.

さらに、4本のp型不純物拡散抵抗は、その長手方向がシリコン単結晶の<110>方向に平行な2本の不純物拡散抵抗と、それらと垂直な2本の不純物拡散抵抗とから構成されている。半導体ひずみセンサ4のシリコン単結晶<110>方向が締結具の軸方向と平行に配置されることにより、締結具の軸方向ひずみを感度よく測定することが可能となる。   Further, the four p-type impurity diffusion resistors are composed of two impurity diffusion resistors whose longitudinal direction is parallel to the <110> direction of the silicon single crystal and two impurity diffusion resistors perpendicular to them. Yes. By disposing the silicon single crystal <110> direction of the semiconductor strain sensor 4 in parallel with the axial direction of the fastener, the axial strain of the fastener can be measured with high sensitivity.

また、半導体ひずみセンサ4の同一基板上に、ブリッジ回路の出力を増幅するためのアンプ6を設けてもよい。アンプ6をブリッジ回路と同一基板上に設けることにより、ブリッジ回路の出力がすぐに増幅されるため、耐ノイズ性が向上しひずみ測定精度が向上するという利点がある。   Further, an amplifier 6 for amplifying the output of the bridge circuit may be provided on the same substrate of the semiconductor strain sensor 4. By providing the amplifier 6 on the same substrate as the bridge circuit, since the output of the bridge circuit is immediately amplified, there is an advantage that noise resistance is improved and distortion measurement accuracy is improved.

また、半導体ひずみセンサ4の同一基板上に、例えばpn接合などからなる温度センサ7を設けてもよい。これにより、半導体ひずみセンサ4の出力の温度による出力変動分を補正することが可能となるため、さらに高精度なひずみ測定が可能となる。   Further, a temperature sensor 7 made of, for example, a pn junction may be provided on the same substrate of the semiconductor strain sensor 4. As a result, the output fluctuation due to the temperature of the output of the semiconductor strain sensor 4 can be corrected, so that more accurate strain measurement can be performed.

図9は、半導体ひずみセンサの他の例を示す部分拡大模式図である。図9に示すように、4本のp型不純物拡散抵抗4a,4b,4c,4dでブリッジ回路が構成されており、半導体ひずみセンサ4のシリコン単結晶<110>方向が締結具の軸方向に対する45度方向と平行に配置されている。これにより、締結具の剪断ひずみを感度よく測定することが可能となる。   FIG. 9 is a partially enlarged schematic view showing another example of the semiconductor strain sensor. As shown in FIG. 9, a bridge circuit is constituted by four p-type impurity diffusion resistors 4a, 4b, 4c, and 4d, and the silicon single crystal <110> direction of the semiconductor strain sensor 4 is relative to the axial direction of the fastener. It is arranged parallel to the 45 degree direction. Thereby, the shear strain of the fastener can be measured with high sensitivity.

図10は、半導体ひずみセンサの他の例を示す部分拡大模式図である。図10に示すように、半導体ひずみセンサ6として、シリコン単結晶基板上に4本のn型不純物拡散抵抗6a,6b,6c,6dが形成され、これら4本の不純物拡散抵抗でブリッジ回路が形成されている。このとき、n型不純物拡散抵抗の長手方向がシリコン単結晶の<100>方向と平行・垂直となるように形成されている。半導体ひずみセンサ6のシリコン単結晶<100>方向が締結具の軸方向と平行に配置されることにより、締結具の軸方向ひずみを感度よく測定することが可能となる。一方、半導体ひずみセンサ6のシリコン単結晶<100>方向が締結具の軸方向に対する45度方向と平行に配置されることにより、締結具の剪断ひずみを感度よく測定することができる。   FIG. 10 is a partially enlarged schematic view showing another example of the semiconductor strain sensor. As shown in FIG. 10, as the semiconductor strain sensor 6, four n-type impurity diffusion resistors 6a, 6b, 6c, 6d are formed on a silicon single crystal substrate, and a bridge circuit is formed by these four impurity diffusion resistors. Has been. At this time, the n-type impurity diffusion resistor is formed so that the longitudinal direction thereof is parallel and perpendicular to the <100> direction of the silicon single crystal. By disposing the silicon single crystal <100> direction of the semiconductor strain sensor 6 in parallel with the axial direction of the fastener, the axial strain of the fastener can be measured with high sensitivity. On the other hand, when the silicon single crystal <100> direction of the semiconductor strain sensor 6 is arranged in parallel with the 45-degree direction with respect to the axial direction of the fastener, the shear strain of the fastener can be measured with high sensitivity.

なお、本発明に用いる半導体ひずみセンサとしては、上述の例の他、特開2005−114441号公報「ひずみ量測定機能付きボルト」に記載のひずみセンサを利用することができる。   As the semiconductor strain sensor used in the present invention, in addition to the above-described example, a strain sensor described in JP-A-2005-114441 “Bolt with strain amount measuring function” can be used.

〔本発明の第3の実施形態〕
(ひずみ測定機能付き締結具の構造)
図11は、本発明の第3の実施形態に係るひずみ測定機能付き締結具の主要部分の構造例を示す縦断面模式図であり、第1の実施形態と共通の部分には同一の符号を付した。
[Third embodiment of the present invention]
(Structure of fastener with strain measurement function)
FIG. 11 is a schematic longitudinal sectional view showing an example of the structure of the main part of a fastener with a strain measuring function according to the third embodiment of the present invention, and the same reference numerals are used for parts common to the first embodiment. It was attached.

第1,第2の実施形態においては、半導体ひずみセンサ4が接着剤等の接合部材でセンサ保持部材3に固定されている例を説明した。これに対し、本実施の形態は、センサ保持部材13として半導体単結晶基板を用い、該センサ保持部材13の所定位置の表面領域に半導体ひずみセンサ14が直接形成されている。すなわち、センサ保持部材13自体が半導体ひずみセンサの役割も兼ねている。   In the first and second embodiments, the example in which the semiconductor strain sensor 4 is fixed to the sensor holding member 3 with a bonding member such as an adhesive has been described. In contrast, in the present embodiment, a semiconductor single crystal substrate is used as the sensor holding member 13, and the semiconductor strain sensor 14 is directly formed in a surface region at a predetermined position of the sensor holding member 13. That is, the sensor holding member 13 itself also serves as a semiconductor strain sensor.

半導体ひずみセンサ14は、前述の半導体ひずみセンサ4と同様に、シリコン単結晶基板(ここではセンサ保持部材13)の表面にヒ素・リン・ボロンなどの不純物を導入して不純物拡散抵抗を形成し、その不純物拡散抵抗でブリッジ回路を構成することにより形成される。また、図11に示すように、センサ保持部材13には半導体ひずみセンサ14の他に、例えば演算回路15や電気信号を外部に取り出すためのパッド16などが形成されていてもよい。さらに、これら半導体ひずみセンサ14、演算回路15、パッド16等を電気的に接続するための配線17もセンサ保持部材13に形成されていることが好ましい。   Similar to the semiconductor strain sensor 4 described above, the semiconductor strain sensor 14 introduces impurities such as arsenic, phosphorus, and boron into the surface of the silicon single crystal substrate (here, the sensor holding member 13) to form an impurity diffusion resistance, It is formed by configuring a bridge circuit with the impurity diffusion resistance. Further, as shown in FIG. 11, in addition to the semiconductor strain sensor 14, the sensor holding member 13 may be formed with, for example, an arithmetic circuit 15 or a pad 16 for taking out an electric signal to the outside. Furthermore, it is preferable that a wiring 17 for electrically connecting the semiconductor strain sensor 14, the arithmetic circuit 15, the pad 16 and the like is also formed on the sensor holding member 13.

また図11に図示はしていないが、図7に示したようなブリッジ回路出力を増幅するためのアンプや温度補正のための温度センサ、および半導体ひずみセンサ14の電気信号を外部に無線でデータ転送するための無線回路など、その他の電気回路をセンサ保持部材13に(同一のシリコン単結晶基板上に)形成することができる。なお、穴1a中へのセンサ保持部材13の設置に関しては、第1,第2の実施形態に記載の方法・構造を適用できる。   Although not shown in FIG. 11, the electrical signals of the amplifier for amplifying the bridge circuit output, the temperature sensor for temperature correction, and the semiconductor strain sensor 14 as shown in FIG. Other electrical circuits, such as a wireless circuit for transfer, can be formed on the sensor holding member 13 (on the same silicon single crystal substrate). In addition, regarding the installation of the sensor holding member 13 in the hole 1a, the methods and structures described in the first and second embodiments can be applied.

本実施の形態においては、半導体ひずみセンサ14がセンサ保持部材13の表面領域に直接設けられているため、半導体ひずみセンサをセンサ保持部材に固定するための介在物(例えば、接着剤などの接合部材)を設ける必要がない。すなわち、接合部材の劣化の心配が無く、耐久性(長期信頼性)の高いひずみ測定機能付き締結具が得られるという利点がある。また、第1,第2の実施形態と同様の作用効果に加えて、センサ保持部材13に掛かるひずみを直接検知できるため、より高感度・高精度でのひずみ測定が可能となる。   In the present embodiment, since the semiconductor strain sensor 14 is provided directly on the surface region of the sensor holding member 13, an inclusion (for example, a bonding member such as an adhesive) for fixing the semiconductor strain sensor to the sensor holding member. ) Is not necessary. That is, there is an advantage that a fastener with a strain measuring function having high durability (long-term reliability) can be obtained without worrying about deterioration of the joining member. Further, in addition to the same effects as those of the first and second embodiments, the strain applied to the sensor holding member 13 can be directly detected, so that the strain can be measured with higher sensitivity and higher accuracy.

〔実施の形態の効果〕
上記の本発明の実施の形態によれば、下記の効果を奏する。
(1)本発明に係るひずみ測定機能付き締結具は、センサ保持部材を用いることから、従来は半導体ひずみセンサの設置が困難であった保持具の穴径が小さい場合においても、半導体ひずみセンサを締結具の所定位置・方向に正確・容易に設置することができる。
(2)本発明に係るひずみ測定機能付き締結具は、半導体ひずみセンサを締結具の所定位置・方向に正確に設置することができることから、高感度かつ高精度にひずみ測定を行うことができる。
(3)本発明に係るひずみ測定機能付き締結具は、センサ保持部材の少なくとも2辺が締結具の穴の内壁に当接する構造とすることにより、穴内部におけるセンサ保持部材の位置決めがより安定し、ひずみ測定の精度・感度のばらつきを抑制することができる。さらに、締結具の剪断方向に掛かる応力・ひずみがセンサ保持部材に直接的に伝わることから、剪断方向におけるひずみ測定の精度・感度が向上する。
(4)本発明に係るひずみ測定機能付き締結具は、締結具の曲げ変形に対する中立線である中心軸上に半導体ひずみセンサを設置することにより、曲げ変形による余分な圧縮/引張ひずみの影響を排除できセンサ出力の余分な変動を抑制することができることから、高精度のひずみ測定が可能となる。
(5)本発明に係るひずみ測定機能付き締結具は、半導体ひずみセンサをセンサ保持部材の内部に埋め込み固定することにより、センサ保持部材の表面がなだらかになることから、半導体ひずみセンサの周りでの気泡等の残存を抑制することができ、高感度のひずみ測定が可能となる。
(6)本発明に係るひずみ測定機能付き締結具は、センサ保持部材として半導体単結晶基板を用い、半導体ひずみセンサ部を該センサ保持部材の表面領域に直接設けることにより、センサ保持部材に掛かるひずみを直接検知できるため、より高感度・高精度でのひずみ測定が可能となる。また、半導体ひずみセンサをセンサ保持部材に固定するための接合部材を設ける必要がないため、接合部材の劣化が無く、耐久性(長期信頼性)の高いひずみ測定機能付き締結具が得られる。
[Effect of the embodiment]
According to the above embodiment of the present invention, the following effects can be obtained.
(1) Since the fastener with a strain measuring function according to the present invention uses a sensor holding member, the semiconductor strain sensor can be used even when the hole diameter of the holder is small, which is conventionally difficult to install the semiconductor strain sensor. It can be installed accurately and easily at a predetermined position and direction of the fastener.
(2) Since the fastener with a strain measurement function according to the present invention can accurately install the semiconductor strain sensor at a predetermined position and direction of the fastener, the strain measurement can be performed with high sensitivity and high accuracy.
(3) The fastener with strain measurement function according to the present invention has a structure in which at least two sides of the sensor holding member are in contact with the inner wall of the hole of the fastener, so that the positioning of the sensor holding member in the hole is more stable. Variations in strain measurement accuracy and sensitivity can be suppressed. Furthermore, since the stress and strain applied in the shearing direction of the fastener are directly transmitted to the sensor holding member, the accuracy and sensitivity of strain measurement in the shearing direction are improved.
(4) The fastener with strain measurement function according to the present invention is provided with a semiconductor strain sensor on the central axis, which is a neutral line for the bending deformation of the fastener, so that the influence of excessive compression / tensile strain due to bending deformation can be reduced. Since it can be eliminated and an extra fluctuation of the sensor output can be suppressed, a highly accurate strain measurement can be performed.
(5) The fastener with a strain measuring function according to the present invention is such that the surface of the sensor holding member becomes gentle by embedding and fixing the semiconductor strain sensor inside the sensor holding member. Residuals such as bubbles can be suppressed, and highly sensitive strain measurement can be performed.
(6) The fastener with a strain measuring function according to the present invention uses a semiconductor single crystal substrate as a sensor holding member, and a strain applied to the sensor holding member by directly providing a semiconductor strain sensor portion on the surface region of the sensor holding member. Can be directly detected, so strain measurement with higher sensitivity and accuracy is possible. Moreover, since it is not necessary to provide a joining member for fixing the semiconductor strain sensor to the sensor holding member, there is no deterioration of the joining member, and a fastener with a strain measuring function having high durability (long-term reliability) can be obtained.

以下、本発明の実施例について図面を用いて説明する。ただし、本発明はここで取り上げた実施例に限定されることはない。   Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited to the embodiments taken up here.

(センサ保持部材の効果)
締結具1として、市販されている鉄製のボルト(ヤング率:約200 GPa)を用意し、中心軸を含む軸方向に穴1aを設けた。前述の第1の実施形態と同様な構造になるように(図1参照)、半導体ひずみセンサ4をエポキシ系樹脂製のセンサ保持部材3の表面に接着剤で固定し、該センサ保持部材3を穴1aに挿入した後、気泡が残留しないようにエポキシ系樹脂製の応力伝播部材2を充填し作製した試料を実施例1とした。一方、センサ保持部材を用いないで半導体ひずみセンサ4を穴1aに直接挿入した後、気泡が残留しないようにエポキシ系樹脂製の応力伝播部材2を充填し作製した試料を比較例1とした。図12は、比較例1のひずみ測定機能付き締結具の主要部分の構造を示す縦断面イメージ図である。
(Effect of sensor holding member)
A commercially available iron bolt (Young's modulus: about 200 GPa) was prepared as the fastener 1, and a hole 1a was provided in the axial direction including the central axis. The semiconductor strain sensor 4 is fixed to the surface of the epoxy resin-made sensor holding member 3 with an adhesive so as to have the same structure as that of the first embodiment described above (see FIG. 1). A sample prepared by filling the stress propagation member 2 made of an epoxy resin so as not to leave bubbles after being inserted into the hole 1a was taken as Example 1. On the other hand, a sample prepared by inserting the semiconductor strain sensor 4 directly into the hole 1a without using the sensor holding member and then filling it with the stress propagation member 2 made of epoxy resin so as not to leave bubbles was designated as Comparative Example 1. 12 is a longitudinal cross-sectional image diagram showing the structure of the main part of the fastener with a strain measurement function of Comparative Example 1. FIG.

上記実施例1および比較例1のひずみ測定機能付きボルトに対し、トルクレンチを用いて既知のトルクで締め付けた場合のセンサ出力を測定することにより、ひずみ感度を測定した。測定は各々5試料ずつ行った。いずれの試料も締め付けトルクの値が増加するに従い、センサの出力は直線的に増加した。図13は、ひずみ感度測定グラフの1例を示す模式図である。図13に示すように、グラフの傾きからボルトのひずみ感度を算出した。   The strain sensitivity was measured by measuring the sensor output when the bolts with strain measuring function of Example 1 and Comparative Example 1 were tightened with a known torque using a torque wrench. The measurement was performed for 5 samples each. In all the samples, the output of the sensor increased linearly as the tightening torque value increased. FIG. 13 is a schematic diagram showing an example of a strain sensitivity measurement graph. As shown in FIG. 13, the bolt strain sensitivity was calculated from the slope of the graph.

図14は、実施例1および比較例1のひずみ感度測定結果を示すグラフである。グラフの縦軸は「規格化ひずみ感度 = 各ボルトのひずみ感度 / ひずみ感度の最大値」として表示した。図14から明らかなように、センサ保持部材3を設けない(比較例1)場合、ひずみ感度が約25%程度ばらつくのに対し、センサ保持部材3を設けた(実施例1)場合には、ひずみ感度のばらつきが約5%以内に低減され安定していることが判る。また、最大感度(規格化ひずみ感度 =1)は実施例1で得られ、全ての比較例1はひずみ感度が低下した。このことから、比較例1では図12に示したように半導体ひずみセンサ4の方向ズレが起きたものと考えられる。   FIG. 14 is a graph showing the strain sensitivity measurement results of Example 1 and Comparative Example 1. The vertical axis of the graph is expressed as “normalized strain sensitivity = strain sensitivity of each bolt / maximum value of strain sensitivity”. As apparent from FIG. 14, when the sensor holding member 3 is not provided (Comparative Example 1), the strain sensitivity varies by about 25%, whereas when the sensor holding member 3 is provided (Example 1), It can be seen that the variation in strain sensitivity is reduced within about 5% and is stable. Further, the maximum sensitivity (normalized strain sensitivity = 1) was obtained in Example 1, and the strain sensitivity was lowered in all Comparative Examples 1. From this, it is considered that in the first comparative example, the direction deviation of the semiconductor strain sensor 4 occurred as shown in FIG.

(センサ保持部材のヤング率の影響)
締結具1として、市販されている鉄製のボルト(ヤング率:約200 GPa)を用意し、中心軸を含む軸方向に穴1aを設けた。前述の第2の実施形態と同様な構造になるように(図3参照)、半導体ひずみセンサ4をセンサ保持部材3の表面に接着剤で固定し、該センサ保持部材3を穴1aに挿入した後、気泡が残留しないようにエポキシ系樹脂製の応力伝播部材2を充填して試料を作製した。
(Influence of Young's modulus of sensor holding member)
A commercially available iron bolt (Young's modulus: about 200 GPa) was prepared as the fastener 1, and a hole 1a was provided in the axial direction including the central axis. The semiconductor strain sensor 4 is fixed to the surface of the sensor holding member 3 with an adhesive so as to have the same structure as that of the second embodiment described above (see FIG. 3), and the sensor holding member 3 is inserted into the hole 1a. Thereafter, a stress propagation member 2 made of an epoxy resin was filled so that no bubbles remained, thereby preparing a sample.

このとき、センサ保持部材3として、エポキシ系樹脂(ヤング率:約5GPa)を用いたものを実施例2とし、マグネシウム合金(AZ31、ヤング率:約45 GPa)を用いたものを実施例3とし、アルミニウム(ヤング率:約70 GPa)を用いたものを実施例4とし、銅合金(C2801、ヤング率:約100 GPa)を用いたものを実施例5とし、無酸素銅(C1020、ヤング率:約120 GPa)を用いたものを実施例6とした。また、前述の第3の実施形態と同様な構造になるように(図11参照)、センサ保持部材3としてシリコン単結晶基板(ヤング率:約190 GPa)を用いたものを実施例7とした。   At this time, as the sensor holding member 3, an epoxy resin (Young's modulus: about 5 GPa) is used as Example 2, and a magnesium alloy (AZ31, Young's modulus: about 45 GPa) is used as Example 3. Example 4 using aluminum (Young's modulus: about 70 GPa) and Example 5 using copper alloy (C2801, Young's modulus: about 100 GPa), oxygen-free copper (C1020, Young's modulus) : About 120 GPa) was designated as Example 6. A sensor holding member 3 that uses a silicon single crystal substrate (Young's modulus: about 190 GPa) was used as Example 7 so as to have the same structure as in the third embodiment (see FIG. 11). .

万能試験機を用いて各試料の引張試験を行い、締結具1に掛けたひずみ量と半導体ひずみセンサ4で検知されるひずみ量との比率をひずみ伝達率(単位:%)として評価した。いずれの試料とも、図13と同様に、締結具1に掛けたひずみ量が増加するに従って半導体ひずみセンサの出力は直線的に増加した。このことから、ひずみ伝達率を係数と考えることで締結具1に掛かるひずみ量を精度良く検知できることが確認された。結果を図15に示す。図15は、実施例2〜7におけるひずみ伝達率とセンサ保持部材のヤング率の関係を示したグラフである。図15に示すように、センサ保持部材のヤング率の増大に伴ってひずみ伝達率も増大し、センサ保持部材のヤング率が約45 GPa以上でひずみ伝達率が50%を超えることが判った。このことから、微小ひずみをより精度良く検知するためには、センサ保持部材のヤング率が約45 GPa以上であることが好ましいと言える。   Each sample was subjected to a tensile test using a universal testing machine, and the ratio between the strain applied to the fastener 1 and the strain detected by the semiconductor strain sensor 4 was evaluated as a strain transmission rate (unit:%). In any sample, the output of the semiconductor strain sensor increased linearly as the amount of strain applied to the fastener 1 increased as in FIG. From this, it was confirmed that the amount of strain applied to the fastener 1 can be accurately detected by considering the strain transmission rate as a coefficient. The results are shown in FIG. FIG. 15 is a graph showing the relationship between the strain transmission rate and the Young's modulus of the sensor holding member in Examples 2-7. As shown in FIG. 15, it was found that as the Young's modulus of the sensor holding member increased, the strain transmission rate also increased, and that the Young's modulus of the sensor holding member was about 45 GPa or more and the strain transmission rate exceeded 50%. From this, it can be said that the Young's modulus of the sensor holding member is preferably about 45 GPa or more in order to detect a minute strain with higher accuracy.

本発明の第1の実施形態に係るひずみ測定機能付き締結具の主要部分の構造例を示す縦断面模式図である。It is a longitudinal cross-sectional schematic diagram which shows the structural example of the principal part of the fastener with a strain measurement function which concerns on the 1st Embodiment of this invention. 図1のA−A断面を示す模式図である。It is a schematic diagram which shows the AA cross section of FIG. 本発明の第2の実施形態に係るひずみ測定機能付き締結具の構造例を示す横断面模式図である。It is a cross-sectional schematic diagram which shows the structural example of the fastener with a strain measurement function which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係るひずみ測定機能付き締結具の別の構造例を示す横断面模式図である。It is a cross-sectional schematic diagram which shows another structural example of the fastener with a strain measurement function which concerns on the 2nd Embodiment of this invention. 図4のB−B断面の1例を示す模式図である。It is a schematic diagram which shows an example of the BB cross section of FIG. 図4のB−B断面の別の1例を示す模式図である。It is a schematic diagram which shows another example of the BB cross section of FIG. 本発明の第2の実施形態に係るひずみ測定機能付き締結具の別の構造例を示す横断面模式図である。It is a cross-sectional schematic diagram which shows another structural example of the fastener with a strain measurement function which concerns on the 2nd Embodiment of this invention. 半導体ひずみセンサの1例を示す部分拡大模式図である。It is a partial expansion schematic diagram showing an example of a semiconductor strain sensor. 半導体ひずみセンサの他の例を示す部分拡大模式図である。It is a partial expansion schematic diagram which shows the other example of a semiconductor strain sensor. 半導体ひずみセンサの他の例を示す部分拡大模式図である。It is a partial expansion schematic diagram which shows the other example of a semiconductor strain sensor. 本発明の第3の実施形態に係るひずみ測定機能付き締結具の主要部分の構造例を示す縦断面模式図である。It is a longitudinal cross-sectional schematic diagram which shows the structural example of the principal part of the fastener with a strain measurement function which concerns on the 3rd Embodiment of this invention. 比較例1のひずみ測定機能付き締結具の主要部分の構造を示す縦断面イメージ図である。It is a longitudinal cross-sectional image figure which shows the structure of the principal part of the fastener with a strain measurement function of the comparative example 1. ひずみ感度測定グラフの1例を示す模式図である。It is a schematic diagram which shows an example of a strain sensitivity measurement graph. 実施例1および比較例1のひずみ感度測定結果を示すグラフである。It is a graph which shows the strain sensitivity measurement result of Example 1 and Comparative Example 1. 実施例2〜7におけるひずみ伝達率とセンサ保持部材のヤング率の関係を示したグラフである。It is the graph which showed the relationship between the strain transmission rate in Examples 2-7, and the Young's modulus of a sensor holding member.

符号の説明Explanation of symbols

1…締結具、1a…穴、1b…位置決め用穴、
2,21,22…応力伝播部材、
3…センサ保持部材、3a,3b…センサ保持部材の面、
4…半導体ひずみセンサ、4a,4b,4c,4d…p型不純物拡散抵抗、
5…防水・防湿性材料、6…アンプ、7…温度センサ、
8…半導体ひずみセンサ、8a,8b,8c,8d…n型不純物拡散抵抗、
13…センサ保持部材、14…半導体ひずみセンサ、
15…演算回路、16…パッド、17…配線。
1 ... Fastener, 1a ... hole, 1b ... positioning hole,
2, 21, 22 ... Stress propagation member,
3 ... Sensor holding member, 3a, 3b ... Sensor holding member surface,
4 ... Semiconductor strain sensor, 4a, 4b, 4c, 4d ... p-type impurity diffusion resistance,
5 ... Waterproof / moisture-proof material, 6 ... Amplifier, 7 ... Temperature sensor,
8 ... Semiconductor strain sensor, 8a, 8b, 8c, 8d ... n-type impurity diffusion resistance,
13 ... sensor holding member, 14 ... semiconductor strain sensor,
15 ... arithmetic circuit, 16 ... pad, 17 ... wiring.

Claims (11)

締結具のひずみ量を計測する半導体ひずみセンサを有する締結具であって、
前記半導体ひずみセンサを保持するセンサ保持部材と、
前記半導体ひずみセンサおよび/または前記センサ保持部材へ前記締結具に掛かる応力を伝える応力伝播部材とを具備し、
前記締結具には締結具の中心軸を含む軸方向に穴が設けられ、
前記穴の底部には前記センサ保持部材の位置決め用穴が更に設けられ、
記半導体ひずみセンサを保持した前記センサ保持部材は全体が前記穴に挿入されると共にその一端が前記位置決め用穴に差し込まれ
前記穴と前記センサ保持部材との間には前記応力伝播部材が充填され
前記締結具のヤング率E1と前記応力伝播部材のヤング率E2との関係が「E1 ≧ E2 ≧5GPa」であり、かつ前記締結具のヤング率E1と前記センサ保持部材のヤング率E3との関係が「E1 ≧ E3 ≧ 45 GPa」であることを特徴とするひずみ量測定機能付き締結具。
A fastener having a semiconductor strain sensor for measuring a strain amount of the fastener,
A sensor holding member for holding the semiconductor strain sensor;
A stress propagation member that transmits stress applied to the fastener to the semiconductor strain sensor and / or the sensor holding member;
The fastener is provided with a hole in an axial direction including a central axis of the fastener,
A positioning hole for the sensor holding member is further provided at the bottom of the hole,
Before SL said sensor holding member which holds the semiconductor strain sensor is entirely the Rutotomoni one end is inserted into the hole plugged into the positioning hole,
The stress propagation member is filled between the hole and the sensor holding member ,
The relationship between the Young's modulus E1 of the fastener and the Young's modulus E2 of the stress propagation member is “E1 ≧ E2 ≧ 5 GPa”, and the relationship between the Young's modulus E1 of the fastener and the Young's modulus E3 of the sensor holding member Is a fastener with a strain measurement function, characterized in that “E1 ≧ E3 ≧ 45 GPa” .
請求項1に記載のひずみ量測定機能付き締結具において、
前記センサ保持部材が前記締結具の穴の内壁に当接していることを特徴とするひずみ量測定機能付き締結具。
In the fastener with a strain amount measuring function according to claim 1 ,
The fastener with a strain amount measuring function, wherein the sensor holding member is in contact with an inner wall of a hole of the fastener.
請求項1または請求項に記載のひずみ量測定機能付き締結具において、
前記半導体ひずみセンサが前記締結具の略中心軸上に設置されていることを特徴とするひずみ量測定機能付き締結具。
In the fastener with a strain amount measuring function according to claim 1 or 2 ,
The fastener with a strain amount measuring function, wherein the semiconductor strain sensor is installed on a substantially central axis of the fastener.
請求項1乃至請求項3のいずれかに記載のひずみ量測定機能付き締結具において、
前記センサ保持部材が、マグネシウム合金、アルミニウム、アルミニウム合金、銅、銅合金またはシリコン基板のいずれかであることを特徴とするひずみ量測定機能付き締結具。
In the fastener with a strain amount measuring function according to any one of claims 1 to 3 ,
The fastener with a strain amount measuring function, wherein the sensor holding member is one of magnesium alloy, aluminum, aluminum alloy, copper, copper alloy, or silicon substrate.
請求項1乃至請求項4のいずれかに記載のひずみ量測定機能付き締結具において、
前記半導体ひずみセンサから見て前記センサ保持部材の軸方向両端の領域に応力伝播補助部材が具備されていることを特徴とするひずみ量測定機能付き締結具。
In the fastener with a strain amount measuring function according to any one of claims 1 to 4 ,
A fastener with a strain amount measuring function, characterized in that stress propagation assisting members are provided in regions at both axial ends of the sensor holding member as viewed from the semiconductor strain sensor.
請求項5に記載のひずみ量測定機能付き締結具において、In the fastener with a strain amount measuring function according to claim 5,
前記応力伝播補助部材のヤング率が、前記応力伝播部材のヤング率よりも高いことを特徴とするひずみ量測定機能付き締結具。A fastener with a strain amount measuring function, wherein the Young's modulus of the stress propagation auxiliary member is higher than the Young's modulus of the stress propagation member.
請求項5または請求項6に記載のひずみ量測定機能付き締結具において、
前記応力伝播補助部材が、マグネシウム合金、アルミニウム、アルミニウム合金、銅、銅合金またはシリコン基板のいずれかであることを特徴とするひずみ量測定機能付き締結具。
In the fastener with a strain amount measuring function according to claim 5 or 6 ,
The stress propagation auxiliary member is any one of a magnesium alloy, aluminum, an aluminum alloy, copper, a copper alloy, and a silicon substrate, and a fastener with a strain amount measuring function.
請求項1乃至請求項のいずれか1項に記載のひずみ量測定機能付き締結具において、
前記センサ保持部材がシリコン単結晶基板であり、前記半導体ひずみセンサが前記センサ保持部材の表面領域に直接形成されていることを特徴とするひずみ量測定機能付き締結具。
In the fastener with a strain amount measuring function according to any one of claims 1 to 7 ,
The sensor holding member is a silicon single crystal substrate, and the semiconductor strain sensor is formed directly on the surface region of the sensor holding member.
請求項に記載のひずみ量測定機能付き締結具において、
前記半導体ひずみセンサは、前記シリコン単結晶基板の表面領域に不純物拡散抵抗が形成されたたものであり、4本の前記不純物拡散抵抗によってホイートストンブリッジ回路が構成されたものであることを特徴とするひずみ量測定機能付き締結具。
The fastener with a strain amount measuring function according to claim 8 ,
The semiconductor strain sensor, which diffusion resistance is formed on the surface region of the silicon single crystal substrate, characterized in that by the impurity diffusion resistors of the four in which the Wheatstone bridge circuit is configured Fastener with strain measurement function.
請求項に記載のひずみ量測定機能付き締結具において、
前記不純物拡散抵抗はp型不純物拡散抵抗であり、
前記ホイートストンブリッジ回路は、前記p型不純物拡散抵抗の内の2本の長手方向が前記シリコン単結晶基板の<110>方向と平行であり、かつ他の2本の長手方向が前記<110>方向と垂直方向に平行であることを特徴とするひずみ量測定機能付き締結具。
The fastener with a strain amount measuring function according to claim 9 ,
The impurity diffused resistor is a p-type impurity diffused resistor,
In the Wheatstone bridge circuit, two longitudinal directions of the p-type impurity diffusion resistors are parallel to the <110> direction of the silicon single crystal substrate, and the other two longitudinal directions are the <110> direction. A fastener with a strain measurement function, characterized by being parallel to the vertical direction.
請求項に記載のひずみ量測定機能付き締結具において、
前記不純物拡散抵抗はn型不純物拡散抵抗であり、
前記ホイートストンブリッジ回路は、前記n型不純物拡散抵抗の内の2本の長手方向が前記シリコン単結晶基板の<100>方向と平行であり、かつ他の2本の長手方向が前記<100>方向と垂直方向に平行であることを特徴とするひずみ量測定機能付き締結具。
The fastener with a strain amount measuring function according to claim 9 ,
The impurity diffusion resistance is an n-type impurity diffusion resistance,
In the Wheatstone bridge circuit, two longitudinal directions of the n-type impurity diffusion resistors are parallel to the <100> direction of the silicon single crystal substrate, and the other two longitudinal directions are the <100> direction. A fastener with a strain measurement function, characterized by being parallel to the vertical direction.
JP2008148855A 2008-06-06 2008-06-06 Fastener with strain measurement function Expired - Fee Related JP5149081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008148855A JP5149081B2 (en) 2008-06-06 2008-06-06 Fastener with strain measurement function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008148855A JP5149081B2 (en) 2008-06-06 2008-06-06 Fastener with strain measurement function

Publications (2)

Publication Number Publication Date
JP2009294122A JP2009294122A (en) 2009-12-17
JP5149081B2 true JP5149081B2 (en) 2013-02-20

Family

ID=41542422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008148855A Expired - Fee Related JP5149081B2 (en) 2008-06-06 2008-06-06 Fastener with strain measurement function

Country Status (1)

Country Link
JP (1) JP5149081B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712016B2 (en) * 2011-03-23 2015-05-07 株式会社東京測器研究所 Bolt acting force measuring device
EP3093641B1 (en) * 2015-05-11 2017-06-28 Siemens Aktiengesellschaft Method for determining the axial tensile force introduced into a component
JP2018054293A (en) * 2016-09-26 2018-04-05 日立オートモティブシステムズ株式会社 Load sensor
JP7066183B2 (en) * 2018-10-16 2022-05-13 株式会社イマオコーポレーション Clamping device and clamping system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129580U (en) * 1973-03-06 1974-11-07
JPS5258682U (en) * 1975-10-24 1977-04-28
JPS63128437U (en) * 1987-02-13 1988-08-23
JPH0629808B2 (en) * 1987-03-03 1994-04-20 工業技術院長 Pressure sensor
JPH03181179A (en) * 1989-12-11 1991-08-07 Komatsu Ltd Stress conversion element and its manufacture
JPH06347349A (en) * 1993-06-08 1994-12-22 Giichi Terasawa Measuring instrument of axial tension of bolt
JP2001272287A (en) * 2000-03-27 2001-10-05 Tadahiro Kato Strain-detecting sensor
JP4248567B2 (en) * 2006-08-09 2009-04-02 日立Geニュークリア・エナジー株式会社 Valve device monitoring system
JP4710779B2 (en) * 2006-09-28 2011-06-29 株式会社日立製作所 Mechanical quantity measuring device

Also Published As

Publication number Publication date
JP2009294122A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP4528810B2 (en) Load sensor and load sensor manufacturing method
US20090199650A1 (en) Mechanical quantity measuring apparatus
JP4617943B2 (en) Mechanical quantity measuring device
AU2012350278B2 (en) Fluid pressure sensor and measurement probe
US20090183561A1 (en) Load pin brake cell apparatus
JP5149081B2 (en) Fastener with strain measurement function
US9459162B2 (en) Device for measuring mechanical quantity
JP4329477B2 (en) Bolt with strain measurement function
CN104685314B (en) Strain transmitter
JP2011516810A (en) Glow plug for pressure measurement
WO2022028193A1 (en) Strain measurement apparatus and manufacturing method therefor
EP3534126A2 (en) Sensing device, in particular load sensing device
JP2007057377A (en) Chain tension measuring method
US6829945B2 (en) Sensor device for registering strain
JP2001304997A (en) Semiconductor pressure sensor
JP2002236064A (en) Bolt with strain sensor, and strain sensor
JP2007285750A (en) Pressure sensor
EP3532816B1 (en) Strain gauge
JP2009257985A (en) Pressure sensor
JP2013024670A (en) Sensor chip and pressure sensor
JP5001029B2 (en) Glow plug with combustion pressure sensor
US6647809B1 (en) Silicon carbide high temperature anemometer and method for assembling the same
JP2008542692A (en) Strain gauge
EP2242996B1 (en) Multi sensing embedment transducer/sensor
JP2010096656A (en) Pressure sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121129

R150 Certificate of patent or registration of utility model

Ref document number: 5149081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees